[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1400287A1 - Vorrichtung zur Härtung UV-strahlungshärtbarer Beschichtungen - Google Patents

Vorrichtung zur Härtung UV-strahlungshärtbarer Beschichtungen Download PDF

Info

Publication number
EP1400287A1
EP1400287A1 EP03020307A EP03020307A EP1400287A1 EP 1400287 A1 EP1400287 A1 EP 1400287A1 EP 03020307 A EP03020307 A EP 03020307A EP 03020307 A EP03020307 A EP 03020307A EP 1400287 A1 EP1400287 A1 EP 1400287A1
Authority
EP
European Patent Office
Prior art keywords
radiation
irradiation
radiation sources
module
illuminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03020307A
Other languages
English (en)
French (fr)
Other versions
EP1400287B1 (de
Inventor
Reiner Dr. Mehnert
Axel Sobottka
Herbert Lange
Hartmut Krannich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cetelon Lackfabrik GmbH
Original Assignee
Cetelon Lackfabrik Walter Stier GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cetelon Lackfabrik Walter Stier GmbH and Co KG filed Critical Cetelon Lackfabrik Walter Stier GmbH and Co KG
Publication of EP1400287A1 publication Critical patent/EP1400287A1/de
Application granted granted Critical
Publication of EP1400287B1 publication Critical patent/EP1400287B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating

