[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1483625A1 - High-aperture projection lens - Google Patents

High-aperture projection lens

Info

Publication number
EP1483625A1
EP1483625A1 EP02738025A EP02738025A EP1483625A1 EP 1483625 A1 EP1483625 A1 EP 1483625A1 EP 02738025 A EP02738025 A EP 02738025A EP 02738025 A EP02738025 A EP 02738025A EP 1483625 A1 EP1483625 A1 EP 1483625A1
Authority
EP
European Patent Office
Prior art keywords
lens
meniscus
projection
group
projection lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02738025A
Other languages
German (de)
French (fr)
Inventor
Karl-Heinz Schuster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss SMT GmbH
Original Assignee
Carl Zeiss SMT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss SMT GmbH filed Critical Carl Zeiss SMT GmbH
Publication of EP1483625A1 publication Critical patent/EP1483625A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/24Optical objectives specially designed for the purposes specified below for reproducing or copying at short object distances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/143Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation for use with ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/60Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having five components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • the invention relates to a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength.
  • Photolithographic projection lenses have been used for the manufacture of semiconductor devices and other finely structured components for several decades. They serve to project patterns of photomasks or graticules, which are also referred to below as masks or reticles, onto an object coated with a light-sensitive layer with the highest resolution on a reduced scale.
  • phase-shifting masks require obscuration-free systems, ie systems without shadowing in the image field. Systems without shadowing in the image field are in the Microlithography generally to be preferred, even if systems with obscuration with otherwise excellent optical properties are available (for example DE 196 39 586 corresponding to US 6,169,627 B1).
  • NA 0.85
  • limits are placed on the angular capacity, especially of the near-image lenses.
  • the object of the invention is to create a projection objective which has a very high numerical aperture on the image side, an image field which is sufficiently large for practical use in wafer steppers or wafer scanners, and a good correction state.
  • a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength has a multiplicity of optical elements which are arranged along an optical axis and one which is arranged at a distance in front of the image plane System cover with a cover diameter.
  • the closest optical group with refractive power to the image plane is a plano-convex group with an essentially spherical entrance surface and an im substantially flat exit surface.
  • the exit surface is the last optical surface of the system and should be arranged in the vicinity of a substrate to be exposed, but without touching it. If necessary, an optical contact can be imparted via an immersion medium, for example a liquid.
  • the plano-convex group has a diameter that is at least 50% of the diaphragm diameter.
  • the diameter of the plano-convex group can preferably even be more than 60% or more than 70% of the diaphragm diameter.
  • the system aperture in the sense of this application is the area near the image plane in which the main beam of the image intersects the optical axis.
  • a diaphragm for limiting and possibly adjusting the aperture used can be arranged in the area of the system diaphragm.
  • the plano-convex group is formed by a single, one-piece plano-convex lens. It is also possible to design the plano-convex group in the form of a divided plano-convex lens, the parts of which are preferably pressed against one another. The division can take place along a flat or curved division surface. A division in particular makes it possible to produce the part of the plano-convex group close to the image field, in which particularly high radiation energy densities occur, from a particularly radiation-resistant material, for example as calcium fluoride, while less radiation-exposed areas can be made from another material, for example synthetic quartz glass. A plane-parallel end plate can optionally be provided as the next element of the plano-convex group.
  • the plano-convex group is preferably blown onto the preceding optical element.
  • the radii to the air gap should be curved this way be that there is no total reflection.
  • the angular load preferably remains smaller than sin u ' from 0.85 to 0.95.
  • the system diaphragm it is particularly advantageous if only lenses with a positive refractive power are arranged between the system diaphragm and the image plane, if appropriate plus one or more plane-parallel, transparent plates.
  • at least one biconvex positive lens can be arranged between the system diaphragm and the plano-convex group. At least two, in particular exactly two, biconvex positive lenses are more favorable.
  • a plano-convex meniscus is preceded by two positive lenses, which provide the essential part of the system power. Because they sit close to the system panel and can work in large diameters, a very small relative field load can also be achieved here.
  • the last lens group arranged between the system diaphragm and the image plane has a maximum of four optical elements with refractive power, ideally only three lenses, which are preferably positive lenses in each case.
  • Lenses with a negative refractive power can be provided as long as their refractive power is low compared to the total refractive power of the lens group arranged between the system aperture and the image plane.
  • Plane-parallel plates can also be provided.
  • a refractive power distribution that is favorable for a high numerical aperture on the image side is characterized in that the last lens group arranged between the system aperture and the image plane advantageously has a focal length that is less than 20% or 17%, in particular less than 15%, of the overall length of the projection lens is.
  • the axial distance between the object plane and the optically conjugate image plane is referred to as the overall length.
  • the distance between the system diaphragm and the image plane is preferably less than 25%, in particular less than 22% of the overall length and / or less than approximately 95%, 90% or 86% of the diaphragm diameter. Overall, a very close-to-image position of the system cover is favorable.
  • the aperture can be real or equivalent to the conjugate location of the real aperture in the presence of an intermediate image.
  • Projection lenses according to the invention can be catadioptric or dioptric and should depict without obscuration. Purely refractive, ie dioptric projection lenses are preferred, in which all optical components with refractive power consist of transparent material.
  • One example is a one-waist system with a stomach close to the object, a stomach close to the image and an intermediate waist, in the area of which the beam diameter is preferably less than approximately 50% of the maximum beam diameter in the area of one of the bellies.
  • the systems can be set up so that all transparent optical elements are made of the same material.
  • synthetic quartz glass is used for all lenses.
  • the synthetic quartz glass can be replaced by a crystal material, eg calcium fluoride.
  • high-aperture projection objectives in particular also purely refractive projection objectives, are possible, in which the numerical aperture NA> 0.85 on the image side.
  • the projection objectives are also suitable for immersion lithography, in which the space between the exit surface of the objective and the substrate is filled with an immersion fluid with a suitable refractive index and sufficient transmission for the wavelength used.
  • Suitable immersion liquids can, for example, mainly contain the elements H, F, C or S. Deionized water can also be used.
  • the invention makes it possible to use lenses with a very large image field diameter that is sufficient for practical lithography, which in preferred embodiments is larger than approx. 10 mm, in particular larger than approx. 20 mm and / or more than 1 %, in particular more than 1.5% of the overall length of the projection lens and / or more than 1%, in particular more than 5% of the largest lens diameter.
  • Preferred projection objectives are distinguished by a number of favorable constructive and optical features which, alone or in combination with one another, are conducive to the suitability of the objective for high-resolution microlithography, in particular in the optical near field and for immersion lithography.
  • At least one aspherical surface is preferably arranged in the area of the system cover.
  • several surfaces with aspheres come closely behind the diaphragm.
  • at least one double-aspherical lens which is preferably a biconvex lens, can be provided between the system aperture and the image plane.
  • the last optical surface before the system diaphragm and the first optical surface after the system diaphragm are aspherical.
  • opposite aspherical surfaces with curvature pointing away from the diaphragm can be provided here.
  • the high number of aspherical surfaces in the area of the system diaphragm is favorable for the correction of the spherical aberration and has a favorable effect on the setting of the isoplanasia.
  • At least one meniscus lens with a concave surface on the object is preferably provided in the area immediately in front of the system diaphragm.
  • at least two such menisci, which follow one another can be favorable, which can have positive or negative refractive power.
  • a group of two menisci of this type is preferred, in which a meniscus with a negative refractive power and a meniscus with a positive one Refractive power follows.
  • the negative refractive power is preferably so great that a slight cross-sectional narrowing (auxiliary waist) can occur in the beam.
  • a meniscus group with a positive meniscus and a negative meniscus behind it, in which the centers of curvature of all optical surfaces are on the object or reticle side, can also be advantageous for other projection lenses, in particular directly in front of a diaphragm in the area, regardless of the other features of the invention
  • the aperture can be a physical aperture for changing the bundle cross-section or a conjugated aperture.
  • At least one meniscus lens with a negative refractive power and a concave surface directed toward the image is arranged between the waist and the system diaphragm.
  • at least two consecutive meniscus lenses of this type, whose centers of curvature lie on the image side are often particularly favorable.
  • the refractive power of the first meniscus on the object side is at least 30% stronger than that of the subsequent meniscus on the image side of the meniscus group.
  • At least one positive meniscus lens with a concave surface on the object side is arranged between the waist and the system diaphragm in the vicinity of the waist.
  • several, for example two, successive lenses of this type can be provided instead of such a meniscus lens.
  • Embodiments are particularly advantageous in which at least one meniscus lens with a concave surface on the object side and behind at least one between the waist and the system diaphragm in this order a meniscus lens with a concave surface on the image side is arranged.
  • Two consecutive menisci of the respective curvatures are preferably provided.
  • the meniscus lenses facing the waist preferably have positive refractive powers, the menisci facing the image plane preferably have negative refractive powers. In the area between these lenses or lens groups, there is therefore a change in the position of the center of curvature of menisci.
  • a plurality of negative lenses are preferably arranged one after the other in the region of the waist, in preferred embodiments there are at least two, preferably three negative lenses. These bear the main burden of the Petzval correction.
  • a lens group with a strong positive refractive power which represents the first belly of the beam guidance, preferably follows behind this input group.
  • at least one meniscus lens with positive refractive power and concave surfaces on the image side can be favorable in the area of large beam heights in the vicinity of the object plane.
  • the center of curvature of which lies on the image side, the exit side facing the image preferably has a relatively strong curvature, the radius of which can be, for example, less than 50% of the overall length of the projection objective.
  • 1 is a lens section through an embodiment of a refractive projection objective which is designed for a 193 nm working wavelength.
  • optical axis denotes a straight line through the centers of curvature of the spherical optical components or through the axes of symmetry of aspherical elements.
  • Directions and distances are described as image-side, wafer-side or image-wise when they are in the direction of the If the image plane or the substrate to be exposed there is directed and as the object side, reticle side or object side, if they are directed towards the object in relation to the optical axis, the object is a mask (reticle) with the pattern of an integrated circuit in the examples
  • the image is formed in the examples on a wafer serving as a substrate and serving with a photoresist layer, but other substrates are also possible, for example elements for liquid crystal displays or substrates for optical he grating
  • the focal lengths given are focal lengths with respect to air.
  • FIG. 1 shows a characteristic structure of a purely refractive reduction objective 1 according to the invention. It serves to insert a pattern of a reticle or the like into an object plane 2 image an image plane 3 conjugated to the object plane on a reduced scale without obscurations or shadowing in the image field, for example on a 5: 1 scale. It is a rotationally symmetrical one-waist system, the lenses of which are arranged along an optical axis 4 which is perpendicular to the object and image plane and form an abdomen 6 on the object side, an abdomen 8 on the image side and an intermediate waist 7. A small auxiliary waist 9 is formed within the second belly 8 close to the system cover 5.
  • the system diaphragm 5 is in the near-image area of large beam diameters.
  • the lenses can be divided into several successive lens groups with specific properties and functions.
  • a first lens group LG1 following the object plane 2 at the input of the projection lens has negative refractive power overall and serves to expand the beam coming from the object field.
  • a subsequent second lens group LG2 with an overall positive refractive power forms the first belly 6 and brings the beam together again in front of the subsequent waist 7.
  • a third lens group LG3 with negative refractive power is followed by a lens group 4 consisting of positive meniscus lenses with positive refractive power, followed by a fifth lens group LG5 consisting of negative meniscus lenses with negative refractive power.
  • the subsequent lens group LG6 with positive refractive power leads the radiation to the system aperture 5.
  • the first lens group LG1 opens with three negative lenses 11, 12, 13 which, in this order, have a biconcave negative lens 11 with an aspherical entry side, a negative meniscus lens 12 with an image-side center of curvature and an aspherical entry side and a negative meniscus lens 13 with an object side
  • Center of curvature and aspherical exit side includes.
  • at least one aspherical surface should be provided on at least one of the first two lenses 11, 12 in order to limit the generation of aberrations in this area.
  • an aspherical surface is provided on each of the three negative lenses.
  • the second lens group LG2 with a small air gap behind the last lens 13 of the first lens group LG1, has a positive meniscus lens 14 with a center of curvature on the object side, a further positive meniscus lens 15 with an object side
  • the only slightly curved entry side of the lens 15, the likewise only slightly curved exit side of the lens 17 and the exit side of the last meniscus lens 20 are aspherical.
  • This second lens group LG2 represents the first belly 6 of the objective.
  • a special feature is the positive meniscus lens 16 arranged at the largest diameter, the centers of curvature of which lie on the image side.
  • the radius of the exit surface of this lens 16 has a value that is less than half the object image distance.
  • This lens group is used primarily for Petzval correction, distortion telecentricity correction and image field correction outside of the main sections.
  • the first negative lens 20 of the third group is preferably a strongly biconcave lens, so that the main waist 7 opens with strongly curved surfaces.
  • the fourth lens group LG4 following the waist 7 consists of two positive meniscus lenses 23, 24 with concave surfaces on the image side, the exit side of the meniscus lens 23 on the input side being aspherical, the other surfaces being spherical. In other embodiments, only a single positive meniscus of corresponding curvature can be provided at this point.
  • the subsequent fifth lens group LG5 also has two meniscus lenses 25, 26, but these each have negative refractive power and the concave surfaces are directed toward the image field 3. If necessary, only a negative meniscus can be provided at this point, the center of curvature of which lies on the wafer side. It has turned out to be favorable if the negative refractive power of the negative meniscus 25 on the object side is at least 30% stronger than that of the subsequent meniscus 26.
  • Such a group with at least one negative meniscus is a central correction element for the function of the one-waist system, to elegantly correct off-axis image errors. In particular, this enables a compact design with relatively small lens diameters.
  • the sixth lens group LG6 begins with a sequence of positive lenses 27, 28, 29, 30, it having turned out to be advantageous if at least two of these lenses are biconvex lenses, such as the lenses 27, 28 which follow one another immediately at the input of the sixth lens group each spherical lens surfaces.
  • the biconvex lenses 27, 28 are followed by a weakly positive meniscus lens 29 with a concave surface on the image side.
  • the sixth lens group LG6 immediately in front of the system diaphragm 5 there is a meniscus group with two meniscus lenses 30, 31, the centers of curvature of which are all on the reticle or object side.
  • a corresponding meniscus lens with positive or negative refractive power could also be provided, in particular in the case of lenses with lower apertures.
  • the group of two 30, 31 shown is preferred, the meniscus lens 30 on the input side preferably having positive refractive power and the subsequent meniscus lens 31 preferably having negative refractive power.
  • their negative refractive power is so great that a slight constriction in the form of an auxiliary waist 9 occurs in the beam path. In this way it can be achieved that oblique spherical tangential to oblique spherical sagital can be balanced out favorably.
  • the seventh lens group LG7 arranged between system aperture 5 and image plane 3 represents a further special feature of the invention Projection lenses. Particularly in this area, special measures are required to master the surface loading of the optical surfaces overall in such a way that low-aberration imaging can be achieved with sufficient transmission of the overall lens. For this purpose, it should be ensured between the aperture 5 and the wafer 3 that no apertures are formed in the component that reach an aperture close to 1 as a component against air. A significant contribution to achieving this goal is made here in that a plano-convex lens 34 with a spherical entrance surface and a flat exit surface is arranged as the last optical element directly in front of the image plane 3.
  • the aim should therefore be the longest possible radius with a high opening of this, preferably spherical, entry surface. This long radius is desirable because it reduces the field load on the entry surface. The longer the radius, the smaller the relative field and thus the induced field aberrations.
  • the entrance surface can also be aspherical.
  • the near-image plano-convex group which is formed here by a single, one-piece lens element 34, has a refractive effect. This can be seen from the fact that the entrance surface is not arranged concentrically to the center of the image field because the radius differs from the lens thickness. Axially elongated lenses of this type are preferred, in which the center of curvature of the entrance surface lies within the lens. Plano-convex groups or plano-convex lenses of this type therefore differ significantly from hemispherical plano-convex lenses in which the radius corresponds essentially to their thickness and which are used, for example, in microscopy to improve the coupling of the light into the microscope objective and themselves may not have any refractive properties.
  • the plano-convex meniscus 34 is preceded by two very large positive lenses 32, 33, which provide the essential contribution to the system power.
  • the fact that they sit close behind the diaphragm in the area of large beam diameters also minimizes the relative field load here.
  • the example thus shows a very simple and efficient design of a lithographic lens suitable for the highest apertures with regard to the area behind the system aperture.
  • the plano-convex meniscus 34 picks up the convergent tufts coming from the positive lenses 32, 33 in air or another suitable gaseous medium within the projection lens with a low refractive power in order to pass them on to the light-sensitive layer of the substrate.
  • Embodiments are therefore favorable in which there are only positive lenses between the aperture 5 and the wafer, it also being possible for one or more plane-parallel plates to be provided in addition.
  • the lowest possible number of optical surfaces in this area is also advantageous, since each surface causes reflection losses even with good anti-reflective coating.
  • the number of lenses should be four or fewer here, and again plane-parallel plates can optionally be provided.
  • surfaces with aspheres should be provided in the area of the diaphragm, particularly close behind it. These can face each other in a lens, as is the case with the biconvex, double-aspherical positive lens 32. It is also advantageous if an aspherical surface is provided both directly in front of the diaphragm plane and immediately behind it. In the example, these are the exit surface of the negative meniscus 31 and the entry surface of the biconvex positive lens 32.
  • the high number of aspheres in the area around the system aperture 5 serves in the example above all to correct the spherical aberration (Zemike coefficients Z9, Z16, Z25, Z26, Z36, Z49) and the setting of the isoplanasia, i.e. the correction of the aperture-related imaging scale.
  • Table 1 summarizes the specification of the design in a known manner in tabular form.
  • Column 1 gives the number of a refractive or otherwise distinguished surface
  • column 2 the radius r of the surface (in mm)
  • column 3 the distance d of the surface from the following surface (in mm), which is referred to as thickness
  • column 4 the material of the optical components
  • column 5 the refractive index or the refractive index of the material of the component, which follows the entry surface.
  • Column 6 shows the usable free radii or half the free diameter of the lenses (in mm).
  • p (h) [((1 / r) h 2 ) / (1 + SQRT (1 - (1-fK) (1 / r) 2 h 2 )] + C1 * h 4 + C2 * h 6 +. ...
  • the numerical aperture on the image side is 1.1.
  • the lens has an overall length (distance between image plane and Object level) of 1297mm. With an image size of 22mm, a light guide value (product of numerical aperture and image size) of 24.1 mm is achieved.
  • the image-side working distance, ie the distance between the flat exit surface of the last optical element 34 and the image plane 3 is not listed separately. For example, it can be 20 to 50nm. This makes the projection lens suitable for near-field lithography.
  • the immersion medium has essentially the same refractive index as the last optical element of the objective (which consists, for example, of glass or crystal), the solid is shortened to achieve a greater distance from the image plane and the resulting larger space is created by the immersion medium, e.g. deionized water filled. If the refractive index of the immersion medium deviates from that of the last optical component, both thicknesses are matched to one another as best as possible.
  • a spherical post-correction is advantageous, which can be carried out, for example, with the aid of suitable manipulators on one or more lens elements, for example by adjusting the air gaps. It may also be favorable to easily modify the design shown here as an example.
  • the example presented offers further development possibilities in the direction of a higher aperture and / or a smaller number of interfaces.
  • some lenses that are adjacent in pairs can be combined to form a single lens in order to reduce the number of interfaces by two.
  • the lenses 23 and 24, the lenses 18 and 19, the lenses 13 and 14, the lenses 26 and 27 and / or the lenses 11 and 12 can each be combined to form a lens.
  • aspherical surfaces must be installed or modified.
  • a combination of lenses is especially useful for shorter wavelengths, e.g. 157nm cheap, where anti-reflective coating and surface roughness of lens surfaces can be problematic.
  • a further positive lens behind the diaphragm can be favorable at the highest apertures in order to introduce new aberrations with as few apertures as possible when the apertures are increased.
  • the advantages of the invention can be used not only with purely refractive projection lenses, but also with catadioptric projection lenses, in particular those that work with geometric or physical (polarization-selective) beam splitting. Special features are in the structure and function in the area of the near-system screen and between this and the picture plane.
  • the upstream lens parts which in the case of catadioptric projection lenses comprise at least one imaging mirror, should at least provide an overcorrection of the longitudinal color error in order to correct the corresponding undercorrection of the last lens group compensate.
  • a Petzval overcorrection should preferably be provided in order to provide a lead for the Petzval undercorrection of the last lens group.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

The invention relates to a purely refractive high aperture projection lens comprising a plurality of optical elements and a system shutter (5) arranged at a distance from the image plane. The optical element nearest to the image plane (3) of the projection lens is a plane-convex lens (34) having an incident surface which is essentially spherical and an exit surface which is essentially even. The size of the diameter of the plane-convex lens is at least 50 % of the size of the shutter diameter of the system shutter (5). Preferably, only positive lenses (32, 33, 34) are arranged between the system shutter (5) and the image plane (3). Said optical system enables high-aperture imaging at NA ≥ 0.85, optionally at NA ≥ 1.

