EP1532400B1 - Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs - Google Patents
Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs Download PDFInfo
- Publication number
- EP1532400B1 EP1532400B1 EP03790608.8A EP03790608A EP1532400B1 EP 1532400 B1 EP1532400 B1 EP 1532400B1 EP 03790608 A EP03790608 A EP 03790608A EP 1532400 B1 EP1532400 B1 EP 1532400B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxidising agent
- catalyst
- channels
- flow
- fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007800 oxidant agent Substances 0.000 title claims description 120
- 239000000203 mixture Substances 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 10
- 108091006146 Channels Proteins 0.000 claims description 86
- 239000003054 catalyst Substances 0.000 claims description 79
- 238000002485 combustion reaction Methods 0.000 claims description 57
- 239000000446 fuel Substances 0.000 claims description 32
- 239000001257 hydrogen Substances 0.000 claims description 11
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 230000003019 stabilising effect Effects 0.000 claims 2
- 239000000470 constituent Substances 0.000 claims 1
- 239000007789 gas Substances 0.000 description 17
- 230000001590 oxidative effect Effects 0.000 description 12
- 230000003197 catalytic effect Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 230000006641 stabilisation Effects 0.000 description 7
- 238000011105 stabilization Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 238000006555 catalytic reaction Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000003345 natural gas Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000010763 heavy fuel oil Substances 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000000629 steam reforming Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C13/00—Apparatus in which combustion takes place in the presence of catalytic material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/40—Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/13002—Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C2900/00—Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
- F23C2900/9901—Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
Definitions
- the present invention relates to a method and a device for burning a fuel-oxidizer mixture in a combustion chamber of a turbo group, in particular a power plant.
- the gas turbo group consists essentially of a compressor, a combustion chamber, a turbine and a generator.
- fuel is mixed with compressed air in the compressor before combustion and then burned in a combustion chamber.
- Compressed air supplied via a partial air line is mixed with fuel supplied via a partial fuel line and introduced into a reactor having a catalyst coating.
- the fuel mixture is converted into a synthesis gas comprising hydrogen, carbon monoxide, residual air and residual fuel. This synthesis gas is injected into such zones of the combustion chamber in which they cause a stabilization of the flame.
- the present invention deals with the problem of demonstrating possibilities for stabilization for the combustion of a lean fuel-oxidizer mixture in a combustion chamber of a turbo group.
- the invention is based on the general idea of only partially oxidizing a rich pilot fuel-oxidizer mixture in a catalyst such that highly reactive hydrogen forms, the partially oxidized hydrogen-containing mixture, together with an additional oxidant stream, into at least one zone which is suitable for stabilizing the combustion of the main fuel-oxidizer mixture.
- the required for Volloxidation the partially oxidized pilot mixture oxidizer is introduced or injected into the suitable zones for combustion stabilization, whereby the stability of the pilot flames thus generated increases.
- the pilot flames do not draw any or at least significantly less oxidant from the main mixture when they are burned, which also makes the main mixture reaction more stable.
- the additionally supplied oxidizer stream which is also referred to below as the heat exchanger oxidizer stream, can be used for preheating the pilot-fuel-oxidizer mixture and / or for cooling the catalyst.
- the oxidizer used in a turbo group usually comes from the pressure side of a compressor, so that the oxidizer, usually air, already has a relatively high temperature.
- a pilot-fuel-oxidizer mixture is formed whose temperature is below that of the densified oxidizer since the fuel, usually natural gas, has a relatively low temperature during injection.
- another partial flow of the compressor-derived oxidizer may be used to preheat the pilot fuel-oxidizer mixture be used by a suitable heat coupling is performed.
- the ignition limit of the catalytic reaction is achieved even at a relatively short inlet path into the catalyst, which can be achieved at the same time an increased conversion rate in the catalyst.
- the catalytic reaction now increases the temperature of the catalyst. In order for the desired partial oxidation to take place predominantly in the catalyst, the temperature in the catalyst should not increase too much, since otherwise a full oxidation takes place and / or a homogeneous gas reaction can occur.
- the heat exchanger oxidizer stream is suitable, in particular for its heat release to the pilot fuel-oxidizer mixture, in a special way for cooling the catalyst. As a result, the desired partial oxidation reaction can be stabilized in the catalyst.
- the catalyst may have a plurality of channels through which it is possible to pass in parallel, one of which is catalytically active and the other catalytically inactive.
- the catalytically active channels thereby form a catalytically active path through the catalyst, which is designed so that it allows the desired partial oxidation with the formation of hydrogen as it flows through the rich pilot fuel-oxidizer mixture.
- the catalytically inactive channels form a catalytically inactive path through the catalyst, which is flowed through in operation by the heat exchanger-oxidizer stream.
- This construction thus makes it possible, on the one hand, to preheat the pilot-fuel-oxidizer mixture introduced into the catalytic converter and, on the other hand, to cool the catalytic converter.
- a targeted coordination of the catalytically active channels and the catalytically inactive channels, in particular with regard to their number, arrangement and dimensioning a targeted to a nominal operating state of the device, in particular the turbo group, thermal management for the catalyst can be achieved. This allows a long service life for the catalyst and reproducible combustion reactions in the catalyst and thus in the stabilization zones.
- a turbo group 1 comprises a turbine 2, which is designed in particular as a gas turbine, and a compressor 3, which is connected to the turbine 2 via a drive shaft 4.
- the turbo group 1 is used in a power plant, in which case the turbine 2 additionally drives a generator 5 via the shaft 4.
- the turbo group 1 furthermore comprises a combustion system designated as combustion chamber 6, which has at least one combustion chamber 7 and at least one premix burner 8 arranged upstream of this combustion chamber 7.
- the combustion chamber 6 is connected on the input side to the high-pressure side of the compressor 3 and on the output side to the high-pressure side of the turbine 2. Accordingly, the combustion chamber 6 is supplied via an oxidizer 9 from the compressor 3 with oxidizer, in particular air.
- the fuel supply takes place via a corresponding fuel line 10.
- the hot combustion gases are supplied to the turbine 2 via a hot gas line 11.
- the combustion chamber 6 is used for combustion of a fuel-oxidizer mixture in the combustion chamber 7; the combustion chamber 6 thus forms a device according to the invention. Therefore, this device will be referred to as 6 below.
- Fig. 2 is a detailed view of the combustion chamber 6 and the device 6 reproduced. Accordingly, by suitable flow guidance, a total oxidizer stream 12 coming from the compressor 3 is introduced at 13 into a main oxidant stream 14 and a minor oxidizer stream 15. At 16, the sub-oxidant stream 15 is split into a pilot oxidizer stream 17 and a heat exchanger-oxidizer stream 18. Similarly, here too, a total fuel stream 19 at 20 becomes a major fuel Stream 21 and a pilot fuel stream 22 split.
- the splitting of the oxidizer streams can take place, for example, in a plenum of the combustion chamber 6, so that the splitting stations 13 and 16 coincide.
- the fuel flow may be a suitable valve or the like. Arranged. It is also possible to provide the pilot fuel stream 22 with its own pump and, in particular, to supply the combustion chamber 6 independently of the main fuel stream 21.
- the main oxidant stream 14 and the main fuel stream 21 are supplied to the premix burner 8, whereby a main fuel-oxidizer mixture 23 is formed in the premix burner 8.
- This main fuel-oxidizer mixture 23 is then introduced into the combustion chamber 7, where it burns in a complete oxidation.
- the supply of fuel and oxidizer takes place in the premix burner 8 so that a lean main mixture 23 results.
- the device 6 or the combustion chamber 6 is also equipped with a catalyst 24, the catalyst material is selected so that it causes partial oxidation of a supplied fuel-oxidizer mixture in certain boundary conditions, such that hydrogen is formed during this partial oxidation.
- the catalyst 24 is supplied with a mixture of the pilot oxidant stream 17 and the pilot fuel stream 22.
- the admixing of the pilot fuel stream 22 to the pilot oxidizer stream 17 takes place in such a way that a rich pilot fuel-oxidizer mixture 17, 22 is formed.
- the mixture formation can take place - as here - in an inlet region of the catalyst 24; likewise, the pilot fuel-oxidizer mixture 17, 22 may already be formed upstream of the catalytic converter 24.
- the synthesis gas forming in the catalyst 24 by partial oxidation is hereinafter referred to as partially oxidized pilot fuel-oxidizer mixture, which is introduced into the combustion chamber 7, for example, according to the arrow 25.
- pilot fuel-oxidizer mixture which is introduced into the combustion chamber 7, for example, according to the arrow 25.
- further reaction products in the case of a natural gas / air mixture are essentially carbon monoxide and residual air or residual ester gas.
- the partially oxidized pilot fuel-oxidizer mixture 25 is then introduced according to the invention together with the heat exchanger-oxidizer stream 18 into the combustion chamber 7. As a result, at the respective discharge point a very stable pilot flame or pilot combustion can be generated.
- the heat exchanger oxidizer stream 18 and the volumetric flow of the partially oxidized pilot mixture 25 are suitably coordinated so that, when mixed, a lean or at least slightly lean mixture is formed.
- the partially oxidized pilot mixture 25 and the heat exchanger oxidizer stream 18 are introduced or injected into one or more zones 26, of which Fig. 2 a symbolically bounded by a dotted line. These zones 26 are chosen to be particularly suitable for stabilizing the main combustion of the main fuel-oxidizer mixture 23 formed in the premix burner 8. Such zones 26 are located mainly in the combustion chamber 7.
