[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0023231B1 - Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer - Google Patents

Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer Download PDF

Info

Publication number
EP0023231B1
EP0023231B1 EP79102675A EP79102675A EP0023231B1 EP 0023231 B1 EP0023231 B1 EP 0023231B1 EP 79102675 A EP79102675 A EP 79102675A EP 79102675 A EP79102675 A EP 79102675A EP 0023231 B1 EP0023231 B1 EP 0023231B1
Authority
EP
European Patent Office
Prior art keywords
liquid
semiconductor disk
projection lens
disk
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP79102675A
Other languages
German (de)
French (fr)
Other versions
EP0023231A1 (en
Inventor
Werner W. Dr. Tabarelli
Ernst Dr. Löbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercotrust AG Te Vaduz Liechtenst
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE7979102675T priority Critical patent/DE2963537D1/en
Priority to EP79102675A priority patent/EP0023231B1/en
Priority to AT79102675T priority patent/ATE1462T1/en
Publication of EP0023231A1 publication Critical patent/EP0023231A1/en
Application granted granted Critical
Publication of EP0023231B1 publication Critical patent/EP0023231B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • G03F7/70875Temperature, e.g. temperature control of masks or workpieces via control of stage temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • G03F7/70891Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC

Definitions

  • Electron beam lithography is already practically applicable today for mask production, but direct processing of the semiconductor wafer with electron beams is not only very complicated, but also much too expensive due to the low throughput, quite apart from the fact that a series of fundamentally new methods is introduced when such a process is introduced Experience gained in photolithography, for example regarding the use of certain photoresists, cannot be used.
  • X-ray lithography is at an even earlier experimental stage and its development is not only opposed by the lack of sufficiently strong X-ray sources, but also by the low efficiency of these sources and a complicated mask technique.
  • the specific advantage achieved for surfaces structured for lithography is achieved that the resolving power despite a smaller angle of incidence can be maintained and the risk of vignetting with the same NA can be reduced.
  • the use of an immersion liquid achieves the same effect as that sought by the transition to the use of UV light: by using UV light: by using shorter wavelengths, the limit of the diffraction effect is reduced Resolving power postponed, but this without leaving the range of visible light or having to move far away from it, since in the case of the invention the change in wavelength is not caused by a change in frequency but by a change in the refractive index.
  • the penetrating light decays according to the weakening coefficient of the lacquer, strikes the lacquer-substrate interface more or less weakened and is partly absorbed and partly reflected by it.
  • This reflected portion in turn, moves back towards the lacquer-air interface under weakening, is in turn partly reflected, partly transmitted in a broken manner. In some places there is even total reflection.
  • the light waves running back and forth within the lacquer layer interfere and form standing waves. These standing waves contribute significantly to the exposure of the paint.
  • the intensity of the standing waves is highly dependent on the local paint thickness.
  • the formation of standing waves is weakened if significant absorption occurs within the paint or at the paint-substrate interface. In general, however, this situation does not exist.
  • the pane coated with a lacquer layer is immersed in an immersion liquid whose refractive index matches that of the lacquer, the lacquer-air or lacquer-immersion liquid interface completely disappears from the optics point of view.
  • the interference effects discussed above are therefore completely eliminated.
  • finer lines can now be reproduced with the same NA.
  • n approx. 1.6
  • the immersion liquid should have a wetting effect on the paint. Loose particles are washed away and cannot lead to an enlargement effect.
