[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1532400B1 - Method and device for combusting a fuel-oxidising agent mixture - Google Patents

Method and device for combusting a fuel-oxidising agent mixture Download PDF

Info

Publication number
EP1532400B1
EP1532400B1 EP03790608.8A EP03790608A EP1532400B1 EP 1532400 B1 EP1532400 B1 EP 1532400B1 EP 03790608 A EP03790608 A EP 03790608A EP 1532400 B1 EP1532400 B1 EP 1532400B1
Authority
EP
European Patent Office
Prior art keywords
oxidising agent
catalyst
channels
flow
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03790608.8A
Other languages
German (de)
French (fr)
Other versions
EP1532400A1 (en
Inventor
Timothy Griffin
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Ansaldo Energia Switzerland AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ansaldo Energia Switzerland AG filed Critical Ansaldo Energia Switzerland AG
Publication of EP1532400A1 publication Critical patent/EP1532400A1/en
Application granted granted Critical
Publication of EP1532400B1 publication Critical patent/EP1532400B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel

Definitions

  • the present invention relates to a method and a device for burning a fuel-oxidizer mixture in a combustion chamber of a turbo group, in particular a power plant.
  • the gas turbo group consists essentially of a compressor, a combustion chamber, a turbine and a generator.
  • fuel is mixed with compressed air in the compressor before combustion and then burned in a combustion chamber.
  • Compressed air supplied via a partial air line is mixed with fuel supplied via a partial fuel line and introduced into a reactor having a catalyst coating.
  • the fuel mixture is converted into a synthesis gas comprising hydrogen, carbon monoxide, residual air and residual fuel. This synthesis gas is injected into such zones of the combustion chamber in which they cause a stabilization of the flame.
  • the present invention deals with the problem of demonstrating possibilities for stabilization for the combustion of a lean fuel-oxidizer mixture in a combustion chamber of a turbo group.
  • the invention is based on the general idea of only partially oxidizing a rich pilot fuel-oxidizer mixture in a catalyst such that highly reactive hydrogen forms, the partially oxidized hydrogen-containing mixture, together with an additional oxidant stream, into at least one zone which is suitable for stabilizing the combustion of the main fuel-oxidizer mixture.
  • the required for Volloxidation the partially oxidized pilot mixture oxidizer is introduced or injected into the suitable zones for combustion stabilization, whereby the stability of the pilot flames thus generated increases.
  • the pilot flames do not draw any or at least significantly less oxidant from the main mixture when they are burned, which also makes the main mixture reaction more stable.
  • the additionally supplied oxidizer stream which is also referred to below as the heat exchanger oxidizer stream, can be used for preheating the pilot-fuel-oxidizer mixture and / or for cooling the catalyst.
  • the oxidizer used in a turbo group usually comes from the pressure side of a compressor, so that the oxidizer, usually air, already has a relatively high temperature.
  • a pilot-fuel-oxidizer mixture is formed whose temperature is below that of the densified oxidizer since the fuel, usually natural gas, has a relatively low temperature during injection.
  • another partial flow of the compressor-derived oxidizer may be used to preheat the pilot fuel-oxidizer mixture be used by a suitable heat coupling is performed.
  • the ignition limit of the catalytic reaction is achieved even at a relatively short inlet path into the catalyst, which can be achieved at the same time an increased conversion rate in the catalyst.
  • the catalytic reaction now increases the temperature of the catalyst. In order for the desired partial oxidation to take place predominantly in the catalyst, the temperature in the catalyst should not increase too much, since otherwise a full oxidation takes place and / or a homogeneous gas reaction can occur.
  • the heat exchanger oxidizer stream is suitable, in particular for its heat release to the pilot fuel-oxidizer mixture, in a special way for cooling the catalyst. As a result, the desired partial oxidation reaction can be stabilized in the catalyst.
  • the catalyst may have a plurality of channels through which it is possible to pass in parallel, one of which is catalytically active and the other catalytically inactive.
  • the catalytically active channels thereby form a catalytically active path through the catalyst, which is designed so that it allows the desired partial oxidation with the formation of hydrogen as it flows through the rich pilot fuel-oxidizer mixture.
  • the catalytically inactive channels form a catalytically inactive path through the catalyst, which is flowed through in operation by the heat exchanger-oxidizer stream.
  • This construction thus makes it possible, on the one hand, to preheat the pilot-fuel-oxidizer mixture introduced into the catalytic converter and, on the other hand, to cool the catalytic converter.
  • a targeted coordination of the catalytically active channels and the catalytically inactive channels, in particular with regard to their number, arrangement and dimensioning a targeted to a nominal operating state of the device, in particular the turbo group, thermal management for the catalyst can be achieved. This allows a long service life for the catalyst and reproducible combustion reactions in the catalyst and thus in the stabilization zones.
  • a turbo group 1 comprises a turbine 2, which is designed in particular as a gas turbine, and a compressor 3, which is connected to the turbine 2 via a drive shaft 4.
  • the turbo group 1 is used in a power plant, in which case the turbine 2 additionally drives a generator 5 via the shaft 4.
  • the turbo group 1 furthermore comprises a combustion system designated as combustion chamber 6, which has at least one combustion chamber 7 and at least one premix burner 8 arranged upstream of this combustion chamber 7.
  • the combustion chamber 6 is connected on the input side to the high-pressure side of the compressor 3 and on the output side to the high-pressure side of the turbine 2. Accordingly, the combustion chamber 6 is supplied via an oxidizer 9 from the compressor 3 with oxidizer, in particular air.
  • the fuel supply takes place via a corresponding fuel line 10.
  • the hot combustion gases are supplied to the turbine 2 via a hot gas line 11.
  • the combustion chamber 6 is used for combustion of a fuel-oxidizer mixture in the combustion chamber 7; the combustion chamber 6 thus forms a device according to the invention. Therefore, this device will be referred to as 6 below.
  • Fig. 2 is a detailed view of the combustion chamber 6 and the device 6 reproduced. Accordingly, by suitable flow guidance, a total oxidizer stream 12 coming from the compressor 3 is introduced at 13 into a main oxidant stream 14 and a minor oxidizer stream 15. At 16, the sub-oxidant stream 15 is split into a pilot oxidizer stream 17 and a heat exchanger-oxidizer stream 18. Similarly, here too, a total fuel stream 19 at 20 becomes a major fuel Stream 21 and a pilot fuel stream 22 split.
  • the splitting of the oxidizer streams can take place, for example, in a plenum of the combustion chamber 6, so that the splitting stations 13 and 16 coincide.
  • the fuel flow may be a suitable valve or the like. Arranged. It is also possible to provide the pilot fuel stream 22 with its own pump and, in particular, to supply the combustion chamber 6 independently of the main fuel stream 21.
  • the main oxidant stream 14 and the main fuel stream 21 are supplied to the premix burner 8, whereby a main fuel-oxidizer mixture 23 is formed in the premix burner 8.
  • This main fuel-oxidizer mixture 23 is then introduced into the combustion chamber 7, where it burns in a complete oxidation.
  • the supply of fuel and oxidizer takes place in the premix burner 8 so that a lean main mixture 23 results.
  • the device 6 or the combustion chamber 6 is also equipped with a catalyst 24, the catalyst material is selected so that it causes partial oxidation of a supplied fuel-oxidizer mixture in certain boundary conditions, such that hydrogen is formed during this partial oxidation.
  • the catalyst 24 is supplied with a mixture of the pilot oxidant stream 17 and the pilot fuel stream 22.
  • the admixing of the pilot fuel stream 22 to the pilot oxidizer stream 17 takes place in such a way that a rich pilot fuel-oxidizer mixture 17, 22 is formed.
  • the mixture formation can take place - as here - in an inlet region of the catalyst 24; likewise, the pilot fuel-oxidizer mixture 17, 22 may already be formed upstream of the catalytic converter 24.
  • the synthesis gas forming in the catalyst 24 by partial oxidation is hereinafter referred to as partially oxidized pilot fuel-oxidizer mixture, which is introduced into the combustion chamber 7, for example, according to the arrow 25.
  • pilot fuel-oxidizer mixture which is introduced into the combustion chamber 7, for example, according to the arrow 25.
  • further reaction products in the case of a natural gas / air mixture are essentially carbon monoxide and residual air or residual ester gas.
  • the partially oxidized pilot fuel-oxidizer mixture 25 is then introduced according to the invention together with the heat exchanger-oxidizer stream 18 into the combustion chamber 7. As a result, at the respective discharge point a very stable pilot flame or pilot combustion can be generated.
  • the heat exchanger oxidizer stream 18 and the volumetric flow of the partially oxidized pilot mixture 25 are suitably coordinated so that, when mixed, a lean or at least slightly lean mixture is formed.
  • the partially oxidized pilot mixture 25 and the heat exchanger oxidizer stream 18 are introduced or injected into one or more zones 26, of which Fig. 2 a symbolically bounded by a dotted line. These zones 26 are chosen to be particularly suitable for stabilizing the main combustion of the main fuel-oxidizer mixture 23 formed in the premix burner 8. Such zones 26 are located mainly in the combustion chamber 7.
  • At least one such zone 26 is in the premix burner 8, so that additionally or alternatively, the partially oxidized pilot mixture 25 together with the heat exchanger-oxidizer stream 18 at a corresponding point in the premix burner 8 are introduced, which, for example, in the embodiments of 3 and 4 is realized.
  • suitable zones 26 may be, for example: a central recirculation zone in the combustion chamber 7, an external recirculation or dead water zone and a remote from the combustion chamber 7 portion of the Vorrmischbrenners 8.
  • the catalyst 24 has a catalytically active path 27 and a catalytically inactive path 28, which is coupled to the catalytically active path 27 to transmit heat. While the pilot fuel-oxidizer mixture 17, 22 is introduced into the catalytically active path 27, the catalytically inactive path 28 is traversed by the heat exchanger-oxidizer stream 18. As a result, the heat exchanger-oxidizer stream 18th be used on the one hand for preheating the pilot mixture 17, 22, whose temperature has been lowered by the admixing of the relatively cold pilot fuel stream 22. By preheating the ignition of the catalyst reaction is advantageously shifted toward the inlet end of the catalyst 24.
  • the flow through the catalytically inactive path 28 with the heat exchanger-oxidizer stream 18 causes a cooling of the catalyst 24, so that the catalyst 24 can be operated in a predetermined and for the desired catalytic reaction particularly suitable temperature window.
  • a Butleroxidation of the pilot mixture 17, 22 and the formation of a homogeneous gas reaction in the pilot mixture 17, 22 are avoided within the catalyst 24.
  • the means used for the supply of the heat exchanger oxidizer stream 18 thereby form an oxidizer feed device, in which case the catalytically inactive path 28 of the catalyst 24 forms a component of this oxidizer feed device.
  • the catalyst 24 may be integrated into the premix burner 8.
  • the catalyst 24 may be installed in a lance 29, which is centrally located on a head 30 of the benner 8 remote from the combustion chamber 7 and protrudes here in the direction of the combustion chamber 7 into the premix burner 8.
  • the reactive, partially oxidized pilot mixture 25 is in this case together with the heat exchanger-oxidizer stream 18 injected at the head 30 in the premix burner 8.
  • the catalyst 24 itself is centrally located in the head 30 of the premix burner 8.
  • the catalyst 24 may have a plurality of channels 31 and 32 which can be flowed through in parallel, of which one are catalytically active channels 31, while the other are catalytically inactive channels 32.
  • the catalytically active channels 31 form the catalytically active path 27 of the catalyst 24, while the catalytically inactive channels 32 form the catalytically inactive path 28 of the catalyst 24.
  • the catalyst 4 In front of the inlet openings of the individual channels 31, 32, the catalyst 4 here has a distribution chamber 33, which is the distribution point 16 in Fig. 2 equivalent.
  • the supplied minor oxidant stream 15 is distributed to the catalytically active channels 31 (pilot oxidant stream 17) and the catalytically inactive channels 32 (heat exchanger oxidizer stream 18).
  • the admixing of the pilot fuel stream 22 takes place within the catalytically active channels 31, expediently before a catalytic coating of the catalytically active channels 31.
  • the catalytically active channels 31 and the catalytically inactive channels 32 are alternately arranged one another.
  • the catalytically active channels 31 are heat-transmitting coupled to the catalytically inactive channels 32, which can be realized in particular by common boundary walls.
  • the individual channels 31, 32 of the catalytic converter 24 can be catalytically active or catalytically inactive, line by line, and alternately arranged one row at a time. Accordingly, change in Fig. 5 Lines 34, which consist of juxtaposed catalytically active channels 31, with lines 35, which consist of juxtaposed catalytically inactive channels 32. This results in an alternating layering of the lines 34, 35 transversely to the main flow direction of the catalyst 24.
  • Um to separate the introduction of the heat exchanger oxidizer stream 18 into the catalytically inactive channels 32 from the supply of the pilot mixture 17, 22 from pilot fuel stream 22 and pilot oxidant stream 17 into the catalytically active channels 31 is the Catalyst 24 upstream of a distributor head 36.
  • This distributor head 36 has an output 38 connected to an input 37 of the catalytic converter 24.
  • the distributor head 36 has an in Fig. 5
  • the first input 39 is connected to a pilot-fuel-oxidizer-mixture line, not shown, which feeds the pilot mixture 17, 22 to the first input 39.
  • a heat exchanger-oxidizer line (not shown) which forms part of the abovementioned oxidizer feed device is connected to the second input 40, via which the heat exchanger-oxidizer flow 18 is supplied to the second input 40.
  • the distributor head 36 is made up of a plurality of shafts 41 and 42 which are adjacent to the main throughflow direction of the catalytic converter 24. All shafts 41, 42 are open to the output 38 of the distributor head 36. The first wells 41 associated with the first input 39 are also open to the first input 39 while being closed to the second input 40. In a corresponding manner, the second slots 40 associated with the second input 40 are open towards the second input 40 and closed towards the first input 39. In this case, the dimensioning of the shafts 41, 42 is matched to the dimensioning of the channels 31, 32 of the catalytic converter 40 so that each shaft outlet covers a row 34, 35.
  • the distributor head 36 basically has the same structure as in the embodiment according to FIG Fig. 5 ,
  • the catalyst 24, the catalytically active channels 31 and the catalytic inactive channels 32 in Fig. 6 not more line like in Fig. 5 but arranged in a checkerboard pattern.
  • this checkerboard arrangement is rotated relative to a rectangular cross-section of the catalyst 24 by 45 ° about the main flow direction of the catalyst 24, so that quasi a diagonal checkered arrangement of the channels 31, 32 results.
  • a perforated plate 43 having a plurality of through holes 44 arranged in a predetermined hole pattern 45.
  • This hole pattern 45 is expediently chosen such that each channel 31, 32 only communicates with one of the shafts 41, 42 via a single through hole 44.
  • the holes 44 are open on the one hand only to a single well 41, 42 and on the other hand only to a single channel 31, 32 or to a single channel group of catalytically active channels 31 or catalytically inactive channels 32.
  • the pilot mixture 17, 22 flowing into the first shafts 41 passes exclusively into catalytically active channels 31, while, on the other hand, the heat exchanger oxidizer stream 18 flows exclusively into catalytically inactive channels 32 via the second shafts 42.
  • Fig. 7a is a section through the cross section of the catalyst 24 according to Fig. 6 played. Accordingly, the catalytically active channels 31 and the catalytically inactive channels 32 are arranged so that they alternate in a checkerboard pattern.
  • Registered lines represent the orientations or longitudinal center planes of the respective channels 31, 32 associated shafts 41 and 42 at the exit thereof.
  • Fig. 7b gives a line by line alternating arrangement of the catalytically active channels 31 and the catalytically inactive channels 32 according to the in Fig. 5 illustrated embodiment of the catalyst 24 again and otherwise corresponds to the representation according to Fig. 7a ,
  • Fig. 7c another advantageous arrangement for the catalytically active channels 31 and the catalytically inactive channels 32 is shown.
  • the number of catalytically inactive channels 32 and their share of the total cross-sectional area of the catalyst 24 is greater than in the catalytically active channels 31.
  • the supply of the heat exchanger-oxidizer stream 18 and the pilot mixture 17, 22 then takes place via a corresponding Arrangement of the first shafts 41 and second shafts 42 in the distributor head 36th
  • the catalytically active channels 31 and the catalytically inactive channels 32 are again arranged like a box, the catalytically active channels 31 being grouped together in groups of four. Accordingly, a significantly larger number of catalytically active channels 31, while the proportion of the total area of the catalyst 24 through which can flow in the catalytically active channels 31 is about the same size as in the catalytically inactive channels 32.
  • a catalyst arrangement on the WO 03/033985 A1 directed.
  • From the WO 03/033985 A1 go to a method and a device for supplying and discharging two gases to or from a Multi-channel monolith structure.
  • a first and a second gas can be supplied to one another separated from the first and second channels of the monolith structure.
  • the channels are arranged so that each first channel having at least one second channel has a common partition wall through which mass and / or heat exchange between the channels is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