- At least one such zone 26 is in the premix burner 8, so that additionally or alternatively, the partially oxidized pilot mixture 25 together with the heat exchanger-oxidizer stream 18 at a corresponding point in the premix burner 8 are introduced, which, for example, in the embodiments of 3 and 4 is realized.
- suitable zones 26 may be, for example: a central recirculation zone in the combustion chamber 7, an external recirculation or dead water zone and a remote from the combustion chamber 7 portion of the Vorrmischbrenners 8.
- the catalyst 24 has a catalytically active path 27 and a catalytically inactive path 28, which is coupled to the catalytically active path 27 to transmit heat. While the pilot fuel-oxidizer mixture 17, 22 is introduced into the catalytically active path 27, the catalytically inactive path 28 is traversed by the heat exchanger-oxidizer stream 18. As a result, the heat exchanger-oxidizer stream 18th be used on the one hand for preheating the pilot mixture 17, 22, whose temperature has been lowered by the admixing of the relatively cold pilot fuel stream 22. By preheating the ignition of the catalyst reaction is advantageously shifted toward the inlet end of the catalyst 24.
- the flow through the catalytically inactive path 28 with the heat exchanger-oxidizer stream 18 causes a cooling of the catalyst 24, so that the catalyst 24 can be operated in a predetermined and for the desired catalytic reaction particularly suitable temperature window.
- a Butleroxidation of the pilot mixture 17, 22 and the formation of a homogeneous gas reaction in the pilot mixture 17, 22 are avoided within the catalyst 24.
- the means used for the supply of the heat exchanger oxidizer stream 18 thereby form an oxidizer feed device, in which case the catalytically inactive path 28 of the catalyst 24 forms a component of this oxidizer feed device.
- the catalyst 24 may be integrated into the premix burner 8.
- the catalyst 24 may be installed in a lance 29, which is centrally located on a head 30 of the benner 8 remote from the combustion chamber 7 and protrudes here in the direction of the combustion chamber 7 into the premix burner 8.
- the reactive, partially oxidized pilot mixture 25 is in this case together with the heat exchanger-oxidizer stream 18 injected at the head 30 in the premix burner 8.
- the catalyst 24 itself is centrally located in the head 30 of the premix burner 8.
- the catalyst 24 may have a plurality of channels 31 and 32 which can be flowed through in parallel, of which one are catalytically active channels 31, while the other are catalytically inactive channels 32.
- the catalytically active channels 31 form the catalytically active path 27 of the catalyst 24, while the catalytically inactive channels 32 form the catalytically inactive path 28 of the catalyst 24.
- the catalyst 4 In front of the inlet openings of the individual channels 31, 32, the catalyst 4 here has a distribution chamber 33, which is the distribution point 16 in Fig. 2 equivalent.
- the supplied minor oxidant stream 15 is distributed to the catalytically active channels 31 (pilot oxidant stream 17) and the catalytically inactive channels 32 (heat exchanger oxidizer stream 18).
- the admixing of the pilot fuel stream 22 takes place within the catalytically active channels 31, expediently before a catalytic coating of the catalytically active channels 31.
- the catalytically active channels 31 and the catalytically inactive channels 32 are alternately arranged one another.
- the catalytically active channels 31 are heat-transmitting coupled to the catalytically inactive channels 32, which can be realized in particular by common boundary walls.
- the individual channels 31, 32 of the catalytic converter 24 can be catalytically active or catalytically inactive, line by line, and alternately arranged one row at a time. Accordingly, change in Fig. 5 Lines 34, which consist of juxtaposed catalytically active channels 31, with lines 35, which consist of juxtaposed catalytically inactive channels 32. This results in an alternating layering of the lines 34, 35 transversely to the main flow direction of the catalyst 24.
- Um to separate the introduction of the heat exchanger oxidizer stream 18 into the catalytically inactive channels 32 from the supply of the pilot mixture 17, 22 from pilot fuel stream 22 and pilot oxidant stream 17 into the catalytically active channels 31 is the Catalyst 24 upstream of a distributor head 36.
- This distributor head 36 has an output 38 connected to an input 37 of the catalytic converter 24.
- the distributor head 36 has an in Fig. 5
- the first input 39 is connected to a pilot-fuel-oxidizer-mixture line, not shown, which feeds the pilot mixture 17, 22 to the first input 39.
- a heat exchanger-oxidizer line (not shown) which forms part of the abovementioned oxidizer feed device is connected to the second input 40, via which the heat exchanger-oxidizer flow 18 is supplied to the second input 40.
- the distributor head 36 is made up of a plurality of shafts 41 and 42 which are adjacent to the main throughflow direction of the catalytic converter 24. All shafts 41, 42 are open to the output 38 of the distributor head 36. The first wells 41 associated with the first input 39 are also open to the first input 39 while being closed to the second input 40. In a corresponding manner, the second slots 40 associated with the second input 40 are open towards the second input 40 and closed towards the first input 39. In this case, the dimensioning of the shafts 41, 42 is matched to the dimensioning of the channels 31, 32 of the catalytic converter 40 so that each shaft outlet covers a row 34, 35.
- the distributor head 36 basically has the same structure as in the embodiment according to FIG Fig. 5 ,
- the catalyst 24, the catalytically active channels 31 and the catalytic inactive channels 32 in Fig. 6 not more line like in Fig. 5 but arranged in a checkerboard pattern.
- this checkerboard arrangement is rotated relative to a rectangular cross-section of the catalyst 24 by 45 ° about the main flow direction of the catalyst 24, so that quasi a diagonal checkered arrangement of the channels 31, 32 results.
- a perforated plate 43 having a plurality of through holes 44 arranged in a predetermined hole pattern 45.
- This hole pattern 45 is expediently chosen such that each channel 31, 32 only communicates with one of the shafts 41, 42 via a single through hole 44.
- the holes 44 are open on the one hand only to a single well 41, 42 and on the other hand only to a single channel 31, 32 or to a single channel group of catalytically active channels 31 or catalytically inactive channels 32.
- the pilot mixture 17, 22 flowing into the first shafts 41 passes exclusively into catalytically active channels 31, while, on the other hand, the heat exchanger oxidizer stream 18 flows exclusively into catalytically inactive channels 32 via the second shafts 42.
- Fig. 7a is a section through the cross section of the catalyst 24 according to Fig. 6 played. Accordingly, the catalytically active channels 31 and the catalytically inactive channels 32 are arranged so that they alternate in a checkerboard pattern.
- Registered lines represent the orientations or longitudinal center planes of the respective channels 31, 32 associated shafts 41 and 42 at the exit thereof.
- Fig. 7b gives a line by line alternating arrangement of the catalytically active channels 31 and the catalytically inactive channels 32 according to the in Fig. 5 illustrated embodiment of the catalyst 24 again and otherwise corresponds to the representation according to Fig. 7a ,
- Fig. 7c another advantageous arrangement for the catalytically active channels 31 and the catalytically inactive channels 32 is shown.
- the number of catalytically inactive channels 32 and their share of the total cross-sectional area of the catalyst 24 is greater than in the catalytically active channels 31.
- the supply of the heat exchanger-oxidizer stream 18 and the pilot mixture 17, 22 then takes place via a corresponding Arrangement of the first shafts 41 and second shafts 42 in the distributor head 36th
- the catalytically active channels 31 and the catalytically inactive channels 32 are again arranged like a box, the catalytically active channels 31 being grouped together in groups of four. Accordingly, a significantly larger number of catalytically active channels 31, while the proportion of the total area of the catalyst 24 through which can flow in the catalytically active channels 31 is about the same size as in the catalytically inactive channels 32.
- a catalyst arrangement on the WO 03/033985 A1 directed.
- From the WO 03/033985 A1 go to a method and a device for supplying and discharging two gases to or from a Multi-channel monolith structure.
- a first and a second gas can be supplied to one another separated from the first and second channels of the monolith structure.
- the channels are arranged so that each first channel having at least one second channel has a common partition wall through which mass and / or heat exchange between the channels is possible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
- Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zum Verbrennen eines Brennstoff-Oxidator-Gemischs in einem Brennraum einer Turbogruppe, insbesondere einer Kraftwerksanlage.