  • the immersion liquid must be easily removable from the lacquer layer, so that further processing is possible without problems.
  • a limited water absorption capacity is beneficial because small water droplets do not are completely avoidable, thereby dissolving and making them optically ineffective.
  • Low viscosity facilitates the escape of gas bubbles, which have an optical and dusty effect, and enables the immersion liquid to be filtered quickly.
  • the easiest way to continuously check the state of the immersion liquid is to use a device in which the suction plate, which holds the semiconductor wafer during the exposure process, forms the bottom of a container through which the immersion liquid slowly circulates. In this way, not only can the liquid supply be kept constant, but it is also possible to continuously remove impurities by filtering and to use the immersion liquid to keep the temperature of the semiconductor wafer constant.
  • the solution to the latter problem is so important because, of course, it is of little use to advance the accuracy of the optical imaging into the submicron range, if at the same time the semiconductor wafer is not prevented from moving under the influence of thermal fluctuations relative to the impinging beams.
  • an incident bundle of rays is prevented from reaching points lying in a depression of the surface of a semiconductor wafer, for example, if the slope leading to the depression is steeper than the incidence of light, so if a ⁇ 8. 1 b, disturbing effects already occur when the incident rays still hit the embankment leading to the depression, but are incident almost parallel to it.
  • Such a grazing incidence leads to underexposure of the embankment area and corresponding overexposure to the bottom of the depression by reflected rays.
  • the photosensitive lacquer layer 7 on the pane 8 has considerable differences in thickness. This is due to the fact that after application, the liquid lacquer initially forms a flat lacquer surface, regardless of the underlying structure, which, after drying due to the escape of the solvent, does roughly but not exactly follow the profile of the substrate surface. Recesses on the surface are covered with a much higher layer of lacquer than projections on the surface.
  • the disadvantages mentioned can be avoided if the semiconductor wafer 8 to be exposed, like the projection objective 3, is immersed in a liquid 6 during the exposure, as is shown schematically in FIG. 3.
  • the second group of liquids also has the advantage that they can dissolve the smallest water droplets, so that they cannot act as small spherical lenses.
  • the use of the immersion liquid 6 automatically increases the numerical aperture of the arrangement in accordance with the refractive index of the liquid, as a result of which the resolving power increases.
  • the lens with the opening angle up to the limit given by the occurrence of vignetting, since at a certain opening angle the image error of an immersion lens is less than that of the dry system.
  • the elimination of the effects of the dry system on the paint surface allows imaging with a significantly reduced image contrast and thus a further reduction in the transferable line width. Another effect that has nothing to do with the optical device and the pattern shown by it, but whose importance should not be underestimated, is discussed below:
  • Both the cleaning and the temperature stabilization of the semiconductor wafer result in the device shown in FIGS. 3 and 4 as a natural consequence of the inventive concept.
  • the semiconductor wafer 8 held on the carrier 1 by vacuum lines 9 is both kept clean and tempered by the liquid 6, constant conditions being always produced by leads 4 and leads 5 leading into the container 2.
  • These supply and discharge lines which are designed flexibly and allow the shift in the X and Y directions and the adjustment in the Z direction necessary for step-wise exposure, belong to a circuit which, in addition to a storage container (not shown), a pump 10 and a filter 11 and a heating or cooling temperature control device 12 depending on the determined temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