Definitions

  • the present invention relates to a device for curing radiation-curable coatings which has at least one radiation chamber provided with a plurality of UV radiation sources has, in particular of flat or three-dimensional provided with such coatings Substrates.
  • the curing of radiation-curable coatings by high-energy UV radiation is known, for example using medium-pressure mercury lamps or UV excimer lamps (R. Mehnert et al., UV ⁇ t EB Technology and Application, SITA Valley, London 1998).
  • the specific electrical power of these lamps is typically between 50 and 240 W per cm of lamp length. With a lamp length of 1 m, the electrical power converted is between 5 and 24 kW.
  • These high-performance emitters are primarily used for the curing of coatings on flat substrates. Typical illuminance levels of 100 to 1000 mW / cm 2 are measured on the layer to be cured. This makes it possible to achieve curing times of 100ms and less.
  • Such a system is known, for example, from DE 24 25 217 A1.
  • a generic device is also, for example, from WO 96/34700 A1 and FR 2 230 831 A1 known.
  • UV lamps Because of the biological effects of UV rays, there are extensive shielding and others Protective measures are required if these UV lamps are used. For curing coatings on three-dimensional objects such. For example, individual UV lamps in closed form Appropriate rooms that adequate radiation protection can be granted. A sufficiently homogeneous irradiation of the coatings to be hardened on three-dimensional substrates however, is practically impossible. The energy expenditure for hardening is therefore through the effort required for the hardening of layer areas determined only by obliquely incident Radiation or scattered radiation can be achieved.
  • the object of the present invention is therefore to provide a generic device to provide suitable for the treatment of both flat and three-dimensional substrates is in which the energy expenditure is reduced and in the case of complex radiation and heat protection measures can be dispensed with.
  • the solution is that several UV radiation sources are arranged close together and are connected together to form one or more radiation modules, the illuminance within an irradiation module and / or between at least two irradiation modules is spatially variable.
  • the device consists of geometrically suitable arrangements is built up by several radiation sources lying close together. Any of these arrangements is called an irradiation module.
  • a radiation module a flat area is used here Arrangement of radiation sources arranged close to each other (e.g. with a common electrical supply) understood.
  • the enveloping area of the radiation sources each Module can be flat or curved.
  • Irradiation modules can be built up, the light focus into a selected, even curved, radiation plane and a geometrically extensive one enable homogeneous irradiation of the substrate surfaces.
  • the structure is thus such that inside the radiation chamber in which the radiation-curable Coatings are cured, a spatially variable illuminance is set is that the coating to be hardened is hardened homogeneously, without a disturbing Heat is introduced into the coating and / or substrate.
  • the variation can be done by setting the enveloping surfaces of the radiation sources of a single module and on the other hand due to the spatial arrangement of the radiation modules in the device, a large number of geometric arrangements can be implemented. Due to the modular structure the device can thus be adapted to the geometry of the substrate to be treated, so that the energy expenditure is reduced. This also has the consequence that biological radiation protection is simplified, i.e. can be limited, for example, to measures such as those for use of tanning lamps apply.
  • lamps preferably fluorescent tubes, of low electrical power, from about 0.1 to 10 W per cm of radiator length, which, for example, has a continuous emission spectrum between 200 and 450 nm, preferably between 300 and 450 nm. Because the heat is lower than with high-performance UV lamps, it is sufficient to have their surface, for example to cool an air stream.
  • Such lamps are known per se and are used, for example, as tanning lamps in solariums. With a specific power of, for example, 1 W per cm of lamp length and the resulting As such, these lamps are low illuminance per se and not for technical purposes Applications suitable for curing radiation-curable coatings.
  • Such lamps which are typically provided with reflectors with beam angles of, for example, approx. 160 °, in which Usually have standardized dimensions (diameter of the tubes approx. 25 to 45 cm, light length up to approx. 200 cm) and operated at an operating voltage of 220 V are very good suitable as radiation sources for the aforementioned radiation modules. This applies in particular the reflectors, which simplify focusing in the desired radiation level. Advantageous is also their high photon yield of approx. 30% of the electrical power.
  • illuminance levels typically about 20 mW / cm 2 are achieved, for example, at a distance of 10 cm from the radiation source. Although these illuminance levels are 5 to 50 times smaller than those achievable with conventional UV lamps, they are sufficient to cure coatings at irradiation times of approximately 30 to 300 s.
  • At least one radiation module at least one of its three spatial axes is movably arranged in the device. This makes it easier the geometric adaptation to the substrate and the focusing of the beams in the desired Irradiation plane.
  • Illuminance levels through the interconnection of suitable radiation sources to form radiation modules are achieved, in particular then for the curing of the radiation-curing Coating sufficient if hardening under an inert protective gas such as nitrogen he follows.
  • an inert protective gas such as nitrogen he follows.
  • the implementation of radiation curing under protective gas is known per se and, for example, in DE 199 57 900 A1, EP 540 884 A1 and in the publications mentioned above.
  • the structure of the radiation module 10 according to the invention is exemplarily based on that in the figures 1 and 2 shown embodiment.
  • the components are on a base plate 11, assembled.
  • the base plate 11 is preferably made of a metal such as aluminum or Steel or a metal alloy and has on the back the necessary electrical Connections 13 and possibly a bracket 12.
  • devices for installing the Irradiation module 10 in irradiation systems and devices for moving the irradiation module 10 may be provided.
  • the starter and connections for are also on the base plate UV radiation sources 18 mounted.
  • Cross-flow fans for example, are suitable for this purpose.
  • a frame 14 is also provided, within which the Ventilation 16 and the UV radiation sources 18 are installed.
  • Suitable UV radiation sources 18 are, for example, fluorescent tubes as are used as tanning lamps in solariums.
  • fluorescent tubes generally have standardized dimensions, for example a light length of 2 m with a diameter of 25 to 45 cm. They can also be provided with reflectors, which have a radiation angle of approximately 160 °, for example.
  • These fluorescent tubes are used in one Operating voltage of 220 V.
  • the frame 14 with the ventilation 16 and the UV radiation sources 18 is airtight on three sides from a UV-permeable plate 15, for example made of plastic, such as polymethyl methacrylate or Polycarbonate, enclosed.
  • the surface of the plate 15 forms the front of the radiation module 10, as illustrated by the arrow A symbolizing the direction of radiation.
  • One or more radiation modules 10 are installed in a closed radiation vessel.
  • the irradiation vessel encloses an irradiation space which is at least one Irradiation module is illuminated.
  • FIG. 3 schematically shows an exemplary embodiment for a device 10 according to the invention discontinuous irradiation of substrates.
  • a rectangular one provided with feet 21 Containers with a length of 2.10 m, a width of 80 cm and a height of 80 cm were made with four 1.50 m long, with 10 radiation modules 10 provided with planar fluorescent tubes 18.
  • the Irradiation modules 10 were placed on the bottom of the container, the sides and the lid of the container attached. The upper radiation module can be lifted with the lid of the container.
  • the fluorescent tubes 18 in the radiation modules 10 were cooled by cross-flow fans.
  • the tops of the plates 15 of the radiation modules define and enclose a rectangular one Irradiation room 22 of 1.60 m long, 60 cm wide and 40 cm high.
  • a rectangular one Irradiation room 22 of 1.60 m long, 60 cm wide and 40 cm high.
  • the radiation room 22 there are also four laterally arranged tubes 23 each with 40 holes for Intake of nitrogen.
  • Such a device 20 can be operated as follows.
  • the coated substrates are introduced into the radiation room 22. Thereafter, the irradiation room 22 with inert gas flooded.
  • an oxygen concentration of 5%, preferably 1%, is particularly preferred 0.1% the irradiation is started and ended after the layer has hardened.
  • the duration the irradiation is typically about 30 to 300 s.
  • the device according to the invention in particular for curing coatings on moldings. They allow the application of radiation curing e.g. For example in the craft area for production and repair.
  • the moderate electrical connected load of the modules is advantageous, which is typically 1 to 2 kW.
  • a car rim was coated on all sides with a radiation-curing spray paint as the molded body.
  • the rim was provided with a holder at the valve hole and hung in the irradiation room 22. After the radiation chamber 22 was closed, it was flooded with nitrogen. The concentration of the oxygen was measured and displayed with a sensor in the radiation room 22. After 2 minutes flooding with a nitrogen flow of 60 m 3 / h, an oxygen concentration of less than 0.1% was reached. After reaching this value, the nitrogen flow was reduced to 10 m3 / h and the irradiation started. After an irradiation time of 2 minutes, the nitrogen was turned off and the device 20 was opened. The paint on the rim was hardened in all places and could not be damaged even under manual pressure.
  • an irradiation tunnel 30 can also be constructed using the described radiation modules 10 be as it is shown schematically in Figure 4.
  • the radiation modules 10 are arranged on the sides and on the top so that they are one Define and enclose tunnel-shaped irradiation room 32. In it z.
  • coated substrates are cured during the run.
  • the lighting length of the radiation room 32 up to 4 m. If the curing takes place within about 30 to 300 s, the throughput speeds are from 0.8 to 8 m / min possible. It should be noted that during the Pass and the radiation the residual oxygen concentration should be sufficiently low.
  • Atmospheric oxygen should not exceed the limit of 5%. Therefore are advantageous locks and / or suitable nozzles for feeding, especially in the direction of conveyance in front of the radiation zone of inert gas, preferably nitrogen, are provided, which prevent the swirling of air.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Coating Apparatus (AREA)
  • Polymerisation Methods In General (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Vorrichtung (20, 30) zur Härtung strahlungshärtbarer Beschichtungen, welche mindestens eine mit mehreren UV-Strahlungsquellen (18) versehene Bestrahlungskammer (22, 32) aufweist. Erfindungsgemäß ist vorgesehen, dass mehrere UV-Strahlungsquellen (18) eng nebeneinander angeordnet und zu ein oder mehreren Bestrahlungsmodulen (10) zusammen geschaltet sind, wobei die Beleuchtungsstärke innerhalb eines Bestrahlungsmoduls (10) und/oder zwischen mindestens zwei Bestrahlungsmodulen (10) räumlich variabel ist. <IMAGE>