- Aus der
EP 0 849 451 A2 ist ein Verfahren zum Betrieb einer Gasturbogruppe bekannt, wobei die Gasturbogruppe im wesentlichen aus einem Verdichter, einer Brennkammer, einer Turbine und einem Generator besteht. In einem Vormischer der Brennkammer wird vor der Verbrennung Brennstoff mit im Verdichter verdichteter Luft vermischt und danach in einem Brennraum verbrannt. Über eine Teil-Luftleitung zugeführte verdichtete Luft wird mit über eine Teil-Brennstoffleitung zugeführtem Brennstoff vermischt und in einen Reaktor mit einer KatalysatorBeschichtung eingeleitet. Im Reaktor wird das Brennstoff-Gemisch in ein Synthesegas, umfassend Wasserstoff, Kohlenmonoxid, Restluft und Restbrennstoff, umgewandelt. Dieses Synthesegas wird in solche Zonen der Brennkammer eingedüst, in denen sie eine Stabilisierung der Flamme bewirken. Durch die Eindüsung des durch die Wasserstoffanteile hoch reaktiven Synthesegases bilden sich an den Eindüsstellen Flammen, wobei sie Restsauerstoff der mageren Hauptverbrennung verbrauchen. Diese Verbrennungsreaktion ist vergleichsweise stabil und bildet außerdem eine Zündquelle für die Hauptverbrennung, so dass die Flammen dieser Reaktion auch als Pilotflammen dienen. - Aus der
US 5,569,020 ist ein Vormischbrenner bekannt, in dessen Kopf konzentrisch eine Lanze angeordnet ist. Diese Lanze enthält in ihrem Austrittsende einen Katalysator, der dazu ausgebildet ist, im Betrieb des Vormischbrenners bei einem ihn durchströmenden Pilot-Brennstoff-Oxidator-Gemisch eine Volloxidation durchzuführen. Hierdurch wird eine Heißgasströmung erzeugt, die sich mit dem kälteren Haupt-Brennstoff-Oxidator-Gemisch des Vormischbrenners vermischt und dadurch eine Stabilisierung der Verbrennung des Haupt-Brennstoff-Oxidator-Gemischs erzielt. Da mit Hilfe der Lanze und dem darin angeordneten Katalysator eine Heißgasströmung erzeugt werden soll, ist davon auszugehen, dass das im Katalysator volloxidierte Gemisch mager ist. - Moderne Vormischbrenner arbeiten mit einem mageren Brennstoff-Oxidator-Gemisch und müssen in der Nähe der Zündgrenze ihres Magergemischs betrieben werden, um die Entstehung von NOX gering zu halten, und um somit die immer schärfer werdenden Emissionsvorschriften erfüllen zu können. Diese Brenner sind folglich sehr anfällig für Instabilitäten des Verbrennungsvorgangs und sind außerdem großen Druckschwankungen ausgesetzt, was sich nachteilig auf die Standzeiten des Brenners, einer nachgeschalteten Brennkammer und einer Gasturbine bzw. deren Schaufeln auswirkt. Es besteht daher das Bedürfnis, bei einem Magermix-Vormischbrenner die Verbrennung zu stabilisieren.
- Hier setzt die Erfindung an. Die vorliegende Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, beschäftigt sich mit dem Problem, für die Verbrennung eines mageren Brennstoff-Oxidator-Gemischs in einem Brennraum einer Turbogruppe Möglichkeiten zur Stabilisierung aufzuzeigen.
- Erfindungsgemäß wird dieses Problem durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
- Die Erfindung beruht auf dem allgemeinen Gedanken, ein fettes Pilot-Brennstoff-Oxidator-Gemisch in einem Katalysator nur teilweise zu oxidieren, derart, dass sich hochreaktiver Wasserstoff bildet, wobei das teiloxidierte, wasserstoffhaltige Gemisch zusammen mit einem zusätzlichen Oxidator-Strom in wenigstens eine Zone eingeleitet wird, die für eine Stabilisierung der Verbrennung des Haupt-Brennstoff-Oxidator-Gemischs geeignet ist. Bei dieser Vorgehensweise wird der für die Volloxidation des teiloxidierten Pilot-Gemischs benötigte Oxidator mit in die für die Verbrennungsstabilisierung geeigneten Zonen eingeleitet bzw. eingedüst, wodurch sich die Stabilität der so erzeugten Pilotflammen erhöht. Gleichzeitig ziehen die Pilotflammen bei Ihrer Verbrennung keinen oder zumindest deutlich weniger Oxidator aus dem Hauptgemisch ab, wodurch auch die Hauptgemischreaktion stabiler ablaufen kann.
- Besonders günstig für die Stabilisierung der Verbrennung des Haupt-Gemischs hat sich gezeigt, wenn das wasserstoffhaltige, teiloxidierte Pilot-Gemisch und der zusätzliche Oxidator-Strom so dimensioniert werden, dass sich ein mageres Gemisch bildet. Insbesondere kann ein leicht mageres Gemisch angestrebt sein, das nur einen relativ geringen Oxidator-Überschuß besitzt. Der Einfluss auf die Emissionswerte der Haupt-Verbrennung ist dann besonders gering.
- Gemäß einer besonders vorteilhaften Ausführungsform kann der zusätzlich zugeführte Oxidator-Strom, der im folgenden auch als Wärmeübertrager-Oxidatorstrom bezeichnet wird, zum Vorwärmen des Pilot-Brennstoff-Oxidator-Gemischs und/oder zum Kühlen das Katalysators verwendet werden. Der in einer Turbogruppe verwendete Oxidator stammt in der Regel von der Druckseite eines Verdichters, so dass der Oxidator, üblicherweise Luft, bereits eine relativ hohe Temperatur besitzt. Durch die Eindüsung des Brennstoffs in einen Teilstrom des vom Verdichter stammenden Oxidators wird ein Pilot-Brennstoff-Oxidator-Gemisch gebildet, dessen Temperatur unterhalb der des verdichteten Oxidators liegt, da der Brennstoff, üblicherweise Erdgas, bei der Eindüsung eine relativ niedrige Temperatur aufweist. Dementsprechend kann ein anderer Teilstrom des vom Verdichter stammenden Oxidators zum Vorwärmen des Pilot-Brennstoff-Oxidator-Gemischs genutzt werden, indem eine geeignete Wärmekopplung durchgeführt wird. Hierdurch wird die Zündgrenze der katalytischen Reaktion bereits bei einer relativ kurzen Einlaufstrecke in den Katalysator erreicht, wodurch sich gleichzeitig eine erhöhte Konversionsrate im Katalysator erzielen lässt. Durch die katalytische Reaktion erhöht sich nun die Temperatur des Katalysators. Damit im Katalysator vorwiegend die gewünschte Teiloxidation abläuft, darf die Temperatur im Katalysator nicht zu stark ansteigen, da sonst eine Volloxidation stattfinden und/oder eine homogene Gasreaktion entstehen kann. Der Wärmeübertrager-Oxidator-Strom eignet sich, insbesondere nach seiner Wärmeabgabe an das Pilot-Brennstoff-Oxidator-Gemisch, in besondere Weise zur Kühlung des Katalysators. Hierdurch kann die gewünschte Teiloxidationsreaktion im Katalysator stabilisiert werden.
- Entsprechend einer bevorzugten Ausführungsform kann der Katalysator mehrere parallel durchströmbare Kanäle aufweisen, von denen die einen katalytisch aktiv und die anderen katalytisch inaktiv sind. Die katalytisch aktiven Kanäle bilden dabei einen katalytisch aktiven Pfad durch den Katalysator, der so gestaltet ist, dass er bei seiner Durchströmung mit dem fetten Pilot-Brennstoff-Oxidator-Gemisch die gewünschte Teiloxidation unter der Ausbildung von Wasserstoff ermöglicht. Die katalytisch inaktiven Kanäle bilden einen katalytisch inaktiven Pfad durch den Katalysator, der im Betrieb vom Wärmeübertrager-Oxidator-Strom durchströmt ist. Durch eine einheitliche Bauweise der Kanäle, also durch die Unterbringung der Kanäle in einer gemeinsamen Struktur des Katalysators, sind die Kanäle wärmeübertragend miteinander gekoppelt. Diese Bauweise ermöglicht somit zum einen ein Vorwärmen des in den Katalysator eingeleiteten Pilot-Brennstoff-Oxidator-Gemischs und zum anderen ein Kühlen des Katalysators. Durch eine gezielte Abstimmung der katalytisch aktiven Kanäle und der katalytisch inaktiven Kanäle, insbesondere im Hinblick auf deren Anzahl, Anordnung und Dimensionierung, kann gezielt ein auf einen Nennbetriebszustand der Vorrichtung, insbesondere der Turbogruppe, ausgelegtes Wärmemanagement für den Katalysator erreicht werden. Dies ermöglicht eine hohe Standzeit für den Katalysator sowie reproduzierbare Verbrennungsreaktionen im Katalysator und somit in den Stabilisierungszonen.
- Weitere wichtige Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
- Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Bauteile beziehen. Es zeigen, jeweils schematisch,
- Fig. 1
- eine schaltplanartige Prinzipdarstellung einer Turbogruppe, die mit einer erfindungsgemäßen Vorrichtung ausgestattet ist,
- Fig. 2
- eine schaltplanartige Prinzipdarstellung einer erfindungsgemäßen Vorrichtung,
- Fig. 3
- eine Prinzipdarstellung im Längsschnitt durch einen Vormischbrenner,
- Fig. 4
- eine Ansicht wie in
Fig. 3 , jedoch bei einer anderen Ausführungsform, - Fig. 5
- eine auseinander gezogene, perspektivische Darstellung eines Katalysators und eines Verteilerkopfs,
- Fig. 6
- eine Darstellung wie in
Fig. 5 , jedoch zusätzlich mit einer Lochplatte, - Fig. 7a bis 7d
- stark vereinfachte Ausschnitte aus einem Querschnitt eines Katalysators bei verschiedenen Ausführungsformen.