1. A photolithographic method of copying a pattern onto a semiconductor disk, particularly for the manufacture of integrated circuits, whereby a mask is imaged onto a photosensitive layer of the semiconductor disk by means of an interposed projection lens, characterized in that at least during exposure the space between the semiconductor disk and the boundary face of the projection lens facing the disk remains filled with a transparent liquid.

Description

Durch moderne Dotiertechniken und hochentwickelte Verfahren zur Abscheidung von Schichten auf Halbleiteroberflächen ist heute die Strukturierung in vertikaler Richtung bei der Fertigung integrierter Schaltungen bereits in einem Ausmaß möglich, hinter dem die Möglichkeiten zur Strukturierung in horizontaler Richtung weit zurückbleiben. Einer Verfeinerung der Strukturierung integrierter Schaltungen in der Lateraldimension der Halbleiterscheibe gelten daher derzeit intesive Bemühungen. In diesem Sinne findet einerseits ein Übergang von der Ganzscheibenbelichtung zur schrittweisen Belichtung mit einer Vielzahl identischer Schaltungen versehener Halbleiterscheiben statt. Parallel dazu verläuft die Suche nach Alternativen zur optischen Lithographie auf der heute alle praktisch angewandten Verfahren zur Herstellung integrierter Schaltungen beruhen. Insbesondere handelt es sich hiebei um die Elektronenstrahllithographie und die Röntgenstrahllithographie. Die Elektronenstrahllithographie ist zwar zur Maskenherstellung heute schon praktisch anwendbar, die direkte Bearbeitung der Halbleiterscheibe mit Elektronenstrahlen ist jedoch nicht nur sehr kompliziert, sondern schon durch den geringen Durchsatz viel zu teuer, ganz abgesehen davon, daß bei der Einführung eines solchen grundsätzlich neuen Verfahrens eine Reihe in der Photolithographie gesammelter Erfahrungen, beispielsweise betreffend die Verwendung bestimmter Photolacke, nicht anwendbar sind. Die Röntgenstrahllithographie befindet sich in einem noch früheren Experimentalstadium und ihrer Entwicklung steht nicht nur das Fehlen hinreichend starker Röntgenquellen, sondern auch der geringe Wirkungsgrad dieser Quellen und eine komplizierte Maskentechnik entgegen.Modern doping techniques and highly developed processes for the deposition of layers on semiconductor surfaces mean that structuring in the vertical direction in the manufacture of integrated circuits is already possible to an extent that the possibilities for structuring in the horizontal direction lag far behind. Intensive efforts are currently being made to refine the structuring of integrated circuits in the lateral dimension of the semiconductor wafer. In this sense, on the one hand there is a transition from full-disk exposure to step-wise exposure of semiconductor wafers provided with a large number of identical circuits. At the same time, there is a search for alternatives to optical lithography on which all practically used processes for manufacturing integrated circuits are based today. In particular, it is electron beam lithography and X-ray lithography. Electron beam lithography is already practically applicable today for mask production, but direct processing of the semiconductor wafer with electron beams is not only very complicated, but also much too expensive due to the low throughput, quite apart from the fact that a series of fundamentally new methods is introduced when such a process is introduced Experience gained in photolithography, for example regarding the use of certain photoresists, cannot be used. X-ray lithography is at an even earlier experimental stage and its development is not only opposed by the lack of sufficiently strong X-ray sources, but also by the low efficiency of these sources and a complicated mask technique.

Praktische Fortschritte sind in der skizzierten Situation am raschesten durch eine Verbesserung in der optischen Lithographie, bei der durch lokale Belichtung einer Photolackschicht lokale Änderungen in der molekularen Struktur des Lacks erzielt werden, zu erwarten. In diesem Sinne strebt man durch Verwendung von sogenanntem « tiefen UV-Licht (etwa 270 nm) ein höheres Auflösungsvermögen an, verschiebt also die durch Beugungseffekte gezogene Grenze. Das Arbeiten in diesem Wellenlängenbereich hat vor allem den Nachteil, daß die herkömmlichen optischen Komponenten, also Objektive, Filter, aber auch Photolacke erst mühsam entwickelt werden müssen. Ein weiterer Nachteil entsteht daraus, daß die Justierarbeiten, die ein Kernproblem aller industriellen Lithographieverfahren darstellen, am besten mit sichtbarem Licht durchgeführt werden. Bei Verwendung von UV-Licht als Belichtungslicht müssen also die Einstellarbeiten entweder mit im Spektrum entfernt liegendem sichtbarem Licht und mit den daraus resultierenden Ungenauigkeiten ausgeführt werden, oder es muß das mühsame und schwierige Arbeiten mit UV-Detektoren in Kauf genommen werden.In the situation outlined, practical progress can be expected most quickly through an improvement in optical lithography, in which local changes in the molecular structure of the lacquer are achieved by locally exposing a photoresist layer. In this sense, the aim is to use a so-called “deep UV light (about 270 nm) to achieve a higher resolution, that is, to shift the limit drawn by diffraction effects. Working in this wavelength range has the disadvantage that the conventional optical components, that is, lenses, filters, but also photoresists, first have to be painstakingly developed. Another disadvantage arises from the fact that the adjustment work, which is a core problem of all industrial lithography processes, is best carried out with visible light. When using UV light as exposure light, the adjustment work must either be carried out with visible light located in the spectrum and with the inaccuracies resulting therefrom, or the tedious and difficult work with UV detectors has to be accepted.