Description

Beschreibung Projektionsobjektiv höchster Apertur Description Projection lens with the highest aperture
Die Erfindung bezieht sich auf ein Projektionsobjektiv zur Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in die Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegebenen Arbeitswellenlänge.The invention relates to a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength.
Photolithographische Projektionsobjektive werden seit mehreren Jahrzehnten zur Herstellung von Halbleiterbauelementen und anderen fein strukturierten Bauteilen verwendet. Sie dienen dazu, Muster von Photomasken oder Strichplatten, die nachfolgend auch als Masken oder Retikel bezeichnet werden, auf einen mit einer lichtempfindlichen Schicht beschichteten Gegenstand mit höchster Auflösung in verkleinerndem Maßstab zu projizieren.Photolithographic projection lenses have been used for the manufacture of semiconductor devices and other finely structured components for several decades. They serve to project patterns of photomasks or graticules, which are also referred to below as masks or reticles, onto an object coated with a light-sensitive layer with the highest resolution on a reduced scale.
Zur Erzeugung immer feinerer Strukturen in der Größenordnung 100nm oder darunter tragen vor allem drei parallel verlaufende Entwicklungen bei. Erstens wird versucht, die bildseitige numerische Apertur (NA) des Projektionsobjektivs über die derzeit erzielbare Werte hinaus in den Bereich von NA = 0,8 oder darüber zu vergrößern. Zweitens werden immer kürzere Arbeitswellenlängen von Ultraviolettlicht verwendet, vorzugsweise Wellenlängen von weniger als 260nm, beispielsweise 248nm, 193nm, 157nm oder darunter. Schließlich werden noch andere Maßnahmen zur Auflösungsvergrößerung genutzt, beispielsweise phasenschiebende Masken und/oder schräge Beleuchtung. Insbesondere die Verwendung phasenschiebender Masken erfordert obskurationsfreie Systeme, d.h. Systeme ohne Abschattungen im Bildfeld. Systeme ohne Abschattungen im Bildfeld sind in der Mikrolithographie generell zu bevorzugen, auch wenn Systeme mit Obskuration mit ansonsten hervorragenden optischen Eigenschaften verfügbar sind (z.B. DE 196 39 586 entsprechend US 6,169,627 B1 ).Three parallel developments contribute to the generation of ever finer structures of the order of 100 nm or less. First, an attempt is made to increase the numerical aperture (NA) of the projection objective on the image side beyond the currently achievable values in the range of NA = 0.8 or above. Secondly, ever shorter working wavelengths of ultraviolet light are used, preferably wavelengths of less than 260 nm, for example 248 nm, 193 nm, 157 nm or less. Finally, other measures to increase the resolution are used, for example phase-shifting masks and / or oblique lighting. In particular, the use of phase-shifting masks requires obscuration-free systems, ie systems without shadowing in the image field. Systems without shadowing in the image field are in the Microlithography generally to be preferred, even if systems with obscuration with otherwise excellent optical properties are available (for example DE 196 39 586 corresponding to US 6,169,627 B1).
Bei Erhöhung der Apertur deutlich über NA = 0,85 werden Grenzen bei der Winkelbelastbarkeit vor allem der bildnahen Linsen erreicht. Größere Aperturen nahe NA = 1 oder darüber werden als unpraktikabel angesehen, da davon ausgegangen werden muss, dass sich bei derart hohen Aperturen Rand- und Komastrahlen aufgrund von Totalreflexion weder aus einem Objektiv auskoppeln noch in die lichtempfindliche Schicht des Substrat einkoppeln lassen.When the aperture is increased significantly above NA = 0.85, limits are placed on the angular capacity, especially of the near-image lenses. Larger apertures close to NA = 1 or above are considered impractical, since it must be assumed that with such high apertures, edge and coma rays cannot be coupled out of a lens or coupled into the light-sensitive layer of the substrate due to total reflection.
Der Erfindung liegt die Aufgabe zugrunde, ein Projektionsobjektiv zu schaffen, welches eine sehr hohe bildseitige numerische Apertur, ein für den praktischen Einsatz in Wafersteppern oder Waferscannem ausreichend großes Bildfeld sowie einen guten Korrektionszustand aufweist.The object of the invention is to create a projection objective which has a very high numerical aperture on the image side, an image field which is sufficiently large for practical use in wafer steppers or wafer scanners, and a good correction state.
Diese Aufgabe wird gelöst durch ein Projektionsobjektiv mit den Merkmalen von Anspruch 1. Vorteilhafte Weiterbildungen sind in den abhängigen Ansprüchen angegeben. Der Wortlaut sämtlicher Ansprüche wird durch Bezugnahme zum Inhalt der Beschreibung gemacht.This object is achieved by a projection objective with the features of claim 1. Advantageous further developments are specified in the dependent claims. The wording of all claims is incorporated by reference into the content of the description.
Gemäß einem Aspekt der Erfindung hat ein Projektionsobjektiv zur Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in die Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegebenen Arbeitswellenlänge eine Vielzahl von optischen Elementen, die entlang einer optischen Achse angeordnet sind, sowie eine mit Abstand vor der Bildebene angeordnete Systemblende mit einem Blendendurchmesser. Die der Bildebene nächste optische Gruppe mit Brechkraft ist eine Plankonvexgruppe mit einer im wesentlichen sphärischen Eintrittsfläche und einer im wesentlichen ebenen Austrittsfläche. Die Austrittsfläche ist die letzte optische Fläche des Systems und soll in der Nähe eines zu belichtenden Substrates, jedoch ohne Berührungskontakt zu diesem, angeordnet werden. Gegebenenfalls kann über ein Immersionsmedium, z.B. eine Flüssigkeit, ein optischer Kontakt vermittelt werden. Die Plankonvexgruppe hat einen Durchmesser, der mindestens 50% des Blendendurchmessers beträgt. Vorzugsweise kann der Durchmesser der Plankonvexgruppe sogar mehr als 60% oder mehr als 70% des Blendendurchmessers betragen.According to one aspect of the invention, a projection lens for imaging a pattern arranged in the object plane of the projection lens into the image plane of the projection lens with ultraviolet light of a predetermined working wavelength has a multiplicity of optical elements which are arranged along an optical axis and one which is arranged at a distance in front of the image plane System cover with a cover diameter. The closest optical group with refractive power to the image plane is a plano-convex group with an essentially spherical entrance surface and an im substantially flat exit surface. The exit surface is the last optical surface of the system and should be arranged in the vicinity of a substrate to be exposed, but without touching it. If necessary, an optical contact can be imparted via an immersion medium, for example a liquid. The plano-convex group has a diameter that is at least 50% of the diaphragm diameter. The diameter of the plano-convex group can preferably even be more than 60% or more than 70% of the diaphragm diameter.
Die Systemblende im Sinne dieser Anmeldung ist der Bereich nahe der Bildebene, in dem der Hauptstrahl der Abbildung die optische Achse schneidet. Eine Blende zur Begrenzung und gegebenenfalls Verstellung der genutzten Apertur kann im Bereich der Systemblende angeordnet sein. Bei Systemen mit mindestens einem Zwischenbild existiert mindestens eine weitere Blendenebene mit größerem Abstand von der Bildebene.The system aperture in the sense of this application is the area near the image plane in which the main beam of the image intersects the optical axis. A diaphragm for limiting and possibly adjusting the aperture used can be arranged in the area of the system diaphragm. In systems with at least one intermediate image, there is at least one further aperture plane at a greater distance from the image plane.
Durch die oben genannten Maßnahmen ist es möglich, höchste bildseitige numerische Aperturen NA > 0,85 zu realisieren, wobei die numerische Apertur sogar NA = 1 oder mehr betragen kann, beispielsweise NA = 1 ,1. Damit sind bei konventionell gut beherrschbaren Arbeitswellenlängen, beispielsweise bei 193nm,The above-mentioned measures make it possible to implement the highest numerical apertures NA> 0.85 on the image side, the numerical aperture even being able to be NA = 1 or more, for example NA = 1.1. This means that at conventionally well manageable working wavelengths, for example at 193nm,
Strukturbreiten in der Größenordnung von 50nm gut abzubilden. Hohe Aperturen, insbesondere im Bereich von NA = 1 oder darüber, erfordern spezielle Maßnahmen, um die Flächenbelastung der optischen Flächen insgesamt und insbesondere die Flächenbelastung im Bereich zwischen der Systemblende und der Bildebene zu beherrschen. In diesem Bereich dürfen keine zu hohen bauteilbezogenen Aperturen entstehen, da bei sehr schrägem Lichteinfall ein Großteil des auftreffenden Lichtes nicht mehr durch die transparenten optischen Elemente gelangen und somit nicht mehr zur Bildentstehung beitragen kann. Wird als bildnächste brechende Gruppe eine Plankonvexgruppe verwendet, die axial so dick ist, dass deren Durchmesser mehr als die Hälfte des Blendendurchmessers erreicht, so hat die stark gewölbte Eintrittsfläche im Vergleich zu herkömmlichen Linsen eine ungewöhnlich große Dimension. Bei hoher Öffnung der Linsenfläche ist ein langer Radius der Eintrittsfläche anzustreben, da damit die Feldbelastung abnimmt. Je länger der Radius der letzten Eintrittsfläche vor der Bildebene ist, desto kleiner ist das relative Feld und desto kleiner sind damit auch die induzierten Feldaberrationen. Damit wird es möglich, vor der Plankonvexlinse auf geeignete Weise erzeugte hohe Strahlaperturen aberrationsarm und bei vertretbaren Lichtverlusten bis zum Wirkort in der Bildebene zu übertragen.Show structure widths of the order of 50nm well. High apertures, in particular in the range of NA = 1 or above, require special measures in order to master the surface loading of the optical surfaces as a whole and in particular the surface loading in the region between the system aperture and the image plane. Component-related apertures must not be too high in this area, since in the case of very oblique light incidence, a large part of the incident light can no longer pass through the transparent optical elements and can therefore no longer contribute to the image formation. As the next picture If the refractive group uses a plano-convex group that is axially thick enough that its diameter reaches more than half the diaphragm diameter, the strongly curved entrance surface has an unusually large dimension compared to conventional lenses. If the lens surface is opened high, a long radius of the entrance surface should be aimed for, since this reduces the field load. The longer the radius of the last entry surface in front of the image plane, the smaller the relative field and the smaller the induced field aberrations. This makes it possible to transmit high beam apertures generated in a suitable manner in front of the plano-convex lens with low aberration and with reasonable light losses up to the point of action in the image plane.
Die Plankonvexgruppe wird bei einer bevorzugten Weiterbildung durch eine einzelne, einstückige Plankonvexlinse gebildet. Es ist auch möglich, die Plankonvexgruppe in Form einer geteilten Plankonvexlinse auszuführen, deren Teile bevorzugt aneinander angesprengt sind. Die Teilung kann entlang einer ebenen oder gekrümmten Teilungsfläche erfolgen. Eine Teilung ermöglicht es insbesondere, den bildfeldnahen Teil der Plankonvexgruppe, in welchem besonders hohe Strahlungsenergiedichten auftreten, aus einem besonders strahlungsresistenten Material herzustellen, beispielsweise als Kalziumfluorid, während weniger strahlungsbelastete Bereiche aus einem anderen Material, beispielsweise synthetischem Quarzglas, hergestellt sein können. Als bildnächstes Element der Plankonvexgruppe kann gegebenenfalls eine planparallele Abschlussplatte vorgesehen sein. Diese ist vorzugsweise an das vorhergehenden optische Element angesprengt. In engen Grenzen ist es auch möglich, die Plankonvexgruppe in gesonderte Linsenelemente aufzuspalten, zwischen denen mindestens bereichsweise ein geringer Luftabstand bestehen kann, der jedoch deutlich unterhalb eines Millimeters liegen sollte. Die Radien zum Luftspalt sollten so gekrümmt sein, dass keine Totalreflexion stattfindet. Vorzugsweise bleibt die Winkelbelastung dabei je nach Winkelbelastbarkeit der dünnen Entspiegelungsschicht kleiner als sin u' von 0,85 bis 0,95.In a preferred development, the plano-convex group is formed by a single, one-piece plano-convex lens. It is also possible to design the plano-convex group in the form of a divided plano-convex lens, the parts of which are preferably pressed against one another. The division can take place along a flat or curved division surface. A division in particular makes it possible to produce the part of the plano-convex group close to the image field, in which particularly high radiation energy densities occur, from a particularly radiation-resistant material, for example as calcium fluoride, while less radiation-exposed areas can be made from another material, for example synthetic quartz glass. A plane-parallel end plate can optionally be provided as the next element of the plano-convex group. This is preferably blown onto the preceding optical element. Within narrow limits it is also possible to split the plano-convex group into separate lens elements, between which there may be a small air gap at least in some areas, which should, however, be significantly less than one millimeter. The radii to the air gap should be curved this way be that there is no total reflection. Depending on the angular strength of the thin antireflection coating, the angular load preferably remains smaller than sin u ' from 0.85 to 0.95.
Gemäß einem anderen Aspekt der Erfindung ist es besonders günstig, wenn zwischen der Systemblende und der Bildebene nur Linsen mit positiver Brechkraft angeordnet sind, gegebenenfalls zuzüglich einer oder mehrerer planparalleler, transparenter Platten. Beispielsweise kann zwischen der Systemblende und der Plankonvexgruppe mindestens eine bikonvexe Positivlinse angeordnet sein. Günstiger sind mindestens zwei, insbesondere genau zwei bikonvexe Positivlinsen. Bei einer bevorzugten Ausführungsform sind einem plankonvexen Meniskus zwei Positivlinsen vorangestellt, die den wesentlichen Anteil der Systembrechkraft bereitstellen. Dadurch, dass diese dicht an der Systemblende sitzen und im großen Durchmesser arbeiten können, ist auch hier eine sehr kleine relative Feldbelastung erzielbar. Dies ergibt eine sehr einfache und effiziente Auslegung eines Projektionsobjektivs bezüglich des Bereichs hinter der Systemblende. Günstig ist es demnach, wenn die zwischen Systemblende und Bildebene angeordnete letzte Linsengruppe maximal vier brechkraftbehaftete optische Elemente aufweist, idealerweise nur drei Linsen, die vorzugsweise jeweils Positivlinsen sind. Linsen mit negativer Brechkraft können vorgesehen sein, solange deren Brechkraft gering gegenüber der Gesamtbrechkraft der zwischen Systemblende und Bildebene angeordneten Linsengruppe ist. Zusätzlich können planparallele Platten vorgesehen sein.According to another aspect of the invention, it is particularly advantageous if only lenses with a positive refractive power are arranged between the system diaphragm and the image plane, if appropriate plus one or more plane-parallel, transparent plates. For example, at least one biconvex positive lens can be arranged between the system diaphragm and the plano-convex group. At least two, in particular exactly two, biconvex positive lenses are more favorable. In a preferred embodiment, a plano-convex meniscus is preceded by two positive lenses, which provide the essential part of the system power. Because they sit close to the system panel and can work in large diameters, a very small relative field load can also be achieved here. This results in a very simple and efficient design of a projection lens with regard to the area behind the system aperture. It is therefore advantageous if the last lens group arranged between the system diaphragm and the image plane has a maximum of four optical elements with refractive power, ideally only three lenses, which are preferably positive lenses in each case. Lenses with a negative refractive power can be provided as long as their refractive power is low compared to the total refractive power of the lens group arranged between the system aperture and the image plane. Plane-parallel plates can also be provided.
Eine für eine hohe bildseitige numerische Apertur günstige Brechkraftverteilung zeichnet sich dadurch aus, dass die zwischen Systemblende und Bildebene angeordnete letzte Linsengruppe vorteilhafterweise eine Brennweite hat, die weniger als 20% oder 17%, insbesondere weniger als 15% der Baulänge des Projektionsobjektivs beträgt. Als Baulänge wird hier der axiale Abstand zwischen der Objektebene und der hierzu optisch konjugierten Bildebene bezeichnet. Der Abstand zwischen Systemblende und Bildebene beträgt vorzugsweise weniger als 25%, insbesondere weniger als 22% der Baulänge und/oder weniger als ca. 95%, 90% oder 86% des Blendendurchmessers. Insgesamt ist demnach eine sehr bildnahe Lage der Systemblende günstig. Dabei kann die Blende real oder gleichwertig der konjugierte Ort der realen Blende bei Vorhandensein eines Zwischenbildes sein.A refractive power distribution that is favorable for a high numerical aperture on the image side is characterized in that the last lens group arranged between the system aperture and the image plane advantageously has a focal length that is less than 20% or 17%, in particular less than 15%, of the overall length of the projection lens is. The axial distance between the object plane and the optically conjugate image plane is referred to as the overall length. The distance between the system diaphragm and the image plane is preferably less than 25%, in particular less than 22% of the overall length and / or less than approximately 95%, 90% or 86% of the diaphragm diameter. Overall, a very close-to-image position of the system cover is favorable. The aperture can be real or equivalent to the conjugate location of the real aperture in the presence of an intermediate image.
Erfindungsgemäße Projektionsobjektive können katadioptrisch oder dioptrisch aufgebaut sein und sollen obskurationsfrei abbilden. Bevorzugt sind rein refraktive, also dioptrische Projektionsobjektive, bei denen alle mit Brechkraft behafteten optischen Komponenten aus transparentem Material bestehen. Bei einem Beispiel handelt es sich um ein Ein-Taillensystem mit einem objektnahen Bauch, einem bildnahen Bauch und einer dazwischenliegenden Taille, in deren Bereich der Strahlendurchmesser vorzugsweise weniger als ca. 50% des maximalen Strahldurchmessers im Bereich eines der Bäuche beträgt.Projection lenses according to the invention can be catadioptric or dioptric and should depict without obscuration. Purely refractive, ie dioptric projection lenses are preferred, in which all optical components with refractive power consist of transparent material. One example is a one-waist system with a stomach close to the object, a stomach close to the image and an intermediate waist, in the area of which the beam diameter is preferably less than approximately 50% of the maximum beam diameter in the area of one of the bellies.