- Entsprechend
Fig. 1 umfaßt eine Turbogruppe 1 eine Turbine 2, die insbesondere als Gasturbine ausgebildet ist, sowie einen Verdichter 3, der über eine Antriebswelle 4 mit der Turbine 2 verbunden ist. Üblicherweise wird die Turbogruppe 1 in einer Kraftwerksanlage verwendet, wobei dann die Turbine 2 über die Welle 4 zusätzlich einen Generator 5 antreibt. - Die Turbogruppe 1 umfaßt außerdem ein als Brennkammer 6 bezeichnetes Verbrennungssystem, das wenigstens einen Brennraum 7 sowie wenigstens einen, diesem Brennraum 7 vorgeschalteten Vormischbrenner 8 aufweist. Die Brennkammer 6 ist eingangsseitig an die Hochdruckseite des Verdichters 3 und ausgangsseitig an die Hochdruckseite der Turbine 2 angeschlossen. Dementsprechend wird die Brennkammer 6 über eine Oxidatorleitung 9 vom Verdichter 3 mit Oxidator, insbesondere Luft, versorgt.
- Die Brennstoffversorgung erfolgt über eine entsprechende Brennstoffleitung 10. Die heißen Verbrennungsgase werden über eine Heißgasleitung 11 der Turbine 2 zugeführt. Die Brennkammer 6 dient zur Verbrennung eines Brennstoff-Oxidator-Gemischs im Brennraum 7; die Brennkammer 6 bildet somit eine Vorrichtung nach der Erfindung. Diese Vorrichtung wird im folgenden daher auch mit 6 bezeichnet.
- In
Fig. 2 ist eine Detailansicht der Brennkammer 6 bzw. der Vorrichtung 6 wiedergegeben. Dementsprechend wird durch eine geeignete Strömungsführung ein vom Verdichter 3 kommender Gesamt-Oxidator-Strom 12 bei 13 in einen Haupt-Oxidator-Strom 14 und einen Neben-Oxidator-Strom 15 eingeleitet. Bei 16 erfolgt dann eine Aufteilung des Neben-Oxidator-Stroms 15 in einen Pilot-Oxidator-Strom 17 und einen Wärmeübertrager-Oxidator-Strom 18. In entsprechender Weise wird hier auch ein Gesamt-Brennstoff-Strom 19 bei 20 in einen Haupt-Brennstoff-Strom 21 und einen Pilot-Brennstoff-Strom 22 aufgeteilt. Die Aufteilung der Oxidatorströme kann beispielsweise in einem Plenum der Brennkammer 6 erfolgen, so dass die Aufteilstellen 13 und 16 zusammenfallen. Insbesondere bei der Aufteilstelle 20 des Brennstoffstroms kann ein geeignetes Ventil oder dgl. angeordnet sein. Ebenso ist es möglich, den Pilot-Brennstoff-Strom 22 mit einer eigenen Pumpe zu versehen und insbesondere unabhängig vom Haupt-Brennstoff-Strom 21 der Brennkammer 6 zuzuführen. - Wie aus dem Schaubild gemäß
Fig. 2 hervorgeht, wird dem Vormischbrenner 8 der Haupt-Oxidator-Strom 14 sowie der Haupt-Brennstoff-Strom 21 zugeführt, wodurch im Vormischbrenner 8 ein Haupt-Brennstoff-Oxidator-Gemisch 23 gebildet wird. Dieses Haupt-Brennstoff-Oxidator-Gemisch 23 wird dann in den Brennraum 7 eingeleitet, in dem es bei einer vollständigen Oxidation verbrennt. Zweckmäßig erfolgt dabei die Zuführung von Brennstoff und Oxidator in den Vormischbrenner 8 so, dass sich ein mageres Haupt-Gemisch 23 ergibt. - Die Vorrichtung 6 bzw. die Brennkammer 6 ist außerdem mit einem Katalysator 24 ausgestattet, dessen Katalysatormaterial so ausgewählt ist, dass es bei bestimmten Randbedingungen eine Teiloxidation eines zugeführten Brennstoff-Oxidator-Gemischs bewirkt, derart, dass bei dieser Teiloxidation Wasserstoff entsteht. Dem Katalysator 24 wird ein Gemisch aus dem Pilot-Oxidator-Strom 17 und dem Pilot-Brennstoff-Strom 22 zugeführt. Die Zumischung des Pilot-Brennstoff-Stroms 22 zum Pilot-Oxidator-Strom 17 erfolgt dabei so, dass sich ein fettes Pilot-Brennstoff-Oxidator-Gemisch 17, 22 bildet. Die Gemischbildung kann dabei - wie hier - in einem Einlaufbereich des Katalysators 24 erfolgen; ebenso kann das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 bereits stromauf des Katalysators 24 gebildet werden. Das sich im Katalysator 24 durch Teiloxidation ausbildende Synthesegas wird im folgenden als teiloxidiertes Pilot-Brennstoff-Oxidator-Gemisch bezeichnet, das entsprechend dem Pfeil 25 beispielsweise in den Brennraum 7 eingeleitet wird. Weitere Reaktionsprodukte bei einem Erdgas-Luft-Gemisch sind neben Wasserstoff im wesentlichen Kohlenmonoxid und Restluft bzw. Resterdgas.
- Das teiloxidierte Pilot-Brennstoff-Oxidator-Gemisch 25 wird dann erfindungsgemäß gemeinsam mit dem Wärmeübertrager-Oxidator-Strom 18 in den Brennraum 7 eingeleitet. Hierdurch kann an der jeweiligen Einleitstelle eine sehr stabile Pilotflamme oder Pilotverbrennung erzeugt werden. Der Wärmeübertrager-Oxidator-Strom 18 und der Volumenstrom des teiloxidierten Pilotgemischs 25 sind zweckmäßig so aufeinander abgestimmt, dass sich bei ihrer Durchmischung ein mageres oder zumindest leicht mageres Gemisch ausbildet.
- Um mit Hilfe der stabilen Pilotflammen die Hauptverbrennung im Brennraum 7 stabilisieren zu können, werden das teiloxidierte Pilot-Gemisch 25 und der Wärmeübertrager-Oxidator-Strom 18 in eine oder mehrere Zonen 26 eingeleitet bzw. eingedüst, von denen in
Fig. 2 eine symbolisch durch eine Punktlinie begrenzt ist. Diese Zonen 26 sind so gewählt, dass sie sich für eine Stabilisierung der Haupt-Verbrennung des im Vormischbrenner 8 gebildeten Haupt-Brennstoff-Oxidator-Gemischs 23 besonders eignen. Derartige Zonen 26 befinden sich hauptsächlich in der Brennkammer 7. Ebenso ist es möglich, dass sich wenigstens eine solche Zone 26 im Vormischbrenner 8 befindet, so dass zusätzlich oder alternativ das teiloxidierte Pilot-Gemisch 25 zusammen mit dem Wärmeübertrager-Oxidator-Strom 18 an einer entsprechenden Stelle in den Vormischbrenner 8 eingeleitet werden, was beispielsweise bei den Ausführungsformen derFig. 3 und 4 realisiert ist. Für eine Stabilisierung der Haupt-Verbrennung des Haupt-Gemischs 23 im Brennraum 7 geeignete Zonen 26 können beispielsweise sein: eine zentrale Rezirkulationszone im Brennraum 7, eine außenliegende Rezirkulations- oder Totwasserzone und ein vom Brennraum 7 entfernter Abschnitt des Vorrmischbrenners 8. Die genannten Rezirkulationszonen entstehend dann, wenn der Vormischbrenner 8 über eine sprungartige Querschnittserweiterung in den Brennraum 7 übergeht und dadurch eine Drallströmung des Vormischbrenners 8 beim Übergang in den Brennraum 7 aufplatzt, sogenannter "vortex-breakdown". - Bei der hier gezeigten speziellen Ausführungsform besitzt der Katalysator 24 einen katalytisch aktiven Pfad 27 sowie einen katalytisch inaktiven Pfad 28, der mit dem katalytisch aktiven Pfad 27 wärmeübertragend gekoppelt ist. Während das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 in den katalytisch aktiven Pfad 27 eingeleitet wird, ist der katalytisch inaktive Pfad 28 vom Wärmeübertrager-Oxidator-Strom 18 durchströmt. Hierdurch kann der Wärmeübertrager-Oxidator-Strom 18 einerseits zum Vorwärmen des Pilot-Gemischs 17, 22 genutzt werden, dessen Temperatur durch die Zumischung des relativ kalten Pilot-Brennstoff-Stroms 22 abgesenkt worden ist. Durch die Vorwärmung wird die Zündung der Katalysatorreaktion vorteilhaft in Richtung Einlaufende des Katalysators 24 verschoben. Andererseits bewirkt die Durchströmung des katalytisch inaktiven Pfads 28 mit dem Wärmeübertrager-Oxidator-Strom 18 eine Kühlung des Katalysators 24, so dass der Katalysator 24 in einem vorbestimmten und für die gewünschte katalytische Reaktion besonders geeigneten Temperaturfenster betrieben werden kann. Durch die Kühlung des Katalysators 24 werden innerhalb des Katalysators 24 insbesondere eine Volloxidation des Pilot-Gemischs 17, 22 sowie die Entstehung einer homogenen Gasreaktion im Pilot-Gemisch 17, 22 vermieden.
