EP1559844B1 - Insulating element and composite thermal compound system - Google Patents
Insulating element and composite thermal compound system Download PDFInfo
- Publication number
- EP1559844B1 EP1559844B1 EP05001495A EP05001495A EP1559844B1 EP 1559844 B1 EP1559844 B1 EP 1559844B1 EP 05001495 A EP05001495 A EP 05001495A EP 05001495 A EP05001495 A EP 05001495A EP 1559844 B1 EP1559844 B1 EP 1559844B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- insulating element
- tensile strength
- insulation
- insulating
- element according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Revoked
Links
- 239000002131 composite material Substances 0.000 title claims description 22
- 150000001875 compounds Chemical class 0.000 title 1
- 238000009413 insulation Methods 0.000 claims abstract description 105
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 10
- 239000011491 glass wool Substances 0.000 claims abstract description 7
- 239000011490 mineral wool Substances 0.000 claims abstract description 7
- 239000000853 adhesive Substances 0.000 claims description 30
- 230000001070 adhesive effect Effects 0.000 claims description 30
- 239000011230 binding agent Substances 0.000 claims description 28
- 238000000576 coating method Methods 0.000 claims description 19
- 239000011248 coating agent Substances 0.000 claims description 17
- 238000005520 cutting process Methods 0.000 claims description 12
- 239000004570 mortar (masonry) Substances 0.000 claims description 10
- 239000011707 mineral Substances 0.000 claims description 9
- 239000002985 plastic film Substances 0.000 claims description 4
- 229920006255 plastic film Polymers 0.000 claims description 4
- 239000003365 glass fiber Substances 0.000 claims description 2
- 230000002787 reinforcement Effects 0.000 claims description 2
- 239000002557 mineral fiber Substances 0.000 abstract description 102
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 abstract description 9
- 239000000203 mixture Substances 0.000 abstract description 7
- 229920001807 Urea-formaldehyde Polymers 0.000 abstract description 4
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000007767 bonding agent Substances 0.000 abstract 2
- 239000010410 layer Substances 0.000 description 32
- 239000011505 plaster Substances 0.000 description 30
- 238000004519 manufacturing process Methods 0.000 description 25
- 239000011810 insulating material Substances 0.000 description 18
- 239000000835 fiber Substances 0.000 description 17
- 230000006835 compression Effects 0.000 description 15
- 238000007906 compression Methods 0.000 description 15
- 239000004033 plastic Substances 0.000 description 7
- 229920003023 plastic Polymers 0.000 description 7
- 241000446313 Lamella Species 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000012774 insulation material Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 238000009434 installation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000011324 bead Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- 241000288673 Chiroptera Species 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000005791 algae growth Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000000035 biogenic effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- SLGWESQGEUXWJQ-UHFFFAOYSA-N formaldehyde;phenol Chemical compound O=C.OC1=CC=CC=C1 SLGWESQGEUXWJQ-UHFFFAOYSA-N 0.000 description 1
- LCDFWRDNEPDQBV-UHFFFAOYSA-N formaldehyde;phenol;urea Chemical compound O=C.NC(N)=O.OC1=CC=CC=C1 LCDFWRDNEPDQBV-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 150000004676 glycans Chemical group 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- MOWNZPNSYMGTMD-UHFFFAOYSA-N oxidoboron Chemical class O=[B] MOWNZPNSYMGTMD-UHFFFAOYSA-N 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 150000004756 silanes Chemical class 0.000 description 1
- 239000003238 silicate melt Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
- D04H1/4218—Glass fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4209—Inorganic fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
- D04H1/64—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/74—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H13/00—Other non-woven fabrics
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7654—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings
- E04B1/7658—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres
- E04B1/7662—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only comprising an insulating layer, disposed between two longitudinal supporting elements, e.g. to insulate ceilings comprising fiber insulation, e.g. as panels or loose filled fibres comprising fiber blankets or batts
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/78—Heat insulating elements
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B9/00—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation
- E04B9/04—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like
- E04B9/045—Ceilings; Construction of ceilings, e.g. false ceilings; Ceiling construction with regard to insulation comprising slabs, panels, sheets or the like being laminated
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B2001/7683—Fibrous blankets or panels characterised by the orientation of the fibres
Definitions
- the invention relates to an insulating element made of bonded with a binder mineral fibers, in particular mineral wool and / or glass wool, with two large surfaces which are arranged at a distance and parallel to each other and with four side surfaces which are aligned at right angles to each other and to the large surfaces, wherein the mineral fibers are oriented in the region of at least one contact zone immediately adjacent to a large surface, substantially parallel to the large surface, and wherein between the large surfaces adjacent to the contact zone a core region is disposed in the mineral fiber substantially at right angles and / or are arranged running obliquely to the large surfaces. Furthermore, the invention relates to a thermal insulation composite system with at least one such insulating element.
- Insulating materials made of vitreous solidified mineral fibers are classified according to the chemical composition commercially available in glass wool and rock wool insulation materials. Both varieties differ in the chemical composition of the mineral fibers.
- the glass wool fibers are made from silicate melts that contain large amounts of alkalis and boron oxides that act as fluxes. These melts have a wide processing range and can be removed by means of rotating bowls whose walls have holes, to relatively smooth and long mineral fibers, which are usually at least partially bonded with mixtures of thermosetting phenol-formaldehyde and urea resins.
- the proportion of these binders in the glass wool insulating materials is for example about 5 to about 10% by mass and is also limited by the fact that the character of a non-combustible insulating material is to be preserved.
- the bond can also be made with thermoplastic binders such as polyacrylates.
- the pulp is added to other substances such as oils in amounts below about 0.4% by mass for hydrophobing and dust binding.
- the impregnated with binders and other additives mineral fibers are collected as a fiber web on a slow-speed conveyor. In most cases, the mineral fibers of several fiberizing devices are deposited one after the other on this conveyor. The mineral fibers are oriented largely directionless in one plane. But they store very flat on top of each other. By slight vertical pressure, the fiber web is compressed to the desired thickness and the conveying speed of the conveyor simultaneously to the required density and the binder cured in a curing oven by means of hot air, so that the structure of the fiber web is fixed.
- the primary nonwoven consists of relatively coarse fiber flakes, in the core areas of which higher binder concentrations are present, while in the peripheral areas weaker or non-bonded mineral fibers predominate.
- the mineral fibers are aligned in the fiber flakes approximately in the transport direction.
- Rock wool insulation materials have contents of binders of about 2 to about 4.5% by mass. With this small amount of binders, only part of the mineral fibers are in contact with the binders.
- the binders used are predominantly mixtures of phenol, formaldehyde and urea resins. Some of the resins are already substituted by polysaccharides.
- Inorganic binders are used as for the glass wool insulating materials only for special applications of insulating materials, as these are much more brittle than the largely elastic to plastic plastic reacting organic binder, which accommodates the desired character of insulating materials made of mineral fibers as elastic-springy building materials.
- the additives used are mostly high-boiling mineral oils in proportions of 0.2% by mass, in exceptional cases also about 0.4% by mass.
- the primary nonwovens are deposited by means of a pendulum-suspended conveyor transversely across another conveyor, which allows the production of an endless fibrous web consisting of a plurality of obliquely superimposed individual layers.
- a pendulum-suspended conveyor transversely across another conveyor, which allows the production of an endless fibrous web consisting of a plurality of obliquely superimposed individual layers.
- the forces acting on the fiber web cause binder-rich core zones to be compacted and unfolded into narrow lamellae, resulting in main folds with folds in flanks.
- the less bound or binder-free mineral fibers in the interstices of the folds and between the lamellae are slightly rolled and slightly compressed.
- the fine structure thus consists of relatively stiff slats, which have a certain flexibility due to their numerous folds, but are relatively stiff parallel to the folding axes and form spaces which are easily compressible.
- the compressive strength and the transverse tensile strength of the fibrous web clearly increase in comparison with a normal, in particular extremely flat, arrangement of the mineral fibers.
- the flexural strength of the fibrous web or of the sections separated from it in the form of plates or Dämmfilzen is therefore significantly higher in the transverse direction than in the production direction.
- the bending strength in the transverse direction is on the order of three to four times as high as the bending strength in the direction of production.
- a method for the production of insulating elements with a characteristic of lamellas, lamellar plates or lamellae orientation of Mineralfasem is from the EP 0 741 827 B1 known.
- a thin primary nonwoven is unfolded by an up and down moving conveyor and placed endlessly and looped on a second conveyor. This creates individual layers which are pressed against each other in the horizontal direction and are compressed differently depending on the desired density of density.
- the primary fleece is guided between two pressure-resistant bands, which initially limit only the height of the primary fleece.
- the mineral fibers are aligned in the arcuately deflected tracks of the primary web parallel to boundary surfaces.
- the primary nonwoven can also be actively compressed in the vertical direction.
- This orientation of the mineral fibers in the primary nonwoven can be done in a separate device, but is advantageously made in conjunction with a curing oven.
- the endless fibrous web produced from the primary nonwoven is flowed through in a vertical direction between two pressure belts, at least one of which is movable in the vertical direction, with hot air.
- the fibrous web with the binding and / or impregnating agents contained therein is heated, so that moisture present in the fibrous web is expelled and the binders cure, in which they form connecting films or solids.
- After fixation of the fibrous web by solidification of the binder is shown in longitudinal section a structure in which the mineral fibers are oriented in the core of the primary web predominantly perpendicular to the large surfaces of the endless fiber web.
- the mineral fibers are aligned parallel to the large surfaces. Because of the relatively high stiffness of the core of the primary web, the mineral fibers can also be compressed in a mushroom-like manner with correspondingly large vertical pressures and / or pressed downwards between the zones having mineral fibers running at right angles to the large surfaces. Between the arcuately deflected paths of the primary web generally remain small gussets, which occur as different widths and different depths transverse grooves in the two large-Shen surfaces of the endless fiber web.
- the higher density zones differ with the mineral fibers running at right angles to the large surfaces clearly from the intermediate zones with a flat arrangement of mineral fibers.
- the structure is less uniform than in insulation boards used to make fins. For example, the bending tensile strength is lower because of the inhomogeneity of the structure at a comparable density.
- the mineral fibers lying flat in the near-surface zones significantly reduce the thermal conductivity perpendicular to the large surfaces.
- insulating elements can be used in thermal insulation systems.
- a thermal insulation composite system called system, consists of particular plate-shaped insulating elements, which can be glued on a building surface to be insulated and / or with Help of Dämmstoffhaltem be fastened.
- On the mounted on the building surface insulation elements usually a two-layer plaster layer is applied, wherein the first layer of the plaster layer is usually reinforced by means of glass fiber meshes.
- insulating elements of mineral fibers already described above have been particularly suitable for use in these systems. These insulating elements are produced from a mineral fiber web continuously impregnated on a conveyor with water-borne binders and other additives such as water repellents and / or dust binders.
- Typical binders are aqueous mixtures of phenol-formaldehyde-urea resins containing catalysts for accelerating curing and adhesion promoting substances such as silanes.
- the endless mineral fiber web is intensively folded by a combined horizontal compression in the conveying direction and a vertical compression, so that arise in the range of large surfaces of the mineral fiber lattice axes.
- the connection between the individual lamellar areas is significantly less than the internal cohesion of the lamellar areas.
- the lamellar areas are largely flat to the large surfaces of the mineral fiber web.
- the lattice axes run predominantly parallel to the large upper surfaces of the mineral fiber web.
- the intensively folded and impregnated mineral fiber web is conveyed between an upper and a lower, in each case pressure-resistant and at the same time air-permeable conveyor belt of a hardening furnace. Both conveyors consist mostly of stable, connected via tension members Bodies that form perforations in a characteristic arrangement on the large surfaces.
- the deformable mineral fiber web is fixed in the curing oven in the desired delivery thickness, wherein the flexible mineral fibers are rearranged in near-surface areas such that the mineral fibers are in the near-surface areas parallel to the conveyor belts. Although another part of the mineral fibers thus transferred is pressed into the holes of the pressure-resistant conveyor belts, the mineral fibers remain in parallel storage to the correspondingly shaped surfaces.
- the residual moisture of the mineral fiber web is expelled and the binder is heated and hardened by sucking hot air through the endless mineral fiber web in a right-angled direction.
- the structure of the mineral fiber web now to be designated as an endless insulating web is fixed.
- the hot air can be used to dislodge monomers of the binders which lead to slightly increased binder contents in the near-surface areas and in the mineral fibers pressed into the holes of the conveyor belts in the hardening furnace.
- contact zones are to be distinguished.
- the endless insulation sheet is after leaving the curing oven with the help of sawing in insulation boards, for example, with a length of 800 mm and a width of 625 mm divided.
- the longitudinal axis of the insulation boards is oriented transversely to the compression, thus also transversely to the production direction of the mineral fiber web.
- the insulation boards which can be used as plaster base plates are produced with densities of about 140 to about 180 kg / m 3 .
- the proportions of the mixtures of phenol, urea, Formaldehyde resins are about 4 to about 7% by mass. Higher contents of organic binders are avoided because of the possible loss of incombustibility and also for cost reasons.
- the different transverse tensile strength of the insulation boards is used to divide the folded endless insulation web in production and corresponding horizontal compression direction in slices.
- the endless insulation material web is usually divided into large-format insulation panels.
- the individual although in the direction of the longitudinal axis lamellar folded together mineral fibers are predominantly arranged at right angles or in very steep storage to the large surfaces, ie here the cut surfaces.
- the discs are usually by Max. 200 mm thick insulation boards separated, which can be cured in the known hardening furnaces.
- mineral fiber finned plates with densities of about 85 to about 90 kg / m 3 and transverse tensile strengths of> 100 kPa and compressive strengths of about 70 kPa at 10% compression known.
- These mineral fiber lamellar plates must be classified in the heat conductivity group 045 according to DIN 4108.
- the mineral fiber lamella plates are glued with a cut surface on the building surface to be insulated.
- the mineral fiber web and thus also the finished insulation web or the insulation boards made therefrom or mineral fiber lamellar plates are hydrophobic and even with surface-active substances having adhesives an inadequate connection, so that the secure mounting of the insulation boards is cumbersome and expensive.
- the previously known Insulating board has a bulk density between about 75 and about 100 kg / m 3 and a 10 to 20 mm thick top layer, which is compressed to about 160 kg / m 3 , the mineral fibers are predominantly arranged flat to the large surface , Since the compression of the cover layer takes place independently of the actual insulation board, a contact zone is formed on the surface of the cover layer facing the insulation board.
- the bulk density of such a composite panel can be lowered in an advantageous manner with increasing thickness of about 100 kg / m 3 to about 85 kg / m 3 .
- the transverse tensile strength of this composite plate reaches a magnitude of about 5 kPa, while the compressive stress strength is about 10 kPa. If higher strength values are to be achieved, it is necessary to raise the bulk density of the cover layer to about 180 kg / m 3 and the actual insulation board to about 125 - about 135 kg / m 3 . This results in a higher compressive stress strength of about 40 kPa and a higher transverse tensile strength of ⁇ about 15 kPa.
- the relatively stiff cover layer increases the shear strength of the insulation board so that the orientation of the insulation board recedes relative to the original layer in the continuous insulation web.
- Mineral fiber lamella plates have the highest transverse tensile strength and can therefore be insulated up to building heights of about 20 m solely by bonding one of the cut surfaces with the building surface to be insulated. Between a layer of glue and the one to be insulated Building surfaces are required tensile strength of up to 80 kPa.
- plastic-containing mortars which are referred to below as adhesive mortar, or conventional plasters are used, which are approximately identical in practice.