Technisches GebietTechnical area

Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Verbrennen eines Brennstoff-Oxidator-Gemischs in einem Brennraum einer Turbogruppe, insbesondere einer Kraftwerksanlage.The present invention relates to a method and a device for burning a fuel-oxidizer mixture in a combustion chamber of a turbo group, in particular a power plant.

Stand der TechnikState of the art

Aus der EP 0 849 451 A2 ist ein Verfahren zum Betrieb einer Gasturbogruppe bekannt, wobei die Gasturbogruppe im wesentlichen aus einem Verdichter, einer Brennkammer, einer Turbine und einem Generator besteht. In einem Vormischer der Brennkammer wird vor der Verbrennung Brennstoff mit im Verdichter verdichteter Luft vermischt und danach in einem Brennraum verbrannt. Über eine Teil-Luftleitung zugeführte verdichtete Luft wird mit über eine Teil-Brennstoffleitung zugeführtem Brennstoff vermischt und in einen Reaktor mit einer KatalysatorBeschichtung eingeleitet. Im Reaktor wird das Brennstoff-Gemisch in ein Synthesegas, umfassend Wasserstoff, Kohlenmonoxid, Restluft und Restbrennstoff, umgewandelt. Dieses Synthesegas wird in solche Zonen der Brennkammer eingedüst, in denen sie eine Stabilisierung der Flamme bewirken. Durch die Eindüsung des durch die Wasserstoffanteile hoch reaktiven Synthesegases bilden sich an den Eindüsstellen Flammen, wobei sie Restsauerstoff der mageren Hauptverbrennung verbrauchen. Diese Verbrennungsreaktion ist vergleichsweise stabil und bildet außerdem eine Zündquelle für die Hauptverbrennung, so dass die Flammen dieser Reaktion auch als Pilotflammen dienen.From the EP 0 849 451 A2 a method is known for operating a gas turbo group, wherein the gas turbo group consists essentially of a compressor, a combustion chamber, a turbine and a generator. In a pre-mixer of the combustion chamber, fuel is mixed with compressed air in the compressor before combustion and then burned in a combustion chamber. Compressed air supplied via a partial air line is mixed with fuel supplied via a partial fuel line and introduced into a reactor having a catalyst coating. In the reactor, the fuel mixture is converted into a synthesis gas comprising hydrogen, carbon monoxide, residual air and residual fuel. This synthesis gas is injected into such zones of the combustion chamber in which they cause a stabilization of the flame. Due to the injection of the highly reactive by the hydrogen shares synthesis gas flames form at the injection sites, where they consume residual oxygen of the lean main combustion. This combustion reaction is comparatively stable and also constitutes an ignition source for the main combustion, so that the flames of this reaction also serve as pilot flames.

Aus der US 5,569,020 ist ein Vormischbrenner bekannt, in dessen Kopf konzentrisch eine Lanze angeordnet ist. Diese Lanze enthält in ihrem Austrittsende einen Katalysator, der dazu ausgebildet ist, im Betrieb des Vormischbrenners bei einem ihn durchströmenden Pilot-Brennstoff-Oxidator-Gemisch eine Volloxidation durchzuführen. Hierdurch wird eine Heißgasströmung erzeugt, die sich mit dem kälteren Haupt-Brennstoff-Oxidator-Gemisch des Vormischbrenners vermischt und dadurch eine Stabilisierung der Verbrennung des Haupt-Brennstoff-Oxidator-Gemischs erzielt. Da mit Hilfe der Lanze und dem darin angeordneten Katalysator eine Heißgasströmung erzeugt werden soll, ist davon auszugehen, dass das im Katalysator volloxidierte Gemisch mager ist.From the US 5,569,020 is known a premix burner, in whose head concentrically a lance is arranged. This lance contains in its outlet end a catalyst, which is designed to perform a Volloxidation during operation of the premix burner in a flowing through him pilot fuel-oxidizer mixture. This produces a flow of hot gas which mixes with the colder main fuel-oxidizer mixture of the premix burner thereby achieving stabilization of the combustion of the main fuel-oxidizer mixture. Since a hot gas flow is to be generated with the aid of the lance and the catalyst arranged therein, it can be assumed that the mixture which has completely oxidized in the catalyst is lean.

Moderne Vormischbrenner arbeiten mit einem mageren Brennstoff-Oxidator-Gemisch und müssen in der Nähe der Zündgrenze ihres Magergemischs betrieben werden, um die Entstehung von NOX gering zu halten, und um somit die immer schärfer werdenden Emissionsvorschriften erfüllen zu können. Diese Brenner sind folglich sehr anfällig für Instabilitäten des Verbrennungsvorgangs und sind außerdem großen Druckschwankungen ausgesetzt, was sich nachteilig auf die Standzeiten des Brenners, einer nachgeschalteten Brennkammer und einer Gasturbine bzw. deren Schaufeln auswirkt. Es besteht daher das Bedürfnis, bei einem Magermix-Vormischbrenner die Verbrennung zu stabilisieren.Modern premix burners operate with a lean fuel-oxidizer mixture and must be operated near the ignition limit of their lean mixture in order to minimize the formation of NO X , and thus meet the increasingly stringent emissions regulations. Consequently, these burners are very susceptible to instabilities of the combustion process and are also exposed to large pressure fluctuations, which adversely affects the service life of the burner, a downstream combustion chamber and a gas turbine or their blades. Therefore, there is a need to stabilize combustion in a lean burn premix burner.

Darstellung der ErfindungPresentation of the invention

Hier setzt die Erfindung an. Die vorliegende Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für die Verbrennung eines mageren Brennstoff-Oxidator-Gemischs in einem Brennraum einer Turbogruppe Möglichkeiten zur Stabilisierung aufzuzeigen.This is where the invention starts. The present invention, as characterized in the claims, deals with the problem of demonstrating possibilities for stabilization for the combustion of a lean fuel-oxidizer mixture in a combustion chamber of a turbo group.

Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.According to the invention, this problem is solved by the subject matters of the independent claims. Advantageous embodiments are the subject of the dependent claims.

Die Erfindung beruht auf dem allgemeinen Gedanken, ein fettes Pilot-Brennstoff-Oxidator-Gemisch in einem Katalysator nur teilweise zu oxidieren, derart, dass sich hochreaktiver Wasserstoff bildet, wobei das teiloxidierte, wasserstoffhaltige Gemisch zusammen mit einem zusätzlichen Oxidator-Strom in wenigstens eine Zone eingeleitet wird, die für eine Stabilisierung der Verbrennung des Haupt-Brennstoff-Oxidator-Gemischs geeignet ist. Bei dieser Vorgehensweise wird der für die Volloxidation des teiloxidierten Pilot-Gemischs benötigte Oxidator mit in die für die Verbrennungsstabilisierung geeigneten Zonen eingeleitet bzw. eingedüst, wodurch sich die Stabilität der so erzeugten Pilotflammen erhöht. Gleichzeitig ziehen die Pilotflammen bei Ihrer Verbrennung keinen oder zumindest deutlich weniger Oxidator aus dem Hauptgemisch ab, wodurch auch die Hauptgemischreaktion stabiler ablaufen kann.The invention is based on the general idea of only partially oxidizing a rich pilot fuel-oxidizer mixture in a catalyst such that highly reactive hydrogen forms, the partially oxidized hydrogen-containing mixture, together with an additional oxidant stream, into at least one zone which is suitable for stabilizing the combustion of the main fuel-oxidizer mixture. In this procedure, the required for Volloxidation the partially oxidized pilot mixture oxidizer is introduced or injected into the suitable zones for combustion stabilization, whereby the stability of the pilot flames thus generated increases. At the same time, the pilot flames do not draw any or at least significantly less oxidant from the main mixture when they are burned, which also makes the main mixture reaction more stable.

Besonders günstig für die Stabilisierung der Verbrennung des Haupt-Gemischs hat sich gezeigt, wenn das wasserstoffhaltige, teiloxidierte Pilot-Gemisch und der zusätzliche Oxidator-Strom so dimensioniert werden, dass sich ein mageres Gemisch bildet. Insbesondere kann ein leicht mageres Gemisch angestrebt sein, das nur einen relativ geringen Oxidator-Überschuß besitzt. Der Einfluss auf die Emissionswerte der Haupt-Verbrennung ist dann besonders gering.Particularly favorable for the stabilization of the combustion of the main mixture has been found when the hydrogen-containing, partially oxidized pilot mixture and the additional oxidant stream are dimensioned so that forms a lean mixture. In particular, a slightly lean mixture may be desirable, which has only a relatively small excess of oxidizer. The influence on the emission values of the main combustion is then particularly low.

Gemäß einer besonders vorteilhaften Ausführungsform kann der zusätzlich zugeführte Oxidator-Strom, der im folgenden auch als Wärmeübertrager-Oxidatorstrom bezeichnet wird, zum Vorwärmen des Pilot-Brennstoff-Oxidator-Gemischs und/oder zum Kühlen das Katalysators verwendet werden. Der in einer Turbogruppe verwendete Oxidator stammt in der Regel von der Druckseite eines Verdichters, so dass der Oxidator, üblicherweise Luft, bereits eine relativ hohe Temperatur besitzt. Durch die Eindüsung des Brennstoffs in einen Teilstrom des vom Verdichter stammenden Oxidators wird ein Pilot-Brennstoff-Oxidator-Gemisch gebildet, dessen Temperatur unterhalb der des verdichteten Oxidators liegt, da der Brennstoff, üblicherweise Erdgas, bei der Eindüsung eine relativ niedrige Temperatur aufweist. Dementsprechend kann ein anderer Teilstrom des vom Verdichter stammenden Oxidators zum Vorwärmen des Pilot-Brennstoff-Oxidator-Gemischs genutzt werden, indem eine geeignete Wärmekopplung durchgeführt wird. Hierdurch wird die Zündgrenze der katalytischen Reaktion bereits bei einer relativ kurzen Einlaufstrecke in den Katalysator erreicht, wodurch sich gleichzeitig eine erhöhte Konversionsrate im Katalysator erzielen lässt. Durch die katalytische Reaktion erhöht sich nun die Temperatur des Katalysators. Damit im Katalysator vorwiegend die gewünschte Teiloxidation abläuft, darf die Temperatur im Katalysator nicht zu stark ansteigen, da sonst eine Volloxidation stattfinden und/oder eine homogene Gasreaktion entstehen kann. Der Wärmeübertrager-Oxidator-Strom eignet sich, insbesondere nach seiner Wärmeabgabe an das Pilot-Brennstoff-Oxidator-Gemisch, in besondere Weise zur Kühlung des Katalysators. Hierdurch kann die gewünschte Teiloxidationsreaktion im Katalysator stabilisiert werden.According to a particularly advantageous embodiment, the additionally supplied oxidizer stream, which is also referred to below as the heat exchanger oxidizer stream, can be used for preheating the pilot-fuel-oxidizer mixture and / or for cooling the catalyst. The oxidizer used in a turbo group usually comes from the pressure side of a compressor, so that the oxidizer, usually air, already has a relatively high temperature. By injecting the fuel into a partial stream of the compressor-originating oxidizer, a pilot-fuel-oxidizer mixture is formed whose temperature is below that of the densified oxidizer since the fuel, usually natural gas, has a relatively low temperature during injection. Accordingly, another partial flow of the compressor-derived oxidizer may be used to preheat the pilot fuel-oxidizer mixture be used by a suitable heat coupling is performed. As a result, the ignition limit of the catalytic reaction is achieved even at a relatively short inlet path into the catalyst, which can be achieved at the same time an increased conversion rate in the catalyst. The catalytic reaction now increases the temperature of the catalyst. In order for the desired partial oxidation to take place predominantly in the catalyst, the temperature in the catalyst should not increase too much, since otherwise a full oxidation takes place and / or a homogeneous gas reaction can occur. The heat exchanger oxidizer stream is suitable, in particular for its heat release to the pilot fuel-oxidizer mixture, in a special way for cooling the catalyst. As a result, the desired partial oxidation reaction can be stabilized in the catalyst.

Entsprechend einer bevorzugten Ausführungsform kann der Katalysator mehrere parallel durchströmbare Kanäle aufweisen, von denen die einen katalytisch aktiv und die anderen katalytisch inaktiv sind. Die katalytisch aktiven Kanäle bilden dabei einen katalytisch aktiven Pfad durch den Katalysator, der so gestaltet ist, dass er bei seiner Durchströmung mit dem fetten Pilot-Brennstoff-Oxidator-Gemisch die gewünschte Teiloxidation unter der Ausbildung von Wasserstoff ermöglicht. Die katalytisch inaktiven Kanäle bilden einen katalytisch inaktiven Pfad durch den Katalysator, der im Betrieb vom Wärmeübertrager-Oxidator-Strom durchströmt ist. Durch eine einheitliche Bauweise der Kanäle, also durch die Unterbringung der Kanäle in einer gemeinsamen Struktur des Katalysators, sind die Kanäle wärmeübertragend miteinander gekoppelt. Diese Bauweise ermöglicht somit zum einen ein Vorwärmen des in den Katalysator eingeleiteten Pilot-Brennstoff-Oxidator-Gemischs und zum anderen ein Kühlen des Katalysators. Durch eine gezielte Abstimmung der katalytisch aktiven Kanäle und der katalytisch inaktiven Kanäle, insbesondere im Hinblick auf deren Anzahl, Anordnung und Dimensionierung, kann gezielt ein auf einen Nennbetriebszustand der Vorrichtung, insbesondere der Turbogruppe, ausgelegtes Wärmemanagement für den Katalysator erreicht werden. Dies ermöglicht eine hohe Standzeit für den Katalysator sowie reproduzierbare Verbrennungsreaktionen im Katalysator und somit in den Stabilisierungszonen.According to a preferred embodiment, the catalyst may have a plurality of channels through which it is possible to pass in parallel, one of which is catalytically active and the other catalytically inactive. The catalytically active channels thereby form a catalytically active path through the catalyst, which is designed so that it allows the desired partial oxidation with the formation of hydrogen as it flows through the rich pilot fuel-oxidizer mixture. The catalytically inactive channels form a catalytically inactive path through the catalyst, which is flowed through in operation by the heat exchanger-oxidizer stream. By a uniform construction of the channels, so by the placement of the channels in a common structure of the catalyst, the channels are heat-transmitting coupled together. This construction thus makes it possible, on the one hand, to preheat the pilot-fuel-oxidizer mixture introduced into the catalytic converter and, on the other hand, to cool the catalytic converter. By a targeted coordination of the catalytically active channels and the catalytically inactive channels, in particular with regard to their number, arrangement and dimensioning, a targeted to a nominal operating state of the device, in particular the turbo group, thermal management for the catalyst can be achieved. This allows a long service life for the catalyst and reproducible combustion reactions in the catalyst and thus in the stabilization zones.

Weitere wichtige Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.Other important features and advantages of the present invention will become apparent from the dependent claims, from the drawings and from the associated figure description with reference to the drawings.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen. Es zeigen, jeweils schematisch,

Fig. 1
eine schaltplanartige Prinzipdarstellung einer Turbogruppe, die mit einer erfindungsgemäßen Vorrichtung ausgestattet ist,
Fig. 2
eine schaltplanartige Prinzipdarstellung einer erfindungsgemäßen Vorrichtung,
Fig. 3
eine Prinzipdarstellung im Längsschnitt durch einen Vormischbrenner,
Fig. 4
eine Ansicht wie in Fig. 3, jedoch bei einer anderen Ausführungsform,
Fig. 5
eine auseinander gezogene, perspektivische Darstellung eines Katalysators und eines Verteilerkopfs,
Fig. 6
eine Darstellung wie in Fig. 5, jedoch zusätzlich mit einer Lochplatte,
Fig. 7a bis 7d
stark vereinfachte Ausschnitte aus einem Querschnitt eines Katalysators bei verschiedenen Ausführungsformen.
Preferred embodiments of the invention are illustrated in the drawings and will be described in more detail in the following description, wherein like reference numerals refer to the same or similar or functionally identical components. Show, in each case schematically,
Fig. 1
a circuit diagram-like schematic representation of a turbo group, which is equipped with a device according to the invention,
Fig. 2
a circuit diagram-like schematic diagram of a device according to the invention,
Fig. 3
a schematic representation in longitudinal section through a premix burner,
Fig. 4
a view like in Fig. 3 but in another embodiment,
Fig. 5
an exploded, perspective view of a catalyst and a distributor head,
Fig. 6
a representation like in Fig. 5 , but additionally with a perforated plate,
Fig. 7a to 7d
highly simplified sections of a cross-section of a catalyst in various embodiments.

Wege zur Ausführung der ErfindungWays to carry out the invention

Entsprechend Fig. 1 umfaßt eine Turbogruppe 1 eine Turbine 2, die insbesondere als Gasturbine ausgebildet ist, sowie einen Verdichter 3, der über eine Antriebswelle 4 mit der Turbine 2 verbunden ist. Üblicherweise wird die Turbogruppe 1 in einer Kraftwerksanlage verwendet, wobei dann die Turbine 2 über die Welle 4 zusätzlich einen Generator 5 antreibt.Corresponding Fig. 1 For example, a turbo group 1 comprises a turbine 2, which is designed in particular as a gas turbine, and a compressor 3, which is connected to the turbine 2 via a drive shaft 4. Usually, the turbo group 1 is used in a power plant, in which case the turbine 2 additionally drives a generator 5 via the shaft 4.