- Es ist klar, dass im Katalysator 24 bzw. in dessen katalytisch aktiven Pfad 27 neben der Teiloxidation auch eine Volloxidation des Pilot-Gemischs 17, 22 stattfinden kann. Darüber hinaus kann es bei relativ niedrigen Temperaturen und bei der Verwendung von Erdgas als Brennstoff dazu kommen, dass im Katalysator 24 eine endotherme Dampf-Reformierung stattfindet, wodurch die Produktion von Wasserstoff und beispielsweise Kohlenmonoxid verbessert werden kann. Des weiteren ist es möglich, dem Katalysator 24 bzw. dem Pilot-Gemisch 17, 22 Dampf zuzuführen.
- Die für die Zuführung des Wärmeübertrager-Oxidator-Stroms 18 verwendeten Mittel bilden dabei eine Oxidator-Zuführeinrichtung, wobei hier der katalytisch inaktive Pfad 28 des Katalysators 24 einen Bestandteil dieser Oxidator-Zuführeinrichtung bildet.
- Entsprechend den
Fig. 3 und 4 kann der Katalysator 24 bei bevorzugten Ausführungsformen in den Vormischbrenner 8 integriert sein. GemäßFig. 3 kann der Katalysator 24 beispielsweise in eine Lanze 29 eingebaut sein, die an einem vom Brennraum 7 entfernten Kopf 30 des Benners 8 zentral angeordnet ist und hier in Richtung Brennraum 7 in den Vormischbrenner 8 hineinragt. Das reaktive, teiloxidierte Pilot-Gemisch 25 wird hierbei zusammen mit dem Wärmeübertrager-Oxidator-Strom 18 am Kopf 30 in den Vormischbrenner 8 eingedüst. Bei der Ausführungsform gemäßFig. 4 ist der Katalysator 24 selbst im Kopf 30 des Vormischbrenners 8 zentral angeordnet. - Im folgenden wird eine spezielle Ausführungsform des Katalysators 24 anhand
Fig. 4 erläutert, ohne dass es dabei auf die inFig. 4 gezeigte Einbausituation des Katalysators 24 ankommt. Der Katalysator 24 kann mehrere parallel durchströmbare Kanäle 31 und 32 aufweisen, von denen die einen katalytisch aktive Kanäle 31 sind, während die anderen katalytisch inaktive Kanäle 32 sind. Die katalytisch aktiven Kanäle 31 bilden dabei den katalytisch aktiven Pfad 27 des Katalysators 24, während die katalytisch inaktiven Kanäle 32 den katalytisch inaktiven Pfad 28 des Katalysators 24 bilden. Vor den Einlaßöffnungen der einzelnen Kanäle 31, 32 besitzt der Katalysator 4 hier eine Verteilerkammer 33, die der Aufteilstelle 16 inFig. 2 entspricht. Dementsprechend verteilt sich in der Verteilerkammer 33 der zugeführte Neben-Oxidator-Strom 15 auf die katalytisch aktiven Kanälen 31 (Pilot-Oxidator-Strom 17) und die katalytisch inaktiven Kanäle 32 (Wärmeübertrager-Oxidator-Strom 18). Bei der hier gezeigten Ausführungsform erfolgt die Zumischung des Pilot-Brennstoff-Stroms 22 innerhalb der katalytisch aktiven Kanäle 31, zweckmäßig vor einer katalytischen Beschichtung der katalytisch aktiven Kanäle 31. Für eine intensive Kühlung der katalytisch aktiven Kanäle 31 sind zum einen die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 einander abwechselnd angeordnet. Zum anderen sind die katalytisch aktiven Kanäle 31 wärmeübertragend mit den katalytisch inaktiven Kanälen 32 gekoppelt, was insbesondere durch gemeinsame Begrenzungswände realisierbar ist. - Entsprechend
Fig. 5 können die einzelnen Kanäle 31, 32 des Katalysators 24 zeilenweise katalytisch aktiv bzw. katalytisch inaktiv ausgebildet und einander zeilenweise abwechselnd angeordnet sein. Dementsprechend wechseln sich inFig. 5 Zeilen 34, die aus nebeneinander angeordneten katalytisch aktiven Kanälen 31 bestehen, mit Zeilen 35 ab, die aus nebeneinander angeordneten katalytisch inaktiven Kanälen 32 bestehen. Hierdurch ergibt sich eine alternierende Schichtung der Zeilen 34, 35 quer zur Hauptdurchströmungsrichtung des Katalysators 24. Um die Einleitung des Wärmeübertrager-Oxidator-Stroms 18 in die katalytisch inaktiven Kanäle 32 von der Zuführung des Pilot-Gemischs 17, 22 aus Pilot-Brennstoff-Strom 22 und Pilot-Oxidator-Strom 17 in die katalytisch aktiven Kanäle 31 zu trennen, ist dem Katalysator 24 ein Verteilerkopf 36 vorgeschaltet. Dieser Verteilerkopf 36 besitzt einen an einen Eingang 37 des Katalysators 24 angeschlossenen Ausgang 38. Des Weiteren besitzt der Verteilerkopf 36 einen inFig. 5 dem Betrachter zugewandten ersten Eingang 39 sowie einen vom Betrachter abgewandten zweiten Eingang 40. Der erste Eingang 39 ist an eine nicht dargestellte Pilot-Brennstoff-Oxidator-Gemisch-Leitung angeschlossen, die das Pilot-Gemisch 17, 22 dem ersten Eingang 39 zuführt. In entsprechender Weise ist an den zweiten Eingang 40 eine nicht gezeigte Wärmeübertrager-Oxidator-Leitung, die einen Bestandteil der vorgenannten Oxidator-Zuführeinrichtung bildet, angeschlossen, über die der Wärmeübertrager-Oxidator-Strom 18 dem zweiten Eingang 40 zugeführt wird. - Der Verteilerkopf 36 ist aus mehreren, quer zur Hauptdurchströmungsrichtung des Katalysators 24 benachbarten Schächten 41 und 42 aufgebaut. Alle Schächte 41, 42 sind zum Ausgang 38 des Verteilerkopfs 36 hin offen. Die dem ersten Eingang 39 zugeordneten ersten Schächte 41 sind außerdem zum ersten Eingang 39 hin offen, während sie zum zweiten Eingang 40 hin geschlossen sind. In entsprechender Weise sind die dem zweiten Eingang 40 zugeordneten zweiten Schächte 42 zum zweiten Eingang 40 hin offen und zum ersten Eingang 39 hin geschlossen. Dabei ist die Dimensionierung der Schächte 41, 42 auf die Dimensionierung der Kanäle 31, 32 des Katalysators 40 so abgestimmt, dass jeder Schachtausgang eine Zeile 34, 35 abdeckt. Da die ersten Schächte 41 und die zweiten Schächte 42 einander abwechselnd nebeneinander angeordnet sind, ergibt sich dadurch die gewünschte Aufteilung der dem Verteilerkopf 36 zugeführten Strömungen, nämlich Pilot-Gemisch 17, 22 einerseits und Wärmeübertrager-Oxidator-Strom 18 andererseits, auf die einzelnen Zeilen 34, 35 des Katalysators 24.