- plastic-containing and hydraulically setting substances either applied over the entire surface of the insulation board, especially the mineral fiber lamella plate and then combed with a toothed spatula or in the form of thin, perpendicular to the longitudinal axes of adhesive beads using a carrier and appropriate accessories is applied to the wall.
- the adhesive is peripherally applied circumferentially as a bead and the other center as at least one, preferably several batches applied to the surface to be bonded to the insulation board, the proportion of trained with the adhesive surface should be at least> 40%.
- the adhesive serves as a balancing mass for the bumps of the building surface to be insulated and the surface of the insulation board, as the edges of the insulation board stiffening and together with the arranged in the central region of the surface of the insulation board bats as spacers.
- the adhesive tensile strength of the adhesive does not enter into the calculations of the stability of corresponding systems in the general building inspectorate approvals of the Deutsches Institut für Bautechnik. Nevertheless, the opposite of the building surface to be insulated at least positive adhesive layer is regarded as a safeguard against slipping of the insulation boards.
- the insulating panels of mineral fibers must mechanically with so-called Dämmstoffhaltern to be insulated Building surface to be fixed.
- These insulation holders are also commercially called screw anchor or expansion dowel.
- Insulation holder consist of a metal screw and a plastic body, which usually has a round, perforated in its surface and disc-shaped head.
- a ring with radially inwardly extending webs and a central shaft may be provided, wherein the outer ring causes a high resistance of the head against passage in the insulation board.
- the length of the hollow shank is matched to the thickness of the insulating layer and in particular of the insulating panels and ends in the form of an expansion anchor.
- a metal pin is guided in the most common embodiment, which has at one end an example hexagonal shaped screw head and at the opposite end a helical thread.
- the plastic body is hammered into a previously created hole and the metal pin screwed into the shaft until the plate rests firmly on the surface of the insulation board.
- the number of required insulation holders depends on the height of the building surface to be insulated and the size of the different insulation boards.
- the adhesion of the plaster is primarily dependent on the transverse tensile and shear strength of the surface or the near-surface zones of the insulation board made of mineral fibers.
- the thicknesses of the plaster applied to mineral fiber insulation panels have been systematically reduced by the increasing use of synthetic resin plaster.
- the insulation holder To be able to produce a flat surface with these thin plaster layers, the insulation holder must be pressed into the insulation layer if possible. Nevertheless, the coverage of the insulation holder is often not sufficient. Furthermore, these thin plaster layers have only a low heat storage capacity, so that under certain weather conditions regularly falls below the surface temperatures of the plaster layer from the ambient temperature, resulting in condensation can result. These promote the formation of biogenic films, such as the growth of algae on the surfaces of the system, leaving the areas of the plaster above the insulation holders free on the one hand because of the thermal bridging effect of the metallic screws and / or on the other hand because of the faster drying.
- the drier areas remain visible when the condensation on the surface of the plaster freezes and forms no or less ice in the area of drier places. Also, the impact of driving rain on the water-resistant surfaces of the plaster can lead to the loss of insulation material holder due to the different absorption of moisture and because of the different drying rates, especially when cleaning with lower brightness values
- insulating elements are insulating panels, in particular of mineral fibers, which are attached to building facades to form a thermal insulation system.
- the pipe shell consists of at least one insulating element which has two substantially parallel to each other extending large surfaces, of which at least one surface bears against a lateral surface of the pipe to be insulated.
- the insulating element bent according to the pipeline has projections which serve as spacers and facilitate the insertion of the pipe shell into a casing stone.
- the insulating element consists of a mineral fiber body with a preferably perpendicular to large-sen surfaces aligned course of mineral fibers and arranged at least on a surface coating, the adhesive bond between the mineral fiber molding and a construction adhesive, in particular an adhesive mortar and / or applied to the mineral fiber body plaster enlarge.
- the coating consists of an impregnation and a pressure-resistant layer with high affinity to hydraulically setting building adhesives.
- the invention is therefore an object of the invention to provide an insulating element and a composite thermal insulation in which the use of insulation holders in the area of higher building surfaces is not required, the insulation element should also be inexpensive to produce, so that even the thermal insulation system in economic Way to create.
- an insulating element according to the invention that at least on the contact zone associated large surface in at least one major axis direction extending aligned bead-like projections are arranged at regular intervals to each other, which have a substantially circular arc section-shaped cross-section.
- a thermal insulation composite system according to the invention is provided to solve the task that the insulating element faces away from the contact zone arranged large surface rests on a building surface to be insulated and connected thereto via an adhesive and that the outer, the contact zone having large surface formed with a cover is.
- the insulating element according to the invention makes the use of Dämmstoffhaltem for fixing coated insulation layers, for example, in thermal insulation systems in conventional multi-storey buildings superfluous, since the insulation element according to the invention has significantly improved strength values and in particular inexpensive to already existing production facilities can be produced.
- the connection of the insulating element according to the invention with the plaster and / or the adhesive is substantially improved, so that also achieved here an improvement in the stability of a trained with the insulating elements according to the invention thermal insulation composite system becomes.
- the projections according to the invention in this case improve the adhesion of the adhesive to the hydrophobic insulating element, as far as the projections are arranged on the large surface, which faces in the installation position of the insulating element of a building surface. If the insulating element is oriented away from the building surface with the large surface having the projections in the installation position, the projections also have the effect of improving the adhesion with the plaster.
- the mineral fibers are arranged extending in two contact zones in the region of both large surfaces parallel to the large surfaces and that bead-like projections are arranged on both large surfaces.
- the core region consists of a plurality of meandering arranged and preferably compressed in the longitudinal direction of the core region loops of a primary web, wherein the loops of the primary web are interconnected via deflection regions which are arranged in at least one contact zone.
- the contact zones also offer an advantageous elasticity due to the orientation of the mineral fibers parallel to the large surfaces, so that unevennesses in the area of a building surface to be insulated can be compensated.
- the insulating element form with a different transverse tensile strength in the area below the two major surfaces. It is preferably provided that a region under a large surface has a transverse tensile strength of> 30 kPa, preferably> 60 kPa, and a region under the opposite large surface has a transverse tensile strength> 5 kPa.
- the insulating element meets in this embodiment, the requirement of adhesive strength in installation position, the large surface with the higher transverse tensile strength of a building surface to be insulated is assigned, since in this area larger forces, such as weight of the insulating element and the plaster and wind suction occur and ablate in the building surface are, while the plaster facing large surface of the insulating element only the weight of the plaster and the wind suction as forces in the thermal insulation composite system has to be removed, so that in this large surface a lower transverse tensile strength is sufficient.
- the manufacturing cost of the insulating elements can be significantly reduced.
- the areas directly adjoin the large surfaces in order to be able to provide the maximum transverse tensile strength.
- At least one large surface is formed with an adhesion-promoting coating, which is arranged according to a development on the large surface, to which the mineral fibers have a rectangular course.
- the adhesion-promoting coating may be arranged over part of the area on the large surface.
- the manufacturing costs can be lowered in the course of a material saving and the processor at the same time the correct arrangement, for example, an adhesive can be displayed on the large surface of the insulating element.
- An adhesion-promoting coating has proven to be advantageous from a plastic film having a high affinity for a construction adhesive, in particular a mortar and / or an adhesive mortar.
- An above-described insulating element can be separated, for example, from an endless insulation web of mineral fibers.
- the continuous insulation web having a core region and one or two contact zones may be symmetrical or asymmetrical with respect to a longitudinal center plane.
- the insulating material is characterized essentially by the fact that the individual mineral fibers are arranged over the cross section of the insulating material significantly different from the two large surfaces. Both large surfaces have projections that form in the curing oven in the fixation of the insulation web. For this purpose, the large surfaces are compressed in sectionbrugs between the projections and kept compressed during the curing of the binder.
- the mineral fibers In both surfaces and the projections, the mineral fibers have a course that is substantially parallel to the large surfaces. This pronounced laminar alignment of the mineral fibers to the large surfaces extends into the contact zones below the two large surfaces. Without sharp transitions close including vertical compression zones, in which the mineral fibers are aligned flat to flat inclined to the large surfaces as a result of a predominantly directed perpendicular to the conveying direction of the insulating material compression. At the same time in the direction of compression aligned compression form lamellar folded and mostly flat lying to the large surfaces portion of the insulation sheet.
- the individual mineral fibers are predominantly oriented steeply to at right angles to the large surfaces.
- the transitions from the core region to the compression zones are characterized by a substantially uniform change in the slopes of the majority of the mineral fibers.
- the insulating material web has a stringing together of a plurality of arcuate or loop-like elements which are flattened by forces acting at right angles to the conveying direction, wherein a portion of Mineralfasem is pressed into the gusset between the arcuate or loop-like elements.
- thermal insulation composite system can be produced in which the insulating elements have a large surface or underlying contact zone with transverse tensile strengths of> about 30 kPa, preferably> about 60 kPa, while the opposite large surface and the contact zone adjacent thereto at least one transverse tensile strength of> 5 kPa.
- the transverse tensile strength of a large surface is thus sufficiently high to stick the insulation board without additional anchorages on a building surface to be insulated.
- the transverse tensile strength of the second, in the external thermal insulation composite system large surface is sufficient in contrast to be able to hold plasters, mortar, fillers or paint coatings.
- the large surface facing the building surface is designed as a cut surface to which the mineral fibers are aligned at right angles.
- high transverse tensile strengths can be achieved by aligning the mineral fibers relative to the large surface in a simple and manufacturally cost-effective manner.
- connection between the adhesive and / or plaster with the insulating element is achieved in that the cut surface has an adhesion-promoting coating, which is preferably applied over the entire surface.
- the cover is designed as a preferably reinforced cleaning system.
- the insulating element in the contact zone for a Area of the cut surface has different transverse tensile strength.
- a transverse tensile strength of> 30 kPa, preferably> 60 kPa and in the contact zone a transverse tensile strength of> 5 kPa has proven sufficient and advantageous in the sectional area.
- thermal insulation composite system results from the fact that the cover is reinforced with a fiberglass Gittergelege.
- a plurality of insulating panels are arranged and secured in association on the building surface to be insulated.
- an insulating element 1 is shown in longitudinal section.
- the insulating element 1 consists of Mineralfasem 2, which are bound with binders.
- the large surfaces 3, 4 are spaced and provided parallel to each other.
- the large surfaces 3, 4 define outwardly contact zones 5, 6, in which the mineral fibers 2 are aligned substantially parallel to the large surfaces 3, 4.
- compression zones 7, 8, which are characterized by a substantially uniform change in the inclinations of the main portion of the mineral fibers 2.
- a core region 9 is arranged between the compression zones 7, 8, in which the mineral fibers 2 are arranged to extend predominantly steeply to at right angles to the large surfaces 3, 4.
- the insulating element 1 has bead-like projections 10, which are arranged at regular intervals from one another and have a substantially semicircular cross-section.
- the projections 10 are aligned at right angles to the longitudinal extension of the insulating element 1, therefore perpendicular to the production or conveying direction of the insulating element 1 in the manufacturing process.
- the mineral fibers 2 run parallel to the large surfaces 3, 4.
- the insulating element 1 consists of a plurality of meandering arranged and compressed in the longitudinal direction of the core portion 9 loops 11 of a primary web.
- the loops 11 of the primary web are connected to one another via deflection regions, which are arranged in the region of the swage zones 7, 8 or the contact zones 5, 6 or form the swage zones 7, 8.
- the loops 11 can be seen, wherein the figures 3 and 4 show sections of an insulating element 1, which is not yet provided with projections 10. These projections 10 are formed in a hardening furnace, not shown by lying on the large surfaces 3, 4 conveying elements, which compresses the insulating element in a direction perpendicular to the large surfaces 3, 4 in some areas and compressed to harden the binder contained.
- a center plane 12 is shown in phantom in FIG. 3, along which the insulating element 1 can be separated parallel to the large surfaces 3, 4 into two insulating elements 1.1 or 1.2 according to FIG.
- a separation of the insulating element 1 in the insulating elements 1.1 and 1.2 is also possible off-center, as indicated for example by an arrow 13 in Figure 3.
- FIG. 3 shows schematically a cutting tool 14 which removes subregions of the swaging zones 7, 8 in order to form smooth large surfaces 3, 4.
- the insulating elements 1.1 and 1.2 have in addition to a cutting surface 15 an adhesion-promoting coating 16, for example consists of a plastic film with a high affinity for a construction adhesive, in particular a mortar and / or an adhesive mortar.
- the coating 16 is arranged over the full area on the cut surfaces 15, wherein the course of the mineral fibers 2 in the region of the cut surfaces 15 is aligned at right angles to the cut surfaces 15.
- the insulating elements 1.1 and 1.2 according to Figure 4 are characterized in that the large surface 3 or 4 has a lower transverse tensile strength of 10 kPa compared to the sectional area 15, while the transverse tensile strength of the insulating element 1.1 or 1.2 in the area of the cut surface 15 at 65 kPa is located.
- the thermal insulation composite system 17 consists of insulating elements 1.2 according to Figure 4, which are fixed with a point or line on the coating 16 applied adhesive 18 on a building surface to be insulated 19, such as a wall 20.
- the insulating element 1.2 is in this case aligned with its cutting surface 15 to the building surface 19 out, so that the coating 16 is in communication with the adhesive 18.
- the insulating element 1.2 on the above-described high transverse tensile strength, so that the forces occurring here, namely the weight of the insulating element 1.2 including an externally arranged plaster 21 and wind suction forces can be removed.
- the plaster 21 is formed in two layers and has a base coat 22 and a top coat 23, which are formed in particular of a material which approximately coincides with the material of the adhesive 18.
- a reinforcement 24 is inserted in the form of a mesh fabric to increase the strength of the plaster 21.
- the plaster 21 is arranged on the large surface 4 of the insulating element 1.2 in the region of the contact zone 6 and fills the areas between the projections 10. By the projections 10, an improved connection between the plaster 21 and the large surface 4 of the insulating element 1.2 is formed.
- FIG. 5 shows an insulation web 25, which is formed from loops 11 of a primary nonwoven and is conveyed in the direction of an arrow 26.
- the large surfaces 3, 4 with the upsetting zones 7, 8 and contact zones 5, 6 arranged there are machined with cutting tools 14, which are aligned parallel to the longitudinal extent and conveying direction according to arrow 26 of the insulating material web 25.
- insulating material elements 1. 1 or 1. 2 according to FIG. 4 can be produced from insulating material web 25 according to FIG. 5 or insulating material web 25 can have a total exclusively rectangular course of mineral fibers 2 to large surfaces 3, 4.
- the insulating element 1.1 or 1.2 according to Figure 4 is thus characterized characterized in that the contact zone 5, 6 has been removed in the region of the large surfaces up to the compression zone 7, 8 and that the cut surface 15 to achieve a high transverse tensile strength in the core region 9 of the insulating element 1 is formed according to FIG.
- the cut surface 15 is covered over its entire area with an adhesion-promoting coating 16, which impregnates the cut surface 15 with an adhesion-promoting plastic film.
- the outer large surface 3, 4 can be coated or impregnated in the same way as the cutting surface 15.
- the contact zone 5, 6 can be left in the original shape and position.
- the insulation elements 1.1 and 1.2 may be formed as insulation boards and are manufactured in many different dimensions depending on the width of the production facilities, so that, for example, on the geometries of the building surfaces to be insulated 19, for example, by windows structured facades, coordinated formats or Blanks of the insulating elements 1.1 and 1.2 can be produced.
- large-size insulation boards decreases in a thermal insulation system 17, the number of joints between the insulation boards and thus their possible thermal bridge effect.