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Härtung strahlungshärtbarer Beschichtungen welche mindestens eine mit mehreren UV-Strahlungsquellen versehene Bestrahlungskammer aufweist, insbesondere von mit solchen Beschichtungen versehenen flächigen oder dreidimensionalen Substraten.
Bekannt ist die Härtung strahlungshärtbarer Beschichtungen durch energiereiche UV-Strahlung, bspw. unter Verwendung von Mitteldruck-Quecksilber-Strahlern oder UV-Excimerstrahlern (R. Mehnert et al., UV εt EB Technology and Application, SITA-Valley, London 1998). Die spezifische elektrische Leistung dieser Strahler liegt typischerweise zwischen 50 und 240 W pro cm Strahlerlänge. Bei einer Strahlerlänge von 1 m beträgt die umgesetzte elektrische Leistung also zwischen 5 und 24 kW. Diese leistungsstarken Strahler werden vor allem für die Härtung von Beschichtungen auf flächigen Substraten eingesetzt. Auf der zu härtenden Schicht werden typische Beleuchtungsstärken von 100 bis 1000 mW/cm2 gemessen. Hiermit ist es möglich, Härtungszeiten von 100ms und weniger zu erreichen. Ein derartiges System ist bspw. aus der DE 24 25 217 A1 bekannt.
Eine gattungsgemäße Vorrichtung ist bspw. auch aus der WO 96/34700 A1 und der FR 2 230 831 A1 bekannt.
Bei der Anwendung von Mitteldruck-Quecksilber-Strahlern ist zu beachten, dass ca. 50 % der elektrischen Leistung in Wärme umgesetzt wird. Eine eng nebeneinander liegende Anordnung derartiger Strahler scheitert nicht nur aus Gründen einer thermischen Überhitzung, sondern auch wegen der notwendigen Hochspannungszuführung an den Enden (Elektroden) der Strahler.
Bei UV-Excimerstrahlern wird die Wärme zwar durch Kühlung der Lampenoberfläche abgeführt, der Abstand zwischen benachbarten Röhren und ihre geometrische Anordnung wird jedoch ebenfalls durch die notwendige Hochspannungszuführung beschränkt.
Wegen der biologischen Wirkungen von UV-Strahlen sind umfangreiche Abschirm- und andere Schutzmaßnahmen erforderlich, wenn diese UV-Strahler eingesetzt werden. Zur Härtung von Beschichtungen auf dreidimensionalen Objekten werden z. Bsp. einzelne UV-Strahler so in geschlossenen Räumen angebracht, dass ein ausreichender Strahlungsschutz gewährt werden kann. Eine ausreichend homogene Bestrahlung der zu härtenden Beschichtungen auf dreidimensionalen Substraten ist jedoch praktisch unmöglich. Der Energieaufwand für die Härtung wird deshalb durch den Aufwand für die Härtung von Schichtbereichen bestimmt, die nur durch schräg einfallende Strahlung oder Streustrahlung erreicht werden können.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, eine gattungsgemäße Vorrichtung bereit zu stellen, die sowohl zur Behandlung flächiger als auch dreidimensionaler Substrate geeignet ist, bei der der Energieaufwand verringert und bei der auf aufwendige Strahlen- und Wärmeschutzmaßnahmen verzichtet werden kann.
Die Lösung besteht darin, dass mehrere UV-Strahlungsquellen eng nebeneinander angeordnet und zu ein oder mehreren Bestrahlungsmodulen zusammen geschaltet sind, wobei die Beleuchtungsstärke innerhalb eines Bestrahlungsmoduls und/oder zwischen mindestens zwei Bestrahlungsmodulen räumlich variabel ist.
Erfindungsgemäß ist also vorgesehen, dass die Vorrichtung aus geometrisch geeigneten Anordnungen von mehreren eng nebeneinanderliegenden Strahlungsquellen aufgebaut wird. Jede dieser Anordnungen wird als Bestrahlungsmodul bezeichnet. Als Bestrahlungsmodul wird hier also eine flächenhafte Anordnung von dicht nebeneinander angeordneten Strahlungsquellen (bspw. mit gemeinsamer elektrischer Versorgung) verstanden. Die einhüllende Fläche der Strahlungsquellen jedes Moduls kann eben oder gekrümmt sein. Es können Bestrahlungsmodule aufgebaut werden, die Licht in eine ausgewählte, auch gekrümmte, Bestrahlungsebene fokussieren und eine geometrisch weitgehende homogene Bestrahlung der Substratoberflächen ermöglichen.
Der Aufbau erfolgt somit derart, dass im Inneren der Bestrahlungskammer, in der die strahlungshärtbaren Beschichtungen gehärtet werden, eine räumlich variable Beleuchtungsstärke so eingestellt wird, dass die zu härtende Beschichtung homogen gehärtet wird, ohne dass ein störender Wärmeeintrag in Beschichtung und/oder Substrat erfolgt. Die Variation kann einerseits durch Einstellung der einhüllenden Flächen der Strahlungsquellen eines einzelnen Moduls und andererseits durch die räumliche Anordnung der Bestrahlungsmodule zueinander in der Vorrichtung erfolgen, wobei eine Vielzahl geometrischer Anordnungen realisierbar ist. Durch den modularen Aufbau kann die Vorrichtung also an die Geometrie des zu behandelnden Substrates angepasst werden, so dass der Energieaufwand verringert wird. Dies hat ferner zur Folge, dass der biologische Strahlenschutz vereinfacht wird, d.h. beschränkt werden kann, bspw. auf Maßnahmen, wie sie für die Benutzung von Bräunungslampen gelten.
Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen. Als Strahlungsquellen kommen Lampen, vorzugsweise Leuchtstoffröhren, niedriger elektrischer Leistung, etwa von 0,1 bis 10 W pro cm Strahlerlänge, in Betracht, die bspw. ein kontinuierliches Emissionsspektrum zwischen 200 und 450 nm, vorzugsweise zwischen 300 und 450 nm aufweisen. Da die Wärmeentwicklung niedriger ist als bei Hochleistungs-UV-Strahlern, genügt es, deren Oberfläche lediglich bspw. mit einem Luftstrom zu kühlen.
Derartige Lampen sind an sich bekannt und werden bspw. als Bräunungslampen in Solarien eingesetzt. Bei einer spezifischen Leistung von bspw. 1 W pro cm Strahlerlänge und der daraus resultierenden geringen Beleuchtungsstärke sind diese Lampen als solche an und für sich nicht für technische Anwendungen zur Härtung strahlungshärtbarer Beschichtungen geeignet. Derartige Lampen, die typischerweise mit Reflektoren mit Abstrahlwinkeln von bspw. ca. 160° versehen sind, in der Regel standardisierte Abmessungen aufweisen (Durchmesser der Röhren ca. 25 bis 45 cm, Leuchtlänge bis ca. 200 cm) und bei einer Betriebsspannung von 220 V betrieben werden, sind sehr gut als Strahlungsquellen für die erwähnten Bestrahlungsmodule geeignet. Dies betrifft insbesondere die Reflektoren, die die Fokussierung in die gewünschte Bestrahlungsebene vereinfachen. Vorteilhaft ist auch ihre hohe Photonenausbeute von ca. 30 % der elektrischen Leistung.
Mit Bestrahlungsmodulen dieser Ausführung erreicht man bspw. in 10 cm Abstand von der Strahlungsquelle Beleuchtungsstärken von typischerweise etwa 20 mW/cm2. Diese Beleuchtungsstärken sind zwar um den Faktor 5 bis 50 kleiner als die mit herkömmlichen UV-Strahlern erreichbaren, reichen jedoch aus, um Beschichtungen bei Bestrahlungszeiten von etwa 30 bis 300 s auszuhärten.
Eine weitere vorteilhafte Weiterbildung besteht darin, dass wenigstens ein Bestrahlungsmodul um mindestens eine seiner drei Raumachsen bewegbar in der Vorrichtung angeordnet ist. Dies erleichtert die geometrische Anpassung an das Substrat und die Fokussierung der Strahlen in der gewünschten Bestrahlungsebene.
Um die Haftung strahlungsgehärteter Beschichtungen auf einigen Substraten, wie bspw. Polypropylen, Polycarbonat und Polyamid, zu verbessern, ist es vorteilhaft, die Beleuchtungsstärke auch zeitlich zu variieren. Beginnt man die Bestrahlung bspw. mit einer kleinen Beleuchtungsstärke, kann die bei der Härtung stets schrumpfende Schicht besser relaxieren als bei sofortiger Bestrahlung mit hoher Beleuchtungsstärke. Spannungen zwischen der zu härtenden Schicht und dem Substrat können sich besser ausgleichen. Die Folge ist eine bessere Haftung der gehärteten Schicht auf dem Substrat. Eine zeitliche Steuerung der Leistung der einzelnen Bestrahlungsmodule ist auf einfache Weise möglich, so dass sich dieses vorteilhafte Bestrahlungsregime nutzen lässt.
Beleuchtungsstärken, die durch die Zusammenschaltung geeigneter Strahlungsquellen zu Bestrahlungsmodulen erreicht werden, sind insbesondere dann für die Härtung der strahlungshärtenden Beschichtung ausreichend, wenn die Härtung unter einem inerten Schutzgas wie bspw. Stickstoff erfolgt. Die Durchführung der Strahlungshärtung unter Schutzgas ist an sich bekannt und bspw. in der DE 199 57 900 A1, der EP 540 884 A1 sowie in den oben erwähnten Druckschriften beschrieben.
Ausführungsbeispiele der vorliegenden Erfindung werden im Folgenden anhand der beigefügten Zeichnungen näher erläutert. Es zeigen:
Figur 1a:
eine schematische, nicht maßstabsgetreue Darstellung einer Ausführungsform des erfindungsgemäßen Bestrahlungsmoduls in der Ansicht von unten;
Figur 1b:
das Bestrahlungsmodul aus Figur 1a in einer Seitenansicht gemäß Pfeil B;
Figur 1c
das Bestrahlungsmodul aus Figur 1a in einer Seitenansicht gemäß Pfeil C;
Figur 2
einen Schnitt entlang der Linie II - II in Figur 1a;
Figur 3
eine schematische, nicht maßstabsgetreue Seitenansicht eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung für die diskontinuierliche Bestrahlung;
Figur 4
eine schematische, nicht maßstabsgetreue Seitenansicht eines Ausführungsbeispiels der erfindungsgemäßen Vorrichtung für die kontinuierliche Bestrahlung.
Der Aufbau des erfindungsgemäßen Bestrahlungsmoduls 10 geht exemplarisch aus dem in den Figuren 1 und 2 dargestellten Ausführungsbeispiel hervor. Die Komponenten sind auf einer Grundplatte 11, montiert. Die Grundplatte 11 besteht vorzugsweise aus einem Metall wie Aluminium oder Stahl oder einer Metalllegierung und weist auf ihrer Rückseite die notwendigen elektrischen Anschlüsse 13 sowie ggf. eine Halterung 12 auf. Ferner können dort Vorrichtungen zum Einbau des Bestrahlungsmoduls 10 in Bestrahlungsanlagen und Vorrichtungen zur Bewegung des Bestrahlungsmoduls 10 vorgesehen sein. Auf der Grundplatte sind ferner die Starter und Anschlüsse für UV-Strahlungsquellen 18 montiert. Außerdem befinden sich hier Ein- und Ausgang für eine Lüftung 16 der Strahlungsquellen 18. Für diesen Zweck sind bspw. Querstromlüfter geeignet.