- Bei der Ausführungsform gemäß
Fig. 6 besitzt der Verteilerkopf 36 grundsätzlich denselben Aufbau wie bei der Ausführungsform gemäßFig. 5 . Im Unterschied dazu sind jedoch beim Katalysator 24 die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 inFig. 6 nicht mehr zeilenförmig wie inFig. 5 , sondern schachbrettartig angeordnet. Dabei ist diese Schachbrettanordnung gegenüber einem rechteckigen Querschnitt des Katalysators 24 um 45° um die Hauptdurchströmungsrichtung des Katalysators 24 verdreht, so dass sich quasi eine diagonale schachbrettartige Anordnung der Kanäle 31, 32 ergibt. Um auch bei dieser Ausführungsform eine eindeutige Trennung zwischen dem Pilot-Gemisch 17, 22 und dem Wärmeübertrager-Oxidator-Strom 18 für die Durchströmung des Katalysators 24 erzielen zu können, ist nun zwischen dem Eingang 37 des Katalysators 24 und dem Ausgang 38 des Verteilerkopfs 36 eine Lochplatte 43 angeordnet, die eine Vielzahl von Durchgangslöchern 44 besitzt, die in einem vorbestimmten Lochmuster 45 angeordnet sind. Dieses Lochmuster 45 ist zweckmäßig so gewählt, dass jeder Kanal 31, 32 nur über ein einziges Durchgangsloch 44 mit einem der Schächte 41, 42 kommuniziert. Das bedeutet, dass die Löcher 44 jeweils einerseits nur zu einem einzigen Schacht 41, 42 und andererseits nur zu einem einzigen Kanal 31, 32 bzw. zu einer einzigen Kanalgruppe aus katalytisch aktiven Kanälen 31 oder katalytisch inaktiven Kanälen 32 offen sind. Hierdurch wird erreicht, dass einerseits das in die ersten Schächte 41 einströmende Pilot-Gemisch 17, 22 ausschließlich in katalytisch aktive Kanäle 31 gelangt, während andererseits der Wärmeübertrager-Oxidator-Strom 18 über die zweiten Schächte 42 ausschließlich in katalytisch inaktive Kanäle 32 einströmt. - Durch die speziellen Maßnahmen der Ausführungsformen gemäß den
Fig. 5 und 6 ist es besonders einfach möglich, vor der Einleitung in den Katalysator 24 bzw. in dessen Kanäle 31, 32 auf relativ einfache Weise das Pilot-Brennstoff-Oxidator-Gemisch 17, 22 herzustellen. - In
Fig. 7a ist ein Ausschnitt durch den Querschnitt des Katalysators 24 gemäßFig. 6 wiedergegeben. Dementsprechend sind die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 so angeordnet, dass sie sich schachbrettartig abwechseln. Die inFig. 7a eingetragenen Linien repräsentieren die Orientierungen oder Längsmittelebenen der den jeweiligen Kanälen 31, 32 zugeordneten Schächte 41 bzw. 42 an deren Austritt. -
Fig. 7b gibt eine sich zeilenweise alternierende Anordnung der katalytisch aktiven Kanäle 31 und der katalytisch inaktiven Kanäle 32 entsprechend der inFig. 5 dargestellten Ausführungsform des Katalysators 24 wieder und entspricht im Übrigen jedoch der Darstellung gemäßFig. 7a . - In
Fig. 7c ist eine andere vorteilhafte Anordnung für die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 wiedergegeben. Bei dieser Variante ist die Anzahl der katalytisch inaktiven Kanäle 32 sowie deren Anteil an der Gesamtquerschnittsfläche des Katalysators 24 größer als bei den katalytisch aktiven Kanälen 31. Die Zuführung des Wärmeübertrager-Oxidator-Stroms 18 bzw. des Pilotgemischs 17, 22 erfolgt dann über eine entsprechende Anordnung der ersten Schächte 41 und zweiten Schächte 42 im Verteilerkopf 36. - Bei der Ausführungsform gemäß
Fig. 7d sind die katalytisch aktiven Kanäle 31 und die katalytisch inaktiven Kanäle 32 wieder schachtbrettartig angeordnet, wobei die katalytisch aktiven Kanäle 31 jeweils zu Vierergruppen zusammengefasst sind. Dementsprechend ergibt sich eine deutlich größere Anzahl an katalytisch aktiven Kanälen 31, während der Anteil an der gesamten durchströmbaren Fläche des Katalysators 24 bei den katalytisch aktiven Kanälen 31 etwa gleich groß ist wie bei den katalytisch inaktiven Kanälen 32. Bei dieser Ausführungsform sind dann die einzelnen Löcher 44 der Lochplatte 43 entweder einem einzigen katalytisch inaktiven Kanal 32 oder einer Gruppe aus vier katalytisch aktiven Kanälen 31 zugeordnet. Bei dieser Ausführungsform ergibt sich eine starke Vergrößerung der katalytisch aktiven Oberfläche sowie eine Erhöhung des Durchströmungswiderstands innerhalb des katalytisch aktiven Pfads 27, wodurch sich insgesamt die erreichbare Umsatzrate innerhalb der katalytisch Reaktion verbessern lässt. - Im Übrigen wird für weitere Varianten und Ausführungsformen einer derartigen Katalysator-Anordnung auf die
WO 03/033985 A1 WO 03/033985 A1 -
- 1
- Turbogruppe
- 2
- Turbine
- 3
- Verdichter
- 4
- Welle
- 5
- Generator
- 6
- Vorrichtung/Brennkammer
- 7
- Brennraum
- 8
- Vormischbrenner
- 9
- Oxidatorleitung
- 10
- Brennstoffleitung
- 11
- Heißgasleitung
- 12
- Gesamt-Oxidator-Strom
- 13
- Aufteilstelle
- 14
- Haupt-Oxidator-Strom
- 15
- Neben-Oxidator-Strom
- 16
- Aufteilstelle
- 17
- Pilot-Oxidator-Strom
- 18
- Wärmeübertrager-Oxidator-Strom
- 19
- Gesamt-Brennstoff-Strom
- 20
- Aufteilstelle
- 21
- Haupt-Brennstoff-Strom
- 22
- Pilot-Brennstoff-Strom
- 23
- Haupt-Brennstoff-Oxidator-Gemisch
- 24
- Katalysator
- 25
- oxidiertes Pilot-Brennstoff-Oxidator-Gemisch
- 26
- Zone
- 27
- katalytisch aktiver Pfad
- 28
- katalytisch inaktiver Pfad
- 29
- Lanze
- 30
- Kopf von 8
- 31
- katalytisch aktiver Kanal
- 32
- katalytisch inaktiver Kanal
- 33
- Verteilerkammer
- 34
- Zeile mit katalytisch aktiven Kanälen
- 35
- Zeile mit katalytisch inaktiven Kanälen
- 36
- Verteilerkopf
- 37
- Eingang von 24
- 38
- Ausgang von 36
- 39
- erster Eingang von 36
- 40
- zweiter Eingang von 36
- 41
- erster Schacht
- 42
- zweiter Schacht
- 43
- Lochplatte
- 44
- Durchgangsloch
- 45
- Lochmuster
Claims (15)
- Verfahren zum Verbrennen eines Brennstoff-Oxidator-Gemischs in einem Brennraum (7) einer Turbogruppe (1), insbesondere einer Kraftwerksanlage,- bei dem ein Gesamt-Oxidator-Strom (12) in einen Haupt-Oxidator-Strom (14) und einen Neben-Oxidator-Strom (15) aufgeteilt ist oder wird,- bei dem der Haupt-Oxidator-Strom (14) mit einem Haupt-Brennstoff-Strom (21) in einem Vormischbrenner (8) mager vermischt und dieses Haupt-Brennstoff-Oxidator-Gemisch (23) im Brennraum (7) volloxidiert wird,- bei dem der Neben-Oxidator-Strom (15) in einen Pilot-Oxidator-Strom (17) und einen Wärmeübertrager-Oxidator-Strom (18) aufgeteilt ist oder wird,- bei dem der Pilot-Oxidator-Strom (17) mit einem Pilot-Brennstoff-Strom (22) fett vermischt und das Gemisch (17,22) in einem Katalysator (24) unter Ausbildung von Wasserstoff teiloxidiert wird,- bei dem das teiloxidierte Pilot-Brennstoff-Oxidator-Gemisch (25) und der Wärmeübertrager-Oxidator-Strom (18) nach dem Katalysator (24) gemeinsam in wenigstens eine für eine Stabilisierung der Verbrennung des Haupt- Brennstoff-Oxidator-Gemischs (23) geeignete Zone (26) eingeleitet werden.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeübertrager-Oxidator-Strom (18) und das teiloxidierte Pilot-Brennstoff-Oxidator-Gemisch (25) nach dem Katalysator (24) mager oder leicht mager vermischt werden.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Wärme- übertrager-Oxidator-Strom (18) zum Vorwärmen des Pilot-Brennstoff-Oxidator- Gemischs (25) und/oder zum Kühlen des Katalysators (24) verwendet wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet,- dass der Katalysator (24) mehrere parallel durchströmbare Kanäle (31,32) aufweist, von denen die einen (31) katalytisch aktiv und die anderen (32) katalytisch inaktiv sind,- dass das Pilot-Brennstoff-Oxidator-Gemisch (17,22) durch die katalytisch aktiven Kanäle (31) geleitet wird,- dass der Wärmeübertrager-Oxidator-Strom (18) durch die katalytisch inaktiven Kanäle (32) geleitet wird.
- Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die katalytisch aktiven Kanäle (31) und die katalytisch inaktiven Kanäle (32) wärmeübertragend miteinander gekoppelt sind.
- Vorrichtung (6) mit einem Brennraum (7) zum Verbrennen eines Brennstoff-Oxidator-Gemischs in einer Turbogruppe (1), insbesondere einer Kraftwerksanlage,- mit einem Vormischbrenner (8), in dem im Betrieb der Vorrichtung (6) ein Haupt-Oxidator-Strom (14) mit einem Haupt-Brennstoffstrom (21) mager vermischt und dieses Haupt-Brennstoff-Oxidator-Gemisch (23) volloxidiert wird,- mit wenigstens einem Katalysator (24), der dazu ausgebildet ist, im Betrieb der Vorrichtung (6) bei einem ihn durchströmenden fetten Pilot-Brennstoff- Oxidator-Gemisch (17,22) eine Teiloxidation unter Ausbildung von Wasserstoff durchzuführen,- mit einer Oxidator-Zuführeinrichtung (28,32), die im Betrieb der Vorrichtung (6) dem teiloxidierten Pilot-Brennstoff-Oxidator-Gemisch (25) stromab des Katalysators (24) einen Wärmeübertrager-Oxidator-Strom (18) zumischt,- wobei der Katalysator (24) und die Oxidator-Zuführeinrichtung (28,32) so ausgebildet sind, dass sie im Betrieb der Vorrichtung (6) das teiloxidierte Pilot-Brennstoff-Oxidator-Gemisch (25) und den Wärmeübertrager-Oxidator-Strom (18) gemeinsam in wenigstens eine für eine Stabilisierung der Verbrennung des Haupt-Brennstoff-Oxidator-Gemischs (23) geeignete Zone (26) einleiten,dadurch gekennzeichnet- dass dem Katalysator (24) ein Verteilerkopf (36) vorgeschaltet ist, der mit einem ersten Eingang (39) an eine Pilot-Brennstoff-Oxidator-Gemisch-Leitung, mit einem zweiten Eingang (40) an eine Wärmeübertrager-Oxidator-Leitung und mit einem Ausgang (38) an den Katalysator (24) angeschlossen ist, und- dass der Verteilerkopf (36) mehrere quer zur Strömungsrichtung benachbarte Schächte (41,42) aufweist, die alle am Ausgang (38) und wahlweise am ersten Eingang (39) oder am zweiten Eingang (40) offen sind.