Die Systeme können so aufgebaut werden, dass alle transparenten optischen Elemente aus dem gleichen Material gefertigt sind. Bei einer für eine Arbeitswellenlänge von 193nm ausgelegten Ausführungsform wird für alle Linsen synthetisches Quarzglas verwendet. Auch Ausführungsformen für 157nm, bei denen alle Linsen aus Kalziumfluorid oder einem anderen Fluoridkristallmaterial bestehen, sind möglich. Auch Kombinationen mehrerer unterschiedlicher Materialien sind möglich, beispielsweise um die Korrektur von Farbfehlem zu erleichtern oder um Compaction zu verringern. Beispielsweise kann bei 193nm das synthetische Quarzglas durch ein Kristallmaterial, z.B. Kalziumfluorid ersetzt werden. Im Rahmen der Erfindung sind höchstaperturige Projektionsobjektive, insbesondere auch rein refraktive Projektionsobjektive möglich, bei denen die bildseitige numerische Apertur NA > 0,85 ist. Sie beträgt vorzugsweise mindestens 1 und hat bei einer später näher erläuterten Ausführungsform einen Wert NA = 1 ,1. Trotz dieser hohen numerischen Aperturen ist eine Einkopplung von ausreichend Lichtenergie in das zu belichtende Substrat über einen gasgefüllten Spalt möglich, wenn ein ausreichend geringer biidseitiger Arbeitsabstand eingehalten wird. Dieser liegt bei bevorzugten Ausführungsformen unterhalb des Vierfachen der verwendeten Arbeitswellenlänge, insbesondere unterhalb der Arbeitswellenlänge. Besonders günstig ist es, wenn der Arbeitsabstand weniger als die Hälfte der Arbeitswellenlänge beträgt, beispielsweise weniger als ein Drittel, ein Viertel oder ein Fünftel der Arbeitswellenlänge. Bei diesen kurzen Arbeitsabständen kann eine Abbildung im optischen Nahfeld erfolgen, bei der evaneszente Felder, die in unmittelbarer Nähe der letzten optischen Fläche des Abbildungssystems existierten, zur Abbildung genutzt werden. Die Projektionsobjektive sind auch für die Immersionslithographie tauglich, bei der der Raum zwischen der Austrittsfläche des Objektivs und dem Substrat mit einem Immersionsfluid mit geeigneter Brechzahl und ausreichender Transmission für die verwendete Wellenlänge ausgefüllt ist. Geeignete Immersionsflüssigkeiten können z.B. hauptsächlich die Elemente H, F, C oder S enthalten. Auch deionisiertes Wasser ist verwendbar.The systems can be set up so that all transparent optical elements are made of the same material. In an embodiment designed for a working wavelength of 193 nm, synthetic quartz glass is used for all lenses. Embodiments for 157 nm, in which all lenses are made of calcium fluoride or another fluoride crystal material, are also possible. Combinations of several different materials are also possible, for example to make it easier to correct color errors or to reduce compaction. For example, at 193 nm, the synthetic quartz glass can be replaced by a crystal material, eg calcium fluoride. Within the scope of the invention, high-aperture projection objectives, in particular also purely refractive projection objectives, are possible, in which the numerical aperture NA> 0.85 on the image side. It is preferably at least 1 and, in an embodiment which will be explained in more detail later, has a value NA = 1.1. Despite these high numerical apertures, sufficient light energy can be coupled into the substrate to be exposed via a gas-filled gap if a sufficiently small working distance on both sides is maintained. In preferred embodiments, this is below four times the working wavelength used, in particular below the working wavelength. It is particularly favorable if the working distance is less than half the working wavelength, for example less than a third, a quarter or a fifth of the working wavelength. With these short working distances, imaging can take place in the near optical field, in which evanescent fields that existed in the immediate vicinity of the last optical surface of the imaging system are used for imaging. The projection objectives are also suitable for immersion lithography, in which the space between the exit surface of the objective and the substrate is filled with an immersion fluid with a suitable refractive index and sufficient transmission for the wavelength used. Suitable immersion liquids can, for example, mainly contain the elements H, F, C or S. Deionized water can also be used.
Trotz dieser extremen Werte für numerische Apertur und Arbeitsabstand sind Dank der Erfindung Objektive mit einem sehr großen, für die praktische Lithographie ausreichenden Bildfelddurchmesser möglich, der bei bevorzugten Ausführungsformen größer als ca. 10mm, insbesondere größere als ca. 20mm ist und/oder mehr als 1 %, insbesondere mehr als 1 ,5% der Baulänge des Projektionsobjektivs und/oder mehr als 1 %, insbesondere mehr als 5% des größten Linsendurchmessers betragen kann.Despite these extreme values for numerical aperture and working distance, the invention makes it possible to use lenses with a very large image field diameter that is sufficient for practical lithography, which in preferred embodiments is larger than approx. 10 mm, in particular larger than approx. 20 mm and / or more than 1 %, in particular more than 1.5% of the overall length of the projection lens and / or more than 1%, in particular more than 5% of the largest lens diameter.
Bevorzugte Projektionsobjektive zeichnen sich durch eine Anzahl günstiger konstruktiver und optischer Merkmale aus, die alleine oder in Kombination miteinander für die Eignung des Objektivs für die höchstauflösende Mikrolithographie, insbesondere im optischen Nahfeld und für die Immersionslithographie förderlich sind.Preferred projection objectives are distinguished by a number of favorable constructive and optical features which, alone or in combination with one another, are conducive to the suitability of the objective for high-resolution microlithography, in particular in the optical near field and for immersion lithography.
Im Bereich der Systemblende ist vorzugsweise mindestens eine asphärische Fläche angeordnet. Vorzugsweise kommen hinter den Blende dicht aufeinander folgend mehrere Flächen mit Asphären. Insbesondere kann zwischen Systemblende und Bildebene mindestens eine doppelasphärische Linse vorgesehen sein, die bevorzugt eine Bikonvexlinse ist. Somit kann auch im Bereich zwischen Taille und Bildebene, d.h. im letzten Bauch, mindestens eine doppelsphärische Bikonvexlinse günstig sein. Es kann weiter günstig sein, wenn die letzte optische Fläche vor der Systemblende und die erste optische Fläche nach der Systemblende asphärisch ist. Hier können insbesondere gegenüberliegende asphärische Flächen mit von der Blende wegweisender Krümmung vorgesehen sein. Die hohe Anzahl von asphärischen Flächen im Bereich der Systemblende ist günstig für die Korrektion der sphärischen Abberation und wirkt sich günstig auf die Einstellung der Isoplanasie aus.At least one aspherical surface is preferably arranged in the area of the system cover. Preferably, several surfaces with aspheres come closely behind the diaphragm. In particular, at least one double-aspherical lens, which is preferably a biconvex lens, can be provided between the system aperture and the image plane. Thus, even in the area between the waist and image plane, i.e. in the last abdomen, at least one double-spherical biconvex lens should be cheap. It can also be advantageous if the last optical surface before the system diaphragm and the first optical surface after the system diaphragm are aspherical. In particular, opposite aspherical surfaces with curvature pointing away from the diaphragm can be provided here. The high number of aspherical surfaces in the area of the system diaphragm is favorable for the correction of the spherical aberration and has a favorable effect on the setting of the isoplanasia.
Im Bereich unmittelbar vor der Systemblende ist vorzugsweise mindestens eine Meniskuslinse mit objektseitiger Konkavfläche vorgesehen. Bei höheren Aperturen können mindestens zwei solcher Menisken, die aufeinander folgen, günstig sein, welche positive oder negative Brechkraft haben können. Bei sehr hohen Öffnungswinkeln von NA > 1 ,0 ist eine Zweiergruppe derartiger Menisken bevorzugt, bei der ein Meniskus mit negativer Brechkraft auf einen Meniskus mit positiver Brechkraft folgt. Die negative Brechkraft ist vorzugsweise so groß, dass im Strahlbündel eine geringfügige Querschnittsverengung (Hilfstaille) auftreten kann.At least one meniscus lens with a concave surface on the object is preferably provided in the area immediately in front of the system diaphragm. With higher apertures, at least two such menisci, which follow one another, can be favorable, which can have positive or negative refractive power. At very high opening angles of NA> 1.0, a group of two menisci of this type is preferred, in which a meniscus with a negative refractive power and a meniscus with a positive one Refractive power follows. The negative refractive power is preferably so great that a slight cross-sectional narrowing (auxiliary waist) can occur in the beam.
Eine Meniskengruppe mit einem Positiv-Meniskus und einem dahinter liegenden Negativ-Meniskus, bei der die Krümmungsmittelpunkte aller optischen Flächen objektseitig bzw. retikelseitig liegen, kann auch unabhängig von den sonstigen Merkmalen der Erfindung bei anderen Projektionsobjektiven vorteilhaft sein, insbesondere direkt vor einer Blende im Bereich großer Strahldurchmesser, wobei die Blende eine physikalische Blende zur Bündelquerschnittsveränderung oder eine konjugierte Blende sein kann.A meniscus group with a positive meniscus and a negative meniscus behind it, in which the centers of curvature of all optical surfaces are on the object or reticle side, can also be advantageous for other projection lenses, in particular directly in front of a diaphragm in the area, regardless of the other features of the invention Large beam diameter, the aperture can be a physical aperture for changing the bundle cross-section or a conjugated aperture.
Es hat sich weiterhin als vorteilhaft herausgestellt, wenn zwischen der Taille und der Systemblende mindestens eine Meniskuslinse mit negativer Brechkraft und bildwärts gerichteter Konkavfläche angeordnet ist. Besonders günstig sind häufig mindestens zwei aufeinander folgende, derartige Meniskuslinsen, deren Krümmungsmittelpunkte bildseitig liegen. Vorteilhaft ist es dabei, wenn die Brechkraft des ersten, objektseitigseitigen Meniskus um mindestens 30% stärker ist als diejenige des darauffolgenden, bildseitigen Meniskus der Meniskengruppe.It has also proven to be advantageous if at least one meniscus lens with a negative refractive power and a concave surface directed toward the image is arranged between the waist and the system diaphragm. Often, at least two consecutive meniscus lenses of this type, whose centers of curvature lie on the image side, are often particularly favorable. It is advantageous if the refractive power of the first meniscus on the object side is at least 30% stronger than that of the subsequent meniscus on the image side of the meniscus group.
Weiterhin kann es günstig sein, wenn zwischen der Taille und der Systemblende in der Nähe der Taille mindestens eine Positiv- Meniskuslinse mit objektseitiger Konkavfläche angeordnet ist. Auch hier können statt einer derartigen Meniskuslinse mehrere, beispielsweise zwei, aufeinanderfolgende Linsen dieses Typs vorgesehen sein.Furthermore, it can be favorable if at least one positive meniscus lens with a concave surface on the object side is arranged between the waist and the system diaphragm in the vicinity of the waist. Here too, several, for example two, successive lenses of this type can be provided instead of such a meniscus lens.
Besonders vorteilhaft sind Ausführungsformen, bei denen zwischen Taille und Systemblende in dieser Reihenfolge mindestens eine Meniskuslinse mit objektseitiger Konkavfläche und dahinter mindestens eine Meniskuslinse mit bildseitiger Konkavfläche angeordnet ist. Vorzugsweise sind jeweils zwei aufeinanderfolgende Menisken der jeweiligen Krümmungen vorgesehen. Die der Taille zugewandten Meniskuslinsen haben vorzugsweise positive, die der Bildebene zugewandten Menisken vorzugsweise negative Brechkraft. Im Bereich zwischen diesen Linsen bzw. Linsengruppen findet somit ein Wechsel in der Lage der Krümmungsmittelpunkte von Menisken statt.Embodiments are particularly advantageous in which at least one meniscus lens with a concave surface on the object side and behind at least one between the waist and the system diaphragm in this order a meniscus lens with a concave surface on the image side is arranged. Two consecutive menisci of the respective curvatures are preferably provided. The meniscus lenses facing the waist preferably have positive refractive powers, the menisci facing the image plane preferably have negative refractive powers. In the area between these lenses or lens groups, there is therefore a change in the position of the center of curvature of menisci.
Im Bereich der Taille sind bevorzugt mehrere Negativlinsen aufeinander folgend angeordnet, bei bevorzugten Ausführungsformen sind es mindestens zwei, vorzugsweise drei Negativlinsen. Diese tragen die Hauptlast der Petzvalkorrektur.A plurality of negative lenses are preferably arranged one after the other in the region of the waist, in preferred embodiments there are at least two, preferably three negative lenses. These bear the main burden of the Petzval correction.
Am objektseitigen Eingang des Systems beim Eintritt in den ersten Bauch sind wenigstens zwei Negativlinsen vorteilhaft, um das vom Objekt kommende Strahlbündel aufzuweiten. Drei oder mehr derartiger Negativlinsen sind bevorzugt. Bei hohen Eingangsaperturen von mehr als 0,2 ist es günstig, wenn auf mindestens einer der ersten Linsen mindestens eine asphärische Fläche vorgesehen ist. Vorzugsweise hat jede der eingangsseitigen Negativlinsen mindestens eine asphärische Fläche.At the object-side entrance of the system when entering the first belly, at least two negative lenses are advantageous in order to widen the beam coming from the object. Three or more such negative lenses are preferred. With high entrance apertures of more than 0.2, it is favorable if at least one aspherical surface is provided on at least one of the first lenses. Each of the input-side negative lenses preferably has at least one aspherical surface.
Hinter dieser Eingangsgruppe folgt bevorzugt eine Linsengruppe mit starker positiver Brechkraft, welche den ersten Bauch der Strahlführung darstellt. In dieser Gruppe kann im Bereich großer Strahlhöhen im Nahbereich der Objektebene mindestens eine Meniskuslinse mit positiver Brechkraft und bildseitigen Konkavflächen günstig sein. Bei einem derartigen Meniskus, dessen Krümmungsmittelpunkte bildseitig liegen, hat die zum Bild gewandte Austrittsseite bevorzugt eine relativ starke Krümmung, deren Radius beispielsweise kleiner als 50% der Baulänge des Projektionsobjektivs sein kann. Die vorstehenden und weiteren Merkmale gehen außer aus den Ansprüchen auch aus der Beschreibung und der Zeichnung hervor, wobei die einzelnen Merkmale jeweils für sich alleine oder zu mehreren in Form von Unterkombinationen bei einer Ausführungsform der Erfindung und auf anderen Gebieten verwirklicht sein und vorteilhafte sowie für sich schutzfähige Ausführungen darstellen können.A lens group with a strong positive refractive power, which represents the first belly of the beam guidance, preferably follows behind this input group. In this group, at least one meniscus lens with positive refractive power and concave surfaces on the image side can be favorable in the area of large beam heights in the vicinity of the object plane. In the case of such a meniscus, the center of curvature of which lies on the image side, the exit side facing the image preferably has a relatively strong curvature, the radius of which can be, for example, less than 50% of the overall length of the projection objective. The foregoing and other features emerge from the claims and also from the description and the drawing, the individual features being implemented individually and in groups in the form of sub-combinations in one embodiment of the invention and in other fields, and advantageous as well protective designs can represent.
Fig. 1 ist ein Linsenschnitt durch eine Ausführungsform eines refraktiven Projektionsobjektivs, das für 193nm Arbeitswellenlänge ausgelegt ist.1 is a lens section through an embodiment of a refractive projection objective which is designed for a 193 nm working wavelength.
Bei der folgenden Beschreibung der bevorzugten Ausführungsform bezeichnet der Begriff „optische Achse" eine gerade Linie durch die Krümmungsmittelpunkte der sphärischen optischen Komponenten bzw. durch die Symmetrieachsen von asphärischen Elementen. Richtungen und Abstände werden als bildseitig, waferseitig oder bildwärts beschrieben, wenn sie in Richtung der Bildebene bzw. des dort befindlichen, zu belichtenden Substrats gerichtet sind und als objektseitig, retikelseitig oder objektwärts, wenn sie in Bezug auf die optische Achse zum Objekt gerichtet sind. Das Objekt ist in den Beispielen eine Maske (Retikel) mit dem Muster einer integrierten Schaltung, es kann sich aber auch um ein anderes Muster, beispielsweise eines Gitters handeln. Das Bild wird in den Beispielen auf einem als Substrat dienenden, mit einer Photoresistschicht dienenden Wafer gebildet, jedoch sind auch andere Substrate möglich, beispielsweise Elemente für Flüssigkristallanzeigen oder Substrate für optische Gitter. Die angegebenen Brennweiten sind Brennweiten bezüglich Luft.In the following description of the preferred embodiment, the term “optical axis” denotes a straight line through the centers of curvature of the spherical optical components or through the axes of symmetry of aspherical elements. Directions and distances are described as image-side, wafer-side or image-wise when they are in the direction of the If the image plane or the substrate to be exposed there is directed and as the object side, reticle side or object side, if they are directed towards the object in relation to the optical axis, the object is a mask (reticle) with the pattern of an integrated circuit in the examples The image is formed in the examples on a wafer serving as a substrate and serving with a photoresist layer, but other substrates are also possible, for example elements for liquid crystal displays or substrates for optical he grating The focal lengths given are focal lengths with respect to air.
In Fig. 1 ist ein charakteristischer Aufbau eines erfindungsgemäßen, rein refraktiven Reduktionsobjektivs 1 gezeigt. Es dient dazu, ein in einer Objektebene 2 angeordnetes Muster eines Retikels oder dergleichen in eine zur Objektebene konjugierte Bildebene 3 in reduziertem Maßstab ohne Obskurationen bzw. Abschattungen im Bildfeld abzubilden, beispielsweise im Maßstab 5 : 1 . Es handelt sich um ein rotationssymmetrisches Ein-Taillensystem, dessen Linsen entlang einer senkrecht zur Objekt- und Bildebene stehenden optischen Achse 4 angeordnet sind und einen objektseitigen Bauch 6, einen bildseitigen Bauch 8 sowie eine dazwischenliegende Taille 7 bilden. Innerhalb des zweiten Bauches 8 ist eine kleine Hilfs-Taille 9 nahe vor der Systemblende 5 ausgebildet. Die Systemblende 5 liegt im bildnahen Bereich großer Strahldurchmesser.1 shows a characteristic structure of a purely refractive reduction objective 1 according to the invention. It serves to insert a pattern of a reticle or the like into an object plane 2 image an image plane 3 conjugated to the object plane on a reduced scale without obscurations or shadowing in the image field, for example on a 5: 1 scale. It is a rotationally symmetrical one-waist system, the lenses of which are arranged along an optical axis 4 which is perpendicular to the object and image plane and form an abdomen 6 on the object side, an abdomen 8 on the image side and an intermediate waist 7. A small auxiliary waist 9 is formed within the second belly 8 close to the system cover 5. The system diaphragm 5 is in the near-image area of large beam diameters.
Die Linsen können in mehrere aufeinanderfolgende Linsengruppen mit spezifischen Eigenschaften und Funktionen eingeteilt werden. Eine der Objektebene 2 folgende erste Linsengruppe LG1 am Eingang des Projektionsobjektivs hat insgesamt negative Brechkraft und dient der Aufweitung des vom Objektfeld kommenden Strahlbündels. Eine darauffolgende zweite Linsengruppe LG2 mit insgesamt positiver Brechkraft bildet den ersten Bauch 6 und führt den Strahl vor der nachfolgenden Taille 7 wieder zusammen. Im Bereich der Taille 7 befindet sich eine dritte Linsengruppe LG3 mit negativer Brechkraft. Dieser folgt eine aus Positiv-Meniskuslinsen bestehende Linsengruppe 4 mit positiver Brechkraft, der eine aus Negativ-Meniskuslinsen bestehende fünfte Linsengruppe LG5 mit negativer Brechkraft folgt. Die darauffolgende Linsengruppe LG6 mit positiver Brechkraft führt die Strahlung zur Systemblende 5. Hinter dieser liegt die siebte und letzte Linsengruppe LG7, die aus drei Einzellinsen mit positiver Brechkraft besteht und den Hauptbeitrag zur Erzeugung der sehr hohen bildseitigen numerischen Apertur von NA = 1 ,1 leistet. Für diese gilt: NA = n * sin u ', wobei n die Brechzahl des letzten optischen Mediums (z.B. eines Immersionsfluids) und u' der halbe bildseitige Aperturwinkel ist. Die erste Linsengruppe LG1 eröffnet mit drei Negativlinsen 1 1 , 12, 13, die in dieser Reihenfolge eine bikonkave Negativlinse 11 mit asphärischer Eintrittsseite, eine Negativ-Meniskuslinse 12 mit bildseitigem Krümmungsmittelpunkt und asphärischer Eintrittsseite und eine Negativ-Meniskuslinse 13 mit objektseitigemThe lenses can be divided into several successive lens groups with specific properties and functions. A first lens group LG1 following the object plane 2 at the input of the projection lens has negative refractive power overall and serves to expand the beam coming from the object field. A subsequent second lens group LG2 with an overall positive refractive power forms the first belly 6 and brings the beam together again in front of the subsequent waist 7. In the area of the waist 7 there is a third lens group LG3 with negative refractive power. This is followed by a lens group 4 consisting of positive meniscus lenses with positive refractive power, followed by a fifth lens group LG5 consisting of negative meniscus lenses with negative refractive power. The subsequent lens group LG6 with positive refractive power leads the radiation to the system aperture 5. Behind this is the seventh and last lens group LG7, which consists of three individual lenses with positive refractive power and makes the main contribution to the generation of the very high image-side numerical aperture of NA = 1.1 , The following applies to these: NA = n * sin u ' , where n is the refractive index of the last optical medium (for example an immersion fluid) and u ' is half the aperture angle on the image side. The first lens group LG1 opens with three negative lenses 11, 12, 13 which, in this order, have a biconcave negative lens 11 with an aspherical entry side, a negative meniscus lens 12 with an image-side center of curvature and an aspherical entry side and a negative meniscus lens 13 with an object side