Die Turbogruppe 1 umfaßt außerdem ein als Brennkammer 6 bezeichnetes Verbrennungssystem, das wenigstens einen Brennraum 7 sowie wenigstens einen, diesem Brennraum 7 vorgeschalteten Vormischbrenner 8 aufweist. Die Brennkammer 6 ist eingangsseitig an die Hochdruckseite des Verdichters 3 und ausgangsseitig an die Hochdruckseite der Turbine 2 angeschlossen. Dementsprechend wird die Brennkammer 6 über eine Oxidatorleitung 9 vom Verdichter 3 mit Oxidator, insbesondere Luft, versorgt.The turbo group 1 furthermore comprises a combustion system designated as combustion chamber 6, which has at least one combustion chamber 7 and at least one premix burner 8 arranged upstream of this combustion chamber 7. The combustion chamber 6 is connected on the input side to the high-pressure side of the compressor 3 and on the output side to the high-pressure side of the turbine 2. Accordingly, the combustion chamber 6 is supplied via an oxidizer 9 from the compressor 3 with oxidizer, in particular air.

Die Brennstoffversorgung erfolgt über eine entsprechende Brennstoffleitung 10. Die heißen Verbrennungsgase werden über eine Heißgasleitung 11 der Turbine 2 zugeführt. Die Brennkammer 6 dient zur Verbrennung eines Brennstoff-Oxidator-Gemischs im Brennraum 7; die Brennkammer 6 bildet somit eine Vorrichtung nach der Erfindung. Diese Vorrichtung wird im folgenden daher auch mit 6 bezeichnet.The fuel supply takes place via a corresponding fuel line 10. The hot combustion gases are supplied to the turbine 2 via a hot gas line 11. The combustion chamber 6 is used for combustion of a fuel-oxidizer mixture in the combustion chamber 7; the combustion chamber 6 thus forms a device according to the invention. Therefore, this device will be referred to as 6 below.

In Fig. 2 ist eine Detailansicht der Brennkammer 6 bzw. der Vorrichtung 6 wiedergegeben. Dementsprechend wird durch eine geeignete Strömungsführung ein vom Verdichter 3 kommender Gesamt-Oxidator-Strom 12 bei 13 in einen Haupt-Oxidator-Strom 14 und einen Neben-Oxidator-Strom 15 eingeleitet. Bei 16 erfolgt dann eine Aufteilung des Neben-Oxidator-Stroms 15 in einen Pilot-Oxidator-Strom 17 und einen Wärmeübertrager-Oxidator-Strom 18. In entsprechender Weise wird hier auch ein Gesamt-Brennstoff-Strom 19 bei 20 in einen Haupt-Brennstoff-Strom 21 und einen Pilot-Brennstoff-Strom 22 aufgeteilt. Die Aufteilung der Oxidatorströme kann beispielsweise in einem Plenum der Brennkammer 6 erfolgen, so dass die Aufteilstellen 13 und 16 zusammenfallen. Insbesondere bei der Aufteilstelle 20 des Brennstoffstroms kann ein geeignetes Ventil oder dgl. angeordnet sein. Ebenso ist es möglich, den Pilot-Brennstoff-Strom 22 mit einer eigenen Pumpe zu versehen und insbesondere unabhängig vom Haupt-Brennstoff-Strom 21 der Brennkammer 6 zuzuführen.In Fig. 2 is a detailed view of the combustion chamber 6 and the device 6 reproduced. Accordingly, by suitable flow guidance, a total oxidizer stream 12 coming from the compressor 3 is introduced at 13 into a main oxidant stream 14 and a minor oxidizer stream 15. At 16, the sub-oxidant stream 15 is split into a pilot oxidizer stream 17 and a heat exchanger-oxidizer stream 18. Similarly, here too, a total fuel stream 19 at 20 becomes a major fuel Stream 21 and a pilot fuel stream 22 split. The splitting of the oxidizer streams can take place, for example, in a plenum of the combustion chamber 6, so that the splitting stations 13 and 16 coincide. In particular at the allocation point 20 the fuel flow may be a suitable valve or the like. Arranged. It is also possible to provide the pilot fuel stream 22 with its own pump and, in particular, to supply the combustion chamber 6 independently of the main fuel stream 21.

Wie aus dem Schaubild gemäß Fig. 2 hervorgeht, wird dem Vormischbrenner 8 der Haupt-Oxidator-Strom 14 sowie der Haupt-Brennstoff-Strom 21 zugeführt, wodurch im Vormischbrenner 8 ein Haupt-Brennstoff-Oxidator-Gemisch 23 gebildet wird. Dieses Haupt-Brennstoff-Oxidator-Gemisch 23 wird dann in den Brennraum 7 eingeleitet, in dem es bei einer vollständigen Oxidation verbrennt. Zweckmäßig erfolgt dabei die Zuführung von Brennstoff und Oxidator in den Vormischbrenner 8 so, dass sich ein mageres Haupt-Gemisch 23 ergibt.As shown in the diagram Fig. 2 As can be seen, the main oxidant stream 14 and the main fuel stream 21 are supplied to the premix burner 8, whereby a main fuel-oxidizer mixture 23 is formed in the premix burner 8. This main fuel-oxidizer mixture 23 is then introduced into the combustion chamber 7, where it burns in a complete oxidation. Suitably, the supply of fuel and oxidizer takes place in the premix burner 8 so that a lean main mixture 23 results.

Die Vorrichtung 6 bzw. die Brennkammer 6 ist außerdem mit einem Katalysator 24 ausgestattet, dessen Katalysatormaterial so ausgewählt ist, dass es bei bestimmten Randbedingungen eine Teiloxidation eines zugeführten Brennstoff-Oxidator-Gemischs bewirkt, derart, dass bei dieser Teiloxidation Wasserstoff entsteht. Dem Katalysator 24 wird ein Gemisch aus dem Pilot-Oxidator-Strom 17 und dem Pilot-Brennstoff-Strom 22 zugeführt. Die Zumischung des Pilot-Brennstoff-Stroms 22 zum Pilot-Oxidator-Strom 17 erfolgt dabei so, dass sich ein fettes Pilot-Brennstoff-Oxidator-Gemisch 17, 22 bildet. Die Gemischbildung kann dabei - wie hier - in einem Einlaufbereich des Katalysators 24 erfolgen; ebenso kann das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 bereits stromauf des Katalysators 24 gebildet werden. Das sich im Katalysator 24 durch Teiloxidation ausbildende Synthesegas wird im folgenden als teiloxidiertes Pilot-Brennstoff-Oxidator-Gemisch bezeichnet, das entsprechend dem Pfeil 25 beispielsweise in den Brennraum 7 eingeleitet wird. Weitere Reaktionsprodukte bei einem Erdgas-Luft-Gemisch sind neben Wasserstoff im wesentlichen Kohlenmonoxid und Restluft bzw. Resterdgas.The device 6 or the combustion chamber 6 is also equipped with a catalyst 24, the catalyst material is selected so that it causes partial oxidation of a supplied fuel-oxidizer mixture in certain boundary conditions, such that hydrogen is formed during this partial oxidation. The catalyst 24 is supplied with a mixture of the pilot oxidant stream 17 and the pilot fuel stream 22. The admixing of the pilot fuel stream 22 to the pilot oxidizer stream 17 takes place in such a way that a rich pilot fuel-oxidizer mixture 17, 22 is formed. The mixture formation can take place - as here - in an inlet region of the catalyst 24; likewise, the pilot fuel-oxidizer mixture 17, 22 may already be formed upstream of the catalytic converter 24. The synthesis gas forming in the catalyst 24 by partial oxidation is hereinafter referred to as partially oxidized pilot fuel-oxidizer mixture, which is introduced into the combustion chamber 7, for example, according to the arrow 25. In addition to hydrogen, further reaction products in the case of a natural gas / air mixture are essentially carbon monoxide and residual air or residual ester gas.

Das teiloxidierte Pilot-Brennstoff-Oxidator-Gemisch 25 wird dann erfindungsgemäß gemeinsam mit dem Wärmeübertrager-Oxidator-Strom 18 in den Brennraum 7 eingeleitet. Hierdurch kann an der jeweiligen Einleitstelle eine sehr stabile Pilotflamme oder Pilotverbrennung erzeugt werden. Der Wärmeübertrager-Oxidator-Strom 18 und der Volumenstrom des teiloxidierten Pilotgemischs 25 sind zweckmäßig so aufeinander abgestimmt, dass sich bei ihrer Durchmischung ein mageres oder zumindest leicht mageres Gemisch ausbildet.The partially oxidized pilot fuel-oxidizer mixture 25 is then introduced according to the invention together with the heat exchanger-oxidizer stream 18 into the combustion chamber 7. As a result, at the respective discharge point a very stable pilot flame or pilot combustion can be generated. The heat exchanger oxidizer stream 18 and the volumetric flow of the partially oxidized pilot mixture 25 are suitably coordinated so that, when mixed, a lean or at least slightly lean mixture is formed.

Um mit Hilfe der stabilen Pilotflammen die Hauptverbrennung im Brennraum 7 stabilisieren zu können, werden das teiloxidierte Pilot-Gemisch 25 und der Wärmeübertrager-Oxidator-Strom 18 in eine oder mehrere Zonen 26 eingeleitet bzw. eingedüst, von denen in Fig. 2 eine symbolisch durch eine Punktlinie begrenzt ist. Diese Zonen 26 sind so gewählt, dass sie sich für eine Stabilisierung der Haupt-Verbrennung des im Vormischbrenner 8 gebildeten Haupt-Brennstoff-Oxidator-Gemischs 23 besonders eignen. Derartige Zonen 26 befinden sich hauptsächlich in der Brennkammer 7. Ebenso ist es möglich, dass sich wenigstens eine solche Zone 26 im Vormischbrenner 8 befindet, so dass zusätzlich oder alternativ das teiloxidierte Pilot-Gemisch 25 zusammen mit dem Wärmeübertrager-Oxidator-Strom 18 an einer entsprechenden Stelle in den Vormischbrenner 8 eingeleitet werden, was beispielsweise bei den Ausführungsformen der Fig. 3 und 4 realisiert ist. Für eine Stabilisierung der Haupt-Verbrennung des Haupt-Gemischs 23 im Brennraum 7 geeignete Zonen 26 können beispielsweise sein: eine zentrale Rezirkulationszone im Brennraum 7, eine außenliegende Rezirkulations- oder Totwasserzone und ein vom Brennraum 7 entfernter Abschnitt des Vorrmischbrenners 8. Die genannten Rezirkulationszonen entstehend dann, wenn der Vormischbrenner 8 über eine sprungartige Querschnittserweiterung in den Brennraum 7 übergeht und dadurch eine Drallströmung des Vormischbrenners 8 beim Übergang in den Brennraum 7 aufplatzt, sogenannter "vortex-breakdown".In order to be able to stabilize the main combustion in the combustion chamber 7 with the help of the stable pilot flames, the partially oxidized pilot mixture 25 and the heat exchanger oxidizer stream 18 are introduced or injected into one or more zones 26, of which Fig. 2 a symbolically bounded by a dotted line. These zones 26 are chosen to be particularly suitable for stabilizing the main combustion of the main fuel-oxidizer mixture 23 formed in the premix burner 8. Such zones 26 are located mainly in the combustion chamber 7. It is also possible that at least one such zone 26 is in the premix burner 8, so that additionally or alternatively, the partially oxidized pilot mixture 25 together with the heat exchanger-oxidizer stream 18 at a corresponding point in the premix burner 8 are introduced, which, for example, in the embodiments of 3 and 4 is realized. For a stabilization of the main combustion of the main mixture 23 in the combustion chamber 7 suitable zones 26 may be, for example: a central recirculation zone in the combustion chamber 7, an external recirculation or dead water zone and a remote from the combustion chamber 7 portion of the Vorrmischbrenners 8. The said recirculation zones arising when the premix burner 8 passes over a sudden cross-sectional widening in the combustion chamber 7 and thereby a swirling flow of the premix burner 8 at the transition into the combustion chamber 7 bursts, so-called "vortex breakdown".