Auf der Vorderseite der Grundplatte 11 ist ferner ein Rahmen 14 vorgesehen, innerhalb dessen die Lüftung 16 und die UV-Strahlungsquellen 18 eingebaut sind. Geeignete UV-Strahlungsquellen 18 sind bspw. Leuchtstoffröhren, wie sie als Bräunungslampen in Solarien verwendet werden. Derartige Leuchtstoffröhren weisen in der Regel standardisierte Abmessungen auf, bspw. eine Leuchtlänge von 2 m bei einem Durchmesser von 25 bis 45 cm. Sie können ferner mit Reflektoren versehen sein, die einen Abstrahlwinkel von bspw. ca. 160° aufweisen. Diese Leuchtstoffröhren werden bei einer Betriebsspannung von 220 V betrieben.
Der Rahmen 14 mit der Lüftung 16 und den UV-Strahlungsquellen 18 ist nach drei Seiten luftdicht von einer UV-durchlässigen Platte 15, bspw. aus Kunststoff, wie bspw. Polymethylmethacrylat oder Polycarbonat, umschlossen. Die Oberfläche der Platte 15 bildet die Vorderseite des Bestrahlungsmoduls 10, wie es der die Strahlungsrichtung symbolisierende Pfeil A verdeutlicht.
Ein oder mehrere Bestrahlungsmodule 10 werden in ein abgeschlossenes Bestrahlungsgefäß eingebaut. Das Bestrahlungsgefäß umschließt einen Bestrahlungsraum, der von dem mindestens einen Bestrahlungsmodul beleuchtet wird.
Figur 3 zeigt schematisch ein Ausführungsbeispiel für eine erfindungsgemäße Vorrichtung 10 zur diskontinuierlichen Bestrahlung von Substraten. Ein mit Standfüßen 21 versehener rechteckiger Behälter von 2,10 m Länge, 80 cm Breite und 80 cm Höhe wurde mit vier 1,50 m langen, mit 10 planar angeordneten Leuchtstoffröhren 18 versehenen Bestrahlungsmodulen 10 ausgerüstet. Die Bestrahlungsmodule 10 wurden an Rahmen des Behälters am Boden, den Seiten und dem Deckel befestigt. Das obere Bestrahlungsmodul kann mit dem Deckel des Behälters angehoben werden. Die Kühlung der Leuchtstoffröhren 18 in den Bestrahlungsmodulen 10 erfolgte durch Querstromlüfter.
Die Oberseiten der Platten 15 der Bestrahlungsmodule definieren und umschließen einen rechteckigen Bestrahlungsraum 22 von 1,60 m Länge, 60 cm Breite und 40 cm Höhe. Im Bestrahlungsraum 22 befinden sich ferner vier seitlich angeordnete Rohre 23 mit jeweils 40 Bohrungen zum Einlassen von Stickstoff.
Eine derartige Vorrichtung 20 kann wie folgt betrieben werden. Die beschichteten Substrate werden in den Bestrahlungsraum 22 eingebracht. Danach wird der Bestrahlungsraum 22 mit Inertgas geflutet. Bei Erreichen einer Sauerstoffkonzentration von 5 %, vorzugsweise 1 %, besonders bevorzugt 0,1 %, wird die Bestrahlung gestartet und nach Aushärtung der Schicht beendet. Die Dauer der Bestrahlung beträgt typischerweise etwa 30 bis 300 s. In dieser Ausführungsform eignet sich die erfindungsgemäße Vorrichtung insbesondere zur Härtung von Beschichtungen auf Formkörpern. Sie ermöglichen die Anwendung der Strahlungshärtung z. Bsp. im handwerklichen Bereich für Produktion und Reparatur. Vorteilhaft ist hierbei die moderate elektrische Anschlussleistung der Module, die typischerweise bei 1 bis 2 kW liegt.
In einem Versuch wurde als Formkörper eine PKW-Felge mit einem strahlungshärtenden Spritzlack allseitig beschichtet. Die Felge wurde am Ventilloch mit einem Halter versehen und im Bestrahlungsraum 22 aufgehängt. Nach Schließen des Bestrahlungsraums 22 wurde dieser mit Stickstoff geflutet. Die Konzentration de Sauerstoffs wurde mit einem Sensor im Bestrahlungsraum 22 gemessen und angezeigt. Nach 2 min Fluten bei einem Stickstoffstrom von 60 m3/h wurde eine Sauerstoffkonzentration von unter 0,1 % erreicht. Nach Erreichen dieses Wertes wurde der Stickstoffstrom auf 10 m3/h verringert und die Bestrahlung gestartet. Nach einer Bestrahlungszeit von 2 min wurde der Stickstoff abgestellt und die Vorrichtung 20 geöffnet. Die Lackierung auf der Felge war an allen Stellen gehärtet und konnte auch unter manuellem Druck nicht beschädigt werden.
Mit den beschriebenen Strahlungsmodulen 10 kann aber auch ein Bestrahlungstunnel 30 aufgebaut werden, wie er in Figur 4 schematisch dargestellt ist. In einem solchen Bestrahlungstunnel 30 sind die Bestrahlungsmodule 10 an den Seiten und am der Oberseite so angeordnet, dass sie einen tunnelförmigen Bestrahlungsraum 32 definieren und umschließen. Darin können z. Bsp. über Förderzeuge durchlaufende, beschichtete Substrate während des Durchlaufes gehärtet werden. Werden bspw. zwei Bestrahlungsmodule in Reihe angeordnet, kann die Leuchtlänge des Bestrahlungsraums 32 bis zu 4 m betragen. Erfolgt die Härtung innerhalb von etwa 30 bis 300 s, sind Durchlaufgeschwindigkeiten von 0,8 bis 8 m/min möglich. Zu beachten ist dabei, dass während des Durchlaufs und der Bestrahlung die Sauerstoff-Restkonzentration ausreichend niedrig sein sollte. Der durch die Bewegung des zu bestrahlenden Formkörpers in die Bestrahlungszone eingetragene Luftsauerstoff sollte den Grenzwert von 5 % nicht überschreiten. Deshalb sind vorteilhafterweise vor allem in Förderrichtung vor der Bestrahlungszone Schleusen und/oder geeignete Düsen zur Einspeisung von Inertgas, vorzugsweise Stickstoff, vorgesehen, die das Einwirbeln von Luft verhindern.