- the effectiveness of an insulation layer in the thermal insulation composite system 17 is increased.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Textile Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Civil Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Acoustics & Sound (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Building Environments (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
- Nonwoven Fabrics (AREA)
- Central Heating Systems (AREA)
- Thermal Insulation (AREA)
- Laminated Bodies (AREA)
Abstract
Description
Die Erfindung betrifft ein Dämmstoffelement aus mit einem Bindemittel gebundenen Mineralfasern, insbesondere aus Mineralwolle und/oder Glaswolle, mit zwei großen Oberflächen, die im Abstand und parallel verlaufend zueinander angeordnet sind und mit vier Seitenflächen, die rechtwinklig zueinander und zu den großen Oberflächen ausgerichtet sind, wobei die Mineralfasern im Bereich zumindest einer Kontaktzone, die sich unmittelbar an eine große Oberflächen anschließt, im wesentlichen parallel zu der großen Oberfläche verlaufend ausgerichtet sind und wobei zwischen den großen Oberflächen, benachbart zu der Kontaktzone ein Kembereich angeordnet ist, in dem Mineralfasem im wesentlichen rechtwinklig und/oder schräg zu den großen Oberflächen verlaufend angeordnet sind. Weiterhin betrifft die Erfindung ein Wärmedämmverbundsystem mit zumindest einem derartigen Dämmstoffelement.The invention relates to an insulating element made of bonded with a binder mineral fibers, in particular mineral wool and / or glass wool, with two large surfaces which are arranged at a distance and parallel to each other and with four side surfaces which are aligned at right angles to each other and to the large surfaces, wherein the mineral fibers are oriented in the region of at least one contact zone immediately adjacent to a large surface, substantially parallel to the large surface, and wherein between the large surfaces adjacent to the contact zone a core region is disposed in the mineral fiber substantially at right angles and / or are arranged running obliquely to the large surfaces. Furthermore, the invention relates to a thermal insulation composite system with at least one such insulating element.
Dämmstoffe aus glasig erstarrten Mineralfasem werden nach der chemischen Zusammensetzung handelsüblich in Glaswolle- und Steinwolle-Dämmstoffe unterschieden. Beide Varietäten unterscheiden sich durch die chemische Zusammensetzung der Mineralfasern. Die Glaswolle-Fasern werden aus silikatischen Schmelzen hergestellt, die große Anteile an Alkalien und Boroxiden aufweisen, die als Flussmittel wirken. Diese Schmelzen weisen einen breiten Verarbeitungsbereich auf und lassen sich mit Hilfe von rotierenden Schüsseln, deren Wandungen Löcher aufweisen, zu relativ glatten und langen Mineralfasem ausziehen, die zumeist mit Gemischen aus duroplastisch aushärtenden Phenol-Formaldehyd- und Harnstoffharzen zumindest teilweise gebunden werden. Der Anteil dieser Bindemittel in den Glaswolle-Dämmstoffen beträgt beispielsweise ca. 5 bis ca. 10 Masse-% und wird nach oben auch dadurch begrenzt, dass der Charakter eines nichtbrennbaren Dämmstoffs erhalten bleiben soll. Die Bindung kann auch mit thermoplastischen Bindemitteln wie Polyacrylaten erfolgen. Der Fasermasse werden weitere Stoffe, wie beispielsweise Öle in Mengen unter ca. 0,4 Masse-% zur Hydrophobierung und zur Staubbindung hinzugefügt. Die mit Bindemitteln und sonstigen Zusätzen imprägnierten Mineralfasern werden als Faserbahn auf einer langsam laufenden Fördereinrichtung aufgesammelt. Zumeist werden die Mineralfasem mehrerer Zerfaserungsvorrichtungen nacheinander auf dieser Fördereinrichtung abgelegt. Dabei sind die Mineralfasem in einer Ebene weitgehend richtungslos orientiert. Sie lagern aber ausgesprochen flach übereinander. Durch leichten vertikalen Druck wird die Faserbahn auf die gewünschte Dicke und über die Fördergeschwindigkeit der Fördereinrichtung gleichzeitig auf die erforderliche Rohdichte verdichtet und die Bindemittel in einem Härteofen mittels Heißluft ausgehärtet, so dass die Struktur der Faserbahn fixiert wird.Insulating materials made of vitreous solidified mineral fibers are classified according to the chemical composition commercially available in glass wool and rock wool insulation materials. Both varieties differ in the chemical composition of the mineral fibers. The glass wool fibers are made from silicate melts that contain large amounts of alkalis and boron oxides that act as fluxes. These melts have a wide processing range and can be removed by means of rotating bowls whose walls have holes, to relatively smooth and long mineral fibers, which are usually at least partially bonded with mixtures of thermosetting phenol-formaldehyde and urea resins. The proportion of these binders in the glass wool insulating materials is for example about 5 to about 10% by mass and is also limited by the fact that the character of a non-combustible insulating material is to be preserved. The bond can also be made with thermoplastic binders such as polyacrylates. The pulp is added to other substances such as oils in amounts below about 0.4% by mass for hydrophobing and dust binding. The impregnated with binders and other additives mineral fibers are collected as a fiber web on a slow-speed conveyor. In most cases, the mineral fibers of several fiberizing devices are deposited one after the other on this conveyor. The mineral fibers are oriented largely directionless in one plane. But they store very flat on top of each other. By slight vertical pressure, the fiber web is compressed to the desired thickness and the conveying speed of the conveyor simultaneously to the required density and the binder cured in a curing oven by means of hot air, so that the structure of the fiber web is fixed.
Bei der Herstellung von Steinwolle-Dämmstoffen werden imprägnierte Mineralfasem als möglichst dünnes und leichtes Mineralfaservlies, einem sogenannten Primärvlies aufgesammelt und mit hoher Geschwindigkeit aus dem Bereich der Zerfaserungsvorrichtung weggeführt, um erforderliche Kühlmittel gering zu halten, die andernfalls im Verlauf des weiteren Herstellungsverfahren mit weiterem Energieaufwand wieder aus der Faserbahn zu entfernen wären. Aus dem Primärvlies wird eine endlose Faserbahn aufgebaut, die eine gleichmäßige Verteilung der Mineralfasern aufweist.In the production of rock wool insulation impregnated Mineralfasem are collected as thin as possible and lightweight mineral fiber fleece, a so-called primary fleece and carried away at high speed from the field of Zerfaserungsvorrichtung to keep required coolant low, which otherwise in the course of further manufacturing process with additional energy out of the fiber web too would be removed. From the primary nonwoven an endless fiber web is built, which has a uniform distribution of mineral fibers.
Das Primärvlies besteht aus relativ groben Faserflocken, in deren Kernbereichen auch höhere Bindemittel-Konzentrationen vorliegen, während in den Randbereichen schwächer oder gar nicht gebundene Mineralfasern vorherrschen. Die Mineralfasern sind in den Faserflocken etwa in Transportrichtung ausgerichtet. Steinwolle-Dämmstoffe weisen Gehalte an Bindemitteln von ca. 2 bis ca. 4,5 Masse-% auf. Bei dieser geringen Menge an Bindemitteln ist auch nur ein Teil der Mineralfasern in Kontakt mit den Bindemitteln. Als Bindemittel werden vorwiegend Gemische aus Phenol-, Formaldehyd- und Harnstoffharzen verwendet. Ein Teil der Harze wird auch schon durch Polysacharide substituiert. Anorganische Bindemittel werden wie auch bei den Glaswolle-Dämmstoffen nur für spezielle Anwendungen der Dämmstoffe eingesetzt, da diese deutlich spröder sind, als die weitgehend elastisch bis plastisch reagierenden organischen Bindemittel, was dem angestrebten Charakter der Dämmstoffe aus Mineralfasern als elastisch-fedemde Baustoffe entgegen kommt. Als Zusatzmittel werden zumeist hochsiedende Mineralöle in Anteilen von 0,2 Masse-%, in Ausnahmefällen auch ca. 0,4 Masse-% verwendet.The primary nonwoven consists of relatively coarse fiber flakes, in the core areas of which higher binder concentrations are present, while in the peripheral areas weaker or non-bonded mineral fibers predominate. The mineral fibers are aligned in the fiber flakes approximately in the transport direction. Rock wool insulation materials have contents of binders of about 2 to about 4.5% by mass. With this small amount of binders, only part of the mineral fibers are in contact with the binders. The binders used are predominantly mixtures of phenol, formaldehyde and urea resins. Some of the resins are already substituted by polysaccharides. Inorganic binders are used as for the glass wool insulating materials only for special applications of insulating materials, as these are much more brittle than the largely elastic to plastic plastic reacting organic binder, which accommodates the desired character of insulating materials made of mineral fibers as elastic-springy building materials. The additives used are mostly high-boiling mineral oils in proportions of 0.2% by mass, in exceptional cases also about 0.4% by mass.
Üblicherweise werden die Primärvliese mit Hilfe einer pendelnd aufgehängten Fördereinrichtung quer über eine weitere Fördereinrichtung abgelegt, was die Herstellung einer aus einer Vielzahl von schräg aufeinander liegenden Einzellagen bestehenden endlosen Faserbahn ermöglicht. Durch eine horizontal in Förderrichtung gerichtete und eine gleichzeitige vertikale Stauchung kann die Faserbahn mehr oder weniger intensiv aufgefaltet werden. Die Achsen der Hauptfaltungen sind horizontal ausgerichtet und verlaufen somit quer zu der Förderrichtung.Usually, the primary nonwovens are deposited by means of a pendulum-suspended conveyor transversely across another conveyor, which allows the production of an endless fibrous web consisting of a plurality of obliquely superimposed individual layers. By a horizontally directed in the conveying direction and a simultaneous vertical compression, the fiber web can be unfolded more or less intense. The axes of the main folds are aligned horizontally and thus run transversely to the conveying direction.
Die auf die Faserbahn einwirkenden Kräfte führen dazu, dass bindemittelreiche Kemzonen zu schmalen Lamellen verdichtet und aufgefaltet werden, wobei sich Hauptfalten mit Faltungen in Flanken ergeben. Gleichzeitig werden die weniger gebundenen oder bindemittelfreien Mineralfasem in den Zwickeln der Faltungen und zwischen den Lamellen leicht gerollt und dabei leicht komprimiert. Die Feinstruktur besteht somit aus relativ steifen Lamellen, die durch ihre zahlreichen Faltungen eine gewisse Flexibilität aufweisen, aber parallel zu den Faltungsachsen relativ steif sind und Zwischenräume ausbilden, die leicht kompressibel sind. Durch die Auf- und Verfaltungen steigen die Druckfestigkeit und die Querzugfestigkeit der Faserbahn gegenüber einer normalen, insbesondere ausgesprochen flachen Anordnung der Mineralfasem deutlich an. Die Biegefestigkeit der Faserbahn bzw. der von ihr abgetrennten Abschnitte in Form von Platten oder Dämmfilzen ist deshalb in Querrichtung deutlich höher als in Produktionsrichtung. Bei Dachdämmplatten mit Rohdichten von ca. 130 bis 150 kg/m3 ist die Biegefestigkeit in Querrichtung größenordnungsmäßig drei- bis viermal so hoch, wie die Biegefestigkeit in Produktionsrichtung.The forces acting on the fiber web cause binder-rich core zones to be compacted and unfolded into narrow lamellae, resulting in main folds with folds in flanks. At the same time, the less bound or binder-free mineral fibers in the interstices of the folds and between the lamellae are slightly rolled and slightly compressed. The fine structure thus consists of relatively stiff slats, which have a certain flexibility due to their numerous folds, but are relatively stiff parallel to the folding axes and form spaces which are easily compressible. As a result of the build-ups and dislocations, the compressive strength and the transverse tensile strength of the fibrous web clearly increase in comparison with a normal, in particular extremely flat, arrangement of the mineral fibers. The flexural strength of the fibrous web or of the sections separated from it in the form of plates or Dämmfilzen is therefore significantly higher in the transverse direction than in the production direction. In roof insulation panels with gross densities of about 130 to 150 kg / m 3 , the bending strength in the transverse direction is on the order of three to four times as high as the bending strength in the direction of production.
Ein Verfahren zur Herstellung von Dämmstoffelementen mit einer für Lamellen, Lamellenplatten oder Lamellenbahnen charakteristischen Orientierung der Mineralfasem ist aus der
Um weitgehend ebene Oberflächen zu erhalten, kann das Primärvlies auch aktiv in vertikaler Richtung gestaucht werden.To obtain largely flat surfaces, the primary nonwoven can also be actively compressed in the vertical direction.
Diese Ausrichtung der Mineralfasem im Primärvlies kann in einer separaten Vorrichtung erfolgen, wird aber zweckmäßig in Verbindung mit einem Härteofen vorgenommen. Im Härteofen wird die aus dem Primärvlies hergestellte endlose Faserbahn zwischen zwei Druckbändem, von denen mindestens eines in vertikaler Richtung verfahrbar ist, mit Heißluft in vertikaler Richtung durchströmt.This orientation of the mineral fibers in the primary nonwoven can be done in a separate device, but is advantageously made in conjunction with a curing oven. In the curing oven, the endless fibrous web produced from the primary nonwoven is flowed through in a vertical direction between two pressure belts, at least one of which is movable in the vertical direction, with hot air.
Mit Hilfe der durch die Heißluft übertragenen Wärmeenergie wird die Faserbahn mit den darin enthaltenen Binde- und/oder Imprägniermitteln erwärmt, so dass in der Faserbahn vorhandene Feuchtigkeit ausgetrieben wird und die Bindemittel aushärten, in dem sie verbindende Filme oder Festkörper bilden. Nach der Fixierung der Faserbahn durch Verfestigung der Bindemittel zeigt sich im Längsschnitt eine Struktur, in der die Mineralfasem im Kern des Primärvlieses überwiegend rechtwinklig zu den großen Oberflächen der endlosen Faserbahn orientiert sind.With the aid of the thermal energy transmitted through the hot air, the fibrous web with the binding and / or impregnating agents contained therein is heated, so that moisture present in the fibrous web is expelled and the binders cure, in which they form connecting films or solids. After fixation of the fibrous web by solidification of the binder is shown in longitudinal section a structure in which the mineral fibers are oriented in the core of the primary web predominantly perpendicular to the large surfaces of the endless fiber web.
In den oberflächennahen Bereichen sind die Mineralfasem parallel zu den großen Oberflächen ausgerichtet. Wegen der relativ großen Steifigkeit des Kerns des Primärvlieses können die Mineralfasem bei entsprechend großen vertikalen Drücken auch pilzartig gestaucht und/oder nach unten hin zwischen die Zonen mit rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasem gedrückt sein. Zwischen den bogenförmig umgelenkten Bahnen des Primärvlieses verbleiben generell kleine Zwickel, die als unterschiedlich breite und unterschiedlich tiefe Querfurchen in den beiden gro-ßen Oberflächen der endlosen Faserbahn auftreten.In the near-surface areas, the mineral fibers are aligned parallel to the large surfaces. Because of the relatively high stiffness of the core of the primary web, the mineral fibers can also be compressed in a mushroom-like manner with correspondingly large vertical pressures and / or pressed downwards between the zones having mineral fibers running at right angles to the large surfaces. Between the arcuately deflected paths of the primary web generally remain small gussets, which occur as different widths and different depths transverse grooves in the two large-Shen surfaces of the endless fiber web.