Bei der hier gezeigten speziellen Ausführungsform besitzt der Katalysator 24 einen katalytisch aktiven Pfad 27 sowie einen katalytisch inaktiven Pfad 28, der mit dem katalytisch aktiven Pfad 27 wärmeübertragend gekoppelt ist. Während das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 in den katalytisch aktiven Pfad 27 eingeleitet wird, ist der katalytisch inaktive Pfad 28 vom Wärmeübertrager-Oxidator-Strom 18 durchströmt. Hierdurch kann der Wärmeübertrager-Oxidator-Strom 18 einerseits zum Vorwärmen des Pilot-Gemischs 17, 22 genutzt werden, dessen Temperatur durch die Zumischung des relativ kalten Pilot-Brennstoff-Stroms 22 abgesenkt worden ist. Durch die Vorwärmung wird die Zündung der Katalysatorreaktion vorteilhaft in Richtung Einlaufende des Katalysators 24 verschoben. Andererseits bewirkt die Durchströmung des katalytisch inaktiven Pfads 28 mit dem Wärmeübertrager-Oxidator-Strom 18 eine Kühlung des Katalysators 24, so dass der Katalysator 24 in einem vorbestimmten und für die gewünschte katalytische Reaktion besonders geeigneten Temperaturfenster betrieben werden kann. Durch die Kühlung des Katalysators 24 werden innerhalb des Katalysators 24 insbesondere eine Volloxidation des Pilot-Gemischs 17, 22 sowie die Entstehung einer homogenen Gasreaktion im Pilot-Gemisch 17, 22 vermieden.In the specific embodiment shown here, the catalyst 24 has a catalytically active path 27 and a catalytically inactive path 28, which is coupled to the catalytically active path 27 to transmit heat. While the pilot fuel-oxidizer mixture 17, 22 is introduced into the catalytically active path 27, the catalytically inactive path 28 is traversed by the heat exchanger-oxidizer stream 18. As a result, the heat exchanger-oxidizer stream 18th be used on the one hand for preheating the pilot mixture 17, 22, whose temperature has been lowered by the admixing of the relatively cold pilot fuel stream 22. By preheating the ignition of the catalyst reaction is advantageously shifted toward the inlet end of the catalyst 24. On the other hand, the flow through the catalytically inactive path 28 with the heat exchanger-oxidizer stream 18 causes a cooling of the catalyst 24, so that the catalyst 24 can be operated in a predetermined and for the desired catalytic reaction particularly suitable temperature window. By cooling the catalyst 24, in particular a Volloxidation of the pilot mixture 17, 22 and the formation of a homogeneous gas reaction in the pilot mixture 17, 22 are avoided within the catalyst 24.

Es ist klar, dass im Katalysator 24 bzw. in dessen katalytisch aktiven Pfad 27 neben der Teiloxidation auch eine Volloxidation des Pilot-Gemischs 17, 22 stattfinden kann. Darüber hinaus kann es bei relativ niedrigen Temperaturen und bei der Verwendung von Erdgas als Brennstoff dazu kommen, dass im Katalysator 24 eine endotherme Dampf-Reformierung stattfindet, wodurch die Produktion von Wasserstoff und beispielsweise Kohlenmonoxid verbessert werden kann. Des weiteren ist es möglich, dem Katalysator 24 bzw. dem Pilot-Gemisch 17, 22 Dampf zuzuführen.It is clear that in the catalytic converter 24 or in its catalytically active path 27, in addition to the partial oxidation, a full oxidation of the pilot mixture 17, 22 can take place. Moreover, at relatively low temperatures and using natural gas as the fuel, endothermic steam reforming may occur in the catalyst 24, thereby improving the production of hydrogen and, for example, carbon monoxide. Furthermore, it is possible to supply steam to the catalyst 24 or the pilot mixture 17, 22.

Die für die Zuführung des Wärmeübertrager-Oxidator-Stroms 18 verwendeten Mittel bilden dabei eine Oxidator-Zuführeinrichtung, wobei hier der katalytisch inaktive Pfad 28 des Katalysators 24 einen Bestandteil dieser Oxidator-Zuführeinrichtung bildet.The means used for the supply of the heat exchanger oxidizer stream 18 thereby form an oxidizer feed device, in which case the catalytically inactive path 28 of the catalyst 24 forms a component of this oxidizer feed device.

Entsprechend den Fig. 3 und 4 kann der Katalysator 24 bei bevorzugten Ausführungsformen in den Vormischbrenner 8 integriert sein. Gemäß Fig. 3 kann der Katalysator 24 beispielsweise in eine Lanze 29 eingebaut sein, die an einem vom Brennraum 7 entfernten Kopf 30 des Benners 8 zentral angeordnet ist und hier in Richtung Brennraum 7 in den Vormischbrenner 8 hineinragt. Das reaktive, teiloxidierte Pilot-Gemisch 25 wird hierbei zusammen mit dem Wärmeübertrager-Oxidator-Strom 18 am Kopf 30 in den Vormischbrenner 8 eingedüst. Bei der Ausführungsform gemäß Fig. 4 ist der Katalysator 24 selbst im Kopf 30 des Vormischbrenners 8 zentral angeordnet.According to the 3 and 4 For example, in preferred embodiments, the catalyst 24 may be integrated into the premix burner 8. According to Fig. 3 For example, the catalyst 24 may be installed in a lance 29, which is centrally located on a head 30 of the benner 8 remote from the combustion chamber 7 and protrudes here in the direction of the combustion chamber 7 into the premix burner 8. The reactive, partially oxidized pilot mixture 25 is in this case together with the heat exchanger-oxidizer stream 18 injected at the head 30 in the premix burner 8. In the embodiment according to Fig. 4 the catalyst 24 itself is centrally located in the head 30 of the premix burner 8.

Im folgenden wird eine spezielle Ausführungsform des Katalysators 24 anhand Fig. 4 erläutert, ohne dass es dabei auf die in Fig. 4 gezeigte Einbausituation des Katalysators 24 ankommt. Der Katalysator 24 kann mehrere parallel durchströmbare Kanäle 31 und 32 aufweisen, von denen die einen katalytisch aktive Kanäle 31 sind, während die anderen katalytisch inaktive Kanäle 32 sind. Die katalytisch aktiven Kanäle 31 bilden dabei den katalytisch aktiven Pfad 27 des Katalysators 24, während die katalytisch inaktiven Kanäle 32 den katalytisch inaktiven Pfad 28 des Katalysators 24 bilden. Vor den Einlaßöffnungen der einzelnen Kanäle 31, 32 besitzt der Katalysator 4 hier eine Verteilerkammer 33, die der Aufteilstelle 16 in Fig. 2 entspricht. Dementsprechend verteilt sich in der Verteilerkammer 33 der zugeführte Neben-Oxidator-Strom 15 auf die katalytisch aktiven Kanälen 31 (Pilot-Oxidator-Strom 17) und die katalytisch inaktiven Kanäle 32 (Wärmeübertrager-Oxidator-Strom 18). Bei der hier gezeigten Ausführungsform erfolgt die Zumischung des Pilot-Brennstoff-Stroms 22 innerhalb der katalytisch aktiven Kanäle 31, zweckmäßig vor einer katalytischen Beschichtung der katalytisch aktiven Kanäle 31. Für eine intensive Kühlung der katalytisch aktiven Kanäle 31 sind zum einen die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 einander abwechselnd angeordnet. Zum anderen sind die katalytisch aktiven Kanäle 31 wärmeübertragend mit den katalytisch inaktiven Kanälen 32 gekoppelt, was insbesondere durch gemeinsame Begrenzungswände realisierbar ist.In the following, a specific embodiment of the catalyst 24 is based on Fig. 4 explained, without reference to the in Fig. 4 shown installation situation of the catalyst 24 arrives. The catalyst 24 may have a plurality of channels 31 and 32 which can be flowed through in parallel, of which one are catalytically active channels 31, while the other are catalytically inactive channels 32. The catalytically active channels 31 form the catalytically active path 27 of the catalyst 24, while the catalytically inactive channels 32 form the catalytically inactive path 28 of the catalyst 24. In front of the inlet openings of the individual channels 31, 32, the catalyst 4 here has a distribution chamber 33, which is the distribution point 16 in Fig. 2 equivalent. Accordingly, in the distribution chamber 33, the supplied minor oxidant stream 15 is distributed to the catalytically active channels 31 (pilot oxidant stream 17) and the catalytically inactive channels 32 (heat exchanger oxidizer stream 18). In the embodiment shown here, the admixing of the pilot fuel stream 22 takes place within the catalytically active channels 31, expediently before a catalytic coating of the catalytically active channels 31. For an intensive cooling of the catalytically active channels 31, on the one hand the catalytically active channels 31 and the catalytically inactive channels 32 are alternately arranged one another. On the other hand, the catalytically active channels 31 are heat-transmitting coupled to the catalytically inactive channels 32, which can be realized in particular by common boundary walls.