Grundsätzlich ist es möglich, das Auflösungsvermögen eines Objektivs dadurch zu verbessern, daß der Öffnungswinkel vergrößert wird. Hiebei sind jedoch nicht nur von der Konstruktion der Projektionsobjektive her Grenzen gesetzt, sondern vor allem durch ein typisches Problem der Lithographie struktuerierter Oberflächen, nämlich der Vignettierung, also der Abschattung von Teilen der abbildenden Strahlen durch vorstehende Teile der Halbleiteroberfläche. Der Öffnungswinkel liegt bei Einrichtungen zur Photolithographie aufgrund dieses Effekts notwendigerweise unter jenem Betrag, bei dem an der Grenzfläche des ebenen Substrates Totalreflexion auftreten würde, weshalb Maßnahmen zur Ausschaltung der Totalreflexion zum Zweck der Vergrößerung des Öffnungswinkels nicht in Betracht gezogen wurden. Der Erfindung liegt die Überlegung zugrunde, daß eine ansonsten unter dem Gesichtspunkt der Ausschaltung der Totalreflexion betrachtete Maßnahme, nämlich die Verwendung einer Immersionsflüssigkeit, in der Photolithographie trotz des hier notwendigerweise beschränkten Öffnungswinkels mit Erfolg angewendet werden kann. Dies ist deshalb der Fall, weil das Auflösungsvermögen des Projektionsobjektivs mit der numerischen Apertur (NA) steigt, welche durch die Beziehung NA = n sin 8 (n Brechungsindex, 8 halber Öffnungswinkel) gegeben ist. Die Einführung einer Immersionsflüssigkeit steigert somit das Auflösungsvermögen durch Steigerung des Brechungsindex.In principle, it is possible to improve the resolution of a lens by increasing the opening angle. However, there are limits not only to the design of the projection lenses, but above all to a typical problem in the lithography of structured surfaces, namely vignetting, i.e. the shadowing of parts of the imaging rays by protruding parts of the semiconductor surface. Due to this effect, the aperture angle in photolithography devices is necessarily less than the amount at which total reflection would occur at the interface of the flat substrate, which is why measures to switch off the total reflection for the purpose of increasing the aperture angle were not considered. The invention is based on the consideration that a measure which is otherwise considered from the point of view of eliminating total reflection, namely the use of an immersion liquid, can be successfully used in photolithography despite the necessarily limited opening angle here. This is because the resolution of the projection lens increases with the numerical aperture (NA), which is given by the relationship NA = n sin 8 (n refractive index, 8 half opening angle). The introduction of an immersion liquid thus increases the resolving power by increasing the refractive index.

Wenn also erfindungsgemäß vorgesehen ist, daß wenigstens während des Belichtungsvorganges der Zwischenraum zwischen der Scheibe und der dieser zugewandten Grenzfläche des Projektionsobjektivs mit einer lichtdurchlässigen Flüssigkeit gefüllt gehalten wird, so wird hiedurch der für die Lithographie strukturierter Oberflächen spezifische Vorteil erzielt, daß das Auflösungsvermögen trotz kleinerer Einfallwinkel aufrechterhalten und die Gefahr einer Vignettierung bei gleicher NA verringert werden kann. In gewissem Sinn wird durch die Verwendung einer Immersionsflüssigkeit der gleiche Effekt erzielt, wie er durch den Übergang zur Verwendung von UV-Licht angestrebt wird : durch die Verwendung von UV-Licht angestrebt wird : durch die Verwendung kürzerer Wellenlängen wird die durch Beugungseffekte gezogene Grenze des Auflösungsvermögens hinausgeschoben, dies jedoch ohne den Bereich des sichtbaren Lichtes verlassen oder sich weit davon entfernen zu müssen, da im Falle der Erfindung die Änderung der Wellenlänge ja nicht durch eine Frequenzänderung, sondern durch Änderung des Brechungsindex zustande kommt.If, according to the invention, it is provided that at least during the exposure process the space between the pane and the interface of the projection lens facing it is kept filled with a translucent liquid, the specific advantage achieved for surfaces structured for lithography is achieved that the resolving power despite a smaller angle of incidence can be maintained and the risk of vignetting with the same NA can be reduced. In a sense, the use of an immersion liquid achieves the same effect as that sought by the transition to the use of UV light: by using UV light: by using shorter wavelengths, the limit of the diffraction effect is reduced Resolving power postponed, but this without leaving the range of visible light or having to move far away from it, since in the case of the invention the change in wavelength is not caused by a change in frequency but by a change in the refractive index.