Im Horizontalschnitt unterscheiden sich die höher verdichteten Zonen mit den rechtwinklig zu den großen Oberflächen verlaufenden Mineralfasem deutlich von den Zwischenzonen mit einer flachen Anordnung der Mineralfasern. Im Querschnitt ist die Struktur weniger gleichmäßig als bei Dämmplatten, die zur Herstellung von Lamellen verwendet werden. So ist beispielsweise die Biegezugfestigkeit wegen der Inhomogenität der Struktur bei vergleichbarer Rohdichte niedriger.In the horizontal section, the higher density zones differ with the mineral fibers running at right angles to the large surfaces clearly from the intermediate zones with a flat arrangement of mineral fibers. In cross-section, the structure is less uniform than in insulation boards used to make fins. For example, the bending tensile strength is lower because of the inhomogeneity of the structure at a comparable density.
Die in den oberflächennahen Zonen flach liegenden Mineralfasem verringern deutlich die Wärmeleitfähigkeit rechtwinklig zu den großen Oberflächen.The mineral fibers lying flat in the near-surface zones significantly reduce the thermal conductivity perpendicular to the large surfaces.
Aus der
Hier in Rede stehende Dämmstoffelemente können in Wärmedämmverbundsystemen verwendet werden. Ein Wärmedämmverbundsystem, System genannt, besteht aus insbesondere plattenförmigen Dämmstoffelementen, die auf eine zu dämmende Gebäudefläche aufklebbar und/oder mit Hilfe von Dämmstoffhaltem befestigbar sind. Auf die auf der Gebäudefläche befestigten Dämmstoffelemente wird ein zumeist zweilagige Putzschicht aufgetragen, wobei die erste Lage der Putzschicht üblicherweise mit Hilfe von Glasfaser-Gittergeweben bewehrt ist.Here in question insulating elements can be used in thermal insulation systems. A thermal insulation composite system, called system, consists of particular plate-shaped insulating elements, which can be glued on a building surface to be insulated and / or with Help of Dämmstoffhaltem be fastened. On the mounted on the building surface insulation elements usually a two-layer plaster layer is applied, wherein the first layer of the plaster layer is usually reinforced by means of glass fiber meshes.
Diese Systeme werden außen auf Gebäudeflächen, wie Außenwände, Decken über Durchfahrten, offene Garagen, Kellerdecken, aber auch auf beheizte von unbeheizten Gebäudeteilen abgrenzende Trennwände oder Decken aufgebracht.These systems are applied externally on building surfaces, such as exterior walls, ceilings over passages, open garages, basement ceilings, but also on heated partition walls or ceilings delimiting unheated building parts.
Neben Systemen mit Dämmstoffelemente aus Mineralfasem sind auch Systeme mit Dämmstoffelemente aus Hartschaumplatten, insbesondere aus expandiertem Polystyrol, zur Reduktion der Wärmeleitfähigkeit beispielsweise auch aus mit Mikrographit dotiertem Polystyrol, aus Phenolharzschaum, oder aus extrudiertem Polystyrol bekannt. Von Bedeutung für die Erfindung sind aber ausschließlich solche Systeme mit Dämmstoffelementen aus nichtbrennbaren Mineralwolle-Dämmplatten oder einer Kombination aus beiden grundsätzlich unterschiedlichen Materialien. Es sind nämlich Ausführungen von Systemen bekannt, bei denen Dämmplatten aus Mineralfasem im Bereich von Stürzen und/oder von Laibungen angeordnet sind, während die weiteren Gebäudeflächen mit entflammbaren, aber durch die Wand und die Putzschichten geschützte Dämmstoffelemente aus Polystyrol wärme- und schallgedämmt sind.In addition to systems with insulating elements made of mineral fibers and systems with insulating elements made of rigid foam panels, in particular expanded polystyrene, for reducing the thermal conductivity, for example, from micrographite-doped polystyrene, phenolic resin foam, or extruded polystyrene are known. Of importance for the invention are but only such systems with insulating elements of non-combustible mineral wool insulation boards or a combination of two fundamentally different materials. Namely, there are known designs of systems in which insulation boards of mineral fibers in the area of falls and / or soffits are arranged, while the other building surfaces with flammable, but protected by the wall and the plaster layers insulation elements made of polystyrene heat and sound insulation.
Gesetzliche Vorschriften und eine erforderliche Einsparung von Primär energien haben dazu geführt, dass die Dicken der Dämmschichten von einer offiziellen Mindestdicke von 40 mm bis auf ca. 240 mm bei Passivhäusem angestiegen ist. Als übliche Dämmschichtdicken im Neubau-Bereich sind ca. 100 bis ca. 140 mm anzusehen, während bei Sanierungsarbeiten im Gebäudebestand die Dämmschichtdicken gewöhnlich nur ca. 60 bis ca. 80 mm betragen.Legislation and the need for primary energy savings have led to thicknesses of the insulation layers increasing from an official minimum thickness of 40 mm to about 240 mm for passive houses. As usual insulation thicknesses in the new construction area are about 100 to about 140 mm to look at, while rehabilitation work in existing buildings, the insulation thicknesses usually only about 60 to about 80 mm.
Die bereits voranstehend beschriebenen Dämmstoffelemente aus Mineralfasem haben sich für die Verwendung in diesen Systemen besonders geeignet. Diese Dämmstoffelemente werden aus einer mit in Wasser gelösten Bindemitteln und anderen Zusätzen, wie beispielsweise Hydrophobier-und/oder Staubbindemitteln imprägnierten, kontinuierlich auf einer Fördereinrichtung abgelegten Mineralfaserbahn hergestellt. Übliche Bindemittel sind wässrige Mischungen aus Phenol-Fomaldehyd-Harnstoff-Harzen, die Katalysatoren zur Beschleunigung der Aushärtung und haftvermittelnde Subtanzen, wie Silane enthalten.The insulating elements of mineral fibers already described above have been particularly suitable for use in these systems. These insulating elements are produced from a mineral fiber web continuously impregnated on a conveyor with water-borne binders and other additives such as water repellents and / or dust binders. Typical binders are aqueous mixtures of phenol-formaldehyde-urea resins containing catalysts for accelerating curing and adhesion promoting substances such as silanes.
Die endlose Mineralfaserbahn wird durch eine kombinierte horizontale Stauchung in Förderrichtung und eine vertikale Stauchung intensiv verfaltet, so dass im Bereich von großen Oberflächen der Mineralfaserbahn Verfaltungsachsen entstehen.The endless mineral fiber web is intensively folded by a combined horizontal compression in the conveying direction and a vertical compression, so that arise in the range of large surfaces of the mineral fiber lattice axes.
Bei der Herstellung der Mineralfaserbahn bilden sich insbesondere durch die Art der Krafteinleitung Mineralfaseragglomerationen in Form von dünnen lamellenartige Bereichen aus, die in sich einen festeren Verband aufweisen und als solcher gegenüber den benachbarten lamellenartigen Bereichen der Mineralfaserbahn bewegbar sind, wobei die Verbindung zwischen den einzelnen lamellenartigen Bereichen deutlich geringer ist als der innere Zusammenhalt der lamellenartigen Bereiche. Die lamellenartigen Bereiche verlaufen zu einem großen Teil flach zu den großen Oberflächen der Mineralfaserbahn.In the production of the mineral fiber web mineral fiber agglomerations in the form of thin lamellar areas are formed in particular by the nature of the force introduction, which have a firmer bond and as such are movable relative to the adjacent lamellar areas of the mineral fiber web, the connection between the individual lamellar areas is significantly less than the internal cohesion of the lamellar areas. The lamellar areas are largely flat to the large surfaces of the mineral fiber web.
Die Verfaltungsachsen verlaufen überwiegend parallel zu den großen Ober flächen der Mineralfaserbahn. Die intensiv verfaltete und imprägnierte Mineralfaserbahn wird zwischen ein oberes und ein unteres, jeweils drucksteifes und zugleich luftdurchlässiges Förderband eines Härteofens gefördert. Beide Förderbänder bestehen zumeist aus stabilen, über Zugglieder verbundenen Körpern, die Lochungen in charakteristischer Anordnung auf den großen Oberflächen ausbilden. Die verformbare Mineralfaserbahn wird im Härteofen in der angestrebten Lieferdicke fixiert, wobei die flexiblen Mineralfasem in oberflächennahen Bereichen derart umgelagert werden, dass die Mineralfasem in den oberflächennahen Bereichen parallel zu den Förderbändern liegen. Ein anderer Teil der derart umgelagerten Mineralfasern wird zwar in die Löcher der drucksteifen Förderbänder gedrückt, die Mineralfasem verbleiben aber in paralleler Lagerung zu den entsprechend geformten Oberflächen.The lattice axes run predominantly parallel to the large upper surfaces of the mineral fiber web. The intensively folded and impregnated mineral fiber web is conveyed between an upper and a lower, in each case pressure-resistant and at the same time air-permeable conveyor belt of a hardening furnace. Both conveyors consist mostly of stable, connected via tension members Bodies that form perforations in a characteristic arrangement on the large surfaces. The deformable mineral fiber web is fixed in the curing oven in the desired delivery thickness, wherein the flexible mineral fibers are rearranged in near-surface areas such that the mineral fibers are in the near-surface areas parallel to the conveyor belts. Although another part of the mineral fibers thus transferred is pressed into the holes of the pressure-resistant conveyor belts, the mineral fibers remain in parallel storage to the correspondingly shaped surfaces.
Im Härteofen wird im übrigen die Restfeuchte der Mineralfaserbahn ausgetrieben und das Bindemittel erhitzt und ausgehärtet, indem Heißluft in rechtwinkliger Richtung durch die endlose Mineralfaserbahn gesaugt wird. Nach der Aushärtung der Bindemittel ist die Struktur der nunmehr als endlose Dämmstoffbahn zu bezeichnenden Mineralfaserbahn fixiert. Durch die Heißluft können Monomere der Bindemittel verfrachtet werden, die in den oberflächennahen Bereichen und in den in die Löcher der Förderbänder im Härteofen gedrückten Mineralfasem zu geringfügig erhöhten Bindemittelanteilen führen. Im Längsschnitt der Mineralfaserbahn sind somit ein Kembereich daran angrenzende oberflächennahe Bereiche, sogenannte Kontaktzonen zu unterscheiden.In the hardening furnace, the residual moisture of the mineral fiber web is expelled and the binder is heated and hardened by sucking hot air through the endless mineral fiber web in a right-angled direction. After the curing of the binder, the structure of the mineral fiber web now to be designated as an endless insulating web is fixed. The hot air can be used to dislodge monomers of the binders which lead to slightly increased binder contents in the near-surface areas and in the mineral fibers pressed into the holes of the conveyor belts in the hardening furnace. In the longitudinal section of the mineral fiber web thus a core area adjacent to it near the surface areas, so-called contact zones are to be distinguished.
Die endlose Dämmstoffbahn wird nach dem Verlassen des Härteofens mit Hilfe von Sägen in Dämmstoffplatten, beispielsweise mit einer Länge von 800 mm und einer Breite von 625 mm aufgeteilt. Vorzugsweise wird die Längsachse der Dämmstoffplatten quer zur Stauchungs-, damit auch quer zur Produktionsrichtung der Mineralfaserbahn orientiert.The endless insulation sheet is after leaving the curing oven with the help of sawing in insulation boards, for example, with a length of 800 mm and a width of 625 mm divided. Preferably, the longitudinal axis of the insulation boards is oriented transversely to the compression, thus also transversely to the production direction of the mineral fiber web.
Die als Putzträgerplatten verwendbaren Dämmstoffplatten werden mit Rohdichten von ca. 140 bis ca. 180 kg/m3 hergestellt. Die Anteile an den üblicherweise als Bindemittel verwendeten Gemischen von Phenol-, Harnstoff-, Formaldehydharzen betragen ca. 4 bis ca. 7 Masse-%. Höhere Gehalte an organischen Bindemitteln werden wegen des dadurch möglichen Verlustes der Nichtbrennbarkeit und auch aus Kostengründen vermieden.The insulation boards which can be used as plaster base plates are produced with densities of about 140 to about 180 kg / m 3 . The proportions of the mixtures of phenol, urea, Formaldehyde resins are about 4 to about 7% by mass. Higher contents of organic binders are avoided because of the possible loss of incombustibility and also for cost reasons.
Vornehmlich als Folge der flachen Lagerung der Mineralfasern in beiden horizontalen Hauptachsen der Mineralfaserbahn weisen hieraus hergestellte Dämmstoffplatten Querzugfestigkeiten rechtwinklig zu den großen Ober flächen von ca. 15 bis ca. 35 kPa auf. Die Zugfestigkeit der Mineralfaserbahn quer zur Faltungs- und Produktionsrichtung ist in der Regel 3 bis 5 mal höher, als die voranstehend angegebenen Querzugfestigkeit.Primarily as a result of the flat storage of the mineral fibers in both horizontal main axes of the mineral fiber web have insulation boards made therefrom transverse tensile strengths perpendicular to the large upper surfaces of about 15 to about 35 kPa. The tensile strength of the mineral fiber web transverse to the folding and production direction is usually 3 to 5 times higher than the transverse tensile strength specified above.
Um die Wärmeleitfähigkeit derartiger Dämmstoffplatten beispielsweise auf einen Bemessungswert von 0,035 W/m K zu senken, werden insbesondere horizontal weniger gestauchte Dämmstoffplatten mit einer Rohdichte von ca. 100 kg/m3 hergestellt, die eine Querzugfestigkeit von etwas mehr als 5 kPa aufweisen.In order to reduce the thermal conductivity of such insulation boards, for example, to a design value of 0.035 W / m K, in particular horizontally less compressed insulation boards are produced with a density of about 100 kg / m 3 , which have a transverse tensile strength of slightly more than 5 kPa.
Die unterschiedlichen Querzugfestigkeiten der Dämmstoffplatten wird dazu benutzt, die verfaltete endlose Dämmstoffbahn in Produktions- und entsprechender horizontaler Stauchungsrichtung in Scheiben aufzuteilen. Um jedoch die nachfolgenden Verarbeitungsschritte unabhängig von den leistungsstarken Produktionsanlagen ausführen zu können, wird die endlose Dämmstoffbahn üblicherweise in großformatige Dämmstoffplatten aufgeteilt. Diese Vorgehensweise erlaubt zwar die Herstellung auf relativ preisgünstigen Anlagen, erhöht aber die variablen Herstellungskosten beträchtlich.The different transverse tensile strength of the insulation boards is used to divide the folded endless insulation web in production and corresponding horizontal compression direction in slices. However, in order to be able to carry out the subsequent processing steps independently of the high-performance production equipment, the endless insulation material web is usually divided into large-format insulation panels. Although this procedure allows the production on relatively low-cost systems, but increases the variable production costs considerably.
In diesen Scheiben sind die einzelnen, wenn auch in Richtung der Längsachse lamellar miteinander verfalteten Mineralfasern ganz überwiegend rechtwinklig oder in sehr steiler Lagerung zu den großen Oberflächen, hier also den Schnittflächen angeordnet. Die Scheiben werden üblicherweise von max. 200 mm dicken Dämmstoffplatten abgetrennt, die in den bekannten Härteöfen ausgehärtet werden können.In these disks, the individual, although in the direction of the longitudinal axis lamellar folded together mineral fibers are predominantly arranged at right angles or in very steep storage to the large surfaces, ie here the cut surfaces. The discs are usually by Max. 200 mm thick insulation boards separated, which can be cured in the known hardening furnaces.