Claims (14)

  1. Vorrichtung (20, 30) zur Härtung strahlungshärtbarer Beschichtungen, welche mindestens eine mit mehreren UV-Strahlungsquellen (18) versehene Bestrahlungskammer (22, 32) aufweist, dadurch gekennzeichnet, dass mehrere UV-Strahlungsquellen (18) eng nebeneinander angeordnet und zu ein oder mehreren Bestrahlungsmodulen (10) zusammen geschaltet sind, wobei die Beleuchtungsstärke innerhalb eines Bestrahlungsmoduls (10) und/oder zwischen mindestens zwei Bestrahlungsmodulen (10) räumlich variabel ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass als UV-Strahlungsquellen Lampen, vorzugsweise Leuchtstoffröhren (18) mit einer Leistung von 0,1 bis 10 W pro cm Strahlerlänge, vorzugsweise 1 W pro cm Strahlerlänge, vorgesehen sind.
  3. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, das die UV-Strahlungsquellen (18) ein kontinuierliches Emissionsspektrum zwischen 200 und 450 nm, vorzugsweise zwischen 300 und 450 nm aufweisen.
  4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass eine Lüftung (16) zur Kühlung der Oberfläche der UV-Strahlungsquellen (18) vorgesehen ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest mehrere Strahlungsquellen (18) Reflektoren, vorzugsweise mit Abstrahlwinkeln von 160° aufweisen.
  6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens ein Bestrahlungsmodul (10) um mindestens eine seiner Achsen bewegbar in der Vorrichtung (20, 30) angeordnet ist.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtungsstärke mindestens eines Bestrahlungsmoduls (10) zeitlich variabel einstellbar ist.
  8. Bestrahlungsmodul (10), insbesondere für eine Vorrichtung (20, 30) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es mehrere UV-Strahlungsquellen (18) aufweist, die eng nebeneinander angeordnet und zusammen geschaltet sind, wobei die Beleuchtungsstärke innerhalb des Bestrahlungsmoduls (10) räumlich variabel ist.
  9. Bestrahlungsmodul nach Anspruch 8, dadurch gekennzeichnet, dass als UV-Strahlungsquellen Lampen, vorzugsweise Leuchtstoffröhren (18) mit einer Leistung von 0,1 bis 10 W pro cm Strahlerlänge, vorzugsweise 1 W pro cm Strahlerlänge, vorgesehen sind.
  10. Bestrahlungsmodul nach einem der Ansprüche 8 bis 9, dadurch gekennzeichnet, das die UV-Strahlungsquellen (18) ein kontinuierliches Emissionsspektrum zwischen 200 und 450 nm, vorzugsweise zwischen 300 und 450 nm aufweisen.
  11. Bestrahlungsmodul nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass eine Lüftung (16) zur Kühlung der Oberfläche der UV-Strahlungsquellen (18) vorgesehen ist.
  12. Bestrahlungsmodul nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass zumindest mehrere Strahlungsquellen (18) Reflektoren, vorzugsweise mit Abstrahlwinkeln von 160° aufweisen.
  13. Bestrahlungsmodul nach einem der Ansprüche 8 bis 12, dadurch gekennzeichnet, dass es um mindestens eine seiner Achsen bewegbar in der Vorrichtung aufnehmbar ist.
  14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beleuchtungsstärke mindestens eines Bestrahlungsmoduls (10) zeitlich variabel einstellbar ist.
EP03020307A 2002-09-13 2003-09-09 Vorrichtung zur Härtung UV-strahlungshärtbarer Beschichtungen Expired - Lifetime EP1400287B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242719 2002-09-13
DE10242719A DE10242719A1 (de) 2002-09-13 2002-09-13 Vorrichtung zur Härtung strahlungshärtbarer Beschichtungen