Krümmungsmittelpunkt und asphärischer Austrittsseite umfasst. Bei der vorliegenden hohen Eingangsapertur von 0,2125 sollte auf wenigstens einer der ersten beiden Linsen 1 1 , 12 mindestens eine asphärische Fläche vorgesehen sein, um die Erzeugung von Abberationen in diesem Bereich zu begrenzten. Vorzugsweise ist, wie im vorliegenden Beispiel, an jeder der drei Negativlinsen (mindestens) eine asphärische Fläche vorgesehen.Center of curvature and aspherical exit side includes. With the present high entrance aperture of 0.2125, at least one aspherical surface should be provided on at least one of the first two lenses 11, 12 in order to limit the generation of aberrations in this area. Preferably, as in the present example, an aspherical surface (at least) is provided on each of the three negative lenses.
Die zweite Linsengruppe LG2 hat mit geringem Luftabstand hinter der letzten Linse 13 der ersten Linsengruppe LG1 eine Positiv- Meniskuslinse 14 mit objektseitigem Krümmungsmittelpunkt, eine weitere Positiv-Meniskuslinse 15 mit objektseitigemThe second lens group LG2, with a small air gap behind the last lens 13 of the first lens group LG1, has a positive meniscus lens 14 with a center of curvature on the object side, a further positive meniscus lens 15 with an object side
Krümmungsmittelpunkt, eine Positiv-Meniskuslinse 16 mit bildseitigem Krümmungsmittelpunkt, eine weitere Positivlinse 17 mit nahezu ebener Austrittsseite, eine Positiv-Meniskuslinse 18 mit bildseitigem Krümmungsmittelpunkt der Flächen sowie eine brechkraftarme Meniskuslinse 20 gleicher Krümmungsrichtung mit nahezu parallelen Linsenflächen. Die nur schwach gekrümmte Eintrittsseite der Linse 15, die ebenfalls nur schwach gekrümmte Austrittseite der Linse 17 und die Austrittsseite der letzten Meniskuslinse 20 sind asphärisch. Diese zweite Linsengruppe LG2 stellt den ersten Bauch 6 des Objektivs dar. Eine Besonderheit bildet die beim größten Durchmesser angeordnete Positiv- Meniskuslinse 16, deren Krümmungsmittelpunkte bildseitig liegen. Der Radius der Austrittsfläche diese Linse 16 hat einen Wert, der kleiner als die Hälfte des Objekt-Bildabstandes ist. Diese Linsengruppe dient vor allem der Petzvalkorrektur, der Verzeichnungs-Telezentriekorrektur und der Bildfeldkorrektur außerhalb der Hauptschnitte. Die dritte Linsengruppe LG3 besteht aus drei Negativ-Meniskuslinsen 20, 21 , 22, deren Grenzflächen jeweils sphärisch sind. Diese Linsengruppe trägt die Hauptlast der Korrektur der Bildfeldkrümmung und ist so gestaltet, dass trotz der hohen Systemapertur von NA = 1 ,1 die maximalen Inzidenzwinkel der auf die Linsenflächen treffenden Strahlen unterhalb ca. 60° bzw. der Sinus der Inzidenzwinkel jeweils unterhalb 0,85 liegt. Die erste Negativlinse 20 der dritten Gruppe ist bevorzugt eine stark bikonkave Linse, so dass die Haupttaille 7 mit stark gekrümmten Flächen eröffnet.The center of curvature, a positive meniscus lens 16 with the center of curvature on the image side, a further positive lens 17 with an almost flat exit side, a positive meniscus lens 18 with the center of curvature of the surfaces on the image side and a low-refractive power meniscus lens 20 of the same direction of curvature with almost parallel lens surfaces. The only slightly curved entry side of the lens 15, the likewise only slightly curved exit side of the lens 17 and the exit side of the last meniscus lens 20 are aspherical. This second lens group LG2 represents the first belly 6 of the objective. A special feature is the positive meniscus lens 16 arranged at the largest diameter, the centers of curvature of which lie on the image side. The radius of the exit surface of this lens 16 has a value that is less than half the object image distance. This lens group is used primarily for Petzval correction, distortion telecentricity correction and image field correction outside of the main sections. The third lens group LG3 consists of three negative meniscus lenses 20, 21, 22, the interfaces of which are each spherical. This lens group bears the main burden of correcting the curvature of the field of view and is designed in such a way that, despite the high system aperture of NA = 1.1, the maximum angle of incidence of the rays hitting the lens surfaces is below approx. 60 ° or the sine of the angle of incidence is respectively below 0.85 lies. The first negative lens 20 of the third group is preferably a strongly biconcave lens, so that the main waist 7 opens with strongly curved surfaces.
Die der Taille 7 folgende vierte Linsengruppe LG4 besteht aus zwei Positiv-Meniskuslinsen 23, 24 mit bildseitigen Konkavflächen, wobei die Austrittsseite der eingangsseitigen Meniskuslinse 23 asphärisch, die übrigen Flächen sphärisch sind. Bei anderen Ausführungsformen kann an dieser Stelle auch nur einziger Positiv-Meniskus entsprechender Krümmung vorgesehen sein.The fourth lens group LG4 following the waist 7 consists of two positive meniscus lenses 23, 24 with concave surfaces on the image side, the exit side of the meniscus lens 23 on the input side being aspherical, the other surfaces being spherical. In other embodiments, only a single positive meniscus of corresponding curvature can be provided at this point.
Die darauffolgende fünfte Linsengruppe LG5 hat ebenfalls zwei Meniskuslinsen 25, 26, jedoch haben diese jeweils negative Brechkraft und die konkaven Flächen sind zum Bildfeld 3 gerichtet. Gegebenenfalls kann an dieser Stelle auch nur ein negativer Meniskus vorgesehen sein, dessen Krümmungsmittelpunkt waferseitig liegt. Es hat sich als günstig herausgestellt, wenn die negative Brechkraft des objektseitigen, Negativ-Meniskus 25 mindestens 30% stärker ist als die des darauffolgenden Meniskus 26. Eine solche Gruppe mit mindestens einem negativen Meniskus ist für die Funktion des Ein-Taillensystems ein zentrales Korrektionselement, um elegant außeraxiale Bildfehler zu korrigieren. Insbesondere wird dadurch ein kompaktes Design mit relativ geringen Linsendurchmessern ermöglicht. Besonders wichtig ist, dass in dem der Taille 7 folgenden Eingansbereich des zweiten Bauches 8 ein Wechsel in der Lage der Krümmungsmittelpunkte zwischen Menisken der vierten Linsengruppe LG4 und der fünften Linsengruppe LG5 stattfindet. Dadurch kann erreicht werden, dass schiefe sphärische Aberration bei extremer Apertur geglättet werden kann.The subsequent fifth lens group LG5 also has two meniscus lenses 25, 26, but these each have negative refractive power and the concave surfaces are directed toward the image field 3. If necessary, only a negative meniscus can be provided at this point, the center of curvature of which lies on the wafer side. It has turned out to be favorable if the negative refractive power of the negative meniscus 25 on the object side is at least 30% stronger than that of the subsequent meniscus 26. Such a group with at least one negative meniscus is a central correction element for the function of the one-waist system, to elegantly correct off-axis image errors. In particular, this enables a compact design with relatively small lens diameters. It is particularly important that a change in the position of the centers of curvature between menisci of the fourth lens group LG4 and the fifth lens group LG5 takes place in the entrance region of the second abdomen 8 following the waist 7. It can thereby be achieved that oblique spherical aberration can be smoothed out with an extreme aperture.
Die sechste Linsengruppe LG6 beginnt mit einer Abfolge von Positiv- Linsen 27, 28, 29, 30, wobei es sich als günstig herausgestellt hat, wenn mindestens zwei dieser Linsen Bikonvexlinsen sind, wie die am Eingang der sechsten Linsengruppe unmittelbar aufeinanderfolgenden Linsen 27, 28 mit jeweils sphärischen Linsenflächen. Im Beispiel folgt auf die Bikonvexlinsen 27, 28 eine schwach positive Meniskuslinse 29 mit bildseitiger Konkavfläche.The sixth lens group LG6 begins with a sequence of positive lenses 27, 28, 29, 30, it having turned out to be advantageous if at least two of these lenses are biconvex lenses, such as the lenses 27, 28 which follow one another immediately at the input of the sixth lens group each spherical lens surfaces. In the example, the biconvex lenses 27, 28 are followed by a weakly positive meniscus lens 29 with a concave surface on the image side.
Am Ausgang der sechsten Linsengruppe LG6 unmittelbar vor der Systemblende 5 kommt eine Meniskengruppe mit zwei Meniskuslinsen 30, 31 , deren Krümmungsmittelpunkte alle retikelseitig bzw. objektseitig liegen. An dieser Stelle könnte insbesondere bei Objektiven mit niedrigeren Aperturen auch nur eine entsprechende Meniskuslinse mit positiver oder negativer Brechkraft vorgesehen sein. Bei der gezeigten sehr hohen Apertur von NA > 1 ist die gezeigte Zweiergruppe 30, 31 bevorzugt, wobei die eingangsseitige Meniskuslinse 30 bevorzugt positive und die darauffolgende Meniskuslinse 31 bevorzugt negative Brechkraft hat. Vorteilhafterweise ist deren negative Brechkraft so groß, dass im Strahlengang eine leichte Einschnürung in Form einer HilfsTaille 9 entsteht. Hierdurch kann erreicht werden, dass schiefe sphärische tangential zur schiefen sphärischen sagital günstig austariert werden kann.At the exit of the sixth lens group LG6 immediately in front of the system diaphragm 5 there is a meniscus group with two meniscus lenses 30, 31, the centers of curvature of which are all on the reticle or object side. At this point, only a corresponding meniscus lens with positive or negative refractive power could also be provided, in particular in the case of lenses with lower apertures. In the very high aperture of NA> 1 shown, the group of two 30, 31 shown is preferred, the meniscus lens 30 on the input side preferably having positive refractive power and the subsequent meniscus lens 31 preferably having negative refractive power. Advantageously, their negative refractive power is so great that a slight constriction in the form of an auxiliary waist 9 occurs in the beam path. In this way it can be achieved that oblique spherical tangential to oblique spherical sagital can be balanced out favorably.
Die zwischen Systemblende 5 und Bildebene 3 angeordnete siebte Linsengruppe LG7 stellt eine weitere Besonderheit erfindungemäßer Projektionsobjektive dar. Besonders in diesem Bereich sind spezielle Maßnahmen erforderlich, um die Flächenbelastung der optischen Flächen insgesamt so zu beherrschen, dass eine aberrationsarme Abbildung bei ausreichender Transmission des Gesamtobjektivs erzielbar ist. Hierzu sollte zwischen Blende 5 und Wafer 3 dafür gesorgt werden, dass im Bauteil keine Aperturen entstehen, die als Bauteil gegen Luft eine Apertur nahe 1 erreichen. Ein wesentlicher Beitrag zur Erreichung dieses Zieles wird hier dadurch geschaffen, dass unmittelbar vor der Bildebene 3 als letztes optisches Element eine Plankonvexlinse 34 mit sphärischer Eintrittsfläche und ebener Austrittsfläche angeordnet ist. Diese ist so dick, dass ihr Durchmesser mehr als die Hälfte des Durchmessers der Systemblende 5 beträgt, idealerweise sogar mehr als 60% oder 70% dieses Wertes. Anzustreben ist somit ein möglichst langer Radius mit hoher Öffnung dieser, vorzugsweise sphärischen, Eintrittsfläche. Dieser lange Radius ist anzustreben, da dadurch die Feldbelastung der Eintrittsfläche abnimmt. Je länger der Radius ist, desto kleiner ist das relative Feld und damit die induzierten Feldaberrationen. Die Eintrittsfläche kann auch asphärisch sein.The seventh lens group LG7 arranged between system aperture 5 and image plane 3 represents a further special feature of the invention Projection lenses. Particularly in this area, special measures are required to master the surface loading of the optical surfaces overall in such a way that low-aberration imaging can be achieved with sufficient transmission of the overall lens. For this purpose, it should be ensured between the aperture 5 and the wafer 3 that no apertures are formed in the component that reach an aperture close to 1 as a component against air. A significant contribution to achieving this goal is made here in that a plano-convex lens 34 with a spherical entrance surface and a flat exit surface is arranged as the last optical element directly in front of the image plane 3. This is so thick that its diameter is more than half the diameter of the system diaphragm 5, ideally even more than 60% or 70% of this value. The aim should therefore be the longest possible radius with a high opening of this, preferably spherical, entry surface. This long radius is desirable because it reduces the field load on the entry surface. The longer the radius, the smaller the relative field and thus the induced field aberrations. The entrance surface can also be aspherical.
Die bildnahe Plankonvexgruppe, die hier durch ein einzelnes, einstückiges Linsenelement 34 gebildet wird, hat brechende Wirkung. Dies ist daran erkennbar, dass die Eintrittsfläche nicht konzentrisch zur Bildfeldmitte angeordnet ist, weil der Radius sich von der Linsendicke unterscheidet. Bevorzugt sind axial langgestreckte Linsen dieses Typs, bei denen der Krümmungsmittelpunkt der Eintrittsfläche innerhalb der Linse liegt. Plankonvexgruppen bzw. Plankonvexlinsen dieser Art unterschieden sich daher wesentlich von halbkugeligen Plankonvexlinsen, bei denen der Radius im wesentlichen ihrer Dicke entspricht und die beispielsweise in der Mikroskopie zur Verbesserung der Einkopplung des Lichtes in das Mikroskopobjektiv genutzt werden und selbst keine brechende Eigenschaften haben dürfen. Dem Plankonvexmeniskus 34 sind bei der gezeigten Ausführungsform zwei sehr große Positivlinsen 32, 33 vorangestellt, die den wesentlichen Beitrag zur Systembrechkraft bereitstellen. Dadurch, dass sie dicht hinter der Blende im Bereich großer Strahldurchmesser sitzen, ist auch hier die relative Feldbelastung minimiert. Das Beispiel zeigt somit eine sehr einfach und effiziente Auslegung eines für höchste Aperturen geeigneten lithographischen Objektivs bezüglich des Bereichs hinter der Systemblende. Der Plankonvexmeniskus 34 greift mit geringer Brechkraft das von den Positivlinsen 32, 33 kommende, konvergente Büschel in Luft bzw. einem anderen geeignetem gasförmigen Medium innerhalb des Projektionsobjektivs auf, um es in die lichtempfindliche Schicht des Substrats weiterzuleiten. Günstig sind somit Ausführungsformen, bei denen zwischen Blende 5 und Wafer ausschließlich positive Linsen stehen, wobei zusätzlich allenfalls noch eine oder mehrere planparallele Platten vorgesehen sein können. Auch eine möglichst niedrige Anzahl optischer Flächen in diesem Bereich ist günstig, da jede Fläche auch bei guter Entspiegelung Reflexionsverluste verursacht. Die Linsenanzahl sollte hier vier oder weniger betragen, wobei wiederum planparallele Platten optional vorgesehen sein können.The near-image plano-convex group, which is formed here by a single, one-piece lens element 34, has a refractive effect. This can be seen from the fact that the entrance surface is not arranged concentrically to the center of the image field because the radius differs from the lens thickness. Axially elongated lenses of this type are preferred, in which the center of curvature of the entrance surface lies within the lens. Plano-convex groups or plano-convex lenses of this type therefore differ significantly from hemispherical plano-convex lenses in which the radius corresponds essentially to their thickness and which are used, for example, in microscopy to improve the coupling of the light into the microscope objective and themselves may not have any refractive properties. In the embodiment shown, the plano-convex meniscus 34 is preceded by two very large positive lenses 32, 33, which provide the essential contribution to the system power. The fact that they sit close behind the diaphragm in the area of large beam diameters also minimizes the relative field load here. The example thus shows a very simple and efficient design of a lithographic lens suitable for the highest apertures with regard to the area behind the system aperture. The plano-convex meniscus 34 picks up the convergent tufts coming from the positive lenses 32, 33 in air or another suitable gaseous medium within the projection lens with a low refractive power in order to pass them on to the light-sensitive layer of the substrate. Embodiments are therefore favorable in which there are only positive lenses between the aperture 5 and the wafer, it also being possible for one or more plane-parallel plates to be provided in addition. The lowest possible number of optical surfaces in this area is also advantageous, since each surface causes reflection losses even with good anti-reflective coating. The number of lenses should be four or fewer here, and again plane-parallel plates can optionally be provided.
Weitere vorteilhafte Maßnahmen bestehen darin, dass im Bereich der Blende, insbesondere dicht hinter dieser, Flächen mit Asphären vorgesehen sein sollten. Diese können sich in einer Linse gegenüberstehen, wie es im Falle der bikonvexen, doppelt-asphärischen Positivlinse 32 der Fall ist. Günstig ist weiterhin, wenn sowohl unmittelbar vor der Blendenebene, als auch unmittelbar dahinter eine asphärische Fläche vorgesehen ist. Im Beispielsfall sind dies die Austrittsfläche des Negativ-Meniskus 31 und die Eintrittsfläche der bikonvexen Positivlinse 32. Die hohe Anzahl von Asphären im Bereich um die Systemblende 5 dient im Beispielfall vor allem der Korrektur der sphärischen Abberation (Zemike-Koeffizienten Z9, Z16, Z25, Z26, Z36, Z49) sowie der Einstellung der Isoplanasie, also der Korrektur des aperturbehafteten Abbildungsmaßstabes.Further advantageous measures consist in the fact that surfaces with aspheres should be provided in the area of the diaphragm, particularly close behind it. These can face each other in a lens, as is the case with the biconvex, double-aspherical positive lens 32. It is also advantageous if an aspherical surface is provided both directly in front of the diaphragm plane and immediately behind it. In the example, these are the exit surface of the negative meniscus 31 and the entry surface of the biconvex positive lens 32. The high number of aspheres in the area around the system aperture 5 serves in the example above all to correct the spherical aberration (Zemike coefficients Z9, Z16, Z25, Z26, Z36, Z49) and the setting of the isoplanasia, i.e. the correction of the aperture-related imaging scale.
In Tabelle 1 ist die Spezifikation des Designs in bekannter Weise in tabellarischer Form zusammengefasst. Dabei gibt Spalte 1 die Nummer einer brechenden oder auf andere Weise ausgezeichneten Fläche, Spalte 2 den Radius r der Fläche (in mm), Spalte 3 den als Dicke bezeichneten Abstand d der Fläche zur nachfolgenden Fläche (in mm), Spalte 4 das Material der optischen Komponenten und Spalte 5 die Brechzahl bzw. den Brechungsindex des Materials des Bauelementes an, welches der Eintrittsfläche folgt. In Spalte 6 sind die nutzbaren, freien Radien bzw. der halbe freie Durchmesser der Linsen (in mm) angegeben.Table 1 summarizes the specification of the design in a known manner in tabular form. Column 1 gives the number of a refractive or otherwise distinguished surface, column 2 the radius r of the surface (in mm), column 3 the distance d of the surface from the following surface (in mm), which is referred to as thickness, column 4 the material of the optical components and column 5 the refractive index or the refractive index of the material of the component, which follows the entry surface. Column 6 shows the usable free radii or half the free diameter of the lenses (in mm).
Bei der Ausführungsform sind dreizehn der Flächen, nämlich die Flächen 2, 4, 7, 10, 15, 19, 27, 32, 41 , 43, 45, 46 und 48 asphärisch. Tabelle 2 gibt die entsprechenden Asphärendaten an, wobei sich die asphärischen Flächen nach folgender Vorschrift berechnen:In the embodiment, thirteen of the surfaces, namely surfaces 2, 4, 7, 10, 15, 19, 27, 32, 41, 43, 45, 46 and 48 are aspherical. Table 2 shows the corresponding aspherical data, whereby the aspherical surfaces are calculated according to the following rule:
p(h)=[((1/r)h2)/(1+SQRT(1 -(1-f-K)(1/r)2h2)]+C1 *h4+C2*h6+....p (h) = [((1 / r) h 2 ) / (1 + SQRT (1 - (1-fK) (1 / r) 2 h 2 )] + C1 * h 4 + C2 * h 6 +. ...
Dabei gibt der Kehrwert (1/r) des Radius die Flächenkrümmung und h den Abstand eines Flächenpunktes von der optischen Achse an. Somit gibt p(h) die sogenannten Pfeilhöhe, d.h. den Abstand des Flächenpunktes vom Flächenscheitel in z-Richtung, d.h. in Richtung der optischen Achse. Die Konstanten K, C1 , C2, ... sind in Tabelle 2 wiedergegeben.The reciprocal (1 / r) of the radius indicates the surface curvature and h the distance of a surface point from the optical axis. Thus p (h) gives the so-called arrow height, i.e. the distance of the surface point from the surface vertex in the z direction, i.e. in the direction of the optical axis. The constants K, C1, C2, ... are shown in Table 2.
Das mit Hilfe dieser Angaben reproduzierbare optische System 1 ist für eine Arbeitswellenlänge von ca. 193nm ausgelegt, bei der das für alle Linsen verwendete, synthetisches Quarzglas einen Brechungsindex n = 1 ,56029 hat. Die bildseitige numerische Apertur beträgt 1 ,1. Das Objektiv hat eine Baulänge (Abstand zwischen Bildebene und Objektebene) von 1297mm. Bei einer Bildgröße von 22mm wird ein Lichtleitwert (Produkt aus numerischer Apertur und Bildgröße) von 24,1 mm erreicht. Der bildseitige Arbeitsabstand, d.h. der Abstand zwischen der ebenen Austrittsfläche des letzten optischen Elements 34 und der Bildebene 3 ist nicht gesondert aufgeführt. Es kann z.B. 20 bis 50nm betragen. Dadurch ist das Projektionsobjektiv für die Nahfeld- Lithographie geeignet.The optical system 1 which can be reproduced with the aid of this information is designed for a working wavelength of approximately 193 nm, at which the synthetic quartz glass used for all lenses has a refractive index n = 1,56029. The numerical aperture on the image side is 1.1. The lens has an overall length (distance between image plane and Object level) of 1297mm. With an image size of 22mm, a light guide value (product of numerical aperture and image size) of 24.1 mm is achieved. The image-side working distance, ie the distance between the flat exit surface of the last optical element 34 and the image plane 3 is not listed separately. For example, it can be 20 to 50nm. This makes the projection lens suitable for near-field lithography.
Möchte man an Stelle der Nahfeld-Lithographie Immersionslithographie betreiben, so ist dies durch geringfügige Modifikationen leicht möglich. Hat das Immersionsmedium im wesentlichen die gleiche Brechzahl wie das letzte optische Element des Objektivs ( das beispielsweise aus Glas oder Kristall besteht), so wird der Festkörper zur Erzielung eines größeren Abstandes zur Bildebene gekürzt und der entstehende größere Zwischenraum durch das Immersionsmedium, z.B. deionisiertes Wasser gefüllt. Weicht der Brechungsindex des Immersionsmediums von demjenigen der letzten optischen Komponente ab, werden beide Dicken bestmöglich aufeinander abgestimmt. Gegebenenfalls ist eine sphärische Nachkorrektur günstig, die beispielsweise mit Hilfe geeigneter Manipulatoren an einem oder mehreren Linsenelementen beispielsweise durch Verstellung von Luftabständen durchgeführt werden kann. Es kann auch günstig sein, dass hier beispielhaft dargestellt Design leicht zu modifizieren.If one would like to use immersion lithography instead of near-field lithography, this is easily possible with minor modifications. If the immersion medium has essentially the same refractive index as the last optical element of the objective (which consists, for example, of glass or crystal), the solid is shortened to achieve a greater distance from the image plane and the resulting larger space is created by the immersion medium, e.g. deionized water filled. If the refractive index of the immersion medium deviates from that of the last optical component, both thicknesses are matched to one another as best as possible. A spherical post-correction is advantageous, which can be carried out, for example, with the aid of suitable manipulators on one or more lens elements, for example by adjusting the air gaps. It may also be favorable to easily modify the design shown here as an example.
Damit ist ein Projektionsobjektiv geschaffen, das bei einer Arbeitswellenlänge von 193nm arbeitet, mit Hilfe konventioneller Techniken für Linsenherstellung und Beschichtungen hergestellt werden kann und eine Auflösung von Strukturen deutlich unterhalb 100nm erlaubt. Viele einzeln oder in Kombination nützliche, konstruktive Maßnahmen und der neuartige Aufbau des Bereichs zwischen Blende 5 und Bildebene 3 ermöglichen eine Gesamtapertur im zu belichtenden Medium von 1 ,1 bei relativ kleinen Flächenbelastungen der optischen Flächen innerhalb des Projektionsobjektivs. Strukturbreiten im Bereich von 50nm können trotz der riesigen Apertur von 1 ,1 hervorragend dargestellt werden. Deutlich wird dies an geringen Queraberrationswerten und an einem Wellenfront-RMS-Wert von 2,6mλ bei 193nm über alle Bildhöhen.This creates a projection lens that works at a working wavelength of 193nm, can be produced using conventional techniques for lens production and coatings and allows structures to be resolved well below 100nm. Many individually or in combination useful, constructive measures and the new structure of the area between the aperture 5 and image plane 3 allow a total aperture in the medium to be exposed of 1.1 with relatively small surface loads on the optical Areas within the projection lens. Structure widths in the range of 50nm can be displayed excellently despite the huge aperture of 1.1. This becomes clear from low transverse aberration values and a wavefront RMS value of 2.6mλ at 193nm over all image heights.
Das vorgestellte Beispiel bietet weitere Entwicklungsmöglichkeiten in Richtung höherer Apertur und/oder geringerer Zahl der Grenzflächen. Beispielsweise können einige paarweise benachbarte Linsen zu jeweils einer einzigen Linse zusammengefasst werden, um auf diese Weise die Grenzflächenzahl jeweils um zwei zu reduzieren. Beispielsweise können die Linsen 23 und 24, die Linsen 18 und 19, die Linsen 13 und 14, die Linsen 26 und 27 und/oder die Linsen 11 und 12 jeweils zu einer Linse zusammengefasst werden. Gegebenenfalls sind hierbei asphärische Flächen zu verlegen oder zu modifizieren. Eine Zusammenfassung von Linsen ist besonders für kürzere Wellenlängen, z.B. 157nm günstig, bei denen Entspiegelung und Oberflächenrauhigkeit von Linsenoberflächen problematisch sein können. Gegebenenfalls kann bei höchsten Aperturen hinter der Blende eine weitere Positivlinse günstig sein, um bei Aperturerhöhungen möglichst wenig aperturbehaftete neue Aberrationen einzuführen.The example presented offers further development possibilities in the direction of a higher aperture and / or a smaller number of interfaces. For example, some lenses that are adjacent in pairs can be combined to form a single lens in order to reduce the number of interfaces by two. For example, the lenses 23 and 24, the lenses 18 and 19, the lenses 13 and 14, the lenses 26 and 27 and / or the lenses 11 and 12 can each be combined to form a lens. If necessary, aspherical surfaces must be installed or modified. A combination of lenses is especially useful for shorter wavelengths, e.g. 157nm cheap, where anti-reflective coating and surface roughness of lens surfaces can be problematic. If necessary, a further positive lens behind the diaphragm can be favorable at the highest apertures in order to introduce new aberrations with as few apertures as possible when the apertures are increased.
Die Vorteile der Erfindung sind nicht nur bei rein refraktiven Projektionsobjektiven nutzbar, sondern auch bei katadioptrischen Projektionsobjektiven, insbesondere solchen, die mit geometrischer oder physikalischer (polarisationsselektiver) Strahlteilung arbeiten. Besonderheiten liegen vor allem bei Aufbau und Funktion im Bereich der bildnahen Systemblende und zwischen dieser und der Bildebene. Die vorgeschalteten Objektivteile, welche bei katadioptrischen Projektionsobjektiven mindestens einen abbildenden Spiegel umfassen, sollten zumindest eine Überkorrektur des Farblängsfehlers bereitstellen, um die entsprechende Unterkorrektur der letzten Linsengruppe zu kompensieren. Vorzugsweise sollte eine Petzval-Überkorrektur bereitgestellt werden, um einen Vorhalt für die Petzval-Unterkorrektur der letzten Linsengruppe bereitzustellen. Da diese, ähnlich wie eine einzelne Positivlinse, bezüglich sphärischer Aberration unterkorrigiert ist, sollte der vorgelagerte Objektivteil insgesamt sphärisch überkorrigierend wirken. Die Maßnahmen zur Erzielung dieser optischen Charakteristika sind dem Fachmann bekannt und werden daher hier nicht näher erläutert. The advantages of the invention can be used not only with purely refractive projection lenses, but also with catadioptric projection lenses, in particular those that work with geometric or physical (polarization-selective) beam splitting. Special features are in the structure and function in the area of the near-system screen and between this and the picture plane. The upstream lens parts, which in the case of catadioptric projection lenses comprise at least one imaging mirror, should at least provide an overcorrection of the longitudinal color error in order to correct the corresponding undercorrection of the last lens group compensate. A Petzval overcorrection should preferably be provided in order to provide a lead for the Petzval undercorrection of the last lens group. Since this, like a single positive lens, is under-corrected for spherical aberration, the upstream part of the lens should have a spherically over-correcting effect. The measures for achieving these optical characteristics are known to the person skilled in the art and are therefore not explained in more detail here.
BRECHZAHL 1/2 FREIERFRESH NUMBER 1/2 FREE
F AECHE RADIEN DICKEN GLAESER 193.304nm DURCHMESSERF AECHE RADIEN THICK GLASSES 193.304nm DIAMETER
0 0.000000000 27.200000000 L710 0.99998200 45.6070 0.000000000 27.200000000 L710 0.99998200 45.607
1 0.000000000 5.918415780 L710 0.99998200 53.3331 0.000000000 5.918415780 L710 0.99998200 53.333
2 -856.520151429AS 8.513391670 SI02HL 1.56028895 54.2162 -856.520151429AS 8.513391670 SI02HL 1.56028895 54.216
3 221.390186129 4.416825103 N2 1.00000320 58.8073 221.390186129 4.416825103 N2 1.00000320 58.807
4 388.002080060AS 7.500000000 SI02HL 1.56028895 62.5974 388.002080060AS 7.500000000 SI02HL 1.56028895 62.597
5 145.662170604 35.066769313 N2 1.00000320 64.7995 145.662170604 35.066769313 N2 1.00000320 64.799
6 -156.528478897 13.825053459 SI02HL 1.56028895 68.2376 -156.528478897 13.825053459 SI02HL 1.56028895 68.237
7 -569.268909317AS 1.048245321 N2 1.00000320 84.7377 -569.268909317AS 1.048245321 N2 1.00000320 84.737
8 -685.623617269 46.805975671 SI02HL 1.56028895 86.1188 -685.623617269 46.805975671 SI02HL 1.56028895 86.118
9 -204.957576367 0.709606715 N2 1.00000320 103.1449 -204.957576367 0.709606715 N2 1.00000320 103.144
10 -880.911273998AS 54.777943597 SI02HL 1.56028895 125.01310 -880.911273998AS 54.777943597 SI02HL 1.56028895 125.013
11 -248.526945989 1.683182576 N2 1.00000320 131.42311 -248.526945989 1.683182576 N2 1.00000320 131.423
12 224.822351709 54.871581452 SI02HL 1.56028895 156.30912 224.822351709 54.871581452 SI02HL 1.56028895 156.309
13 512.337183722 33.734945339 N2 1.00000320 153.30313 512.337183722 33.734945339 N2 1.00000320 153.303
14 304.374483761 58.667551666 SI02HL 1.56028895 146.75714 304.374483761 58.667551666 SI02HL 1.56028895 146.757
15 -6287.676161070AS 0.700000000 N2 1.00000320 140.98415 -6287.676161070AS 0.700000000 N2 1.00000320 140.984
16 129.979785804 69.743588545 SI02HL 1.56028895 112.46316 129.979785804 69.743588545 SI02HL 1.56028895 112.463
17 138.594373293 2.395572054 N2 1.00000320 85.80917 138.594373293 2.395572054 N2 1.00000320 85.809
18 138.485177581 10.992090105 SI02HL 1.56028895 84.65418 138.485177581 10.992090105 SI02HL 1.56028895 84.654
19 162.930027134AS 45.897552290 N2 1.00000320 78.23219 162.930027134AS 45.897552290 N2 1.00000320 78.232
20 -186.365747641 7.500000000 SI02HL 1.56028895 75.97920 -186.365747641 7.500000000 SI02HL 1.56028895 75.979
21 209.249850090 47.901412683 N2 1.00000320 70.46921 209.249850090 47.901412683 N2 1.00000320 70.469
22 -92.976145902 7.500000000 SI02HL 1.56028895 70.31922 -92.976145902 7.500000000 SI02HL 1.56028895 70.319
23 3940.003552383 22.698881573 N2 1.00000320 84.28523 3940.003552383 22.698881573 N2 1.00000320 84.285
24 -210.566279065 13.458540900 SI02HL 1.56028895 86.30124 -210.566279065 13.458540900 SI02HL 1.56028895 86.301
25 -481.930608562 10.599713214 N2 1.00000320 98.30925 -481.930608562 10.599713214 N2 1.00000320 98.309
26 -299.003037123 29.233512385 SI02H 1.56028895 100.89626 -299.003037123 29.233512385 SI02H 1.56028895 100.896
27 -211.128540124AS 0.700000000 N2 1.00000320 111.97427 -211.128540124AS 0.700000000 N2 1.00000320 111.974
28 -241.783293846 45.186608069 SI02HL 1.56028895 113.06828 -241.783293846 45.186608069 SI02HL 1.56028895 113.068
29 -142.093795869 0.700000000 N2 1.00000320 118.74729 -142.093795869 0.700000000 N2 1.00000320 118.747
30 373.228657636 15.000000000 SI02HL 1.56028895 144.71430 373.228657636 15.000000000 SI02HL 1.56028895 144.714
31 281.545559695 37.551434993 N2 1.00000320 144.97331 281.545559695 37.551434993 N2 1.00000320 144.973
32 2257.943358151AS 15.000000000 SI02HL 1.56028895 146.55532 2257.943358151AS 15.000000000 SI02HL 1.56028895 146.555
33 942.886809577 9.018344987 N2 1.00000320 151.23733 942.886809577 9.018344987 N2 1.00000320 151.237
34 1839.757565259 41.221307008 SI02HL 1.56028895 152.79634 1839.757565259 41.221307008 SI02HL 1.56028895 152.796
35 -572.892294825 0.700000000 N2 1.00000320 156.19835 -572.892294825 0.700000000 N2 1.00000320 156.198
36 536.885209090 59.927790928 SI02HL 1.56028895 168.30336 536.885209090 59.927790928 SI02HL 1.56028895 168.303
37 -588.394317091 0.700000003 N2 1.00000320 168.53237 -588.394317091 0.700000003 N2 1.00000320 168.532
38 600.944472100 32.859055286 SI02HL 1.56028895 162.45838 600.944472100 32.859055286 SI02HL 1.56028895 162.458
39 1435.651038119 39.540839130 N2 1.00000320 158.95239 1435.651038119 39.540839130 N2 1.00000320 158.952
40 -542.595637794 21.000000000 SI02HL 1.56028895 157.30940 -542.595637794 21.000000000 SI02HL 1.56028895 157.309
41 -421.356226662AS 28.605920520 N2 1.00000320 156.99941 -421.356226662AS 28.605920520 N2 1.00000320 156.999
42 -253.952587228 15.000000000 SI02HL 1.56028895 153.78842 -253.952587228 15.000000000 SI02HL 1.56028895 153.788
43 -804.677872363AS 32.000000000 N2 1.00000320 158.84243 -804.677872363AS 32.000000000 N2 1.00000320 158.842
44 0.000000000 10.700000010 N2 1.00000320 162.25044 0.000000000 10.700000010 N2 1.00000320 162.250
45 439.828583479AS 60.615863511 SI02HL 1.56028895 169.16945 439.828583479AS 60.615863511 SI02HL 1.56028895 169.169
46 -554.126799640AS 0.854609370 N2 1.00000320 169.05846 -554.126799640AS 0.854609370 N2 1.00000320 169.058
47 251.288231110 66.707994802 SI02HL 1.56028895 152.02247 251.288231110 66.707994802 SI02HL 1.56028895 152.022
48 -1261.158042833AS 0.700000000 N2 1.00000320 149.15048 -1261.158042833AS 0.700000000 N2 1.00000320 149.150
49 120.292681477 139.355322544 SI02HL 1.56028895 99.15849 120.292681477 139.355322544 SI02HL 1.56028895 99.158
50 0.000000000 0.000000000 SI02HL 1.56028895 11.40250 0.000000000 0.000000000 SI02HL 1.56028895 11.402
51 0.000000000 0.000000000 '' 1.00000000 11.402 51 0.000000000 0.000000000 ' ' 1.00000000 11.402
FLAECHE NR. 2 FLAECHE NR. 15AREA NO. 2 AREA NO. 15
K 0.0000 K 0. .0000K 0.0000 K 0. .0000
Cl -2.94971307e-008 Cl 1. ,77772008e-009Cl -2.94971307e-008 Cl 1., 77772008e-009
C2 -5.57984348e-011 C2 6, ,20555687e-014C2 -5.57984348e-011 C2 6,., 20555687e-014
C3 8.46982512e-015 C3 1. ,17962639e-018C3 8.46982512e-015 C3 1., 17962639e-018
C4 5.00708078e-019 C4 -3, .75710986e-023C4 5.00708078e-019 C4 -3, .75710986e-023
C5 -3.78477968e-022 C5 8. .23659263e-027C5 -3.78477968e-022 C5 8. .23659263e-027
C6 4.94732324e-026 C6 -3, .78043433e-031C6 4.94732324e-026 C6 -3, .78043433e-031
C7 -2.07498764e-030 C7 5. .28341681e-036C7 -2.07498764e-030 C7 5. .28341681e-036
C8 0.00000000e+000 C8 0. .00000000e+000C8 0.00000000e + 000 C8 0. .00000000e + 000
C9 0.00000000e+000 C9 0. .00000000e+000C9 0.00000000e + 000 C9 0. .00000000e + 000
FLAECHE NR. 4 FLAECHE NR. 19AREA NO. 4 AREA NO. 19
K 0.0000 K 0 . 0000K 0.0000 K 0. 0000
Cl 2.26266925e-007 Cl 1. 12510953e-007Cl 2.26266925e-007 Cl 1. 12510953e-007
C2 4.12437333e-011 C2 5 . 25382772e-012C2 4.12437333e-011 C2 5. 25382772e-012
C3 -8.13482251e-015 C3 3. 54985200e-016C3 -8.13482251e-015 C3 3. 54985200e-016
C4 -9.73333957e-019 C4 2 .17219317e-020C4 -9.73333957e-019 C4 2 .17219317e-020
C5 5.21683282e-022 C5 3. 35596515e-024C5 5.21683282e-022 C5 3. 35596515e-024
C6 -6.98262222e-026 C6 -1. 94149952e-028C6 -6.98262222e-026 C6 -1. 94149952e-028
C7 3.24713110e-030 C7 4 . 47299373e-032C7 3.24713110e-030 C7 4. 47299373e-032
C8 0.00000000e+000 C8 0. 00000000e+000C8 0.00000000e + 000 C8 0. 00000000e + 000
C9 0.00000000e+000 C9 0 . 00000000e+000C9 0.00000000e + 000 C9 0. 00000000e + 000
FLAECHE NR. 7 FLAECHE NR. 27AREA NO. 7 AREA NO. 27
K 0.0000 K 0.0000K 0.0000 K 0.0000
Cl 2.14406930e-008 Cl 2.75008177e-008Cl 2.14406930e-008 Cl 2.75008177e-008
C2 4.01486796e-013 C2 -4.51696088e-013C2 4.01486796e-013 C2 -4.51696088e-013
C3 -1.15749689e-016 C3 -5.50353634e-018C3 -1.15749689e-016 C3 -5.50353634e-018
C4 -2.17404465e-020 C4 -2.48871975e-022C4 -2.17404465e-020 C4 -2.48871975e-022
C5 4.76039865e-024 C5 -4.84285060e-026C5 4.76039865e-024 C5 -4.84285060e-026
C6 -4.04274950e-028 C6 4.35721702e-030C6 -4.04274950e-028 C6 4.35721702e-030
C7 2.26352156e-032 C7 -1.70355795e-034C7 2.26352156e-032 C7 -1.70355795e-034
C8 0.00000000e+000 C8 0.00000000e+000C8 0.00000000e + 000 C8 0.00000000e + 000
C9 0.00000000e+000 C9 0.00000000e+000C9 0.00000000e + 000 C9 0.00000000e + 000
FLAECHE NR. 10 FLAECHE NR. 32AREA NO. 10 AREA NO. 32
K 0. .0000 K 0.0000K 0. .0000 K 0.0000
Cl 4. ,04801375e-008 Cl 4.61774725e-009Cl 4., 04801375e-008 Cl 4.61774725e-009
C2 3. ,59502309e-013 C2 -1.45428945e-013C2 3rd, 59502309e-013 C2 -1.45428945e-013
C3 -4, .82739756e-017 C3 5.33766031e-018C3 -4, .82739756e-017 C3 5.33766031e-018
C4 -2. .12222071e-021 C4 -1.05172907e-022C4 -2. .12222071e-021 C4 -1.05172907e-022
C5 3, .16153319e-025 C5 1.13262775e-027C5 3, .16153319e-025 C5 1.13262775e-027
C6 -1. .24031349e-029 C6 2.90828821e-032C6 -1. .24031349e-029 C6 2.90828821e-032
C7 1. .72585585e-034 C7 -9.47335184e-037C7 1. .72585585e-034 C7 -9.47335184e-037
C8 0. .00000000e+000 C8 0.00000000e+000C8 0. .00000000e + 000 C8 0.00000000e + 000
C9 0 .00000000e+000 C9 0.00000000e+000 C9 0 .00000000e + 000 C9 0.00000000e + 000
FLAECHE NR. 41 FLAECHE NR. 48AREA NO. 41 AREA NO. 48
K 0.0000 K 0.0000K 0.0000 K 0.0000
Cl -1.74774919e~009 Cl 2.98238360e-010Cl -1.74774919e ~ 009 Cl 2.98238360e-010
C2 3.60065638e-015 C2 -6.63488568e-014C2 3.60065638e-015 C2 -6.63488568e-014
C3 -6.33371869e-019 C3 8.08884615e-018C3 -6.33371869e-019 C3 8.08884615e-018
C4 -2.58752868e-023 C4 -1.56791602e-022C4 -2.58752868e-023 C4 -1.56791602e-022
C5 -1.29026764e-027 C5 -6.64400102e-029C5 -1.29026764e-027 C5 -6.64400102e-029
C6 4.06422380e-032 C6 3.42882241e-032C6 4.06422380e-032 C6 3.42882241e-032
C7 -2.03413277e-036 C7 -1.87278246e-037C7 -2.03413277e-036 C7 -1.87278246e-037
C8 0.00000000e+000 C8 0.00000000e+000C8 0.00000000e + 000 C8 0.00000000e + 000
C9 0.00000000e+000 C9 0.00000000e+000C9 0.00000000e + 000 C 9 0.00000000e + 000
FLAECHE NR. 43AREA NO. 43
K 0. .0000K 0. .0000
Cl -1, ,52776855e-009Cl -1,, 52776855e-009
C2 3. ,99966157e-014C2 3rd, 99966157e-014
C3 -3. ,59152071e-019C3 -3. , 59152071e-019
C4 -2. .46490776e-023C4 -2. .46490776e-023
C5 2. .62578515e-028C5 2. .62578515e-028
C6 9. .94510225e-032C6 9..94510225e-032
C7 -1, .17559041e-036C7-1, .17559041e-036
C8 0, .00000000e+000C8 0, .00000000e + 000
C9 0, .00000000e+000C9 0, .00000000e + 000
FLAECHE NR. 45AREA NO. 45
K 0.0000K 0.0000
Cl -6.79036688e-009Cl -6.79036688e-009
C2 -4.98113790e-014C2 -4.98113790e-014
C3 2.59739233e-018C3 2.59739233e-018
C4 -5.22422066e-023C4 -5.22422066e-023
C5 1.38345858e-028C5 1.38345858e-028
C6 -9.60600374e-033C6 -9.60600374e-033
C7 4.93449545e-037C7 4.93449545e-037
C8 0.00000000e+000C8 0.00000000e + 000
C9 0.00000000e+000C9 0.00000000e + 000
FLAECHE NR. 46AREA NO. 46
K 0.0000K 0.0000
Cl -1.23311338e-009Cl -1.23311338e-009
C2 9.47803783e-014C2 9.47803783e-014
C3 -6.59387651e-020C3 -6.59387651e-020
C4 -4.20864177e-023C4 -4.20864177e-023
C5 -4.65343524e-028C5 -4.65343524e-028
C6 -7.27238546e-033C6 -7.27238546e-033
C7 5.62850375e-037C7 5.62850375e-037
C8 0.00000000e+000C8 0.00000000e + 000
C9 0.00000000e+000 C9 0.00000000e + 000