Neben den voranstehend beschriebenen Dämmstoffplatten aus Mineralfasem sind sogenannte Mineralfaser-Lamellenplatten mit Rohdichten von ca. 85 bis ca. 90 kg/m3 und Querzugfestigkeiten bis > 100 kPa sowie Druckspannungsfestigkeiten von ca. 70 kPa bei 10 % Stauchung bekannt. Diese Mineralfaser-Lamellenplatten sind in die Wärmeleitfähigkeitsgruppe 045 nach DIN 4108 zu klassifizieren. Bei Mineralfaser-Lamellenplatten mit geringeren Wärmeleitfähigkeiten, z.B. WLG 040 werden zumindest die Rohdichten auf 70 bis 80 kg/m3 abgesenkt. Hieraus resultiert eine Verringerung der Querzugfestigkeit auf ca. 80 kPa und der Druckspannungsfestigkeit auf ca. 40 kPa. Durch die Orientierung der einzelnen Mineralfasem ist somit eine Verringerung, des Materialeinsatz für die Herstellung von Dämmstoffelementen möglich.In addition to the mineral fiber insulation boards described above so-called mineral fiber finned plates with densities of about 85 to about 90 kg / m 3 and transverse tensile strengths of> 100 kPa and compressive strengths of about 70 kPa at 10% compression known. These mineral fiber lamellar plates must be classified in the heat conductivity group 045 according to DIN 4108. For mineral fiber lamella plates with lower heat conductivities, eg WLG 040, at least the bulk densities are lowered to 70 to 80 kg / m 3 . This results in a reduction of the transverse tensile strength to about 80 kPa and the compressive stress strength to about 40 kPa. Due to the orientation of the individual mineral fibers is thus a reduction of the use of materials for the production of insulating elements possible.
Die Mineralfaser-Lamellenplatten werden mit einer Schnittfläche auf die zu dämmende Gebäudefläche aufgeklebt. Die Mineralfaserbahn und damit auch die fertige Dämmstoffbahn bzw. die daraus hergestellten Dämmstoffplatten oder Mineralfaser-Lamellenplatten sind hydrophob ausgebildet und gehen selbst mit oberflächenaktive Substanzen aufweisenden Klebern eine nur unzureichende Verbindung ein, so dass die sichere Montage der Dämmstoffplatten umständlich und aufwändig ist. Diese Probleme werden durch haftvermittelnde Schichten zumindest teilweise gelöst, die zumindest voll- oder teilflächig auf die als Klebefläche dienende Schnittfläche aufgebracht werden. In gleicher Weise werden auch die mit einem Putzsystem zu beschichtenden großen Oberflächen der Dämmstoffelemente insbesondere herstellerseitig vorbehandelt.The mineral fiber lamella plates are glued with a cut surface on the building surface to be insulated. The mineral fiber web and thus also the finished insulation web or the insulation boards made therefrom or mineral fiber lamellar plates are hydrophobic and even with surface-active substances having adhesives an inadequate connection, so that the secure mounting of the insulation boards is cumbersome and expensive. These problems are at least partially solved by adhesion-promoting layers, which are applied at least fully or partially over the cutting surface serving as the adhesive surface. In the same way, the large surfaces of the insulating elements to be coated with a plaster system are in particular pretreated by the manufacturer.
Aus der
Die relativ steife Deckschicht erhöht die Schubfestigkeit der Dämmstoffplatte, so dass die Orientierung der Dämmstoffplatte relativ zu der ursprünglichen Lage in der endlosen Dämmstoffbahn zurücktritt.The relatively stiff cover layer increases the shear strength of the insulation board so that the orientation of the insulation board recedes relative to the original layer in the continuous insulation web.
Die Festigkeitseigenschaften Dämmstoffelementen aus Mineralfasern vermindern sich mit der Zeit und insbesondere unter der Einwirkung von Feuchtigkeit. Um diesem Verlust an Festigkeit entgegen zu wirken werden auf die aus Standsicherheitsberechnungen ermittelten Mindestfestigkeitswerte Aufschläge für mögliche Festigkeitsverluste von bis ca. 50 % gefordert.The strength properties of mineral fiber insulating elements diminish over time and especially under the action of moisture. In order to counteract this loss of strength, surcharges for possible strength losses of up to approx. 50% are required on the minimum strength values determined from stability calculations.
Mineralfaser-Lamellenplatten weisen die höchsten Querzugfestigkeiten auf und können demzufolge bis zu Gebäudehöhen von ca. 20 m allein durch die Verklebung einer der Schnittflächen mit der zu dämmenden Gebäudefläche gedämmt werden. Zwischen einer Schicht Kleber und der zu dämmenden Gebäudefläche sind Haftzugfestigkeit von bis zu 80 kPa vorgeschrieben. Für die Verklebung werden kunststoffhaltige Mörtel, die nachfolgend als Klebemörtel bezeichnet sind, oder übliche Putze verwendet, die in der Praxis annähernd identisch sind. Es handelt sich in der Regel um kunststoffhaltige und hydraulisch abbindende Stoffe, die entweder vollflächig auf die Dämmstoffplatte, insbesondere die Mineralfaser-Lamellenplatte aufgebracht und anschließend mit einem gezahnten Spachtel aufgekämmt oder in Form von dünnen, rechtwinklig zu den Längsachsen verlaufenden Kleberwülsten mit Hilfe einer Fördermaschine und entsprechendem Zubehör auf die Wand aufgebracht wird.Mineral fiber lamella plates have the highest transverse tensile strength and can therefore be insulated up to building heights of about 20 m solely by bonding one of the cut surfaces with the building surface to be insulated. Between a layer of glue and the one to be insulated Building surfaces are required tensile strength of up to 80 kPa. For bonding, plastic-containing mortars, which are referred to below as adhesive mortar, or conventional plasters are used, which are approximately identical in practice. It is usually plastic-containing and hydraulically setting substances, either applied over the entire surface of the insulation board, especially the mineral fiber lamella plate and then combed with a toothed spatula or in the form of thin, perpendicular to the longitudinal axes of adhesive beads using a carrier and appropriate accessories is applied to the wall.
Bei den Dämmstoffplatten aus Mineralfasern wird der Kleber zum einen randseitig umlaufend als Wulst und zum anderen mittig als zumindest ein, vorzugsweise mehrere Batzen auf die zu verklebende Oberfläche der Dämmstoffplatte aufgetragen, wobei der Anteil der mit dem Kleber ausgebildeten Oberfläche zumindest > 40 % sein soll. Der Kleber dient hier als Ausgleichsmasse für die Unebenheiten der zu dämmenden Gebäudefläche und der Oberfläche der Dämmstoffplatte, als die Ränder der Dämmstoffplatte aussteifend und zusammen mit den im zentralen Bereich der Oberfläche der Dämmstoffplatte angeordneten Batzen als Abstandshalter.In the insulation boards made of mineral fibers, the adhesive is peripherally applied circumferentially as a bead and the other center as at least one, preferably several batches applied to the surface to be bonded to the insulation board, the proportion of trained with the adhesive surface should be at least> 40%. The adhesive serves as a balancing mass for the bumps of the building surface to be insulated and the surface of the insulation board, as the edges of the insulation board stiffening and together with the arranged in the central region of the surface of the insulation board bats as spacers.
Die Haftzugfestigkeit des Klebers geht bei den allgemeinen bauaufsichtlichen Zulassungen des Deutschen Instituts für Bautechnik nicht in die Berechnungen der Standsicherheit entsprechender Systeme ein. Gleichwohl wird die gegenüber der zu dämmenden Gebäudefläche zumindest formschlüssige Kleberschicht als Sicherung gegen ein Abrutschen der Dämmstoffplatten angesehen.The adhesive tensile strength of the adhesive does not enter into the calculations of the stability of corresponding systems in the general building inspectorate approvals of the Deutsches Institut für Bautechnik. Nevertheless, the opposite of the building surface to be insulated at least positive adhesive layer is regarded as a safeguard against slipping of the insulation boards.
Bei einer Vielzahl von Gebäuden müssen die Dämmstoffplatten aus Mineralfasem mechanisch mit sogenannte Dämmstoffhaltern an der zu dämmende Gebäudefläche befestigt werden. Diese Dämmstoffhalter werden handelsüblich auch Schraubdübel oder Spreizdübel genannt.In a variety of buildings, the insulating panels of mineral fibers must mechanically with so-called Dämmstoffhaltern to be insulated Building surface to be fixed. These insulation holders are also commercially called screw anchor or expansion dowel.
Dämmstoffhalter bestehen aus einer Metallschraube und einem Kunststoffkörper, der zumeist einen runden, in seiner Fläche gelochten und scheibenförmig ausgebildeten Kopf aufweist. Alternativ kann ein Ring mit radial nach innen verlaufenden Stegen und ein zentraler Schaft vorgesehen sein, wobei der äußere Ring einen hohen Widerstand des Kopfes gegen Durchzug in die Dämmstoffplatte bewirkt.Insulation holder consist of a metal screw and a plastic body, which usually has a round, perforated in its surface and disc-shaped head. Alternatively, a ring with radially inwardly extending webs and a central shaft may be provided, wherein the outer ring causes a high resistance of the head against passage in the insulation board.
Die Länge des hohl ausgebildeten Schaftes ist auf die Dicke der Dämmschicht und insbesondere der Dämmstoffplatten abgestimmt und endet in Form eines Spreizdübels. Durch den Schaft wird in der häufigsten Ausführungsform ein Metallstift geführt, der an einem Ende einen beispielsweise sechseckig geformten Schraubenkopf und am gegenüberliegenden Ende ein schraubenförmiges Gewinde aufweist. Zum Setzen des Dämmstoffhalters wird der Kunststoffkörper in ein zuvor angelegtes Bohrloch eingeschlagen und der Metallstift in den Schaft soweit eingedreht, bis der Teller fest auf der Oberfläche der Dämmstoffplatte aufliegt.The length of the hollow shank is matched to the thickness of the insulating layer and in particular of the insulating panels and ends in the form of an expansion anchor. Through the shaft, a metal pin is guided in the most common embodiment, which has at one end an example hexagonal shaped screw head and at the opposite end a helical thread. To set the insulation holder, the plastic body is hammered into a previously created hole and the metal pin screwed into the shaft until the plate rests firmly on the surface of the insulation board.
Die Anzahl der erforderlichen Dämmstoffhalter ist abhängig von der Höhe der zu dämmenden Gebäudefläche und der Größe der unterschiedlichen Dämmstoffplatten.The number of required insulation holders depends on the height of the building surface to be insulated and the size of the different insulation boards.
Die Haftung des Putzes ist in erster Linie abhängig von der Querzug- und Schubfestigkeit der Oberfläche bzw. der oberflächennahen Zonen der Dämmstoffplatte aus Mineralfasern. Die Dicken des auf Dämmstoffplatten aus Mineralfasem aufgebrachten Putzes haben sich durch zunehmende Verwendung von Kunstharzputzen systematisch verringert. Es sind zweischichtige Putzsysteme mit einem Unterputz von ca. 2 mm Dicke und einem Oberputz von ca. 0,5 bis ca. 1,5 mm Dicke bekannt. Diesem Trend sind auch die Mineralputze durch höhere Zusätze von Kunststoffen gefolgt, so dass auch deren Gesamtdicken im Minimum ca. 4 bis ca. 7 mm betragen.The adhesion of the plaster is primarily dependent on the transverse tensile and shear strength of the surface or the near-surface zones of the insulation board made of mineral fibers. The thicknesses of the plaster applied to mineral fiber insulation panels have been systematically reduced by the increasing use of synthetic resin plaster. There are known two-layer plaster systems with a flush of about 2 mm thickness and a top coat of about 0.5 to about 1.5 mm thickness. This trend The mineral plasters are also followed by higher additions of plastics, so that their total thicknesses in the minimum amount to about 4 to about 7 mm.
Um bei diesen dünnen Putzschichten eine ebene Oberfläche herzustellen zu können, müssen die Dämmstoffhalter nach Möglichkeit in die Dämmschicht eingedrückt werden. Trotzdem ist die Überdeckung der Dämmstoffhalter oftmals nicht ausreichend. Weiterhin haben diese dünnen Putzschichten nur ein geringes Wärmespeichervermögen, so dass es unter bestimmten Witterungsbedingungen regelmäßig zu Unterschreitungen der Oberflächentemperaturen der Putzschicht gegenüber der Umgebungstemperatur kommt, woraus Tauwasserbildungen resultieren können. Diese begünstigen die Bildung biogener Filme, wie das Wachstum von Algen auf den Oberflächen des Systems, wobei die Bereiche des Putzes oberhalb der Dämmstoffhalter zum einen wegen der Wärmebrückenwirkung der metallischen Schrauben und/oder zum anderen aufgrund des schnelleren Abtrocknens frei bleiben.To be able to produce a flat surface with these thin plaster layers, the insulation holder must be pressed into the insulation layer if possible. Nevertheless, the coverage of the insulation holder is often not sufficient. Furthermore, these thin plaster layers have only a low heat storage capacity, so that under certain weather conditions regularly falls below the surface temperatures of the plaster layer from the ambient temperature, resulting in condensation can result. These promote the formation of biogenic films, such as the growth of algae on the surfaces of the system, leaving the areas of the plaster above the insulation holders free on the one hand because of the thermal bridging effect of the metallic screws and / or on the other hand because of the faster drying.
Da sich auch Staub bevorzugt auf feuchten Stellen niederschlägt, bleiben trockenere Stellen oberhalb der Dämmstoffhalter schon aus diesem Grund dauerhaft sichtbar. Bei starkem Algenwachstum können allerdings auch diese verhältnismäßig kleinen Flächen relativ schnell von den Rändern her besiedelt werden.Since dust also settles on damp areas, drier areas above the insulation holders are permanently visible for this reason. With strong algae growth, however, even these relatively small areas can be populated relatively quickly from the edges.
Die trockneren Stellen bleiben auch sichtbar, wenn das Tauwasser auf der Oberfläche des Putzes gefriert und sich im Bereich der trockneren Stellen kein oder weniger Eis bildet. Auch das Auftreffen von Schlagregen auf den wasserhemmenden Oberflächen des Putzes kann wegen der unterschiedlichen Aufnahme von Feuchtigkeit und wegen der unterschiedlichen Abtrocknungsgeschwindigkeiten, insbesondere bei Putzen mit geringeren Helligkeitswerten zum Abzeichnen der Dämmstoffhalter führenThe drier areas remain visible when the condensation on the surface of the plaster freezes and forms no or less ice in the area of drier places. Also, the impact of driving rain on the water-resistant surfaces of the plaster can lead to the loss of insulation material holder due to the different absorption of moisture and because of the different drying rates, especially when cleaning with lower brightness values
Aus der
Weiterhin ist aus der
Schließlich offenbart die
Der Erfindung liegt daher die Aufgabe zugrunde, ein Dämmstoffelement und ein Wärmedämmverbundsystem zu schaffen, bei dem die Verwendung von Dämmstoffhaltern auch im Bereich höher gelegener Gebäudeflächen nicht erforderlich ist, wobei das Dämmstoffelement darüber hinaus preisgünstig herstellbar sein soll, so dass sich auch das Wärmedämmverbundsystem in wirtschaftlicher Weise erstellen lässt.The invention is therefore an object of the invention to provide an insulating element and a composite thermal insulation in which the use of insulation holders in the area of higher building surfaces is not required, the insulation element should also be inexpensive to produce, so that even the thermal insulation system in economic Way to create.