Die Tragweite der Erfindung im Rahmen der Herstellung von integrierten Schaltungen geht dadurch wesentlich über das bisher angeführte hinaus, als ohne weiteres die Möglichkeit besteht, bei der Wahl der erfindungsgemäß vorgesehenen Immersionsflüssigkeiten auf die Eigenschaften, insbesondere den Brechungsindex, des verwendeten Photolacks Rücksicht zu nehmen.The scope of the invention in the context of the production of integrated circuits is thus much greater than what has been stated so far In addition, when there is no further possibility to take into account the properties, in particular the refractive index, of the photoresist used when choosing the immersion liquids provided according to the invention.

Eines der ganz großen Probleme bei der Belichtung von Photolackschichten auf Halbleiterscheiben, insbesondere bei der Erzeugung feiner Strukturen, ist die homogene Belichtung des gesamten Bildfeldes. Eine Ungleichmäßigkeit von ca. 1 % gilt dabei als guter Richtwert. Die gleichmäßige Ausleuchtung des Bildfeldes ist zwar eine notwendige, aber längst noch keine ausreichende Bedingung für das erstrebte Ziel. Dieses wäre nur dann der Fall, wenn die Halbleiterscheibenoberfläche mit der auf ihr befindlichen Lackschicht selbst homogen wäre. Dies ist aber spätestens nach dem ersten Lithographie-Schritt nicht mehr der Fall, da ja nun die ersten gewünschten Strukturen erzeugt worden sind. Im allgemeinen befinden sich während der verschiedenen Herstellungsschritte einer integrierten Schaltung auf der Halbleiteroberfläche zahlreiche Stufen, Gräfen, Erhöhungen, Böschungen etc. Dabei bezieht sich die Inhomogenität der Oberfläche nicht nur auf die Topographie, sondern auch auf die unterschiedliche Zusammensetzung und Kristallstruktur einzelner Bereiche auf der Oberfläche. In diesem Zusammenhang interessiert lediglich das mit dem unterschiedlichen Aufbau zusammenhängende variierende Reflexionsvermögen dieser Bereiche.One of the very big problems in the exposure of photoresist layers on semiconductor wafers, especially in the production of fine structures, is the homogeneous exposure of the entire image field. An unevenness of approx. 1% is a good guideline. Even illumination of the image field is a necessary, but by no means a sufficient condition for the desired goal. This would only be the case if the semiconductor wafer surface itself was homogeneous with the lacquer layer on it. However, this is no longer the case after the first lithography step at the latest, since the first desired structures have now been produced. In general, during the various manufacturing steps of an integrated circuit, there are numerous steps, griffs, ridges, embankments etc. on the semiconductor surface. The inhomogeneity of the surface relates not only to the topography, but also to the different composition and crystal structure of individual areas on the surface . In this context, only the varying reflectivity of these areas related to the different structure is of interest.

Wird nun auf eine solche Oberfläche eine Photolackschicht aufgebracht, so ergeben sich unweigerlich Schwankungen der Lackdicke. Nach dem Trockungsprozess folgt das Profil der Lackoberfläche nur bedingt dem Profil der Grenzfläche Lack-Substrat.If a photoresist layer is now applied to such a surface, fluctuations in the lacquer thickness inevitably result. After the drying process, the profile of the lacquer surface only partially follows the profile of the lacquer-substrate interface.