Entsprechend Fig. 5 können die einzelnen Kanäle 31, 32 des Katalysators 24 zeilenweise katalytisch aktiv bzw. katalytisch inaktiv ausgebildet und einander zeilenweise abwechselnd angeordnet sein. Dementsprechend wechseln sich in Fig. 5 Zeilen 34, die aus nebeneinander angeordneten katalytisch aktiven Kanälen 31 bestehen, mit Zeilen 35 ab, die aus nebeneinander angeordneten katalytisch inaktiven Kanälen 32 bestehen. Hierdurch ergibt sich eine alternierende Schichtung der Zeilen 34, 35 quer zur Hauptdurchströmungsrichtung des Katalysators 24. Um die Einleitung des Wärmeübertrager-Oxidator-Stroms 18 in die katalytisch inaktiven Kanäle 32 von der Zuführung des Pilot-Gemischs 17, 22 aus Pilot-Brennstoff-Strom 22 und Pilot-Oxidator-Strom 17 in die katalytisch aktiven Kanäle 31 zu trennen, ist dem Katalysator 24 ein Verteilerkopf 36 vorgeschaltet. Dieser Verteilerkopf 36 besitzt einen an einen Eingang 37 des Katalysators 24 angeschlossenen Ausgang 38. Des Weiteren besitzt der Verteilerkopf 36 einen in Fig. 5 dem Betrachter zugewandten ersten Eingang 39 sowie einen vom Betrachter abgewandten zweiten Eingang 40. Der erste Eingang 39 ist an eine nicht dargestellte Pilot-Brennstoff-Oxidator-Gemisch-Leitung angeschlossen, die das Pilot-Gemisch 17, 22 dem ersten Eingang 39 zuführt. In entsprechender Weise ist an den zweiten Eingang 40 eine nicht gezeigte Wärmeübertrager-Oxidator-Leitung, die einen Bestandteil der vorgenannten Oxidator-Zuführeinrichtung bildet, angeschlossen, über die der Wärmeübertrager-Oxidator-Strom 18 dem zweiten Eingang 40 zugeführt wird.Corresponding Fig. 5 For example, the individual channels 31, 32 of the catalytic converter 24 can be catalytically active or catalytically inactive, line by line, and alternately arranged one row at a time. Accordingly, change in Fig. 5 Lines 34, which consist of juxtaposed catalytically active channels 31, with lines 35, which consist of juxtaposed catalytically inactive channels 32. This results in an alternating layering of the lines 34, 35 transversely to the main flow direction of the catalyst 24. Um to separate the introduction of the heat exchanger oxidizer stream 18 into the catalytically inactive channels 32 from the supply of the pilot mixture 17, 22 from pilot fuel stream 22 and pilot oxidant stream 17 into the catalytically active channels 31 is the Catalyst 24 upstream of a distributor head 36. This distributor head 36 has an output 38 connected to an input 37 of the catalytic converter 24. Furthermore, the distributor head 36 has an in Fig. 5 The first input 39 is connected to a pilot-fuel-oxidizer-mixture line, not shown, which feeds the pilot mixture 17, 22 to the first input 39. In a corresponding manner, a heat exchanger-oxidizer line (not shown) which forms part of the abovementioned oxidizer feed device is connected to the second input 40, via which the heat exchanger-oxidizer flow 18 is supplied to the second input 40.

Der Verteilerkopf 36 ist aus mehreren, quer zur Hauptdurchströmungsrichtung des Katalysators 24 benachbarten Schächten 41 und 42 aufgebaut. Alle Schächte 41, 42 sind zum Ausgang 38 des Verteilerkopfs 36 hin offen. Die dem ersten Eingang 39 zugeordneten ersten Schächte 41 sind außerdem zum ersten Eingang 39 hin offen, während sie zum zweiten Eingang 40 hin geschlossen sind. In entsprechender Weise sind die dem zweiten Eingang 40 zugeordneten zweiten Schächte 42 zum zweiten Eingang 40 hin offen und zum ersten Eingang 39 hin geschlossen. Dabei ist die Dimensionierung der Schächte 41, 42 auf die Dimensionierung der Kanäle 31, 32 des Katalysators 40 so abgestimmt, dass jeder Schachtausgang eine Zeile 34, 35 abdeckt. Da die ersten Schächte 41 und die zweiten Schächte 42 einander abwechselnd nebeneinander angeordnet sind, ergibt sich dadurch die gewünschte Aufteilung der dem Verteilerkopf 36 zugeführten Strömungen, nämlich Pilot-Gemisch 17, 22 einerseits und Wärmeübertrager-Oxidator-Strom 18 andererseits, auf die einzelnen Zeilen 34, 35 des Katalysators 24.The distributor head 36 is made up of a plurality of shafts 41 and 42 which are adjacent to the main throughflow direction of the catalytic converter 24. All shafts 41, 42 are open to the output 38 of the distributor head 36. The first wells 41 associated with the first input 39 are also open to the first input 39 while being closed to the second input 40. In a corresponding manner, the second slots 40 associated with the second input 40 are open towards the second input 40 and closed towards the first input 39. In this case, the dimensioning of the shafts 41, 42 is matched to the dimensioning of the channels 31, 32 of the catalytic converter 40 so that each shaft outlet covers a row 34, 35. Since the first shafts 41 and the second shafts 42 are arranged alternately side by side, this results in the desired distribution of the distributors head 36 supplied flows, namely pilot mixture 17, 22 on the one hand and heat exchanger-oxidizer stream 18 on the other hand, on the individual lines 34, 35 of the catalyst 24th

Bei der Ausführungsform gemäß Fig. 6 besitzt der Verteilerkopf 36 grundsätzlich denselben Aufbau wie bei der Ausführungsform gemäß Fig. 5. Im Unterschied dazu sind jedoch beim Katalysator 24 die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 in Fig. 6 nicht mehr zeilenförmig wie in Fig. 5, sondern schachbrettartig angeordnet. Dabei ist diese Schachbrettanordnung gegenüber einem rechteckigen Querschnitt des Katalysators 24 um 45° um die Hauptdurchströmungsrichtung des Katalysators 24 verdreht, so dass sich quasi eine diagonale schachbrettartige Anordnung der Kanäle 31, 32 ergibt. Um auch bei dieser Ausführungsform eine eindeutige Trennung zwischen dem Pilot-Gemisch 17, 22 und dem Wärmeübertrager-Oxidator-Strom 18 für die Durchströmung des Katalysators 24 erzielen zu können, ist nun zwischen dem Eingang 37 des Katalysators 24 und dem Ausgang 38 des Verteilerkopfs 36 eine Lochplatte 43 angeordnet, die eine Vielzahl von Durchgangslöchern 44 besitzt, die in einem vorbestimmten Lochmuster 45 angeordnet sind. Dieses Lochmuster 45 ist zweckmäßig so gewählt, dass jeder Kanal 31, 32 nur über ein einziges Durchgangsloch 44 mit einem der Schächte 41, 42 kommuniziert. Das bedeutet, dass die Löcher 44 jeweils einerseits nur zu einem einzigen Schacht 41, 42 und andererseits nur zu einem einzigen Kanal 31, 32 bzw. zu einer einzigen Kanalgruppe aus katalytisch aktiven Kanälen 31 oder katalytisch inaktiven Kanälen 32 offen sind. Hierdurch wird erreicht, dass einerseits das in die ersten Schächte 41 einströmende Pilot-Gemisch 17, 22 ausschließlich in katalytisch aktive Kanäle 31 gelangt, während andererseits der Wärmeübertrager-Oxidator-Strom 18 über die zweiten Schächte 42 ausschließlich in katalytisch inaktive Kanäle 32 einströmt.In the embodiment according to Fig. 6 the distributor head 36 basically has the same structure as in the embodiment according to FIG Fig. 5 , In contrast, however, the catalyst 24, the catalytically active channels 31 and the catalytic inactive channels 32 in Fig. 6 not more line like in Fig. 5 but arranged in a checkerboard pattern. In this case, this checkerboard arrangement is rotated relative to a rectangular cross-section of the catalyst 24 by 45 ° about the main flow direction of the catalyst 24, so that quasi a diagonal checkered arrangement of the channels 31, 32 results. In order to achieve a clear separation between the pilot mixture 17, 22 and the heat exchanger oxidizer stream 18 for the flow through the catalyst 24 in this embodiment, is now between the inlet 37 of the catalyst 24 and the outlet 38 of the distributor head 36th a perforated plate 43 having a plurality of through holes 44 arranged in a predetermined hole pattern 45. This hole pattern 45 is expediently chosen such that each channel 31, 32 only communicates with one of the shafts 41, 42 via a single through hole 44. This means that the holes 44 are open on the one hand only to a single well 41, 42 and on the other hand only to a single channel 31, 32 or to a single channel group of catalytically active channels 31 or catalytically inactive channels 32. In this way, on the one hand, the pilot mixture 17, 22 flowing into the first shafts 41 passes exclusively into catalytically active channels 31, while, on the other hand, the heat exchanger oxidizer stream 18 flows exclusively into catalytically inactive channels 32 via the second shafts 42.

Durch die speziellen Maßnahmen der Ausführungsformen gemäß den Fig. 5 und 6 ist es besonders einfach möglich, vor der Einleitung in den Katalysator 24 bzw. in dessen Kanäle 31, 32 auf relativ einfache Weise das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 herzustellen.By the special measures of the embodiments according to the FIGS. 5 and 6 It is particularly easy, before the introduction into the catalyst 24 or in its channels 31, 32 in a relatively simple manner, the pilot-fuel-oxidizer mixture 17, 22 produce.

In Fig. 7a ist ein Ausschnitt durch den Querschnitt des Katalysators 24 gemäß Fig. 6 wiedergegeben. Dementsprechend sind die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 so angeordnet, dass sie sich schachbrettartig abwechseln. Die in Fig. 7a eingetragenen Linien repräsentieren die Orientierungen oder Längsmittelebenen der den jeweiligen Kanälen 31, 32 zugeordneten Schächte 41 bzw. 42 an deren Austritt.In Fig. 7a is a section through the cross section of the catalyst 24 according to Fig. 6 played. Accordingly, the catalytically active channels 31 and the catalytically inactive channels 32 are arranged so that they alternate in a checkerboard pattern. In the Fig. 7a Registered lines represent the orientations or longitudinal center planes of the respective channels 31, 32 associated shafts 41 and 42 at the exit thereof.

Fig. 7b gibt eine sich zeilenweise alternierende Anordnung der katalytisch aktiven Kanäle 31 und der katalytisch inaktiven Kanäle 32 entsprechend der in Fig. 5 dargestellten Ausführungsform des Katalysators 24 wieder und entspricht im Übrigen jedoch der Darstellung gemäß Fig. 7a. Fig. 7b gives a line by line alternating arrangement of the catalytically active channels 31 and the catalytically inactive channels 32 according to the in Fig. 5 illustrated embodiment of the catalyst 24 again and otherwise corresponds to the representation according to Fig. 7a ,

In Fig. 7c ist eine andere vorteilhafte Anordnung für die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 wiedergegeben. Bei dieser Variante ist die Anzahl der katalytisch inaktiven Kanäle 32 sowie deren Anteil an der Gesamtquerschnittsfläche des Katalysators 24 größer als bei den katalytisch aktiven Kanälen 31. Die Zuführung des Wärmeübertrager-Oxidator-Stroms 18 bzw. des Pilotgemischs 17, 22 erfolgt dann über eine entsprechende Anordnung der ersten Schächte 41 und zweiten Schächte 42 im Verteilerkopf 36.In Fig. 7c another advantageous arrangement for the catalytically active channels 31 and the catalytically inactive channels 32 is shown. In this variant, the number of catalytically inactive channels 32 and their share of the total cross-sectional area of the catalyst 24 is greater than in the catalytically active channels 31. The supply of the heat exchanger-oxidizer stream 18 and the pilot mixture 17, 22 then takes place via a corresponding Arrangement of the first shafts 41 and second shafts 42 in the distributor head 36th

Bei der Ausführungsform gemäß Fig. 7d sind die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 wieder schachtbrettartig angeordnet, wobei die katalytisch aktiven Kanäle 31 jeweils zu Vierergruppen zusammengefasst sind. Dementsprechend ergibt sich eine deutlich größere Anzahl an katalytisch aktiven Kanälen 31, während der Anteil an der gesamten durchströmbaren Fläche des Katalysators 24 bei den katalytisch aktiven Kanälen 31 etwa gleich groß ist wie bei den katalytisch inaktiven Kanälen 32. Bei dieser Ausführungsform sind dann die einzelnen Löcher 44 der Lochplatte 43 entweder einem einzigen katalytisch inaktiven Kanal 32 oder einer Gruppe aus vier katalytisch aktiven Kanälen 31 zugeordnet. Bei dieser Ausführungsform ergibt sich eine starke Vergrößerung der katalytisch aktiven Oberfläche sowie eine Erhöhung des Durchströmungswiderstands innerhalb des katalytisch aktiven Pfads 27, wodurch sich insgesamt die erreichbare Umsatzrate innerhalb der katalytisch Reaktion verbessern lässt.In the embodiment according to Fig. 7d For example, the catalytically active channels 31 and the catalytically inactive channels 32 are again arranged like a box, the catalytically active channels 31 being grouped together in groups of four. Accordingly, a significantly larger number of catalytically active channels 31, while the proportion of the total area of the catalyst 24 through which can flow in the catalytically active channels 31 is about the same size as in the catalytically inactive channels 32. In this embodiment, then the individual holes 44 of the perforated plate 43 associated with either a single catalytically inactive channel 32 or a group of four catalytically active channels 31. In this embodiment, there is a strong increase in the catalytically active surface and an increase in the flow resistance within the catalytically active path 27, which can improve the total achievable conversion rate within the catalytic reaction.