Zur Lösung dieser Aufgabenstellung ist bei einem erfindungsgemäßen Dämmstoffelement vorgesehen, dass zumindest auf der der Kontaktzone zugeordneten großen Oberfläche in zumindest eine Hauptachsenrichtung verlaufend ausgerichtete wulstartige Vorsprünge in gleichmäßigen Abständen zueinander angeordnet sind, die einen im wesentlichen kreisbogenabschnittförmigen Querschnitt aufweisen. Bei einem erfindungsgemäßen Wärmedämmverbundsystem ist zur Lösung der Aufgabenstellung vorgesehen, dass das Dämmstoffelement mit seiner der Kontaktzone abgewandt angeordneten großen Oberfläche auf einer zu dämmenden Gebäudefläche aufliegt und mit dieser über einen Kleber verbunden ist und dass die außenliegende, die Kontaktzone aufweisende große Oberfläche mit einer Abdeckung ausgebildet ist.To solve this problem is provided in an insulating element according to the invention that at least on the contact zone associated large surface in at least one major axis direction extending aligned bead-like projections are arranged at regular intervals to each other, which have a substantially circular arc section-shaped cross-section. In a thermal insulation composite system according to the invention is provided to solve the task that the insulating element faces away from the contact zone arranged large surface rests on a building surface to be insulated and connected thereto via an adhesive and that the outer, the contact zone having large surface formed with a cover is.
Das erfindungsgemäße Dämmstoffelement macht den Einsatz von Dämmstoffhaltem zur Befestigung von beschichteten Dämmschichten, beispielsweise in Wärmedämmverbundsystemen bei üblichen mehrstöckigen Gebäuden überflüssig, da das erfindungsgemäße Dämmstoffelement wesentlich verbesserte Festigkeitswerte aufweist und insbesondere preiswert auf bereits bestehenden Produktionsanlagen herstellbar ist. Darüber hinaus ist die Verbindung des erfindungsgemäßen Dämmstoffelementes mit dem Putz und/oder dem Kleber wesentlich verbessert, so dass auch hier eine Verbesserung der Standfestigkeit eines mit den erfindungsgemäßen Dämmstoffelementen ausgebildeten Wärmedämmverbundsystems erzielt wird. Die erfindungsgemäßen Vorsprünge verbessern hierbei die Haftung des Klebers an dem hydrophob ausgebildeten Dämmstoffelement, soweit die Vorsprünge auf der großen Oberfläche angeordnet sind, die in Einbaulage des Dämmstoffelementes einer Gebäudefläche zugewandt ist. Wird das Dämmstoffelement mit der die Vorsprünge aufweisenden großen Oberfläche in Einbaulage von der Gebäudefläche weg orientiert, haben die Vorsprünge ebenfalls die Wirkung der Haftverbesserung mit dem Putz.The insulating element according to the invention makes the use of Dämmstoffhaltem for fixing coated insulation layers, for example, in thermal insulation systems in conventional multi-storey buildings superfluous, since the insulation element according to the invention has significantly improved strength values and in particular inexpensive to already existing production facilities can be produced. In addition, the connection of the insulating element according to the invention with the plaster and / or the adhesive is substantially improved, so that also achieved here an improvement in the stability of a trained with the insulating elements according to the invention thermal insulation composite system becomes. The projections according to the invention in this case improve the adhesion of the adhesive to the hydrophobic insulating element, as far as the projections are arranged on the large surface, which faces in the installation position of the insulating element of a building surface. If the insulating element is oriented away from the building surface with the large surface having the projections in the installation position, the projections also have the effect of improving the adhesion with the plaster.
Vorzugsweise ist vorgesehen, dass die Mineralfasem in zwei Kontaktzonen im Bereich beider großen Oberflächen parallel zu den großen Oberflächen verlaufend angeordnet sind und dass auf beiden großen Oberflächen wulstartige Vorsprünge angeordnet sind. Diese Ausgestaltung des erfindungsgemäßen Dämmelementes führt zu einer Verbesserung der Haftung des Klebers und des Putzes am Dämmelement.It is preferably provided that the mineral fibers are arranged extending in two contact zones in the region of both large surfaces parallel to the large surfaces and that bead-like projections are arranged on both large surfaces. This embodiment of the insulating element according to the invention leads to an improvement in the adhesion of the adhesive and the plaster on the insulating element.
Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass der Kernbereich aus einer Vielzahl von mäandrierend angeordneten und vorzugsweise in Längsrichtung des Kernbereichs komprimierten Schlaufen eines Primärvlieses besteht, wobei die Schlaufen des Primärvlieses über Umlenkungsbereiche miteinander verbunden sind, die in zumindest einer Kontaktzone angeordnet sind. Neben der verbesserten Zugfestigkeit in Längsrichtung des Dämmstoffelementes wird bei dieser Ausgestaltung auch eine Verbesserung der Druckfestigkeit des Dämmstoffelementes in Richtung der Flächennormalen der großen Oberflächen erzielt. Die Kontaktzonen bieten aber durch die Ausrichtung der Mineralfasem parallel zu den großen Oberflächen auch eine vorteilhafte Elastizität, so dass Unebenheiten im Bereich einer zu dämmenden Gebäudefläche ausgeglichen werden können.According to a further feature of the invention it is provided that the core region consists of a plurality of meandering arranged and preferably compressed in the longitudinal direction of the core region loops of a primary web, wherein the loops of the primary web are interconnected via deflection regions which are arranged in at least one contact zone. In addition to the improved tensile strength in the longitudinal direction of the insulating element, an improvement in the compressive strength of the insulating element in the direction of the surface normal of the large surfaces is achieved in this embodiment. However, the contact zones also offer an advantageous elasticity due to the orientation of the mineral fibers parallel to the large surfaces, so that unevennesses in the area of a building surface to be insulated can be compensated.
Für die Verwendung des Dämmstoffelementes in einem Wärmedämmverbundsystem hat es sich weiterhin als vorteilhaft erwiesen, das Dämmstoffelement mit einer unterschiedlichen Querzugfestigkeit im Bereich unterhalb der beiden großen Oberflächen auszubilden. Vorzugsweise ist vorgesehen, dass ein Bereich unter einer großen Oberfläche eine Querzugfestigkeit von > 30kPa, vorzugsweise > 60kPa und ein Bereich unter der gegenüberliegenden großen Oberfläche eine Querzugfestigkeit > 5 kPa aufweist. Das Dämmstoffelement erfüllt bei dieser Ausgestaltung die Anforderung der Haftfestigkeit in Einbaulage, wobei die große Oberfläche mit der höheren Querzugfestigkeit einer zu dämmenden Gebäudefläche zuzuordnen ist, da in diesem Bereich größere Kräfte, wie Gewichtskraft des Dämmstoffelementes und des Putzes sowie Windsog auftreten und in die Gebäudefläche abzutragen sind, während die dem Putz zugewandte große Oberfläche des Dämmstoffelementes lediglich die Gewichtskraft des Putzes und den Windsog als Kräfte in das Wärmedämmverbundsystem abzutragen hat, so dass in dieser großen Oberfläche eine geringere Querzugfestigkeit ausreichend ist. Durch diese Ausgestaltung können die Herstellungskosten für die Dämmstoffelemente wesentlich gesenkt werden.For the use of the insulating element in a thermal insulation composite system, it has also proven to be advantageous, the insulating element form with a different transverse tensile strength in the area below the two major surfaces. It is preferably provided that a region under a large surface has a transverse tensile strength of> 30 kPa, preferably> 60 kPa, and a region under the opposite large surface has a transverse tensile strength> 5 kPa. The insulating element meets in this embodiment, the requirement of adhesive strength in installation position, the large surface with the higher transverse tensile strength of a building surface to be insulated is assigned, since in this area larger forces, such as weight of the insulating element and the plaster and wind suction occur and ablate in the building surface are, while the plaster facing large surface of the insulating element only the weight of the plaster and the wind suction as forces in the thermal insulation composite system has to be removed, so that in this large surface a lower transverse tensile strength is sufficient. By this configuration, the manufacturing cost of the insulating elements can be significantly reduced.
Erfindungsgemäß ist nach einem weiteren Merkmal vorgesehen, dass die Bereiche unmittelbar an die großen Oberflächen angrenzen, um die maximale Querzugfestigkeit bereitstellen zu können.According to the invention, it is provided according to a further feature that the areas directly adjoin the large surfaces in order to be able to provide the maximum transverse tensile strength.
Es hat sich als vorteilhaft erwiesen, das Dämmstoffelement derart auszubilden, dass die Mineralfasem im Bereich mit der Querzugfestigkeit von > 30kPa annähernd ausschließlich rechtwinklig zu der großen Oberfläche verlaufend ausgerichtet sind.It has proved to be advantageous to form the insulating element in such a way that the mineral fibers in the area with the transverse tensile strength of> 30 kPa are aligned almost exclusively at right angles to the large surface.
Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass zumindest eine große Oberfläche mit einer haftvermittelnden Beschichtung ausgebildet ist, die gemäß einer Weiterbildung auf der großen Oberfläche angeordnet ist, zu der die Mineralfasern einen rechtwinkligen Verlauf aufweisen.According to a further feature of the invention it is provided that at least one large surface is formed with an adhesion-promoting coating, which is arranged according to a development on the large surface, to which the mineral fibers have a rectangular course.
Neben einer vollflächigen Anordnung der haftvermittelnden Beschichtung kann es vorteilhaft sein, dass die haftvermittelnde Beschichtung teilflächig auf der großen Oberfläche angeordnet ist. Hierdurch können die Herstellungskosten im Zuge einer Materialeinsparung gesenkt und dem Verarbeiter gleichzeitig die zutreffende Anordnung beispielsweise eines Klebers auf der großen Oberfläche des Dämmstoffelementes angezeigt werden.In addition to a full-area arrangement of the adhesion-promoting coating, it may be advantageous for the adhesion-promoting coating to be arranged over part of the area on the large surface. As a result, the manufacturing costs can be lowered in the course of a material saving and the processor at the same time the correct arrangement, for example, an adhesive can be displayed on the large surface of the insulating element.
Als haftvermittelnde Beschichtung hat sich eine solche aus einem Kunststoff-Film mit einer hohen Affinität zu einem Baukleber, insbesondere einem Mörtel und/oder einem Klebemörtel als vorteilhaft erwiesen.An adhesion-promoting coating has proven to be advantageous from a plastic film having a high affinity for a construction adhesive, in particular a mortar and / or an adhesive mortar.
Ein voranstehend beschriebenes Dämmstoffelement kann beispielsweise von einer endlosen Dämmstoffbahn aus Mineralfasem abgetrennt werden. Die endlose Dämmstoffbahn mit einem Kernbereich und einer oder zwei Kontaktzonen kann in Bezug auf eine in Längsrichtung verlaufende Mittenebene symmetrisch oder asymmetrisch ausgebildet sein.An above-described insulating element can be separated, for example, from an endless insulation web of mineral fibers. The continuous insulation web having a core region and one or two contact zones may be symmetrical or asymmetrical with respect to a longitudinal center plane.
Die Dämmstoffbahn zeichnet sich im wesentlichen dadurch aus, dass die einzelnen Mineralfasem über den Querschnitt der Dämmstoffbahn deutlich unterschiedlich zu den beiden großen Oberflächen angeordnet sind. Beide großen Oberflächen weisen Vorsprünge auf, die sich im Härteofen bei der Fixierung der Dämmstoffbahn ausbilden. Hierzu werden die großen Oberflächen in Teilbreichen zwischen den Vorsprüngen komprimiert und während des Aushärtens des Bindemittels komprimiert gehalten.The insulating material is characterized essentially by the fact that the individual mineral fibers are arranged over the cross section of the insulating material significantly different from the two large surfaces. Both large surfaces have projections that form in the curing oven in the fixation of the insulation web. For this purpose, the large surfaces are compressed in Teilbreichen between the projections and kept compressed during the curing of the binder.
In beiden Oberflächen und den Vorsprüngen haben die Mineralfasem einen Verlauf, der im wesentlichen parallel zu den großen Oberflächen ausgerichtet ist. Diese ausgesprochen laminare Ausrichtung der Mineralfasem zu den großen Oberflächen erstreckt sich bis in die Kontaktzonen unterhalb der beiden großen Oberflächen. Ohne scharfe Übergänge schließen sich darunter vertikale Stauchzonen an, in denen die Mineralfasern als Folge einer überwiegend rechtwinklig zur Förderrichtung der Dämmstoffbahn gerichteten Kompression flach bis flach geneigt zu den großen Oberflächen ausgerichtet sind. Bei gleichzeitiger in Förderichtung ausgerichteter Kompression bilden sich lamellenartig verfaltete und überwiegend flach zu den großen Oberflächen liegende Teilbereich der Dämmstoffbahn aus.In both surfaces and the projections, the mineral fibers have a course that is substantially parallel to the large surfaces. This pronounced laminar alignment of the mineral fibers to the large surfaces extends into the contact zones below the two large surfaces. Without sharp transitions close including vertical compression zones, in which the mineral fibers are aligned flat to flat inclined to the large surfaces as a result of a predominantly directed perpendicular to the conveying direction of the insulating material compression. At the same time in the direction of compression aligned compression form lamellar folded and mostly flat lying to the large surfaces portion of the insulation sheet.
Im Kembereich der Dämmstoffbahn sind die einzelnen Mineralfasern überwiegend steil bis rechtwinklig zu den großen Oberflächen orientiert. Die Übergänge von dem Kernbereich zu den Stauchzonen sind durch eine im wesentlichen gleichmäßige Veränderung der Neigungen des Hauptanteils der Mineralfasern geprägt. Grundsätzlich weist die Dämmstoffbahn demzufolge eine Aneinanderreihung einer Vielzahl von bogen- oder schlaufenartigen Elementen auf, die durch rechtwinklig zur Förderrichtung wirkende Kräfte abgeflacht sind, wobei ein Teil der Mineralfasem in die Zwickel zwischen die bogen- oder schlaufenartigen Elementen gedrückt wird.In the core area of the insulating material web, the individual mineral fibers are predominantly oriented steeply to at right angles to the large surfaces. The transitions from the core region to the compression zones are characterized by a substantially uniform change in the slopes of the majority of the mineral fibers. Basically, therefore, the insulating material web has a stringing together of a plurality of arcuate or loop-like elements which are flattened by forces acting at right angles to the conveying direction, wherein a portion of Mineralfasem is pressed into the gusset between the arcuate or loop-like elements.
Es bilden sich sanfte und den Eigenschaften der glasig erstarrten Mineralfasem gerecht werdende Übergänge aus, die auch Auswirkungen auf die sich nicht abrupt ändernde Querzugfestigkeit der einzelnen, parallel zu den großen Oberflächen ausgerichteten Schichten in der Dämmstoffbahn haben. Durch einen unterschiedlich tiefen Abtrag der außen liegenden Kontaktzonen lassen sich die Querzugfestigkeiten der für einen kraftschlüssigen Verbund maßgeblichen beiden großen Oberflächen im Vergleich zu dem Kembereich mit den rechtwinklig zu den großen Oberflächen ausgerichteten Mineralfasern in weiten Grenzen variieren und so auf den jeweiligen Anwendungsfall anpassen. Somit können auch Dämmstoffplatten mit einer deutlich unterschiedlichen Querzugfestigkeit in den beiden großen Oberflächen hergestellt werden.Gentle transitions, which do justice to the properties of the glassy solidified mineral fibers, are formed, which also have an effect on the non-abruptly changing transverse tensile strength of the individual layers aligned parallel to the large surfaces in the insulating material web. By a different depth of erosion of the outer contact zones, the transverse tensile strengths of the decisive for a non-positive composite two large surfaces compared to the core area with the right angles to the large surfaces aligned mineral fibers vary within wide limits and so adapt to the particular application. Thus, insulation boards can be produced with a significantly different transverse tensile strength in the two large surfaces.