Claims

Patentansprüche claims
1. Projektionsobjektiv zur Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in eine Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegeben Arbeitswellenlänge, das Projektionsobjektiv mit: einer Vielzahl von optischen Elementen, die entlang einer optischen Achse angeordnet sind; und einer mit Abstand vor der Bildebene angeordneten Systemblende1. projection lens for imaging a pattern arranged in the object plane of the projection lens into an image plane of the projection lens with ultraviolet light of a predetermined working wavelength, the projection lens with: a plurality of optical elements which are arranged along an optical axis; and a system aperture arranged at a distance from the image plane
(5) mit einem Blendendurchmesser; wobei die der Bildebene nächste optische Gruppe mit Brechkraft eine Plankonvexgruppe (34) mit einer im wesentlichen sphärischen Eintrittsfläche und einer im wesentlichen ebenen(5) with an aperture diameter; the optical group closest to the image plane with refractive power being a plano-convex group (34) with an essentially spherical entrance surface and an essentially flat one
Austrittsfläche ist; und wobei die Plankonvexgruppe (34) einen Durchmesser hat, der mindestens 50% des Blendendurchmessers beträgt.Exit surface is; and wherein the plano-convex group (34) has a diameter which is at least 50% of the diaphragm diameter.
2. Projektionsobjektiv nach Anspruch 1 , bei dem die Plankonvexgruppe durch eine einzige, vorzugsweise einstückige Plankonvexlinse (34) gebildet ist.2. Projection objective according to claim 1, in which the plano-convex group is formed by a single, preferably one-piece plano-convex lens (34).
3. Projektionsobjektiv nach Anspruch 1 oder 2, bei dem zwischen der Systemblende (5) und der Bildebene (3) nur Linsen (32, 33, 34) mit positiver Brechkraft angeordnet sind, gegebenenfalls in Kombination mit mindestens einer planparallelen Platte.3. Projection lens according to claim 1 or 2, in which only lenses (32, 33, 34) with positive refractive power are arranged between the system diaphragm (5) and the image plane (3), optionally in combination with at least one plane-parallel plate.
4. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Systemblende (5) und der Bildebene (3), insbesondere zwischen Systemblende und Plankonvexgruppe (34), mindestens eine bikonvexe Positivlinse angeordnet ist, vorzugsweise zwei bikonvexe Positivlinsen (32, 33).4. Projection lens according to one of the preceding claims, in which between the system diaphragm (5) and the image plane (3), in particular between the system diaphragm and plan-convex group (34), at least one biconvex positive lens is arranged, preferably two biconvex positive lenses (32, 33).
5. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine zwischen Systemblende (5) und Bildebene (3) angeordnete letzte Linsengruppe (LG7) maximal vier optische5. Projection objective according to one of the preceding claims, in which a last lens group (LG7) arranged between system aperture (5) and image plane (3) has a maximum of four optical lenses
Elemente mit Brechkraft aufweist, vorzugsweise nur drei LinsenHas elements with refractive power, preferably only three lenses
(32, 33, 34).(32, 33, 34).
6. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine zwischen Systemblende (5) und Bildebene (3) angeordnete letzte Linsengruppe eine Brennweite hat, die weniger als 20%, insbesondere weniger als 15% der Baulänge des Projektionsobjektivs beträgt.6. Projection objective according to one of the preceding claims, in which a last lens group arranged between the system aperture (5) and image plane (3) has a focal length which is less than 20%, in particular less than 15%, of the overall length of the projection objective.
7. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein Abstand zwischen der Systemblende und der Bildebene (3) weniger als 25% der Baulänge und/oder weniger als 95% des Blendendurchmesser beträgt.7. Projection objective according to one of the preceding claims, in which a distance between the system diaphragm and the image plane (3) is less than 25% of the overall length and / or less than 95% of the diaphragm diameter.
8. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem es sich um ein rein refraktives Projektionsobjektiv (1 ) handelt.8. Projection lens according to one of the preceding claims, which is a purely refractive projection lens (1).
9. Projektionsobjektiv nach Anspruch 7, bei dem es sich um ein EinTaillen-System mit einem objektnahen Bauch (6), einem bildnahen Bauch (8) und einer dazwischenliegenden Taille (7) handelt.9. Projection lens according to claim 7, wherein it is a one-waist system with a near-object belly (6), a near-image belly (8) and an intermediate waist (7).
10. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, das für eine Arbeitswellenlänge von 193nm ausgelegt ist. 10. Projection lens according to one of the preceding claims, which is designed for a working wavelength of 193nm.
11. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem alle transparenten optischen Elemente aus dem gleichen Material gefertigt sind, insbesondere aus synthetischem Quarzglas.11. Projection lens according to one of the preceding claims, in which all transparent optical elements are made of the same material, in particular of synthetic quartz glass.
12. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, das eine bildseitige numerische Apertur NA > 0,85 hat, wobei vorzugsweise NA ≥ 1 ist.12. Projection objective according to one of the preceding claims, which has an image-side numerical aperture NA> 0.85, preferably NA ≥ 1.
13. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem ein bildseitiger Arbeitsabstand weniger als das Vierfache der Arbeitswellenlänge beträgt, wobei der Arbeitsabstand vorzugsweise kleiner als die Arbeitswellenlänge ist und insbesondere weniger als die Hälfte der Arbeitswellenlänge beträgt.13. Projection lens according to one of the preceding claims, in which an image-side working distance is less than four times the working wavelength, the working distance preferably being less than the working wavelength and in particular being less than half the working wavelength.
14. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem der Bildfelddurchmesser größer als 10mm, insbesondere größer als 20mm ist und/oder bei dem der Bildfelddurchmesser mehr als 1 %, insbesondere mehr als 1 ,5% der Baulänge des14. Projection lens according to one of the preceding claims, in which the image field diameter is greater than 10 mm, in particular greater than 20 mm and / or in which the image field diameter is more than 1%, in particular more than 1.5% of the overall length of the
Projektionsobjektivs und/oder mehr als 1 %, insbesondere mehr als 5% des größten Linsendurchmessers beträgt.Projection lens and / or more than 1%, in particular more than 5% of the largest lens diameter.
15. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen Systemblende (5) und Bildebene (3) mindestens eine doppelt-asphärische Linse (32) angeordnet ist, die vorzugsweise als Bikonvexlinse ausgebildet ist.15. Projection objective according to one of the preceding claims, in which at least one double-aspherical lens (32) is arranged between the system diaphragm (5) and image plane (3), which is preferably designed as a biconvex lens.
16. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem die letzte optische Fläche vor der Systemblende (5) und die erste optische Fläche nach der Systemblende asphärisch sind, vorzugsweise mit von der Blende wegweisenden Krümmungen.16. Projection lens according to one of the preceding claims, in which the last optical surface in front of the system diaphragm (5) and the first optical surface after the system diaphragm are aspherical, preferably with curvatures pointing away from the diaphragm.
17. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem in einem Nahbereich vor der Systemblende (5), insbesondere unmittelbar vor der Systemblende, mindestens eine17. Projection objective according to one of the preceding claims, in which at least one in the vicinity of the system diaphragm (5), in particular immediately in front of the system diaphragm
Meniskuslinse (30, 31 ) mit objektwärts gerichteten Konkavflächen angeordnet ist.Meniscus lens (30, 31) is arranged with concave surfaces directed towards the object.
18. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem mindestens eine Meniskusgruppe mit mindestens zwei aufeinanderfolgenden Meniskuslinsen (30, 31 ) mit objektseitigen Konkavflächen im Nahbereich der Systemblende (5), insbesondere unmittelbar vor der Systemblende angeordnet ist.18. Projection objective according to one of the preceding claims, in which at least one meniscus group with at least two successive meniscus lenses (30, 31) with object-side concave surfaces is arranged in the vicinity of the system diaphragm (5), in particular immediately in front of the system diaphragm.
19. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Nahbereich vor der Systemblende (5) eine Positiv- Negativ-Meniskengruppe mit zwei Meniskuslinsen (30, 31 ) angeordnet ist, deren Linsenflächen objektseitig konkav sind.19. Projection objective according to one of the preceding claims, in which a positive-negative meniscus group with two meniscus lenses (30, 31) is arranged in the vicinity of the system diaphragm (5), the lens surfaces of which are concave on the object side.
20. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Bildebene (3) durch Einschnürung des Strahldurchmessers eine Hilfstaille (9) vorliegt, die vorzugsweise im Nahbereich vor der Systemblende (5) angeordnet ist.20. Projection lens according to one of the preceding claims, in which an auxiliary waist (9) is present between the waist (7) and the image plane (3) by constriction of the beam diameter, which is preferably arranged in the vicinity of the system diaphragm (5).
21. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) mindestens eine Meniskuslinse (25, 26) mit negativer Brechkraft und bildwärts gerichteten Konkavflächen angeordnet ist. 21. Projection objective according to one of the preceding claims, in which at least one meniscus lens (25, 26) with a negative refractive power and image-oriented concave surfaces is arranged between the waist (7) and the system diaphragm (5).
22. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) eine Meniskengruppe mindestens zwei Meniskuslinsen (25, 26) mit negativer Brechkraft und bildwärts gerichteten Konkavflächen angeordnet ist, wobei vorzugsweise die Brechkraft des objektseitigen Meniskus dieser Meniskengruppe mindestens 30% größer ist als die Brechkraft einer darauffolgenden Meniskuslinse (26) der Meniskengruppe.22. Projection objective according to one of the preceding claims, in which a meniscus group with at least two meniscus lenses (25, 26) with negative refractive power and image-oriented concave surfaces is arranged between the waist (7) and the system diaphragm (5), the refractive power of the object-side meniscus preferably this meniscus group is at least 30% greater than the refractive power of a subsequent meniscus lens (26) of the meniscus group.
23. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) in der Nähe der Taille mindestens eine Positiv-Meniskuslinse (23, 24) mit objektseitiger Konkavfläche angeordnet ist.23. Projection objective according to one of the preceding claims, in which at least one positive meniscus lens (23, 24) with an object-side concave surface is arranged between the waist (7) and the system diaphragm (5) in the vicinity of the waist.
24. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem zwischen der Taille (7) und der Systemblende (5) in dieser Reihenfolge mindestens eine Meniskuslinse (23, 24) mit objektseitiger Konkavfläche und darauffolgend mindestens eine Meniskuslinse (25, 26) mit bildseitiger Konkavfläche angeordnet ist, wobei vorzugsweise die mindestens eine Meniskuslinse mit objektseitiger Konkavfläche positive Brechkraft und die mindestens eine Meniskuslinse mit bildseitiger Konkavfläche negative Brechkraft hat.24. Projection objective according to one of the preceding claims, in which between the waist (7) and the system diaphragm (5) in this order at least one meniscus lens (23, 24) with an object-side concave surface and subsequently at least one meniscus lens (25, 26) with an image-side concave surface is arranged, wherein preferably the at least one meniscus lens with a concave surface on the object side has positive refractive power and the at least one meniscus lens with a concave surface on the image side has negative refractive power.
25. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, wobei im Bereich der Taille (7) eine Negativgruppe mit mindestens zwei Negativlinsen (20, 21 , 22) angeordnet ist, wobei die Negativgruppe vorzugsweise mindestens drei aufeinanderfolgende Negativlinsen aufweist.25. Projection objective according to one of the preceding claims, wherein a negative group with at least two negative lenses (20, 21, 22) is arranged in the region of the waist (7), the negative group preferably having at least three successive negative lenses.
26. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem eine der Objektebene (2) folgende erste Linsengruppe (LG1 ) mindestens zwei, vorzugsweise drei oder mehr Negativlinsen (11 , 12, 13) aufweist.26. Projection lens according to one of the preceding claims, in which one of the object plane (2) following the first lens group (LG1) has at least two, preferably three or more negative lenses (11, 12, 13).
27. Projektionsobjektiv nach Anspruch 26, bei dem in der ersten Linsengruppe (LG1 ) mindestens eine der auf die Objektebene folgenden ersten vier optischen Flächen asphärisch ist, wobei vorzugsweise in der ersten Linsengruppe mindestens zwei optische Flächen asphärisch sind.27. The projection objective as claimed in claim 26, in which in the first lens group (LG1) at least one of the first four optical surfaces following the object plane is aspherical, preferably at least two optical surfaces in the first lens group being aspherical.
28. Projektionsobjektiv nach einem der vorhergehenden Ansprüche, bei dem im Bereich großer Strahldurchmesser im Nahbereich der Objektebene (2) mindestens eine Meniskuslinse (16) mit positiver Brechkraft und bildseitiger Konkavfläche angeordnet ist.28. Projection objective according to one of the preceding claims, in which at least one meniscus lens (16) with positive refractive power and concave surface on the image side is arranged in the region of large beam diameters in the vicinity of the object plane (2).
29. Projektionsobjektiv nach Anspruch 28, bei dem die zur Bildebene gerichtete konvexe Fläche der Meniskuslinse (16) einen Radius hat, der kleiner als 50% der Baulänge des Projektionsobjektivs ist.29. The projection lens as claimed in claim 28, in which the convex surface of the meniscus lens (16) directed towards the image plane has a radius which is less than 50% of the overall length of the projection lens.
30. Projektionsobjektiv zur obskurationsfreien Abbildung eines in der Objektebene des Projektionsobjektivs angeordneten Musters in eine Bildebene des Projektionsobjektivs mit Ultraviolettlicht einer vorgegeben Arbeitswellenlänge, das Projektionsobjektiv mit: einer Vielzahl von optischen Elementen, die entlang einer optischen Achse angeordnet sind; und einer mit Abstand vor der Bildebene (3) angeordneten30. projection lens for the obscuration-free imaging of a pattern arranged in the object plane of the projection lens into an image plane of the projection lens with ultraviolet light of a predetermined working wavelength, the projection lens with: a multiplicity of optical elements which are arranged along an optical axis; and one arranged at a distance from the image plane (3)
Systemblende (5); wobei zwischen der Systemblende (5) und der Bildebene (3) nur Linsen (32, 33, 34) mit positiver Brechkraft angeordnet sind, gegebenenfalls zusätzlich zu mindestens einer planparallelen Platte. System cover (5); wherein only lenses (32, 33, 34) with positive refractive power are arranged between the system diaphragm (5) and the image plane (3), optionally in addition to at least one plane-parallel plate.
31. Projektionsobjektiv zur Abbildung eines in der Objektebene dei Projektionsobjektivs angeordneten Musters in eine Bildebene dei Projektionsobjektivs mit Ultraviolettlicht einer vorgegebei Arbeitswellenlänge, das Projektionsobjektiv mit: einer Vielzahl von optischen Elementen, die entlang eine optischen Achse angeordnet sind; und einer mit Abstand vor der Bildebene (3) angeordneter31. Projection lens for imaging a pattern arranged in the object plane of the projection lens into an image plane of the projection lens with ultraviolet light of a predetermined working wavelength, the projection lens with: a multiplicity of optical elements which are arranged along an optical axis; and one arranged at a distance from the image plane (3)
Systemblende (5); wobei unmittelbar vor der Systemblende mindestens eine Meniskusgruppe mit mindestens zwei aufeinanderfolgenderSystem cover (5); with at least one meniscus group with at least two successive ones immediately before the system aperture
Meniskuslinsen (30, 31 ) mit objektseitigen Konkavflächer angeordnet ist.Meniscus lenses (30, 31) is arranged with concave surfaces on the object side.
32. Projektionsobjektiv nach Anspruch 31 , bei dem die Meniskusgruppe eine Positiv-Negativ-Meniskengruppe mit zwe32. Projection lens according to claim 31, wherein the meniscus group is a positive-negative meniscus group with two
Meniskuslinsen (30, 31 ) ist, deren Linsenflächen objektseitic konkav sind. Meniscus lenses (30, 31), the lens surfaces of which are concave on the object side.
EP02738025A 2002-03-08 2002-05-03 High-aperture projection lens Withdrawn EP1483625A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10210899 2002-03-08
DE10210899A DE10210899A1 (en) 2002-03-08 2002-03-08 Refractive projection lens for immersion lithography
PCT/EP2002/004846 WO2003077036A1 (en) 2002-03-08 2002-05-03 High-aperture projection lens