Im Übrigen wird für weitere Varianten und Ausführungsformen einer derartigen Katalysator-Anordnung auf die WO 03/033985 A1 verwiesen. Aus der WO 03/033985 A1 gehen ein Verfahren sowie eine Einrichtung zum Zuführen und Abführen von zwei Gasen zu bzw. von einer Mehrkanal-Monolithstruktur hervor. Mit Hilfe eines Verteilerkopfes können ein erstes und ein zweites Gas voneinander getrennt ersten und zweiten Kanälen der Monolithstruktur zugeführt werden. Innerhalb der Monolithstruktur sind die Kanäle so angeordnet, dass jeder erste Kanal mit wenigstens einem zweiten Kanal eine gemeinsame Trennwand besitzt, über die ein Massen- und/oder Wärmeaustausch zwischen den Kanälen möglich ist.Incidentally, for further variants and embodiments of such a catalyst arrangement on the WO 03/033985 A1 directed. From the WO 03/033985 A1 go to a method and a device for supplying and discharging two gases to or from a Multi-channel monolith structure. With the aid of a distributor head, a first and a second gas can be supplied to one another separated from the first and second channels of the monolith structure. Within the monolithic structure, the channels are arranged so that each first channel having at least one second channel has a common partition wall through which mass and / or heat exchange between the channels is possible.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
TurbogruppeTurbo group
22
Turbineturbine
33
Verdichtercompressor
44
Wellewave
55
Generatorgenerator
66
Vorrichtung/BrennkammerDevice / combustion chamber
77
Brennraumcombustion chamber
88th
Vormischbrennerpremix
99
OxidatorleitungOxidatorleitung
1010
Brennstoffleitungfuel line
1111
HeißgasleitungHot gas line
1212
Gesamt-Oxidator-StromTotal oxidant stream
1313
AufteilstelleAufteilstelle
1414
Haupt-Oxidator-StromMain oxidant stream
1515
Neben-Oxidator-StromBesides oxidizer stream
1616
AufteilstelleAufteilstelle
1717
Pilot-Oxidator-StromPilot oxidizer flow
1818
Wärmeübertrager-Oxidator-StromHeat exchanger-oxidant power
1919
Gesamt-Brennstoff-StromTotal fuel flow
2020
AufteilstelleAufteilstelle
2121
Haupt-Brennstoff-StromMain fuel stream
2222
Pilot-Brennstoff-StromPilot fuel flow
2323
Haupt-Brennstoff-Oxidator-GemischMain fuel-oxidizer mixture
2424
Katalysatorcatalyst
2525
oxidiertes Pilot-Brennstoff-Oxidator-Gemischoxidized pilot fuel-oxidizer mixture
2626
ZoneZone
2727
katalytisch aktiver Pfadcatalytically active path
2828
katalytisch inaktiver Pfadcatalytically inactive path
2929
Lanzelance
3030
Kopf von 8Head of 8
3131
katalytisch aktiver Kanalcatalytically active channel
3232
katalytisch inaktiver Kanalcatalytically inactive channel
3333
Verteilerkammerdistribution chamber
3434
Zeile mit katalytisch aktiven KanälenLine with catalytically active channels
3535
Zeile mit katalytisch inaktiven KanälenLine with catalytically inactive channels
3636
Verteilerkopfdistribution head
3737
Eingang von 24Entrance from 24
3838
Ausgang von 36Output of 36
3939
erster Eingang von 36first entrance of 36
4040
zweiter Eingang von 36second entrance of 36
4141
erster Schachtfirst shaft
4242
zweiter Schachtsecond shaft
4343
Lochplatteperforated plate
4444
DurchgangslochThrough Hole
4545
Lochmusterhole pattern

Claims (15)

  1. Method for combusting a fuel-oxidising agent mixture in a combustion chamber (7) of a group of turbogenerators (1), in particular of a power plant,
    - wherein a total oxidising agent flow (12) is divided into a main oxidising agent flow (14) and a secondary oxidising agent flow (15),
    - wherein said main oxidising agent flow (14) is leanly mixed with a main fuel flow (21) in a premixing burner (8) and this main fuel-oxidising agent mixture (23) is fully oxidised in the combustion chamber (7),
    - wherein the secondary oxidising agent flow (15) is divided into a pilot oxidising agent flow (17) and a heat transmitter-oxidising agent flow (18),
    - wherein the pilot oxidising agent flow (17) is richly mixed with a pilot fuel flow (22) and the mixture (17, 22) is partially oxidised in a catalyst (24), producing hydrogen,
    - wherein the partially oxidised pilot fuel-oxidising agent mixture (25) and the heat transmitter-oxidising agent flow (18) are together, after the catalyst (24), conducted into at least one zone (26) which is suitable for stabilising the combustion of the main fuel-oxidising agent mixture (23).
  2. Method according to claim 1, characterised in that the heat transmitter-oxidising agent flow (18) and the partially oxidised pilot fuel-oxidising agent mixture (25) are leanly or slightly leanly mixed after the catalyst (24).
  3. Method according to claim 1 or 2, characterised in that the heat transmitter-oxidising agent flow (18) is used to preheat the pilot fuel-oxidising agent mixture (25) and/or to cool the catalyst (24).
  4. Method according to any of claims 1 to 3, characterised in that
    - the catalyst (124) has several through-flow parallel channels (31, 32), of which some (31) are catalytically active and others (32) are catalytically inactive,
    - the pilot fuel-oxidising agent mixture (17, 22) is conducted through the catalytically active channels (31),
    - the heat transmitter-oxidising agent flow (18) is conducted through the catalytically inactive channels (32).
  5. Method according to claim 4, characterised in that the catalytically active channels (31) and the catalytically inactive channels (32) are coupled together heat-transmissively.
  6. Device (6) with a combustion chamber (7) for combusting a fuel-oxidising agent mixture in a group of turbogenerators (1), in particular of a power plant,
    - with a premix burner (8) in which, in operation of the device (6), a main oxidising agent flow is leanly mixed with a main fuel flow (21) and this main fuel-oxidising agent mixture (23) is fully oxidised,
    - with at least one catalyst (24) which is configured, when a rich pilot fuel-oxidising agent mixture (17, 22) passes through it in operation of the device (6), to perform a partial oxidisation, forming hydrogen,
    - with an oxidising agent supply device (28, 32) which, in operation of the device (6), mixes a heat transmitter-oxidising agent flow (18) into the partially oxidised pilot fuel-oxidising agent mixture (25) downstream of the catalyst (24),
    - wherein the catalyst (24) and the oxidising agent supply device (28, 32) are configured such that, in operation of the device (6), the partially oxidised pilot fuel-oxidising agent mixture (25) and the heat transmitter-oxidising agent flow (18) are conducted jointly into at least one zone (26) which is suitable for stabilising the combustion of the main fuel-oxidising agent mixture (23),
    characterised in that
    - a distributor head (36) is mounted upstream of the catalyst (24) and is connected via a first input (39) to a pilot fuel-oxidising agent mixture line, via a second input (40) to a heat transmitter-oxidising agent line, and via an output (38) to the catalyst (24), and
    - the distributor head (36) comprises a plurality of shafts (41, 42) which are adjacent transversely to the flow direction, all of which are open at the output (38) and optionally at the first input (39) or at the second input (40).
  7. Device according to claim 6, characterised in that
    - the catalyst (24) has a through-flow catalytically active path (27) and a through-flow catalytically inactive path (28) parallel thereto,
    - the catalytically active path (27) is configured, when a rich pilot fuel-oxidising agent mixture (17, 22) flows through it, to perform a partial oxidisation, forming hydrogen,
    - the catalytically inactive path (28) is coupled heat-transmissively to the catalytically active path (27) and forms a constituent part of the oxidising agent supply device and, in operation of the device (6), the heat transmitter-oxidising agent flow (18) passes through said path.
  8. Device according to claim 7, characterised in that:
    - the catalyst (24) has several through-flow parallel channels (31, 32), of which some (31) are catalytically active and others (32) are catalytically inactive,
    - the catalytically active path (27) of the catalyst (24) is formed by its catalytically active channels (31),
    - the catalytically inactive path (28) of the catalyst (24) is formed by its catalytically inactive channels (32).
  9. Device according to claim 8, characterised in that a pilot fuel line is connected to the catalytically active channels (31) such that, in operation of the device (6), it conducts the pilot fuel flow (22) separately into the individual catalytically active channels (31).
  10. Device according to claim 7 or 8, characterised in that
    - a pilot oxidising agent line is connected to the catalytically active path (27),
    - a pilot fuel line is connected to the pilot oxidising agent line upstream of the catalyst (24).
  11. Device according to any of claims 6 to 10, characterised in that the catalyst (24) is arranged concentrically in a head (30) of the premix burner (8).
  12. Device according to any of claims 6 to 10, characterised in that the catalyst (24) is arranged in a lance (29) which is arranged concentrically in a head (30) of the premix burner (8) and protrudes into the premix burner (8).
  13. Device according to claims 6 and 8, characterised in that
    - the catalytically active channels (31) and the catalytically inactive channels (32) are distributed so that first rows (34) of catalytically active channels (31) arranged next to each other and second rows (35) of catalytically inactive channels (32) arranged next to each other are arranged alternately, in particular as rows,
    - the first shafts (41) open to the first input (39) adjoin the first rows (34), and the second shafts (42) open to the second input (40) adjoin the second rows (35).
  14. Device according to claims 6 or 13, characterised in that a perforated plate (43) is arranged between the distributor head (36) and the catalyst (24), the perforation pattern (45) of which is selected such that each channel (31, 32) communicates with one of the shafts (41, 42) through a single passage hole (44).
  15. Device according to claim 14, characterised in that
    - the catalytically active channels (31) and the catalytically inactive channels (32) are arranged alternately in a chequerboard pattern,
    - the perforation pattern (45) of the perforated plate (43) and the arrangement of the channels (31, 32) are matched to each other such that the catalytically active channels (31) communicate via the assigned passage holes (44) with the first shafts (41) which lead to the first input (39) of the distributor head (36), while the catalytically inactive channels (32) communicate via the assigned passage holes (44) with the second shafts (42) which lead to the second input (40) of the distributor head (36).
EP03790608.8A 2002-08-30 2003-08-12 Method and device for combusting a fuel-oxidising agent mixture Expired - Lifetime EP1532400B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US40697902P 2002-08-30 2002-08-30
US406979P 2002-08-30
PCT/CH2003/000542 WO2004020905A1 (en) 2002-08-30 2003-08-12 Method and device for combusting a fuel-oxidising agent mixture