Mit diesen Dämmstoffelementen können Wärmedämmverbundsystem hergestellt werden, bei denen die Dämmstoffelemente eine große Oberfläche bzw. darunter liegende Kontaktzone mit Querzugfestigkeiten von > ca. 30 kPa, vorzugsweise > ca. 60 kPa aufweisen, während die gegenüberliegende große Oberfläche und die dort angrenzende Kontaktzone zumindest eine Querzugfestigkeit von > ca. 5 kPa erreicht. Die Querzugfestigkeit der einen großen Oberfläche ist damit ausreichend hoch, um die Dämmstoffplatte ohne zusätzliche Verankerungen auf einer zu dämmenden Gebäudefläche aufzukleben. Die Querzugfestigkeit der zweiten, im Wärmedämmverbundsystem außen liegenden großen Oberfläche genügt demgegenüber, um Putze, Mörtel, Spachtelmassen oder Farbbeschichtungen halten zu können.With these insulating elements, thermal insulation composite system can be produced in which the insulating elements have a large surface or underlying contact zone with transverse tensile strengths of> about 30 kPa, preferably> about 60 kPa, while the opposite large surface and the contact zone adjacent thereto at least one transverse tensile strength of> 5 kPa. The transverse tensile strength of a large surface is thus sufficiently high to stick the insulation board without additional anchorages on a building surface to be insulated. The transverse tensile strength of the second, in the external thermal insulation composite system large surface is sufficient in contrast to be able to hold plasters, mortar, fillers or paint coatings.
Demzufolge hat es sich bei einem erfindungsgemäßen System als vorteilhaft erwiesen, dass die der Gebäudefläche zugewandte große Oberfläche als Schnittfläche ausgebildet ist, zu der die Mineralfasem rechtwinklig verlaufend ausgerichtet sind. In diesem Bereich können in einfacher und her stellungstechnisch kostengünstiger Weise hohe Querzugfestigkeiten durch die Ausrichtung der Mineralfasern relativ zur großen Oberfläche erzielt werden.Consequently, it has proven advantageous in a system according to the invention that the large surface facing the building surface is designed as a cut surface to which the mineral fibers are aligned at right angles. In this area, high transverse tensile strengths can be achieved by aligning the mineral fibers relative to the large surface in a simple and manufacturally cost-effective manner.
Eine Verbesserung der der Verbindung zwischen dem Kleber und/oder Putz mit dem Dämmstoffelement wird dadurch erzielt, dass die Schnittfläche eine haftvermittelnde Beschichtung aufweist, die vorzugsweise vollflächig aufgebracht ist.An improvement of the connection between the adhesive and / or plaster with the insulating element is achieved in that the cut surface has an adhesion-promoting coating, which is preferably applied over the entire surface.
Nach einem weiteren Merkmal der Erfindung ist vorgesehen, dass die Abdeckung als vorzugsweise bewehrtes Putzsystem ausgebildet ist.According to a further feature of the invention it is provided that the cover is designed as a preferably reinforced cleaning system.
Für die Standfestigkeit des Wärmedämmverbundsystems ist es ferner von Vorteil, dass das Dämmstoffelement im Bereich der Kontaktzone eine zum Bereich der Schnittfläche unterschiedliche Querzugfestigkeit aufweist. Hierbei hat sich in der Schnittfläche eine Querzugfestigkeit von > 30kPa, vorzugsweise > 60kPa und in der Kontaktzone eine Querzugfestigkeit von > 5 kPa als ausreichend und vorteilhaft erwiesen.For the stability of the thermal insulation composite system, it is also advantageous that the insulating element in the contact zone for a Area of the cut surface has different transverse tensile strength. In this case, a transverse tensile strength of> 30 kPa, preferably> 60 kPa and in the contact zone a transverse tensile strength of> 5 kPa has proven sufficient and advantageous in the sectional area.
Eine weitere Verbesserung des erfindungsgemäßen Wärmedämmverbundsystems ergibt sich dadurch, dass die Abdeckung mit einem Glasfaser-Gittergelege bewehrt ist.A further improvement of the thermal insulation composite system according to the invention results from the fact that the cover is reinforced with a fiberglass Gittergelege.
Schließlich ist nach einem weiteren Merkmal der Erfindung vorgesehen, dass mehrere Dämmstoffplatten im Verband auf der zu dämmenden Gebäudefläche angeordnet und befestigt sind.Finally, it is provided according to a further feature of the invention that a plurality of insulating panels are arranged and secured in association on the building surface to be insulated.
Weitere Merkmal und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung der zugehörigen Zeichnung, in der bevorzugte Ausführungsformen eines Dämmstoffelementes und eines Wärmedämmverbundsystems dargestellt sind. In der Zeichnung zeigen:
Figur 1- ein Dämmstoffelement im Längsschnitt;
Figur 2- einen Abschnitt eines Wärmedämmverbundsystems mit einem Dämmstoffelement im Längsschnitt;
- Figur 3
- eine Abschnitt einer Dämmstoffbahn zur Herstellung von zwei Dämmstoffelementen gemäß Figur 2;
Figur 4- die beiden Dämmstoffelemente gemäß Figur 3 im Längsschnitt und
Figur 5- einen Abschnitt einer Dämmstoffbahn in verschiedenen Bearbeitungsstufen im Längsschnitt.
- FIG. 1
- an insulating element in longitudinal section;
- FIG. 2
- a section of a thermal insulation composite system with an insulating element in longitudinal section;
- FIG. 3
- a portion of an insulating material web for the production of two insulating elements according to Figure 2;
- FIG. 4
- the two insulating elements according to Figure 3 in longitudinal section and
- FIG. 5
- a section of an insulating material web in different processing stages in longitudinal section.
In Figur 1 ist ein Dämmstoffelement 1 im Längsschnitt dargestellt. Das Dämmstoffelement 1 besteht aus Mineralfasem 2, die mit Bindemitteln gebunden sind.In Figure 1, an insulating
Zwei große Oberflächen 3, 4 sind beabstandet und parallel zueinander verlaufend vorgesehen. Die großen Oberflächen 3, 4 begrenzen nach außen Kontaktzonen 5, 6, in denen die Mineralfasem 2 im Wesentlichen parallel zu den großen Oberflächen 3, 4 verlaufend ausgerichtet sind. An die Kontaktzonen 5, 6 schließen sich Stauchzonen 7, 8 an, die durch eine im Wesentlichen gleichmäßige Veränderung der Neigungen des Hauptanteils der Mineralfasern 2 geprägt sind. Schließlich ist zwischen den Stauchzonen 7, 8 ein Kembereich 9 angeordnet, in dem die Mineralfasem 2 überwiegend steil bis rechtwinklig zu den großen Oberflächen 3, 4 verlaufend angeordnet sind.Two
Im Bereich der beiden großen Oberflächen 3, 4 weist das Dämmstoffelement 1 wulstartige Vorsprünge 10 auf, die in gleichmäßigen Abständen zueinander angeordnet sind und einen im Wesentlichen halbkreisförmigen Querschnitt aufweisen. Die Vorsprünge 10 sind rechtwinklig zur Längserstreckung des Dämmstoffelementes 1, demzufolge rechtwinklig zur Produktions- oder Förderrichtung des Dämmstoffelementes 1 im Herstellungsprozess ausgerichtet. In den Vorsprüngen 10 verlaufen die Mineralfasem 2 parallel zu den großen Oberflächen 3, 4.In the region of the two
Das Dämmstoffelement 1 besteht aus einer Vielzahl von mäandrierend angeordnet und in Längsrichtung des Kernbereichs 9 komprimierten Schlaufen 11 eines Primärvlieses. Die Schlaufen 11 des Primärvlieses sind über Umlenkungsbereiche miteinander verbunden, die im Bereich der Stauchzonen 7, 8 bzw. der Kontaktzonen 5, 6 angeordnet sind bzw. die Stauchzonen 7, 8 bilden.The insulating
In den Figuren 3 und 4 sind die Schlaufen 11 zu erkennen, wobei die Figuren 3 und 4 Abschnitte eines Dämmstoffelementes 1 zeigen, welches noch nicht mit Vorsprüngen 10 versehen ist. Diese Vorsprünge 10 werden in einem nicht näher dargestellten Härteofen durch auf den großen Oberflächen 3, 4 aufliegende Förderelemente ausgebildet, welche das Dämmstoffelement in einer Richtung rechtwinklig zu den großen Oberflächen 3, 4 in Teilbereichen komprimieren und zur Aushärtung des enthaltenen Bindemittels komprimiert hält.In the figures 3 and 4, the
Demzufolge zeigen die Figuren 3 und 4 das Dämmstoffelement 1 vor dem Durchlauf des Härteofens.Accordingly, Figures 3 and 4, the insulating
In den Figuren 3 und 4 sind die Stauchzonen 7, 8 erkennbar, in denen die Mineralfasem 2 abweichend von der rechtwinkligen Ausrichtung im Kembereich 9 umgelenkt sind, so dass die Mineralfasem 2 einen flach geneigten bzw. parallelen Verlauf zu den großen Oberflächen 3, 4 aufweisen.In FIGS. 3 and 4, the
In Figur 3 ist darüber hinaus eine Mittenebene 12 strichpunktiert dargestellt, entlang welcher das Dämmstoffelement 1 parallel zu den großen Oberflächen 3, 4 in zwei Dämmstoffelemente 1.1 bzw. 1.2 gemäß Figur 4 getrennt werden kann.In addition, a
Grundsätzlich ist eine Trennung des Dämmstoffelementes 1 in die Dämmstoffelemente 1.1 und 1.2 auch außermittig möglich, wie dies beispielsweise durch einen Pfeil 13 in Figur 3 angedeutet ist.In principle, a separation of the insulating
Ferner zeigt Figur 3 schematisch ein Schneidwerkzeug 14, welches Teilbereiche der Stauchzonen 7, 8 entfernt, um glatte große Oberflächen 3, 4 auszubilden. Die Dämmstoffelemente 1.1 und 1.2 haben ergänzend auf einer Schnittfläche 15 eine haftvermittelnde Beschichtung 16, die beispielsweise aus einem Kunststoff-Film mit einer hohen Affinität zu einem Baukleber, insbesondere einem Mörtel und/oder einem Klebemörtel besteht. Die Beschichtung 16 ist vollflächig auf den Schnittflächen 15 angeordnet, wobei der Verlauf der Mineralfasern 2 im Bereich der Schnittflächen 15 rechtwinklig zu den Schnittflächen 15 ausgerichtet ist.Furthermore, FIG. 3 shows schematically a
Die Dämmstoffelemente 1.1 und 1.2 gemäß Figur 4 zeichnen sich dadurch aus, dass die große Oberfläche 3 bzw. 4 eine im Vergleich zur Schnittfläche 15 geringere Querzugfestigkeit von 10 kPa aufweist, während die Querzugfestigkeit des Dämmstoffelementes 1.1 bzw. 1.2 im Bereich der Schnittfläche 15 bei 65 kPa liegt.The insulating elements 1.1 and 1.2 according to Figure 4 are characterized in that the
Diese Dämmstoffelemente 1.1 bzw. 1.2 sind insbesondere zur Verwendung in einem Wärmedämmverbundsystem 17 geeignet, wie es in Figur 2 in einem Abschnitt dargestellt ist. Das Wärmedämmverbundsystem 17 besteht aus Dämmstoffelementen 1.2 gemäß Figur 4, die mit einem punkt- oder linienförmig auf die Beschichtung 16 aufgetragenen Kleber 18 an einer zu dämmenden Gebäudefläche 19, beispielsweise einer Wand 20 befestigt sind. Das Dämmstoffelement 1.2 ist hierbei mit seiner Schnittfläche 15 zur Gebäudefläche 19 hin ausgerichtet, so dass die Beschichtung 16 mit dem Kleber 18 in Verbindung steht. In diesem Bereich weist das Dämmstoffelement 1.2 die voranstehend beschriebene hohe Querzugfestigkeit auf, so dass die hier auftretenden Kräfte, nämlich die Gewichtskraft des Dämmstoffelementes 1.2 einschließlich eines außenseitig angeordneten Putzes 21 sowie Windsogkräfte abgetragen werden können.These insulating elements 1.1 and 1.2 are particularly suitable for use in a
Der Putz 21 ist zweischichtig ausgebildet und hat einen Grundputz 22 und einen Deckputz 23, die insbesondere aus einem Material ausgebildet sind, welches annähernd mit dem Material des Klebers 18 übereinstimmt. In den Grundputz 22 ist eine Armierung 24 in Form eines Gittergewebes eingelegt, um die Festigkeit des Putzes 21 zu erhöhen.The
Der Putz 21 ist auf der großen Oberfläche 4 des Dämmstoffelementes 1.2 im Bereich der Kontaktzone 6 angeordnet und füllt die Bereiche zwischen den Vorsprüngen 10 aus. Durch die Vorsprünge 10 wird eine verbesserte Verbindung zwischen dem Putz 21 und der großen Oberfläche 4 des Dämmstoffelementes 1.2 ausgebildet.The
Figur 5 zeigt eine Dämmstoffbahn 25, die aus Schlaufen 11 eines Primärvlieses gebildet ist und in Richtung eines Pfeils 26 gefördert wird. Die gro-ßen Oberflächen 3, 4 mit den dort angeordneten Stauchzonen 7, 8 und Kontaktzonen 5, 6 werden mit Schneidwerkzeugen 14 bearbeitet, die parallel zur Längserstreckung und Förderrichtung gemäß Pfeil 26 der Dämmstoffbahn 25 ausgerichtet sind.FIG. 5 shows an
In Figur 5 ist zu erkennen, dass mit den Schneidwerkzeugen 14 entweder ein Teil der Stauchzonen 7, 8 oder die gesamten Stauchzonen 7, 8 entfernt werden können, so dass die Dämmstoffbahn 25 unterschiedliche Faserverläufe aufweisen kann. Insbesondere können aus einer Dämmstoffbahn 25 gemäß Figur 5 die Dämmstoffelemente 1.1 bzw. 1.2 gemäß Figur 4 hergestellt werden oder die Dämmstoffbahn 25 kann einen insgesamt ausschließlich rechtwinkligen Verlauf der Mineralfasem 2 zu den großen Oberflächen 3, 4 aufweisen.It can be seen in FIG. 5 that with the
Das Dämmstoffelement 1.1 bzw. 1.2 gemäß Figur 4 ist somit dadurch geprägt, dass die Kontaktzone 5, 6 im Bereich der großen Oberflächen bis in die Stauchzone 7, 8 entfernt worden ist und dass die Schnittfläche 15 zur Erzielung einer hohen Querzugfestigkeit im Kernbereich 9 des Dämmstoffelementes 1 gemäß Figur 4 ausgebildet ist. Die Schnittfläche 15 ist mit einer haftvermittelnden Beschichtung 16 vollflächig abgedeckt, die die Schnittfläche 15 mit einem haftvermittelnden Kunststoff-Film imprägniert.The insulating element 1.1 or 1.2 according to Figure 4 is thus characterized characterized in that the
Die äußere große Oberfläche 3, 4 kann in gleicher Weise wie die Schnittfläche 15 haftvermittelnd beschichtet oder imprägniert sein. Bei Verwendung von relativ dicken Beschichtungen 16 kann die Kontaktzone 5, 6 in der sprünglichen Form und Lage belassen werden.The outer
Die Dämmstoffelemente 1.1 bzw. 1,2 können als Dämmstoffplatten ausgebildet sein und in Abhängigkeit von der Breite der Produktionsanlagen in vielen unterschiedlichen Abmessungen hergestellt werden, so dass beispielsweise auch auf die Geometrien der zu dämmenden Gebäudeflächen 19, beispielsweise durch Fenster gegliederte Fassaden, abgestimmte Formate oder Zuschnitte der Dämmstoffelemente 1.1 bzw. 1.2 produziert werden können. Bei Verwendung großformatiger Dämmstoffplatten verringert sich in einem Wärmedämmverbundsystem 17 die Anzahl der Fugen zwischen den Dämmstoffplatten und damit deren mögliche Wärmebrückenwirkung. Somit wird die Effektivität einer Dämmstoffschicht in dem Wärmedämmverbundsystem 17 gesteigert.The insulation elements 1.1 and 1.2 may be formed as insulation boards and are manufactured in many different dimensions depending on the width of the production facilities, so that, for example, on the geometries of the building surfaces to be insulated 19, for example, by windows structured facades, coordinated formats or Blanks of the insulating elements 1.1 and 1.2 can be produced. When using large-size insulation boards decreases in a
Gegenüber in bekannter Weise verwendeten Mineralfaser-Lamellenplatten ist die Herstellung eines Wärmedämmverbundsystems 17 mit den Dämmstoffelementen 1.1 bzw. 1.2 wesentlich wirtschaftlicher. Dasselbe gilt im Vergleich zu der Verwendung bekannter Dämmstoffplatten aus Mineralfasern, da die Rohdichte der Dämmstoffelemente 1.1 bzw. 1.2 im Vergleich zu Dämmstoffplatten mit einem Verlauf der Mineralfasem parallel zu den großen Oberflächen um zumindest 25 % verringert werden kann, ohne dass hierdurch die Standfestigkeit des Wärmedämmverbundsystems 17 beeinträchtigt wird. Bis zu bestimmten Gebäudehöhen kann hierdurch auch auf zusätzliche mechanische Befestigungselemente, wie beispielsweise Verankerungen in Form von Dämmstoffhaltern verzichtet werden, was wiederum die Herstellungskosten für das Wärmedämmverbundsystem 17 beträchtlich reduziert. Durch den Wegfall der Dämmstoffhalter können sich diese nicht mehr unter dünnen Putzschichten abzeichnen und dadurch den Gesamteindruck des Wärmedämmverbundsystems 17 negativ beeinträchtigen. Opposite mineral fiber finned plates used in a known manner, the production of a
Claims (19)