Publications (1)

Publication Number Publication Date
EP1483625A1 true EP1483625A1 (en) 2004-12-08

Family

ID=27762884

Family Applications (2)

Application Number Title Priority Date Filing Date
EP02738025A Withdrawn EP1483625A1 (en) 2002-03-08 2002-05-03 High-aperture projection lens
EP03717197A Withdrawn EP1485760A1 (en) 2002-03-08 2003-02-26 Refractive projection objective for immersion lithography

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03717197A Withdrawn EP1485760A1 (en) 2002-03-08 2003-02-26 Refractive projection objective for immersion lithography

Country Status (8)

Country Link
US (4) US6891596B2 (en)
EP (2) EP1483625A1 (en)
JP (2) JP2005519347A (en)
KR (1) KR100991590B1 (en)
CN (1) CN100573222C (en)
AU (2) AU2002312872A1 (en)
DE (1) DE10210899A1 (en)
WO (2) WO2003077036A1 (en)

Families Citing this family (262)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7187503B2 (en) 1999-12-29 2007-03-06 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US7203007B2 (en) * 2000-05-04 2007-04-10 Carl Zeiss Smt Ag Projection exposure machine comprising a projection lens
KR100866818B1 (en) * 2000-12-11 2008-11-04 가부시키가이샤 니콘 Projection optical system and exposure apparatus comprising the same
DE10229249A1 (en) 2002-03-01 2003-09-04 Zeiss Carl Semiconductor Mfg Refractive projection lens with a waist
US7190527B2 (en) 2002-03-01 2007-03-13 Carl Zeiss Smt Ag Refractive projection objective
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
CN100462844C (en) 2002-08-23 2009-02-18 株式会社尼康 Projection optical system and method for photolithography and exposure apparatus and method using same
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60335595D1 (en) 2002-11-12 2011-02-17 Asml Netherlands Bv Immersion lithographic apparatus and method of making a device
US7372541B2 (en) * 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
JP3977324B2 (en) 2002-11-12 2007-09-19 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN101470360B (en) 2002-11-12 2013-07-24 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
CN101713932B (en) 2002-11-12 2012-09-26 Asml荷兰有限公司 Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI255971B (en) 2002-11-29 2006-06-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10258718A1 (en) 2002-12-09 2004-06-24 Carl Zeiss Smt Ag Projection lens, in particular for microlithography, and method for tuning a projection lens
SG158745A1 (en) 2002-12-10 2010-02-26 Nikon Corp Exposure apparatus and method for producing device
US7948604B2 (en) 2002-12-10 2011-05-24 Nikon Corporation Exposure apparatus and method for producing device
WO2004053952A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004053956A1 (en) * 2002-12-10 2004-06-24 Nikon Corporation Exposure apparatus, exposure method and method for manufacturing device
JP4352874B2 (en) 2002-12-10 2009-10-28 株式会社ニコン Exposure apparatus and device manufacturing method
US7242455B2 (en) * 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
KR20050085235A (en) * 2002-12-10 2005-08-29 가부시키가이샤 니콘 Exposure system and device producing method
DE10261775A1 (en) 2002-12-20 2004-07-01 Carl Zeiss Smt Ag Device for the optical measurement of an imaging system
WO2004086468A1 (en) 2003-02-26 2004-10-07 Nikon Corporation Exposure apparatus and method, and method of producing apparatus
DE10308610B4 (en) 2003-02-27 2006-04-13 Carl Zeiss Immersion liquid for microscopy in Wasserimmersion
KR20050110033A (en) 2003-03-25 2005-11-22 가부시키가이샤 니콘 Exposure system and device production method
JP4902201B2 (en) * 2003-04-07 2012-03-21 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
JP4488004B2 (en) 2003-04-09 2010-06-23 株式会社ニコン Immersion lithography fluid control system
JP4735258B2 (en) 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
JP4650413B2 (en) 2003-04-10 2011-03-16 株式会社ニコン Environmental system including a transfer area for an immersion lithography apparatus
CN101061429B (en) 2003-04-10 2015-02-04 株式会社尼康 Environmental system including vacuum scavenge for an immersion lithography apparatus
WO2004093160A2 (en) 2003-04-10 2004-10-28 Nikon Corporation Run-off path to collect liquid for an immersion lithography apparatus
JP4656057B2 (en) * 2003-04-10 2011-03-23 株式会社ニコン Electro-osmotic element for immersion lithography equipment
KR20190007532A (en) * 2003-04-11 2019-01-22 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
JP4582089B2 (en) 2003-04-11 2010-11-17 株式会社ニコン Liquid jet recovery system for immersion lithography
SG2012031209A (en) * 2003-04-11 2015-07-30 Nippon Kogaku Kk Apparatus having an immersion fluid system configured to maintain immersion fluid in a gap adjacent an optical assembly
EP1614000B1 (en) 2003-04-17 2012-01-18 Nikon Corporation Immersion lithographic apparatus
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR20060009891A (en) 2003-05-06 2006-02-01 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
TWI295414B (en) 2003-05-13 2008-04-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004102646A1 (en) * 2003-05-15 2004-11-25 Nikon Corporation Exposure apparatus and method for manufacturing device
TWI421911B (en) 2003-05-23 2014-01-01 尼康股份有限公司 An exposure method, an exposure apparatus, and an element manufacturing method
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
KR101915914B1 (en) 2003-05-28 2018-11-06 가부시키가이샤 니콘 Exposure method, exposure device, and device manufacturing method
TWI442694B (en) 2003-05-30 2014-06-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7213963B2 (en) 2003-06-09 2007-05-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7317504B2 (en) 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101528089B1 (en) 2003-06-13 2015-06-11 가부시키가이샤 니콘 Exposure method, substrate stage, exposure apparatus and method for manufacturing device
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
KR101148811B1 (en) 2003-06-19 2012-05-24 가부시키가이샤 니콘 Exposure device and device producing method
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1975721A1 (en) * 2003-06-30 2008-10-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7236232B2 (en) * 2003-07-01 2007-06-26 Nikon Corporation Using isotopically specified fluids as optical elements
WO2005010611A2 (en) 2003-07-08 2005-02-03 Nikon Corporation Wafer table for immersion lithography
JP4515385B2 (en) 2003-07-09 2010-07-28 株式会社ニコン Exposure apparatus, exposure method, and device manufacturing method
WO2005006418A1 (en) 2003-07-09 2005-01-20 Nikon Corporation Exposure apparatus and method for manufacturing device
ATE489724T1 (en) 2003-07-09 2010-12-15 Nikon Corp EXPOSURE DEVICE AND METHOD FOR PRODUCING COMPONENTS
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005010960A1 (en) 2003-07-25 2005-02-03 Nikon Corporation Inspection method and inspection device for projection optical system, and production method for projection optical system
US7326522B2 (en) * 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7175968B2 (en) * 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
EP1503244A1 (en) 2003-07-28 2005-02-02 ASML Netherlands B.V. Lithographic projection apparatus and device manufacturing method
KR20190002749A (en) 2003-07-28 2019-01-08 가부시키가이샤 니콘 Exposure apparatus, device producing method, and exposure apparatus controlling method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7700267B2 (en) * 2003-08-11 2010-04-20 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
US7579135B2 (en) * 2003-08-11 2009-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography apparatus for manufacture of integrated circuits
US6844206B1 (en) 2003-08-21 2005-01-18 Advanced Micro Devices, Llp Refractive index system monitor and control for immersion lithography
KR101094114B1 (en) 2003-08-26 2011-12-15 가부시키가이샤 니콘 Optical element and exposure device
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
WO2005022616A1 (en) 2003-08-29 2005-03-10 Nikon Corporation Exposure apparatus and device producing method
TWI245163B (en) 2003-08-29 2005-12-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI263859B (en) 2003-08-29 2006-10-11 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
EP3223074A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for immersion lithography for recovering fluid
US7551361B2 (en) 2003-09-09 2009-06-23 Carl Zeiss Smt Ag Lithography lens system and projection exposure system provided with at least one lithography lens system of this type
WO2005029559A1 (en) 2003-09-19 2005-03-31 Nikon Corporation Exposure apparatus and device producing method
US8208198B2 (en) 2004-01-14 2012-06-26 Carl Zeiss Smt Gmbh Catadioptric projection objective
KR101664642B1 (en) 2003-09-29 2016-10-11 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device manufacturing method
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
DE60302897T2 (en) * 2003-09-29 2006-08-03 Asml Netherlands B.V. Lithographic apparatus and method of making a device
CN1860585B (en) * 2003-09-29 2010-04-28 株式会社尼康 Liquid immersion type lens system and projection exposure device
US7056646B1 (en) 2003-10-01 2006-06-06 Advanced Micro Devices, Inc. Use of base developers as immersion lithography fluid
ITMI20031914A1 (en) * 2003-10-03 2005-04-04 Solvay Solexis Spa Perfluoropolyethers.
WO2005036623A1 (en) 2003-10-08 2005-04-21 Zao Nikon Co., Ltd. Substrate transporting apparatus and method, exposure apparatus and method, and device producing method
JP2005136364A (en) * 2003-10-08 2005-05-26 Zao Nikon Co Ltd Substrate carrying device, exposure device and device manufacturing method
KR101319109B1 (en) 2003-10-08 2013-10-17 가부시키가이샤 자오 니콘 Substrate carrying apparatus, substrate carrying method, exposure apparatus, exposure method, and method for producing device
TW200514138A (en) 2003-10-09 2005-04-16 Nippon Kogaku Kk Exposure equipment and exposure method, manufacture method of component
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
AU2003304557A1 (en) 2003-10-22 2005-06-08 Carl Zeiss Smt Ag Refractive projection objective for immersion lithography
US7411653B2 (en) 2003-10-28 2008-08-12 Asml Netherlands B.V. Lithographic apparatus
TWI474132B (en) 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
US7352433B2 (en) * 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7113259B2 (en) * 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4295712B2 (en) 2003-11-14 2009-07-15 エーエスエムエル ネザーランズ ビー.ブイ. Lithographic apparatus and apparatus manufacturing method
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP2040123B9 (en) * 2003-12-02 2012-11-14 Carl Zeiss SMT GmbH Projection optical system
EP2717295B1 (en) 2003-12-03 2018-07-18 Nikon Corporation Exposure apparatus, exposure method, and method for producing a device
US7466489B2 (en) * 2003-12-15 2008-12-16 Susanne Beder Projection objective having a high aperture and a planar end surface
WO2005059617A2 (en) * 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
JPWO2005057635A1 (en) * 2003-12-15 2007-07-05 株式会社ニコン Projection exposure apparatus, stage apparatus, and exposure method
US7385764B2 (en) * 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
US20070081133A1 (en) * 2004-12-14 2007-04-12 Niikon Corporation Projection exposure apparatus and stage unit, and exposure method
JP2005189850A (en) * 2003-12-15 2005-07-14 Carl Zeiss Smt Ag Refractive projection objective lens for immersion lithography
ATE491221T1 (en) 2003-12-15 2010-12-15 Nikon Corp STAGE SYSTEM, EXPOSURE DEVICE AND EXPOSURE METHOD
JP5102492B2 (en) 2003-12-19 2012-12-19 カール・ツァイス・エスエムティー・ゲーエムベーハー Objective lens for microlithography projection with crystal elements
US7460206B2 (en) * 2003-12-19 2008-12-02 Carl Zeiss Smt Ag Projection objective for immersion lithography
US7394521B2 (en) * 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
JP4429023B2 (en) * 2004-01-07 2010-03-10 キヤノン株式会社 Exposure apparatus and device manufacturing method
US20080151365A1 (en) 2004-01-14 2008-06-26 Carl Zeiss Smt Ag Catadioptric projection objective
WO2005071491A2 (en) 2004-01-20 2005-08-04 Carl Zeiss Smt Ag Exposure apparatus and measuring device for a projection lens
US20050161644A1 (en) 2004-01-23 2005-07-28 Peng Zhang Immersion lithography fluids
TWI259319B (en) * 2004-01-23 2006-08-01 Air Prod & Chem Immersion lithography fluids
US7589822B2 (en) 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
JP2007520893A (en) * 2004-02-03 2007-07-26 ロチェスター インスティテュート オブ テクノロジー Photolithographic method and system using fluid
JP4506674B2 (en) 2004-02-03 2010-07-21 株式会社ニコン Exposure apparatus and device manufacturing method
TWI511182B (en) 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2007522508A (en) * 2004-02-13 2007-08-09 カール・ツアイス・エスエムテイ・アーゲー Projection objective for a microlithographic projection exposure apparatus
CN100592210C (en) * 2004-02-13 2010-02-24 卡尔蔡司Smt股份公司 Projection objective for a microlithographic projection exposure apparatus
US7741012B1 (en) 2004-03-01 2010-06-22 Advanced Micro Devices, Inc. Method for removal of immersion lithography medium in immersion lithography processes
US7215431B2 (en) 2004-03-04 2007-05-08 Therma-Wave, Inc. Systems and methods for immersion metrology
US8488102B2 (en) * 2004-03-18 2013-07-16 Taiwan Semiconductor Manufacturing Company, Ltd. Immersion fluid for immersion lithography, and method of performing immersion lithography
TWI606485B (en) 2004-03-25 2017-11-21 尼康股份有限公司 Exposure apparatus, exposure method, and device manufacturing method
JP4510494B2 (en) * 2004-03-29 2010-07-21 キヤノン株式会社 Exposure equipment
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2005098504A1 (en) 2004-04-08 2005-10-20 Carl Zeiss Smt Ag Imaging system with mirror group
US7898642B2 (en) * 2004-04-14 2011-03-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7400460B2 (en) 2004-04-26 2008-07-15 Carl Zeiss Smt Ag Method for connection of an optical element to a mount structure
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060244938A1 (en) * 2004-05-04 2006-11-02 Karl-Heinz Schuster Microlitographic projection exposure apparatus and immersion liquid therefore
EP1747499A2 (en) 2004-05-04 2007-01-31 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
KR20140138350A (en) 2004-05-17 2014-12-03 칼 짜이스 에스엠티 게엠베하 Catadioptric projection objective with intermediate images
US7616383B2 (en) 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7486381B2 (en) * 2004-05-21 2009-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20050260528A1 (en) * 2004-05-22 2005-11-24 Hynix Semiconductor Inc. Liquid composition for immersion lithography and lithography method using the same
KR101368523B1 (en) 2004-06-04 2014-02-27 칼 짜이스 에스엠테 게엠베하 System for measuring the image quality of an optical imaging system
JP4913041B2 (en) * 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection system with compensation for intensity variation and compensation element therefor
US8520184B2 (en) 2004-06-09 2013-08-27 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device
KR101577515B1 (en) * 2004-06-10 2015-12-14 가부시키가이샤 니콘 Exposure apparatus, exposure method, and device producing method
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
DE102004031688B4 (en) * 2004-06-30 2006-06-14 Infineon Technologies Ag Method for adapting structural dimensions in the photolithographic projection of a pattern of structural elements onto a semiconductor wafer
US7463330B2 (en) 2004-07-07 2008-12-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1780772B1 (en) * 2004-07-12 2009-09-02 Nikon Corporation Exposure equipment and device manufacturing method
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1626571A1 (en) * 2004-08-13 2006-02-15 STMicroelectronics Limited Imaging assembly
JP4983257B2 (en) 2004-08-18 2012-07-25 株式会社ニコン Exposure apparatus, device manufacturing method, measuring member, and measuring method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060044533A1 (en) * 2004-08-27 2006-03-02 Asmlholding N.V. System and method for reducing disturbances caused by movement in an immersion lithography system
US7301707B2 (en) 2004-09-03 2007-11-27 Carl Zeiss Smt Ag Projection optical system and method
US7529030B2 (en) * 2004-09-06 2009-05-05 Olympus Corporation Optical apparatus with optical element made of a medium exhibiting negative refraction
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060060653A1 (en) * 2004-09-23 2006-03-23 Carl Wittenberg Scanner system and method for simultaneously acquiring data images from multiple object planes
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US20110134403A1 (en) * 2004-10-05 2011-06-09 Carl Zeiss Smt Ag Microlithographic projection exposure apparatus
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7508488B2 (en) 2004-10-13 2009-03-24 Carl Zeiss Smt Ag Projection exposure system and method of manufacturing a miniaturized device
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7128427B2 (en) * 2004-11-05 2006-10-31 Sematech, Inc. Method and apparatus for fluid handling in immersion lithography
JP4868209B2 (en) * 2004-11-10 2012-02-01 株式会社ニコン Projection optical system, exposure apparatus, and exposure method
US20080123074A1 (en) * 2004-11-10 2008-05-29 Nikon Corporation Projection Optical System, Exposure Equipment and Exposure Method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) * 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397533B2 (en) * 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7508489B2 (en) 2004-12-13 2009-03-24 Carl Zeiss Smt Ag Method of manufacturing a miniaturized device
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) * 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP2008527403A (en) * 2004-12-30 2008-07-24 カール・ツァイス・エスエムティー・アーゲー Projection optical system
SG124359A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
SG124351A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US20060158615A1 (en) * 2005-01-18 2006-07-20 Williamson David M Catadioptric 1x projection system and method
KR20160135859A (en) 2005-01-31 2016-11-28 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US7282701B2 (en) * 2005-02-28 2007-10-16 Asml Netherlands B.V. Sensor for use in a lithographic apparatus
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1720069A2 (en) 2005-04-07 2006-11-08 Carl Zeiss SMT AG Method of manufacturing a projection-optical system
USRE43576E1 (en) 2005-04-08 2012-08-14 Asml Netherlands B.V. Dual stage lithographic apparatus and device manufacturing method
DE102005017752B4 (en) 2005-04-15 2016-08-04 Heraeus Quarzglas Gmbh & Co. Kg Quartz glass optical component, method of making the component and use thereof
US20060232753A1 (en) 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
DE102006013560A1 (en) * 2005-04-19 2006-10-26 Carl Zeiss Smt Ag Projection lens for micro lithographic projection illumination system, has lens , to characterizes symmetry axis of another lens by rotation of orientation of crystal axes, where lenses are separated by gap filled with liquid
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101455551B1 (en) 2005-05-12 2014-10-27 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
TWI454731B (en) 2005-05-27 2014-10-01 Zeiss Carl Smt Gmbh Method for improving the imaging properties of a projection objective, and such a projection objective
US20070013882A1 (en) * 2005-06-07 2007-01-18 Carl Zeiss Smt Ag Method of manufacturing projection objectives and set of projection objectives manufactured by that method
US7385673B2 (en) * 2005-06-10 2008-06-10 International Business Machines Corporation Immersion lithography with equalized pressure on at least projection optics component and wafer
WO2006133800A1 (en) 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US7262422B2 (en) * 2005-07-01 2007-08-28 Spansion Llc Use of supercritical fluid to dry wafer and clean lens in immersion lithography
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
WO2007020004A1 (en) 2005-08-17 2007-02-22 Carl Zeiss Smt Ag Projection objective and method for optimizing a system diaphragm of a projection objective
US8202460B2 (en) * 2005-09-22 2012-06-19 International Business Machines Corporation Microelectronic substrate having removable edge extension element
US7357768B2 (en) * 2005-09-22 2008-04-15 William Marshall Recliner exerciser
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US20070124987A1 (en) * 2005-12-05 2007-06-07 Brown Jeffrey K Electronic pest control apparatus
KR100768849B1 (en) * 2005-12-06 2007-10-22 엘지전자 주식회사 Power supply apparatus and method for line conection type fuel cell system
WO2007071569A1 (en) * 2005-12-23 2007-06-28 Carl Zeiss Smt Ag Projection objective of a microlithographic projection exposure apparatus
US7649611B2 (en) 2005-12-30 2010-01-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7893047B2 (en) * 2006-03-03 2011-02-22 Arch Chemicals, Inc. Biocide composition comprising pyrithione and pyrrole derivatives
DE102006021797A1 (en) 2006-05-09 2007-11-15 Carl Zeiss Smt Ag Optical imaging device with thermal damping
US8072577B2 (en) * 2006-06-05 2011-12-06 Macronix International Co., Ltd. Lithography systems and processes
EP1906251A1 (en) * 2006-09-26 2008-04-02 Carl Zeiss SMT AG Projection exposure method and projection exposure system
US20080084549A1 (en) * 2006-10-09 2008-04-10 Rottmayer Robert E High refractive index media for immersion lithography and method of immersion lithography using same
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8237911B2 (en) 2007-03-15 2012-08-07 Nikon Corporation Apparatus and methods for keeping immersion fluid adjacent to an optical assembly during wafer exchange in an immersion lithography machine
US20080259308A1 (en) * 2007-04-18 2008-10-23 Carl Zeiss Smt Ag Projection objective for microlithography
JP2010527160A (en) * 2007-05-14 2010-08-05 カール・ツァイス・エスエムティー・アーゲー Projection objective and projection exposure apparatus for microlithography
US7760425B2 (en) * 2007-09-05 2010-07-20 Carl Zeiss Smt Ag Chromatically corrected catadioptric objective and projection exposure apparatus including the same
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5013119B2 (en) * 2007-09-20 2012-08-29 信越化学工業株式会社 Pattern forming method and resist material used therefor
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
CN101681125B (en) 2007-10-16 2013-08-21 株式会社尼康 Illumination optical system, exposure apparatus, and device manufacturing method
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
JP5228995B2 (en) * 2008-03-05 2013-07-03 信越化学工業株式会社 Polymerizable monomer compound, pattern forming method and resist material used therefor
KR101448152B1 (en) * 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
CN101910817B (en) 2008-05-28 2016-03-09 株式会社尼康 Lamp optical system, exposure device and device making method
EP2128703A1 (en) 2008-05-28 2009-12-02 ASML Netherlands BV Lithographic Apparatus and a Method of Operating the Apparatus
JP5253081B2 (en) * 2008-10-14 2013-07-31 キヤノン株式会社 Projection optical system, exposure apparatus, and device manufacturing method
JP5218227B2 (en) * 2008-12-12 2013-06-26 信越化学工業株式会社 Pattern formation method
US8946514B2 (en) * 2009-12-28 2015-02-03 E.I. Du Pont De Nemours And Company Sorghum fertility restorer genotypes and methods of marker-assisted selection
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
CN102298198B (en) * 2010-06-22 2013-05-22 上海微电子装备有限公司 Photoetching projection objective with large view field
US8476004B2 (en) 2011-06-27 2013-07-02 United Microelectronics Corp. Method for forming photoresist patterns
DE102012006244A1 (en) * 2012-03-21 2013-09-26 Jenoptik Optical Systems Gmbh Color-corrected F-theta lens for laser material processing
KR101407076B1 (en) * 2012-05-24 2014-06-13 주식회사 비엘시스템 exposure apparatus for lithography printer using near-infrared ray
US8701052B1 (en) 2013-01-23 2014-04-15 United Microelectronics Corp. Method of optical proximity correction in combination with double patterning technique
US8627242B1 (en) 2013-01-30 2014-01-07 United Microelectronics Corp. Method for making photomask layout
JP5664697B2 (en) * 2013-05-13 2015-02-04 株式会社ニコン Catadioptric projection optical system, exposure apparatus, and exposure method
US9230812B2 (en) 2013-05-22 2016-01-05 United Microelectronics Corp. Method for forming semiconductor structure having opening
CN103499876B (en) * 2013-10-10 2015-07-29 中国科学院光电技术研究所 Pure refraction type projection optical system with large numerical aperture
DE102017106837B4 (en) * 2017-03-30 2023-02-23 Carl Zeiss Jena Gmbh Lens system for a macro lens for industrial use in quality assurance in the production process, macro lens and system
DE102017207582A1 (en) * 2017-05-05 2018-11-08 Carl Zeiss Smt Gmbh Projection objective, projection exposure apparatus and projection exposure method
CN109581622B (en) 2017-09-29 2020-12-04 上海微电子装备(集团)股份有限公司 Projection objective
CN113900227B (en) * 2021-10-09 2022-07-05 中国科学院苏州生物医学工程技术研究所 Objective lens with large field of view and high resolution broadband
CN114563866B (en) * 2022-03-14 2024-02-20 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) Projection objective system
DE102023204235A1 (en) 2023-05-08 2024-11-14 Carl Zeiss Smt Gmbh Lithography system with detachable lenses