Fällt Licht auf eine solche Lackschicht, so treten nacheinander folgende physikalische Erscheinungen auf :

  • Das auftreffende Licht wird an der Grenzfläche Luft-Lack zum Teil reflektiert, zum Teil gebrochen. Der gebrochene Anteil dringt in die Lackschicht ein und trägt zur Belichtung bei (sofern es sich um Licht der Belichtungswellenlänge handelt). Bei streifender Inzidenz, z.B. an steilen Böschungen der Lackoberfläche, steigt der reflektierte Anteil stark an.
If light falls on such a lacquer layer, the following physical phenomena occur in succession:
  • The incident light is partly reflected and partly refracted at the air-lacquer interface. The broken part penetrates into the lacquer layer and contributes to the exposure (if it is light of the exposure wavelength). In the event of grazing incidence, for example on steep slopes of the lacquer surface, the reflected portion rises sharply.

Das eindringende Licht klingt entsprechend dem Schwächungskoeffizienten des Lacks ab, trifft mehr oder weniger geschwächt auf die Grenzfläche Lack-Substrat und wird von dieser teils absorbiert, teils reflektiert.The penetrating light decays according to the weakening coefficient of the lacquer, strikes the lacquer-substrate interface more or less weakened and is partly absorbed and partly reflected by it.

Dieser reflektierte Anteil bewegt sich seinerseits unter Schwächung wieder auf die Grenzfläche Lack-Luft zu, wird an dieser wiederum teils reflektiert, teils gebrochen transmittiert. An einzelnen Stellen kommt es sogar zur Totalreflexion.This reflected portion, in turn, moves back towards the lacquer-air interface under weakening, is in turn partly reflected, partly transmitted in a broken manner. In some places there is even total reflection.

Die innerhalb der Lackschicht hin und her laufenden Lichtwellen interferieren und bilden stehende Wellen aus. Diese stehenden Wellen tragen wesentlich zur Belichtung des Lacks bei. Die Intensität der stehenden Wellen ist in hohem Maße abhängig von der lokalen Lackdicke. Die Ausbildung stehender Wellen wird abgeschwächt, wenn innerhalb des Lackes bzw. an der Grenzfläche Lack-Substrat eine nennenswerte Absorption auftritt. Diese Situation ist aber im allgemeinen nicht gegeben.The light waves running back and forth within the lacquer layer interfere and form standing waves. These standing waves contribute significantly to the exposure of the paint. The intensity of the standing waves is highly dependent on the local paint thickness. The formation of standing waves is weakened if significant absorption occurs within the paint or at the paint-substrate interface. In general, however, this situation does not exist.

Die hohe Reflexion bei streifender Inzidenz an Böschungen und die unterschiedliche Intensität stehender Wellen durch schwankende Lackdicke sind hauptsächlich dafür verantwortlich, daß trotz gleichmäßiger Beleuchtung eine inhomogene Belichtung von Lackschichten auf strukturierten Halbleiterscheiben stattfindet. Diese unhomogene Belichtung ist die Ursach für eine Variation der Linienbreiten von aus der Lackschicht zu erzeugenden linienhaften Strukturen. Je stärker die oben genannten Effekte auftreten, um so größer sind die Anforderungen an den Bildkontrast, d.h. die sogenannten MTF-Werte (von modulation transfer function) müssen dann für eine scharfe Abbildung groß sein. Umgekehrt können beim Fehlen der Störeffekte auch kleinere MTF-Werte verarbeitet werden, d.h., daß bei einer gegebenen numerischen Apertur feinere Linien abgebildet werden können.The high reflection with grazing incidence on embankments and the different intensity of standing waves due to fluctuating lacquer thickness are mainly responsible for the fact that, despite uniform lighting, an inhomogeneous exposure of lacquer layers on structured semiconductor wafers takes place. This inhomogeneous exposure is the reason for a variation in the line widths of linear structures to be produced from the lacquer layer. The stronger the effects mentioned above, the greater the demands on the image contrast, i.e. the so-called MTF values (from modulation transfer function) must then be large for a sharp image. Conversely, in the absence of the interference effects, smaller MTF values can also be processed, i.e. that finer lines can be imaged for a given numerical aperture.