Publications (2)

Publication Number Publication Date
EP1400287A1 true EP1400287A1 (de) 2004-03-24
EP1400287B1 EP1400287B1 (de) 2006-12-06

Family

ID=31724756

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03020307A Expired - Lifetime EP1400287B1 (de) 2002-09-13 2003-09-09 Vorrichtung zur Härtung UV-strahlungshärtbarer Beschichtungen

Country Status (6)

Country Link
US (1) US7089686B2 (de)
EP (1) EP1400287B1 (de)
AT (1) ATE347452T1 (de)
CA (1) CA2440574A1 (de)
DE (2) DE10242719A1 (de)
ES (1) ES2277008T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106739465A (zh) * 2016-12-19 2017-05-31 上海舜哲机电科技有限公司 一种led芯片

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004029667A1 (de) 2003-09-04 2005-04-07 Cetelon Lackfabrik Walter Stier Gmbh & Co.Kg Verfahren und Vorrichtung zur Härtung einer strahlenhärtbaren Beschichtung sowie Bestrahlungskammer
GB2407369B (en) * 2003-10-07 2007-09-12 Uv Tek Products Ltd Photo reactive thermal curing unit and apparatus therefor
DE102007012897A1 (de) 2007-03-17 2007-11-29 Daimlerchrysler Ag UV-Belichtungsraum
DE102008046548B4 (de) * 2008-09-10 2012-12-06 Daimler Ag Belichtungskammer für die Aushärtung strahlungshärtender Beschichtungen sowie Härtungsanlage für Kraftfahrzeugkarosserien
KR101860631B1 (ko) * 2015-04-30 2018-05-23 시바우라 메카트로닉스 가부시끼가이샤 기판 처리 장치 및 기판 처리 방법
US11142012B2 (en) * 2016-05-25 2021-10-12 Xerox Corporation Removable dryer module for a printing apparatus
KR102179827B1 (ko) * 2018-08-06 2020-11-17 곽주현 경화 장치
US11619399B1 (en) 2021-09-22 2023-04-04 William H. White Systems and methods for direct use of solar energy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767457A (en) * 1971-11-19 1973-10-23 Grace W R & Co Method of coating rigid cores
US4095113A (en) * 1975-08-26 1978-06-13 Friedrich Wolff Apparatus for producing ultraviolet radiation
US4490410A (en) * 1983-05-20 1984-12-25 Showa Highpolymer Co., Ltd. Method of affixing a decorative pattern to a stock or a molded component
FR2598921A1 (fr) * 1986-05-26 1987-11-27 Dixwell Dispositif et procede de phototherapie
US5387801A (en) * 1993-06-10 1995-02-07 Uvp, Inc. Multiple wavelength light source
DE29605835U1 (de) * 1996-03-29 1997-07-24 Lohmann-Werke GmbH & Co, 33604 Bielefeld Bestrahlungsgerät
DE19611763A1 (de) * 1996-03-26 1997-10-02 Uwe Unterwasser Electric Gmbh Bestrahlungsgerät
DE19810201A1 (de) * 1998-03-10 1999-09-16 Thomas Danhauser Kombinations-Bräunungsstuhl

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4143278A (en) * 1977-05-16 1979-03-06 Geo. Koch Sons, Inc. Radiation cure reactor
DE4133290A1 (de) 1991-10-08 1993-04-15 Herberts Gmbh Verfahren zur herstellung von mehrschichtlackierungen unter verwendung von radikalisch und/oder kationisch polymerisierbaren klarlacken
JP3150746B2 (ja) 1992-03-06 2001-03-26 大阪酸素工業株式会社 立体構造物の表面に樹脂被膜を形成するための装置
IL113904A0 (en) * 1994-06-10 1995-08-31 Johnson & Johnson Vision Prod Mold clamping and precure of a polymerizable hydrogel
CA2220108A1 (en) 1995-05-04 1996-11-07 Nolle Gmbh Apparatus for hardening a layer on a substrate
US5655312A (en) * 1995-10-02 1997-08-12 Fusion Uv Systems, Inc. UV curing/drying apparatus with interlock
US5634402A (en) * 1995-10-12 1997-06-03 Research, Incorporated Coating heater system
US5713138A (en) * 1996-08-23 1998-02-03 Research, Incorporated Coating dryer system
DE19957900A1 (de) 1999-12-01 2001-06-07 Basf Ag Lichthärtung von strahlungshärtbaren Massen unter Schutzgas