Publications (2)

Publication Number Publication Date
EP1532400A1 EP1532400A1 (en) 2005-05-25
EP1532400B1 true EP1532400B1 (en) 2017-07-26

Family

ID=31978397

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03790608.8A Expired - Lifetime EP1532400B1 (en) 2002-08-30 2003-08-12 Method and device for combusting a fuel-oxidising agent mixture

Country Status (5)

Country Link
US (1) US7421844B2 (en)
EP (1) EP1532400B1 (en)
CN (1) CN100489397C (en)
AU (1) AU2003249830A1 (en)
WO (1) WO2004020905A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1532400B1 (en) 2002-08-30 2017-07-26 Ansaldo Energia Switzerland AG Method and device for combusting a fuel-oxidising agent mixture
AU2003232574A1 (en) 2002-08-30 2004-03-19 Alstom Technology Ltd Method and device for mixing fluid flows
DE102004041794A1 (en) * 2004-03-30 2005-10-20 Alstom Technology Ltd Baden Device for flame stabilizing in burner has catalyser assembly upstream of flame and through which flows air/pilot fuel mixture separate from air/fuel mixture, whereby catalyser assembly has at least two stages located in series
CA2561255A1 (en) 2004-03-30 2005-10-13 Alstom Technology Ltd. Device and method for flame stabilization in a burner
EP1738109A1 (en) * 2004-03-31 2007-01-03 Alstom Technology Ltd Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor
EP1614963A1 (en) * 2004-07-09 2006-01-11 Siemens Aktiengesellschaft Premix Combustion System and Method
WO2006100176A1 (en) * 2005-03-23 2006-09-28 Alstom Technology Ltd Method and device for combusting hydrogen in a premix burner
DE102005061486B4 (en) * 2005-12-22 2018-07-12 Ansaldo Energia Switzerland AG Method for operating a combustion chamber of a gas turbine
US7841180B2 (en) * 2006-12-19 2010-11-30 General Electric Company Method and apparatus for controlling combustor operability
US8671658B2 (en) 2007-10-23 2014-03-18 Ener-Core Power, Inc. Oxidizing fuel
US8393160B2 (en) 2007-10-23 2013-03-12 Flex Power Generation, Inc. Managing leaks in a gas turbine system
US7928596B2 (en) 2008-10-06 2011-04-19 General Electric Company Systems and methods for the utilization of energy generated by a powered vehicle
US8701413B2 (en) 2008-12-08 2014-04-22 Ener-Core Power, Inc. Oxidizing fuel in multiple operating modes
US20100175386A1 (en) * 2009-01-09 2010-07-15 General Electric Company Premixed partial oxidation syngas generation and gas turbine system
US8621869B2 (en) 2009-05-01 2014-01-07 Ener-Core Power, Inc. Heating a reaction chamber
US20100275611A1 (en) * 2009-05-01 2010-11-04 Edan Prabhu Distributing Fuel Flow in a Reaction Chamber
EP2299178B1 (en) 2009-09-17 2015-11-04 Alstom Technology Ltd A method and gas turbine combustion system for safely mixing H2-rich fuels with air
IT1397215B1 (en) * 2009-12-29 2013-01-04 Ansaldo Energia Spa BURNER ASSEMBLY FOR A GAS TURBINE SYSTEM AND A GAS TURBINE SYSTEM INCLUDING THE BURNER ASSEMBLY
WO2011116010A1 (en) 2010-03-15 2011-09-22 Flexenergy, Inc. Processing fuel and water
NL2006526C2 (en) * 2011-04-01 2012-10-02 Heatmatrix Group B V Device and method for mixing two fluids.
EP2718067B1 (en) 2011-04-11 2023-10-11 Milwaukee Electric Tool Corporation Hydraulic hand-held knockout punch driver
US9057028B2 (en) 2011-05-25 2015-06-16 Ener-Core Power, Inc. Gasifier power plant and management of wastes
US9273606B2 (en) 2011-11-04 2016-03-01 Ener-Core Power, Inc. Controls for multi-combustor turbine
US9279364B2 (en) 2011-11-04 2016-03-08 Ener-Core Power, Inc. Multi-combustor turbine
JPWO2013099583A1 (en) * 2011-12-27 2015-04-30 川崎重工業株式会社 Catalytic combustors in gas turbine engines.
US9353946B2 (en) 2012-03-09 2016-05-31 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9359948B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US9267432B2 (en) 2012-03-09 2016-02-23 Ener-Core Power, Inc. Staged gradual oxidation
US8807989B2 (en) 2012-03-09 2014-08-19 Ener-Core Power, Inc. Staged gradual oxidation
US9534780B2 (en) 2012-03-09 2017-01-03 Ener-Core Power, Inc. Hybrid gradual oxidation
US9359947B2 (en) 2012-03-09 2016-06-07 Ener-Core Power, Inc. Gradual oxidation with heat control
US8980192B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US8926917B2 (en) 2012-03-09 2015-01-06 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9234660B2 (en) 2012-03-09 2016-01-12 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9381484B2 (en) 2012-03-09 2016-07-05 Ener-Core Power, Inc. Gradual oxidation with adiabatic temperature above flameout temperature
US9567903B2 (en) 2012-03-09 2017-02-14 Ener-Core Power, Inc. Gradual oxidation with heat transfer
US9371993B2 (en) 2012-03-09 2016-06-21 Ener-Core Power, Inc. Gradual oxidation below flameout temperature
US8671917B2 (en) 2012-03-09 2014-03-18 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
US9328916B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation with heat control
US9206980B2 (en) 2012-03-09 2015-12-08 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US9328660B2 (en) 2012-03-09 2016-05-03 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9726374B2 (en) 2012-03-09 2017-08-08 Ener-Core Power, Inc. Gradual oxidation with flue gas
US9017618B2 (en) 2012-03-09 2015-04-28 Ener-Core Power, Inc. Gradual oxidation with heat exchange media
US8980193B2 (en) 2012-03-09 2015-03-17 Ener-Core Power, Inc. Gradual oxidation and multiple flow paths
US9347664B2 (en) 2012-03-09 2016-05-24 Ener-Core Power, Inc. Gradual oxidation with heat control
US9273608B2 (en) 2012-03-09 2016-03-01 Ener-Core Power, Inc. Gradual oxidation and autoignition temperature controls
US8844473B2 (en) 2012-03-09 2014-09-30 Ener-Core Power, Inc. Gradual oxidation with reciprocating engine
EP3324113A1 (en) * 2016-11-17 2018-05-23 Saacke GmbH Method and device for operating a gas combustor
US12037952B2 (en) * 2022-01-04 2024-07-16 General Electric Company Systems and methods for providing output products to a combustion chamber of a gas turbine engine

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1069211A (en) 1952-12-26 1954-07-06 Gaz Et Chaleur Hot air generator by catalytic combustion
FR2436958A2 (en) 1978-09-22 1980-04-18 Ceraver PROCESS FOR THE MANUFACTURE OF AN INDIRECT HEAT EXCHANGE ELEMENT IN CERAMIC MATERIAL, AND ELEMENT OBTAINED BY THIS PROCESS
US4298059A (en) 1978-09-23 1981-11-03 Rosenthal Technik Ag Heat exchanger and process for its manufacture
US5634784A (en) * 1991-01-09 1997-06-03 Precision Combustion, Inc. Catalytic method
US5207053A (en) * 1991-05-15 1993-05-04 United Technologies Corporation Method and system for staged rich/lean combustion
US5165224A (en) * 1991-05-15 1992-11-24 United Technologies Corporation Method and system for lean premixed/prevaporized combustion
US5235804A (en) 1991-05-15 1993-08-17 United Technologies Corporation Method and system for combusting hydrocarbon fuels with low pollutant emissions by controllably extracting heat from the catalytic oxidation stage
GB9212794D0 (en) 1992-06-16 1992-07-29 Ici Plc Catalytic combustion
US5512250A (en) * 1994-03-02 1996-04-30 Catalytica, Inc. Catalyst structure employing integral heat exchange
DE4439619A1 (en) 1994-11-05 1996-05-09 Abb Research Ltd Method and device for operating a premix burner
DE19654022A1 (en) 1996-12-21 1998-06-25 Abb Research Ltd Process for operating a gas turbine group
US20020015931A1 (en) 1999-03-18 2002-02-07 Lance Smith Conduit positioner
US6358040B1 (en) * 2000-03-17 2002-03-19 Precision Combustion, Inc. Method and apparatus for a fuel-rich catalytic reactor
NO321805B1 (en) 2001-10-19 2006-07-03 Norsk Hydro As Method and apparatus for passing two gases in and out of the channels of a multi-channel monolithic unit.
EP1532400B1 (en) 2002-08-30 2017-07-26 Ansaldo Energia Switzerland AG Method and device for combusting a fuel-oxidising agent mixture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN1703601A (en) 2005-11-30
AU2003249830A1 (en) 2004-03-19
EP1532400A1 (en) 2005-05-25
CN100489397C (en) 2009-05-20
US20060080968A1 (en) 2006-04-20
WO2004020905A1 (en) 2004-03-11
US7421844B2 (en) 2008-09-09

Similar Documents

Publication Publication Date Title
EP1532400B1 (en) Method and device for combusting a fuel-oxidising agent mixture
EP1730441B1 (en) Device and method for stabilizing the flame in a burner
DE3889301T2 (en) Combustion chamber to reduce pollutant emissions from gas turbines.
DE69625744T2 (en) Lean premix burner with low NOx emissions for industrial gas turbines
DE69729505T2 (en) How a gas turbine combustor works
EP1064498B1 (en) Burner for a gas turbine
DE102012100468B4 (en) Combustion chamber for low-emission combustion of several premixed reformed fuels and related process
EP1616131A1 (en) Method and device for operating a burner of a heat engine, especially a gas turbine plant
EP2116766A1 (en) Fuel lance
DE2940431A1 (en) COMBUSTION CHAMBER WITH STAGE FUEL INJECTION AND METHOD FOR OPERATING A HIGH TEMPERATURE COMBUSTION CHAMBER
EP1497589A1 (en) Combustion chamber with flameless oxidation
WO2006100176A1 (en) Method and device for combusting hydrogen in a premix burner
EP1738109A1 (en) Catalytic reactor and method for burning fuel-air mixtures by means of a catalytic reactor
EP1301697B1 (en) Gas turbine and method for operating a gas turbine
EP0889289B1 (en) Gas turbine system and method of operation thereof
CH702737A2 (en) Combustion chamber with two combustion chambers.
DE102020212410A1 (en) Gas turbine combustion apparatus
DE3102165A1 (en) Burner/boiler combination with an improved burner and combustion process
EP1963748B1 (en) Combustion chamber with burner and associated operating method
WO2003029725A1 (en) Method of combustion, in particular methods for the production of electrical current and/or heat
DE102020212361A1 (en) GAS TURBINE COMBUSTION DEVICE
EP1072758A2 (en) Method for cooling gas turbine blades
EP0210205B1 (en) Device for combustion of liquid and gas fuels producing nitrogen oxide-free exhaust gases
DE102013112162A1 (en) Mikromischerdüse
EP3246557B1 (en) Rocket propulsion system and method for operating same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WINKLER, DIETER

Inventor name: GRIFFIN, TIMOTHY

17Q First examination report despatched

Effective date: 20070906

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315681

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170822

Year of fee payment: 15

Ref country code: DE

Payment date: 20170822

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315681

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315681

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180812

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180812