- Insulating element made of mineral fibres which are bound with a binder, especially from mineral wool and/or glass wool, comprising two major surfaces which are arranged mutually parallel to each other and which are spaced from each other, and comprising four lateral surfaces which are oriented at right angles to each other and to said major surfaces, wherein in the region of at least one contact zone which is directly joining one major surface said mineral fibres are oriented to run substantially parallel to said major surface, and wherein between said major surfaces and adjacent to said contact zone a core region is arranged in which the mineral fibres are arranged to run substantially at right angles and/or obliquely with respect to the major surfaces,
characterized in
that at least on that major surface (3, 4) which is allocated to said contact zone (5, 6) bead-like protrusions (10) which are oriented to extend in at least one major axis direction are arranged at equal distances to each other, which bead-like protrusions have a cross section substantially in the form of a section of an arc and which consist of mineral fibres which are bound with binders. - Insulating element according to claim 1,
characterized in
that said mineral fibres (2) are arranged in two contact zones (5, 6) in the region of both major surfaces (3, 4) to extend parallel to said major surfaces (3, 4), and that on both major surfaces (3, 4) bead-like protrusions are arranged. - Insulating element according to claim 1,
characterized in
that said core region (9) consists of a plurality of loops (11) of a primary fibrous web, which loops are arranged according to a meandering pattern and are compressed preferably in the longitudinal direction of said core region (9), wherein said loops (11) of said primary fibrous web are interconnected via redirection zones that are arranged in at least one contact zone (5, 6). - Insulating element according to claim 1,
characterized by
a different transverse tensile strength within the region below said two major surfaces (3, 4). - Insulating element according to claim 4,
characterized in
that a region below one of said major surfaces (3, 4, 15) has a transverse tensile strength of > 30kPa, preferably > 60kPa, and that a region below the opposite major surface (3, 4) has a transverse tensile strength of > 5kPa. - Insulating element according to claim 5,
characterized in
that said regions are directly adjacent to said major surfaces (3, 4, 15). - Insulating element according to claim 4,
characterized in
that the mineral fibres (2) within the region having the transverse tensile strength of > 30kPa are oriented so that they almost exclusively run at right angles to the major surface (15). - Insulating element according to claim 1,
characterized in
that at least one major surface (3, 4, 15) is formed with a coating (16) that imparts adhesion. - Insulating element according to claim 8,
characterized in
that said coating (16) which imparts adhesion is arranged on that major surface (15) to which the mineral fibres run at right angles. - Insulating element according to claim 8,
that the coating (16) which imparts adhesion is arranged on part of the area of the major surface (3, 4, 15). - Insulating element according to claim 8,
characterized in
that said coating (16) which imparts adhesion consists of a plastic film with a high affinity to an industrial adhesive, especially mortar and/or adhesive mortar. - Composite thermal insulation system with at least one insulating element according to the claims 1 to 11,
characterized in
that said insulating element (1, 1.1, 1.2) with its major surface (15) directed away from the contact zone (5, 6) rests on a building surface (19) to be insulated and is connected to the same through an adhesive (18), and that the outside major surface (3, 4) which includes said contact zone (5, 6) is provided with a cover. - System according to claim 12,
characterized in
that the major surface which is directed to said building surface (19) is formed as a cutting area (15), with the mineral fibres being oriented to run at right angles to said cutting area. - System according to claim 13,
characterized in
that said cutting area (15) includes a coating (16) which imparts adhesion and which is preferably applied over the full surface. - System according to claim 12,
characterized in
that said cover is preferably formed as a reinforced render system (21). - System according to claim 12,
characterized in
that said insulating element (1,1.1,1.2) has a transverse tensile strength in the region of the contact zone (5, 6) which is different from the region of the cutting area (15). - System according to claim 16,
characterized in
that said cutting area (15) has a transverse tensile strength of > 30kPa, preferably > 60kPa, and that said contact zone (5, 6) has a transverse tensile strength of > 5kPa. - System according to claim 15,
characterized in
that said cover is reinforced with a reinforcement (24), for instance with a glass fibre lattice. - System according to claim 12,
characterized in
that several insulating elements (1, 1.1. 1.2) which are formed as insulation boards are arranged in a bond on and fixed to the building surface (19) to be insulated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL05001495T PL1559844T3 (en) | 2004-01-31 | 2005-01-26 | Insulating element and composite thermal compound system |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004004954 | 2004-01-31 | ||
DE102004004954 | 2004-01-31 | ||
DE102004012359 | 2004-03-13 | ||
DE102004012359 | 2004-03-13 | ||
DE102005003801 | 2005-01-26 | ||
DE102005003801A DE102005003801B4 (en) | 2004-01-31 | 2005-01-26 | Insulating element and thermal insulation composite system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1559844A1 EP1559844A1 (en) | 2005-08-03 |
EP1559844B1 true EP1559844B1 (en) | 2007-06-20 |
Family
ID=34657501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05001495A Revoked EP1559844B1 (en) | 2004-01-31 | 2005-01-26 | Insulating element and composite thermal compound system |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1559844B1 (en) |
AT (1) | ATE365252T1 (en) |
DE (2) | DE102005003801B4 (en) |
DK (1) | DK1559844T3 (en) |
ES (1) | ES2288706T3 (en) |
HR (1) | HRP20070381T3 (en) |
PL (1) | PL1559844T3 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008036590A1 (en) * | 2008-08-06 | 2010-02-11 | Deutsche Amphibolin-Werke Von Robert Murjahn Stiftung & Co. Kg | Building wallcovering with clothing panels |
DE102010011386A1 (en) * | 2010-03-12 | 2011-09-15 | Sandler Ag | insulation material |
FI126566B (en) * | 2014-11-27 | 2017-02-15 | Paroc Group Oy | Thin insulating sheet of mineral wool for roof structures and method of making an insulating sheet |
EP4453339A1 (en) | 2023-01-11 | 2024-10-30 | Saint-Gobain Isover | Insulating element and method for manufacturing thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3701592A1 (en) * | 1987-01-21 | 1988-08-04 | Rockwool Mineralwolle | METHOD FOR CONTINUOUSLY PRODUCING A FIBER INSULATION SHEET AND DEVICE FOR IMPLEMENTING THE METHOD |
EP0741827B2 (en) * | 1994-01-28 | 2011-03-02 | Rockwool International A/S | A method of producing a mineral fibre web |
WO1997029253A1 (en) * | 1996-02-07 | 1997-08-14 | Peter Kellner | Insulating panel |
DE19906734C1 (en) * | 1999-02-18 | 2000-07-27 | Rockwool Mineralwolle | Insulation material, comprising binder and preferably rock wool fibres, contains binder free regions where fibres extend at right angles to material surfaces |
DE19908673A1 (en) * | 1999-02-26 | 2000-09-07 | Rockwool Mineralwolle | Pipe shell |
DE19958973C2 (en) * | 1999-12-08 | 2002-08-14 | Rockwool Mineralwolle | Method and device for producing a fiber insulation web |
CZ300619B6 (en) * | 2000-05-08 | 2009-07-01 | Deutsche Rockwool Mineralwoll Gmbh & Co. Ohg | Insulation element of mineral wool and process for producing thereof |
DE10054951A1 (en) * | 2000-11-06 | 2002-05-29 | Rockwool Mineralwolle | insulating element |
DE10230648B4 (en) * | 2001-08-23 | 2004-08-12 | Deutsche Rockwool Mineralwoll Gmbh + Co Ohg | Pallet for the transport of stacks of plates and transport and / or packaging unit |
EP1321595A3 (en) * | 2001-12-22 | 2004-04-21 | Deutsche Rockwool Mineralwoll GmbH & Co. OHG | Heat and/or sound insulating method of a building wall and device for carrying out said method |
-
2005
- 2005-01-26 DE DE102005003801A patent/DE102005003801B4/en not_active Revoked
- 2005-01-26 AT AT05001495T patent/ATE365252T1/en active
- 2005-01-26 DE DE502005000880T patent/DE502005000880D1/en active Active
- 2005-01-26 DK DK05001495T patent/DK1559844T3/en active
- 2005-01-26 EP EP05001495A patent/EP1559844B1/en not_active Revoked
- 2005-01-26 ES ES05001495T patent/ES2288706T3/en active Active
- 2005-01-26 PL PL05001495T patent/PL1559844T3/en unknown
-
2007
- 2007-09-05 HR HR20070381T patent/HRP20070381T3/en unknown
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DK1559844T3 (en) | 2007-10-29 |
DE102005003801A1 (en) | 2005-10-06 |
DE102005003801B4 (en) | 2008-10-09 |
HRP20070381T3 (en) | 2007-10-31 |
EP1559844A1 (en) | 2005-08-03 |
ATE365252T1 (en) | 2007-07-15 |
DE502005000880D1 (en) | 2007-08-02 |
PL1559844T3 (en) | 2007-11-30 |
ES2288706T3 (en) | 2008-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0701647B1 (en) | Building component | |
EP3266575B1 (en) | Device for producing a construction brick | |
EP3008261B1 (en) | Structural sandwich element and method for producing same | |
DE3223246A1 (en) | Multi-layer insulating slab and process for manufacture thereof | |
EP1564338B1 (en) | Device for the production of insulating elements | |
DE4319340C1 (en) | Process for producing mineral fibre insulation boards and an apparatus for carrying out the process | |
DE212004000002U1 (en) | component composite | |
EP2726680B1 (en) | Façade construction for thermally insulating and cladding external walls of buildings, and method for producing such a façade construction | |
DE4110454C2 (en) | Thermal insulation system with panels and method for surface treatment of these panels | |
EP1745902B1 (en) | Method for producing a moulded brick | |
EP1088945A2 (en) | Insulating element for a facade | |
EP1219755B1 (en) | Insulating board for façades and process for producing the same | |
EP1559844B1 (en) | Insulating element and composite thermal compound system | |
DE19951105C2 (en) | Heat and / or sound insulation element | |
EP2758610B1 (en) | Method for producing a construction panel | |
DE102006019796A1 (en) | Brick-work sandwich unit for installation in brick-work, has foam layer that is arranged between static wall unit and plaster base unit and connects wall unit and base unit together in fixed manner | |
EP1708876B1 (en) | Method for the production of a web of insulating material and web of insulating material | |
EP1893825B1 (en) | Method and device for the production of insulation elements from mineral fibres | |
EP1335080B1 (en) | Insulation board for heat and/or sound insulation, and insulation layer | |
WO1994017258A1 (en) | Construction element | |
DE10248326B4 (en) | Insulating layer for insertion between two building components comprises a mineral fiber body with side surfaces consisting of sandwich-like layers connecting two large surfaces and protruding at both long ends over a middle layer | |
EP1122373B1 (en) | Manufacturing process of an insulating material with mineral fibres | |
EP1799926B1 (en) | Building roof, insulating layer structure, and mineral fibre insulating element for a building roof | |
EP1295998B1 (en) | Heat and sound insulation; Insulating element and mineral fibre lamella | |
EP0834625A1 (en) | Composite element and method of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20050702 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AXX | Extension fees paid |
Extension state: HR Payment date: 20060202 Extension state: YU Payment date: 20060202 Extension state: LV Payment date: 20060202 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: HR LV YU |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502005000880 Country of ref document: DE Date of ref document: 20070802 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20070381 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070903 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20070381 Country of ref document: HR |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2288706 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E002204 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071120 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070920 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071020 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
26 | Opposition filed |
Opponent name: SAINT-GOBAIN ISOVER G+H AG Effective date: 20080318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070921 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: SAINT-GOBAIN ISOVER G+H AG |
|
BERE | Be: lapsed |
Owner name: DEUTSCHE ROCKWOOL MINERALWOLL G.M.B.H. & CO. OHG Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080131 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20090218 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070620 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110224 |
|
APBM | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNO |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100127 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20070381 Country of ref document: HR Payment date: 20121219 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20130114 Year of fee payment: 9 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: SAINT-GOBAIN ISOVER G+H AG Effective date: 20080318 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20131227 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20131230 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20140110 Year of fee payment: 10 Ref country code: NL Payment date: 20140110 Year of fee payment: 10 Ref country code: SE Payment date: 20140113 Year of fee payment: 10 Ref country code: DE Payment date: 20140122 Year of fee payment: 10 Ref country code: CZ Payment date: 20140110 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R064 Ref document number: 502005000880 Country of ref document: DE Ref country code: DE Ref legal event code: R103 Ref document number: 502005000880 Country of ref document: DE |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20131224 Year of fee payment: 10 Ref country code: FR Payment date: 20140108 Year of fee payment: 10 Ref country code: IT Payment date: 20140113 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140122 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PBON Ref document number: P20070381 Country of ref document: HR Effective date: 20140126 |
|
RDAE | Information deleted related to despatch of communication that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSDREV1 |
|
RDAF | Communication despatched that patent is revoked |
Free format text: ORIGINAL CODE: EPIDOSNREV1 |
|
RDAG | Patent revoked |
Free format text: ORIGINAL CODE: 0009271 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT REVOKED |
|
27W | Patent revoked |
Effective date: 20140508 |
|
GBPR | Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state |
Effective date: 20140508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R107 Ref document number: 502005000880 Country of ref document: DE Effective date: 20141113 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140127 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MA03 Ref document number: 365252 Country of ref document: AT Kind code of ref document: T Effective date: 20140508 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: ECNC |