Nach dem Stand der Technik gelingt es nur sehr unvollkommen, die erwähnten Störeffekte auszuschalten, indem man versucht, Lackdickenschwankungen gering zu hatten und im übrigen Photolacke mit hoher Eigenabsorption zu verwenden, die aber wiederum den Nachteil hoher Belichtungszeiten aufweisen.According to the state of the art, it is very incomplete to eliminate the above-mentioned interference effects by trying to have varnish thickness fluctuations small and to use photoresists with high self-absorption, which in turn have the disadvantage of high exposure times.

Wird hingegen nach der bevorzugten Ausführungsform der Erfindung die mit einer Lackschicht überzogene Scheibe in eine Immersionsflüssigkeit getaucht, deren Brechungsindex mit dem des Lackes übereinstimmt, so verschwindet die Grenzfläche Lack-Luft bzw. Lack-Immersionsflüssigkeit vom Standpunkt der Optik aus vollständig. Mithin entfallen die oben diskutierten Störeffekte vollständig. Als Folge können nun bei gleicher NA feinere Linien abgebildet werden.On the other hand, if, according to the preferred embodiment of the invention, the pane coated with a lacquer layer is immersed in an immersion liquid whose refractive index matches that of the lacquer, the lacquer-air or lacquer-immersion liquid interface completely disappears from the optics point of view. The interference effects discussed above are therefore completely eliminated. As a result, finer lines can now be reproduced with the same NA.

Die Immersionsflüssigkeit soll also vorzugsweise einen Brechungsindex aufweisen, der nahe bei dem des Photolackes (n = ca. 1,6) liegt, ihr Absorptionskoeffizient auf den Arbeitswellenlängen soll vernachlässigbar sein. Natürlich muß sie so beschaffen sein, daß sie den Photolack nicht angreift, d.h. diesen nicht auflöst oder sonst irgendwie chemisch nachteilig reagiert, auch nicht unter dem Einfluß der Lichtstrahlung. Sie darf sich auch selbst nicht unter Strahlungseinfluß zersetzen und sollte sich gegen die verwendeten Baumaterialien inert verhalten. Um auch kleinste Zwischenräume auf der Lackoberfläche ausfüllen zu können, soll die Immersionsflüssigkeit gegenüber dem Lack benetzend wirken. Lose Partikel werden dabei unterspült und können dadurch nicht zu einem Vergrößerungseffekt führen. Trotz guter Benetzung muß die Immersionsflüssigkeit aber leicht von der Lackschicht ablösbar sein, damit eine problemlose Weiterbearbeitung möglich ist. Eine beschränkte Aufnahmefähigkeit von Wasser ist vorteilhaft, da kleine Wassertröpfchen, die nicht ganz vermeidbar sind, dadurch aufgelöst und optisch unwirksam gemacht werden. Geringe Viskosität erleichtert das Entweichen von Gasblasen, die sich optiscn wie staubpartikel auswirken und ermöglicht ein rasches Filtrieren der Immersionsflüssig keit.The immersion liquid should therefore preferably have a refractive index that is close to that of the photoresist (n = approx. 1.6), and its absorption coefficient at the working wavelengths should be negligible. Of course, it must be such that it does not attack the photoresist, ie it does not dissolve it or otherwise react chemically disadvantageously, not even under the influence of light radiation. It must also not decompose itself under the influence of radiation and should be inert towards the building materials used. In order to be able to fill even the smallest gaps on the paint surface, the immersion liquid should have a wetting effect on the paint. Loose particles are washed away and cannot lead to an enlargement effect. Despite good wetting, the immersion liquid must be easily removable from the lacquer layer, so that further processing is possible without problems. A limited water absorption capacity is beneficial because small water droplets do not are completely avoidable, thereby dissolving and making them optically ineffective. Low viscosity facilitates the escape of gas bubbles, which have an optical and dusty effect, and enables the immersion liquid to be filtered quickly.