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0023231B1 (en) * 1979-07-27 1982-08-11 Tabarelli, Werner, Dr. Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
US4509852A (en) * 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
US5121256A (en) * 1991-03-14 1992-06-09 The Board Of Trustees Of The Leland Stanford Junior University Lithography system employing a solid immersion lens
JP2753930B2 (en) 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
JP3747951B2 (en) 1994-11-07 2006-02-22 株式会社ニコン Catadioptric optics
DE4417489A1 (en) 1994-05-19 1995-11-23 Zeiss Carl Fa High-aperture catadioptric reduction lens for microlithography
US6631036B2 (en) 1996-09-26 2003-10-07 Carl-Zeiss-Stiftung Catadioptric objective
US6169627B1 (en) * 1996-09-26 2001-01-02 Carl-Zeiss-Stiftung Catadioptric microlithographic reduction objective
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
JP3747566B2 (en) * 1997-04-23 2006-02-22 株式会社ニコン Immersion exposure equipment
JPH116957A (en) 1997-04-25 1999-01-12 Nikon Corp Projection optical system, projection exposure system and projection exposure method
US5900354A (en) 1997-07-03 1999-05-04 Batchelder; John Samuel Method for optical inspection and lithography
US6700645B1 (en) * 1998-01-22 2004-03-02 Nikon Corporation Projection optical system and exposure apparatus and method
AU2747999A (en) * 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
US6097537A (en) * 1998-04-07 2000-08-01 Nikon Corporation Catadioptric optical system
US5986824A (en) * 1998-06-04 1999-11-16 Nikon Corporation Large NA projection lens system with aplanatic lens element for excimer laser lithography
DE69933973T2 (en) 1998-07-29 2007-06-28 Carl Zeiss Smt Ag CATADIOPRIC OPTICAL SYSTEM AND EQUIPPED EXPOSURE DEVICE
DE19855108A1 (en) * 1998-11-30 2000-05-31 Zeiss Carl Fa Microlithographic reduction lens, projection exposure system and method
EP1006388A3 (en) 1998-11-30 2002-05-02 Carl Zeiss Reduction projection objective lens for microlithography
US6867922B1 (en) * 1999-06-14 2005-03-15 Canon Kabushiki Kaisha Projection optical system and projection exposure apparatus using the same
JP3423644B2 (en) 1999-06-14 2003-07-07 キヤノン株式会社 Projection optical system and projection exposure apparatus using the same
JP2001023887A (en) 1999-07-09 2001-01-26 Nikon Corp Projection optical system, projection aligner equipped therewith, and exposing method
WO2001023933A1 (en) * 1999-09-29 2001-04-05 Nikon Corporation Projection optical system
WO2001023935A1 (en) 1999-09-29 2001-04-05 Nikon Corporation Projection exposure method and apparatus and projection optical system
EP1094350A3 (en) * 1999-10-21 2001-08-16 Carl Zeiss Optical projection lens system
TW448307B (en) * 1999-12-21 2001-08-01 Zeiss Stiftung Optical projection system
US6995930B2 (en) * 1999-12-29 2006-02-07 Carl Zeiss Smt Ag Catadioptric projection objective with geometric beam splitting
TW538256B (en) * 2000-01-14 2003-06-21 Zeiss Stiftung Microlithographic reduction projection catadioptric objective
JP2001228401A (en) 2000-02-16 2001-08-24 Canon Inc Projection optical system, projection aligner by this projection optical system and method for manufacturing device
US7301605B2 (en) * 2000-03-03 2007-11-27 Nikon Corporation Projection exposure apparatus and method, catadioptric optical system and manufacturing method of devices
JP2001343582A (en) 2000-05-30 2001-12-14 Nikon Corp Projection optical system, exposure device with the same, manufacturing method of microdevice using the exposure device
US6486940B1 (en) 2000-07-21 2002-11-26 Svg Lithography Systems, Inc. High numerical aperture catadioptric lens
JP4245286B2 (en) 2000-10-23 2009-03-25 株式会社ニコン Catadioptric optical system and exposure apparatus provided with the optical system
KR100866818B1 (en) 2000-12-11 2008-11-04 가부시키가이샤 니콘 Projection optical system and exposure apparatus comprising the same
JP2002244035A (en) 2000-12-11 2002-08-28 Nikon Corp Projection optical system and exposure device provided with it
JP2002323653A (en) 2001-02-23 2002-11-08 Nikon Corp Projection optical system, projection exposure apparatus, and projection exposure method
WO2002091078A1 (en) * 2001-05-07 2002-11-14 Massachusetts Institute Of Technology Methods and apparatus employing an index matching medium
JP2003185920A (en) 2001-12-18 2003-07-03 Nikon Corp Imaging optical system and projection aligner
JP4016179B2 (en) 2002-02-28 2007-12-05 ソニー株式会社 Exposure apparatus and converging lens control method
WO2003075097A2 (en) 2002-03-01 2003-09-12 Carl Zeiss Smt Ag Refractive projection lens with a middle part
DE10210899A1 (en) 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
CN100462844C (en) 2002-08-23 2009-02-18 株式会社尼康 Projection optical system and method for photolithography and exposure apparatus and method using same
JP3982362B2 (en) * 2002-08-23 2007-09-26 住友電気工業株式会社 Optical data link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03077036A1 *

Also Published As

Publication number Publication date
EP1485760A1 (en) 2004-12-15
CN100573222C (en) 2009-12-23
CN1639644A (en) 2005-07-13
AU2003221490A1 (en) 2003-09-22
AU2002312872A1 (en) 2003-09-22
US20050231814A1 (en) 2005-10-20
US6891596B2 (en) 2005-05-10
JP2005519348A (en) 2005-06-30
WO2003077037A1 (en) 2003-09-18
US7495840B2 (en) 2009-02-24
WO2003077036A1 (en) 2003-09-18
US20030174408A1 (en) 2003-09-18
DE10210899A1 (en) 2003-09-18
US20070188880A1 (en) 2007-08-16
US7312847B2 (en) 2007-12-25
KR20040099307A (en) 2004-11-26
KR100991590B1 (en) 2010-11-04
US7203008B2 (en) 2007-04-10
JP2005519347A (en) 2005-06-30
US20050141098A1 (en) 2005-06-30

Similar Documents

Publication Publication Date Title
EP1483625A1 (en) High-aperture projection lens
DE69531153T2 (en) Optical projection system with exposure device
EP1242843B1 (en) Projection lens comprising adjacent aspheric lens surfaces
DE69125328T2 (en) Field compensated lens
US6349005B1 (en) Microlithographic reduction objective, projection exposure equipment and process
WO2003075096A2 (en) Refractive projection lens
EP1855160B1 (en) Projection exposure device, projection exposure method and use of a projection lens
EP1544676A2 (en) Refractive projection objective for immersion lithography
DE60206908T2 (en) PROJECTION SYSTEM FOR EXTREME ULTRAVIOLETT LITHOGRAPHY
EP1260845A2 (en) Catadioptric reduction lens
EP1097404A1 (en) Projection lens for microlithography
EP1327172A1 (en) 8-mirrored microlithographic projector lens
DE10258718A1 (en) Projection lens, in particular for microlithography, and method for tuning a projection lens
EP1122608A2 (en) Projection exposure system with reflective reticle
WO2005050321A1 (en) Refractive projection objective for immersion lithography
EP1102100A2 (en) Catadioptric objective with beamsplitter
WO2006125790A2 (en) Imaging systems in particular for a microlithographic projection illumination unit
DE102005045862A1 (en) Optical system for ultraviolet light has liquid lens arranged in space between first and second limiting optical elements and containing liquid transparent for wavelength less than or equal to 200 nm
EP1235112B1 (en) Objective subsystem for illumination system
DE102006038454A1 (en) Projection objective for microlithographic projection exposure apparatus, has optical subsystem that projects intermediate image into image-plane with image-plane side projection ratio of specific value
WO2003093904A1 (en) Projection lens comprising an extremely high aperture
EP1344112A2 (en) Projection lens
WO2018184720A2 (en) Projection lens, projection exposure installation and projection exposure method
DE102008015775A1 (en) Projection objective lens for photolithography for manufacture of semiconductors, has optical element comprising lens pair consisting of materials having different dispersions
DE10224361A1 (en) Very large aperture projection objective has essentially symmetrical arrangement of bi-convex lenses and negative meniscus lenses near system aperture at distance before image plane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040820

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CARL ZEISS SMT AG

17Q First examination report despatched

Effective date: 20080226

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080708