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3767457A (en) * 1971-11-19 1973-10-23 Grace W R & Co Method of coating rigid cores
US4095113A (en) * 1975-08-26 1978-06-13 Friedrich Wolff Apparatus for producing ultraviolet radiation
US4490410A (en) * 1983-05-20 1984-12-25 Showa Highpolymer Co., Ltd. Method of affixing a decorative pattern to a stock or a molded component
FR2598921A1 (fr) * 1986-05-26 1987-11-27 Dixwell Dispositif et procede de phototherapie
US5387801A (en) * 1993-06-10 1995-02-07 Uvp, Inc. Multiple wavelength light source
DE19611763A1 (de) * 1996-03-26 1997-10-02 Uwe Unterwasser Electric Gmbh Bestrahlungsgerät
DE29605835U1 (de) * 1996-03-29 1997-07-24 Lohmann-Werke GmbH & Co, 33604 Bielefeld Bestrahlungsgerät
DE19810201A1 (de) * 1998-03-10 1999-09-16 Thomas Danhauser Kombinations-Bräunungsstuhl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106739465A (zh) * 2016-12-19 2017-05-31 上海舜哲机电科技有限公司 一种led芯片

Also Published As

Publication number Publication date
DE10242719A1 (de) 2004-03-18
ES2277008T3 (es) 2007-07-01
DE50305889D1 (de) 2007-01-18
ATE347452T1 (de) 2006-12-15
CA2440574A1 (en) 2004-03-13
US7089686B2 (en) 2006-08-15
EP1400287B1 (de) 2006-12-06
US20040111914A1 (en) 2004-06-17

Similar Documents

Publication Publication Date Title
DE102008014378B4 (de) Belichtungskammer für die Aushärtung von Lacken auf Bauteilen und Härtungsanlage für Kraftfahrzeugkarosserien
EP1528388B1 (de) UV-Lichtemissionsdioden als Strahlungsquelle einer Vorrichtung zur künstlichen Bewitterung von Proben
DE2332116C3 (de) Gerät zur Bestrahlung von bewegten aus einem mit einem fotohärtbaren Kunststoffilm beschichteten Substrat bestehenden Produkten während des Herstellungsprozesses
DE102004015700A1 (de) Flächige UV-Lichtquelle
EP0174351A1 (de) Verfahren und vorrichtung zum trocknen von beschichteten werkstücken durch infrarotstrahlung
EP1400287B1 (de) Vorrichtung zur Härtung UV-strahlungshärtbarer Beschichtungen
DE112010001209T5 (de) Verteilte Lichtquellen und Systeme für photoreaktives Aushärten
DE102008014269A1 (de) Verfahren und Vorrichtung zur UV-Strahlungshärtung von Substratbeschichtungen
DE10051109C1 (de) Anlage zum Strahlungshärten
DE102008046548B4 (de) Belichtungskammer für die Aushärtung strahlungshärtender Beschichtungen sowie Härtungsanlage für Kraftfahrzeugkarosserien
EP2498919B1 (de) Applikationsvorrichtung zum applizieren und bestrahlen eines durch strahlung härtbaren beschichtungsmittels
EP1512467A1 (de) Verfahren und Vorrichtung zur Härtung einer strahlenhärtbaren Beschichtung sowie Bestrahlungskammer
DE102016102187B3 (de) Vorrichtung für die Behandlung eines Substrats mit UV-Strahlung und Verwendung der Vorrichtung
DE3016437C2 (de)
EP2550497B1 (de) Anlage zum beschichten von gegenständen und aushärten der beschichtung mit elektromagnetischer strahlung
DE102009005079B4 (de) Verfahren zum Beschichten eines Bauteils sowie Beschichtungsvorrichtung
DE102006041753B4 (de) Trocknungskabine
DE69107993T2 (de) U.V.-Lichtstrahlungsvorrichtung in Lackieranlagen unter Verwendung von photopolymerisierbaren Farben.
DE102007053543B4 (de) Vorrichtung zur Bestrahlung von Elementen mit UV-Licht sowie Verfahren zu deren Betrieb
DE4109895A1 (de) Elektrodenlose leuchte und einen zugehoerigen lampenkolben
DE102018125224B4 (de) UV-LED-Leuchte zur UV-Härtung lichthärtbarer Stoffe
DE102017203351B4 (de) Vorrichtung zum Aufbringen eines mit UV-Strahlung beaufschlagten flüssigen Mediums auf ein Substrat
DE102007008964A1 (de) UV-Bestrahlungsvorrichtung
DE102022123022A1 (de) Direktdruckvorrichtung mit UV-Leuchtvorrichtung
EP2113309A1 (de) Vorrichtung zum UV-Strahlungshärten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040831

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOBOTTKA, AXEL

Inventor name: KRANNICH, HARTMUT

Inventor name: MEHNERT, REINER, DR.

Inventor name: LANGE, HERBERT

17Q First examination report despatched

Effective date: 20041019

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CETELON LACKFABRIK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50305889

Country of ref document: DE

Date of ref document: 20070118

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070306

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070306

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E001313

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070507

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277008

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20061206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070927

Year of fee payment: 5

BERE Be: lapsed

Owner name: CETELON LACKFABRIK G.M.B.H.

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070307

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20080724

Year of fee payment: 6

Ref country code: FR

Payment date: 20080808

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070910

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: HU

Payment date: 20081118

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090909

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130927

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305889

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50305889

Country of ref document: DE

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140909