- Vorrichtung nach Anspruch 6, dadurch gekennzeichnet,- dass der Katalysator (24) einen durchströmbaren katalytisch aktiven Pfad (27) sowie einen dazu parallel durchströmbaren katalytisch inaktiven Pfad (28) aufweist,- dass der katalytisch aktive Pfad (27) dazu ausgebildet ist, bei einem ihn durchströmenden fetten Pilot-Brennstoff-Oxidator-Gemisch (17,22) eine Teiloxidation unter Ausbildung von Wasserstoff durchzuführen,- dass der katalytisch inaktive Pfad (28) wärmeübertragend mit dem katalytisch aktiven Pfad (27) gekoppelt ist, einen Bestandteil der Oxidator-Zuführeinrichtung bildet und im Betrieb der Vorrichtung (6) vom Wärmeübertrager-Oxidator-Strom (18) durchströmt ist.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet,- dass der Katalysator (24) mehrere parallel durchströmbare Kanäle (31,32) aufweist, von denen die einen (31) katalytisch aktiv und die anderen (32) katalytisch inaktiv sind,- dass der katalytisch aktive Pfad (27) des Katalysators (24) durch dessen katalytisch aktive Kanäle (31) gebildet ist,- dass der katalytisch inaktive Pfad (28) des Katalysators (24) durch dessen katalytisch inaktive Kanäle (32) gebildet ist.
- Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass eine Pilot-Brennstoff-Leitung an die katalytisch aktiven Kanäle (31) angeschlossen ist, derart, dass sie im Betrieb der Vorrichtung (6) den Pilot-Brennstoff-Strom (22) separat in die einzelnen katalytisch aktiven Kanäle (31) einleitet.
- Vorrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet,- dass eine Pilot-Oxidator-Leitung an den katalytisch aktiven Pfad (27) angeschlossen ist,- dass eine Pilot-Brennstoff-Leitung stromauf des Katalysators (24) an die Pilot-Oxidator-Leitung angeschlossen ist.
- Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Katalysator (24) in einem Kopf (30) des Vormischbrenners (8) konzentrisch angeordnet ist.
- Vorrichtung nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass der Katalysator (24) in einer Lanze (29) angeordnet ist, die in einem Kopf (30) des Vormischbrenners (8) konzentrisch angeordnet ist und in den Vormischbrenner (8) hineinragt.
- Vorrichtung nach den Ansprüchen 6 und 8, dadurch gekennzeichnet,- dass die katalytisch aktiven Kanäle (31) und die katalytisch inaktiven Kanäle (32) so verteilt angeordnet sind, dass erste Zeilen (34) nebeneinander angeordneter katalytisch aktiver Kanäle (31) und zweite Zeilen (35) nebeneinander angeordneter katalytisch inaktiver Kanäle (32) sich einander, insbesondere zeilenweise, abwechselnd angeordnet sind,- dass die zum ersten Eingang (39) offenen ersten Schächte (41) an die ersten Zeilen (34) und die zum zweiten Eingang (40) offenen zweiten Schächte (42) an die zweiten Zeilen (35) angrenzen.
- Vorrichtung nach den Ansprüchen 6 oder 13, dadurch gekennzeichnet, dass zwischen dem Verteilerkopf (36) und dem Katalysator (24) eine Lochplatte (43) angeordnet ist, deren Lochmuster (45) so gewählt ist, dass jeder Kanal (31,32) durch ein einziges Durchgangsloch (44) mit einem der Schächte (41,42) kommuniziert.
- Vorrichtung nach Anspruch 14, dadurch gekennzeichnet,- dass die katalytisch aktiven Kanäle (31) und die katalytisch inaktiven Kanäle (32) sich schachbrettartig abwechselnd angeordnet sind,- dass das Lochmuster (45) der Lochplatte (43) und die Anordnung der Kanäle (31,32) so aufeinander abgestimmt sind, dass die katalytisch aktiven Kanäle (31) über die zugeordneten Durchgangslöcher (44) mit den ersten Schächten (41) kommunizieren, die zum ersten Eingang (39) des Verteilerkopfs (36) führen, während die katalytisch inaktiven Kanäle (32) über die zugeordneten Durchgangslöcher (44) mit den zweiten Schächten (42) kommunizieren, die zum zweiten Eingang (40) des Verteilerkopfs (36) führen.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US40697902P | 2002-08-30 | 2002-08-30 | |
US406979P | 2002-08-30 | ||
PCT/CH2003/000542 WO2004020905A1 (de) | 2002-08-30 | 2003-08-12 | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1532400A1 EP1532400A1 (de) | 2005-05-25 |
EP1532400B1 true EP1532400B1 (de) | 2017-07-26 |
Family
ID=31978397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03790608.8A Expired - Lifetime EP1532400B1 (de) | 2002-08-30 | 2003-08-12 | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs |
Country Status (5)
Country | Link |
---|---|
US (1) | US7421844B2 (de) |
EP (1) | EP1532400B1 (de) |
CN (1) | CN100489397C (de) |
AU (1) | AU2003249830A1 (de) |
WO (1) | WO2004020905A1 (de) |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1532400B1 (de) | 2002-08-30 | 2017-07-26 | Ansaldo Energia Switzerland AG | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs |
AU2003232574A1 (en) | 2002-08-30 | 2004-03-19 | Alstom Technology Ltd | Method and device for mixing fluid flows |
DE102004041794A1 (de) * | 2004-03-30 | 2005-10-20 | Alstom Technology Ltd Baden | Vorrichtung und Verfahren zur Flammenstabilisierung in einem Brenner |
CA2561255A1 (en) | 2004-03-30 | 2005-10-13 | Alstom Technology Ltd. | Device and method for flame stabilization in a burner |
EP1738109A1 (de) * | 2004-03-31 | 2007-01-03 | Alstom Technology Ltd | Katalytischer reaktor und verfahren zur verbrennung von brennstoff-luft-gemischen mittels eines katalytischen reaktors |
EP1614963A1 (de) * | 2004-07-09 | 2006-01-11 | Siemens Aktiengesellschaft | Verfahren und Vormischverbrennungssystem |
WO2006100176A1 (de) * | 2005-03-23 | 2006-09-28 | Alstom Technology Ltd | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner |
DE102005061486B4 (de) * | 2005-12-22 | 2018-07-12 | Ansaldo Energia Switzerland AG | Verfahren zum Betreiben einer Brennkammer einer Gasturbine |
US7841180B2 (en) * | 2006-12-19 | 2010-11-30 | General Electric Company | Method and apparatus for controlling combustor operability |
US8671658B2 (en) | 2007-10-23 | 2014-03-18 | Ener-Core Power, Inc. | Oxidizing fuel |
US8393160B2 (en) | 2007-10-23 | 2013-03-12 | Flex Power Generation, Inc. | Managing leaks in a gas turbine system |
US7928596B2 (en) | 2008-10-06 | 2011-04-19 | General Electric Company | Systems and methods for the utilization of energy generated by a powered vehicle |
US8701413B2 (en) | 2008-12-08 | 2014-04-22 | Ener-Core Power, Inc. | Oxidizing fuel in multiple operating modes |
US20100175386A1 (en) * | 2009-01-09 | 2010-07-15 | General Electric Company | Premixed partial oxidation syngas generation and gas turbine system |
US8621869B2 (en) | 2009-05-01 | 2014-01-07 | Ener-Core Power, Inc. | Heating a reaction chamber |
US20100275611A1 (en) * | 2009-05-01 | 2010-11-04 | Edan Prabhu | Distributing Fuel Flow in a Reaction Chamber |
EP2299178B1 (de) | 2009-09-17 | 2015-11-04 | Alstom Technology Ltd | Verfahren und Gasturbinenverbrennungssystem zum sicheren Mischen von H2-reichen Brennstoffen mit Luft |
IT1397215B1 (it) * | 2009-12-29 | 2013-01-04 | Ansaldo Energia Spa | Assieme bruciatore per un impianto a turbina a gas e impianto a turbina a gas comprendente detto assieme bruciatore |
WO2011116010A1 (en) | 2010-03-15 | 2011-09-22 | Flexenergy, Inc. | Processing fuel and water |
NL2006526C2 (en) * | 2011-04-01 | 2012-10-02 | Heatmatrix Group B V | Device and method for mixing two fluids. |
EP2718067B1 (de) | 2011-04-11 | 2023-10-11 | Milwaukee Electric Tool Corporation | Tragbare hydraulische auswurflochbohrer |
US9057028B2 (en) | 2011-05-25 | 2015-06-16 | Ener-Core Power, Inc. | Gasifier power plant and management of wastes |
US9273606B2 (en) | 2011-11-04 | 2016-03-01 | Ener-Core Power, Inc. | Controls for multi-combustor turbine |
US9279364B2 (en) | 2011-11-04 | 2016-03-08 | Ener-Core Power, Inc. | Multi-combustor turbine |
JPWO2013099583A1 (ja) * | 2011-12-27 | 2015-04-30 | 川崎重工業株式会社 | ガスタービンエンジンにおける触媒燃焼器 |
US9353946B2 (en) | 2012-03-09 | 2016-05-31 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US9359948B2 (en) | 2012-03-09 | 2016-06-07 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9267432B2 (en) | 2012-03-09 | 2016-02-23 | Ener-Core Power, Inc. | Staged gradual oxidation |
US8807989B2 (en) | 2012-03-09 | 2014-08-19 | Ener-Core Power, Inc. | Staged gradual oxidation |
US9534780B2 (en) | 2012-03-09 | 2017-01-03 | Ener-Core Power, Inc. | Hybrid gradual oxidation |
US9359947B2 (en) | 2012-03-09 | 2016-06-07 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US8980192B2 (en) | 2012-03-09 | 2015-03-17 | Ener-Core Power, Inc. | Gradual oxidation below flameout temperature |
US8926917B2 (en) | 2012-03-09 | 2015-01-06 | Ener-Core Power, Inc. | Gradual oxidation with adiabatic temperature above flameout temperature |
US9234660B2 (en) | 2012-03-09 | 2016-01-12 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US9381484B2 (en) | 2012-03-09 | 2016-07-05 | Ener-Core Power, Inc. | Gradual oxidation with adiabatic temperature above flameout temperature |
US9567903B2 (en) | 2012-03-09 | 2017-02-14 | Ener-Core Power, Inc. | Gradual oxidation with heat transfer |
US9371993B2 (en) | 2012-03-09 | 2016-06-21 | Ener-Core Power, Inc. | Gradual oxidation below flameout temperature |
US8671917B2 (en) | 2012-03-09 | 2014-03-18 | Ener-Core Power, Inc. | Gradual oxidation with reciprocating engine |
US9328916B2 (en) | 2012-03-09 | 2016-05-03 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9206980B2 (en) | 2012-03-09 | 2015-12-08 | Ener-Core Power, Inc. | Gradual oxidation and autoignition temperature controls |
US9328660B2 (en) | 2012-03-09 | 2016-05-03 | Ener-Core Power, Inc. | Gradual oxidation and multiple flow paths |
US9726374B2 (en) | 2012-03-09 | 2017-08-08 | Ener-Core Power, Inc. | Gradual oxidation with flue gas |
US9017618B2 (en) | 2012-03-09 | 2015-04-28 | Ener-Core Power, Inc. | Gradual oxidation with heat exchange media |
US8980193B2 (en) | 2012-03-09 | 2015-03-17 | Ener-Core Power, Inc. | Gradual oxidation and multiple flow paths |
US9347664B2 (en) | 2012-03-09 | 2016-05-24 | Ener-Core Power, Inc. | Gradual oxidation with heat control |
US9273608B2 (en) | 2012-03-09 | 2016-03-01 | Ener-Core Power, Inc. | Gradual oxidation and autoignition temperature controls |
US8844473B2 (en) | 2012-03-09 | 2014-09-30 | Ener-Core Power, Inc. | Gradual oxidation with reciprocating engine |
EP3324113A1 (de) * | 2016-11-17 | 2018-05-23 | Saacke GmbH | Verfahren und vorrichtung zum betreiben eines gasbrenners |
US12037952B2 (en) * | 2022-01-04 | 2024-07-16 | General Electric Company | Systems and methods for providing output products to a combustion chamber of a gas turbine engine |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1069211A (fr) | 1952-12-26 | 1954-07-06 | Gaz Et Chaleur | Générateur d'air chaud par combustion catalytique |
FR2436958A2 (fr) | 1978-09-22 | 1980-04-18 | Ceraver | Procede de fabrication d'un element d'echange indirect de chaleur en matiere ceramique, et element obtenu par ce procede |
US4298059A (en) | 1978-09-23 | 1981-11-03 | Rosenthal Technik Ag | Heat exchanger and process for its manufacture |
US5634784A (en) * | 1991-01-09 | 1997-06-03 | Precision Combustion, Inc. | Catalytic method |
US5207053A (en) * | 1991-05-15 | 1993-05-04 | United Technologies Corporation | Method and system for staged rich/lean combustion |
US5165224A (en) * | 1991-05-15 | 1992-11-24 | United Technologies Corporation | Method and system for lean premixed/prevaporized combustion |
US5235804A (en) | 1991-05-15 | 1993-08-17 | United Technologies Corporation | Method and system for combusting hydrocarbon fuels with low pollutant emissions by controllably extracting heat from the catalytic oxidation stage |
GB9212794D0 (en) | 1992-06-16 | 1992-07-29 | Ici Plc | Catalytic combustion |
US5512250A (en) * | 1994-03-02 | 1996-04-30 | Catalytica, Inc. | Catalyst structure employing integral heat exchange |
DE4439619A1 (de) | 1994-11-05 | 1996-05-09 | Abb Research Ltd | Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners |
DE19654022A1 (de) | 1996-12-21 | 1998-06-25 | Abb Research Ltd | Verfahren zum Betrieb einer Gasturbogruppe |
US20020015931A1 (en) | 1999-03-18 | 2002-02-07 | Lance Smith | Conduit positioner |
US6358040B1 (en) * | 2000-03-17 | 2002-03-19 | Precision Combustion, Inc. | Method and apparatus for a fuel-rich catalytic reactor |
NO321805B1 (no) | 2001-10-19 | 2006-07-03 | Norsk Hydro As | Fremgangsmate og anordning for a lede to gasser inn og ut av kanalene i en flerkanals monolittenhet. |
EP1532400B1 (de) | 2002-08-30 | 2017-07-26 | Ansaldo Energia Switzerland AG | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs |
-
2003
- 2003-08-12 EP EP03790608.8A patent/EP1532400B1/de not_active Expired - Lifetime
- 2003-08-12 WO PCT/CH2003/000542 patent/WO2004020905A1/de not_active Application Discontinuation
- 2003-08-12 CN CNB038247747A patent/CN100489397C/zh not_active Expired - Fee Related
- 2003-08-12 US US11/066,926 patent/US7421844B2/en not_active Expired - Fee Related
- 2003-08-12 AU AU2003249830A patent/AU2003249830A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN1703601A (zh) | 2005-11-30 |
AU2003249830A1 (en) | 2004-03-19 |
EP1532400A1 (de) | 2005-05-25 |
CN100489397C (zh) | 2009-05-20 |
US20060080968A1 (en) | 2006-04-20 |
WO2004020905A1 (de) | 2004-03-11 |
US7421844B2 (en) | 2008-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1532400B1 (de) | Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs | |
EP1730441B1 (de) | Vorrichtung und verfahren zur flammenstabilisierung in einem brenner | |
DE3889301T2 (de) | Brennkammer zur Verminderung des Schadstoffaustosses von Gasturbinen. | |
DE69625744T2 (de) | Magervormischbrenner mit niedrigem NOx-Ausstoss für industrielle Gasturbinen | |
DE69729505T2 (de) | Arbeitsweise einer Gasturbinenbrennkammer | |
EP1064498B1 (de) | Gasturbinenbrenner | |
DE102012100468B4 (de) | Brennkammer für die emissionsarme Verbrennung von mehreren vorgemischten reformierten Brennstoffen und verwandtes Verfahren | |
EP1616131A1 (de) | Verfahren und vorrichtung zum verfahren und vorrichtung zum betreiben eines brenners einer warmekraftmaschine, insbesondere einer gasturbinenanlage | |
EP2116766A1 (de) | Brennstofflanze | |
DE2940431A1 (de) | Brennkammer mit abgestufter brennstoffeinspritzung und verfahren zum betreiben einer hochtemperaturbrennkammer | |
EP1497589A1 (de) | Brennkammer mit flammenloser oxidation | |
WO2006100176A1 (de) | Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner | |
EP1738109A1 (de) | Katalytischer reaktor und verfahren zur verbrennung von brennstoff-luft-gemischen mittels eines katalytischen reaktors | |
EP1301697B1 (de) | Gasturbine und verfahren zum betrieb einer gasturbine | |
EP0889289B1 (de) | Gasturbinenanalge und Verfahren zu deren Betrieb | |
CH702737A2 (de) | Brennkammer mit zwei Brennräumen. | |
DE102020212410A1 (de) | Gasturbinenverbrennungsvorrichtung | |
DE3102165A1 (de) | Brenner-kesselkombination mit verbessertem brenner und verbrennungsverfahren | |
EP1963748B1 (de) | Brennkammer mit brenner und zugehöriges betriebsverfahren | |
WO2003029725A1 (de) | Verbrennungsverfahren, insbesondere für verfahren zur erzeugung von elektrischem strom und/oder von wärme | |
DE102020212361A1 (de) | Gasturbinenverbrennungsvorrichtung | |
EP1072758A2 (de) | Verfahren zum Kühlen von Gasturbinenschaufeln | |
EP0210205B1 (de) | Vorrichtung zur verbrennung von flüssigen und gasförmigen brennstoffen mit stickoxidfreien abgasen | |
DE102013112162A1 (de) | Mikromischerdüse | |
EP3246557B1 (de) | Raketenantriebssystem und verfahren zum betreiben eines raketenantriebssystems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050221 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE GB |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: WINKLER, DIETER Inventor name: GRIFFIN, TIMOTHY |
|
17Q | First examination report despatched |
Effective date: 20070906 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170209 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA SWITZERLAND AG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 50315681 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170822 Year of fee payment: 15 Ref country code: DE Payment date: 20170822 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 50315681 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50315681 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180812 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180812 |