Die dauernde Kontrolle des Zustandes der Immersionsflüssigkeit gelingt am einfachsten unter Verwendung einer Einrichtung, bei der die Ansaugplatte, welche die Halbleiterscheibe während des Belichtungsvorganges festhält den Boden eines Behälters bildet, durch welche die lmmersionsflüssigkeit langsam zirkuliert. Auf diese Weise kann nicht nur der Flüssigkeitsvorrat konstant gehalten werden, sondern es ist auch möglich, Verunreinigungen laufend durch Filterung zu entfernen und die Immersionsflüssigkeit zur Konstanthaltung der Temperatur der Halbleiterscheibe heranzuziehen. Die Lösung der letztgenannten Aufgabe ist deshalb so wichtig, weil es natürlich wenig bringt, die Genauigkeit der optischen Abbildung in den Submikronbereich vorzutreiben, wenn nicht gleichzeitig verhindert wird, daß sich die Halbleiterscheibe unter dem Einfluß von Wärmeschwankungen relativ zu den auftreffenden Strahlen bewegt.The easiest way to continuously check the state of the immersion liquid is to use a device in which the suction plate, which holds the semiconductor wafer during the exposure process, forms the bottom of a container through which the immersion liquid slowly circulates. In this way, not only can the liquid supply be kept constant, but it is also possible to continuously remove impurities by filtering and to use the immersion liquid to keep the temperature of the semiconductor wafer constant. The solution to the latter problem is so important because, of course, it is of little use to advance the accuracy of the optical imaging into the submicron range, if at the same time the semiconductor wafer is not prevented from moving under the influence of thermal fluctuations relative to the impinging beams.

Anschließend wird die Erfindung anhand der Zeichnungen näher erläutert :

  • Figur 1a und b illustriert dabei anhand von Ausschnitten durch die vertikal geschnittene Oberfläche der Halbleiterscheibe die Limitierung des Öffnungswinkels,
  • Figur 2 zeigt an einem Querschnitt durch den Halbleiter das Problem des Lackdickenschwankungen,
  • Figur 3 zeigt das Prinzip der Erfindung an einem schematischen Querschnitt durch Projektionsobjektiv und Halbleiterscheibe,
  • Figur 4 gibt anhand einer Seitenansicht der gesamten Belichtungseinrichtung eine Vorstellung von der tatsächlichen Anordnung der erfindungsgemäßen Einrichtung.
The invention is then explained in more detail with reference to the drawings:
  • 1a and b illustrate the limitation of the opening angle with the aid of sections through the vertically cut surface of the semiconductor wafer,
  • FIG. 2 shows the problem of varnish thickness fluctuations on a cross section through the semiconductor,
  • FIG. 3 shows the principle of the invention in a schematic cross section through the projection objective and semiconductor wafer,
  • FIG. 4 gives an idea of the actual arrangement of the device according to the invention on the basis of a side view of the entire exposure device.

Wie in Fig. 1a dargestellt, wird ein einfallendes Strahlenbüschel daran gehindert, in einer Vertiefung der Oberfläche beispielsweise einer Halbleiterscheibe liegende Punkte zu erreichen, wenn die zur Vertiefung führende Böschung steiler ist als der Lichteinfall, wenn also gilt a < 8. Wie aus Fig. 1 b hervorgeht, treten jedoch störende Effekte auch bereits dann auf, wenn die einfallenden Strahlen die zur Vertiefung führende Böschung zwar noch treffen, jedoch nahezu parallel zu dieser einfallen. Eine derartige streifende Inzidenz führt zu Unterbelichtung des Böschungsbereiches und entsprechender Überbelichtung des Grundes der Vertiefung durch reflektierte Strahlen. Im Zusammenhang mit Fig. 2, welche den Querschnitt durch die Oberflächenstruktur einer bereits mehreren Belichtungsschritten unterworfenen Halbleiterscheibe, wenn auch in zehnfacher Überhöhung, zeigt, wird klar, daß die Begrenzung des Öffnungswinkels zur Vermeidung von Vignettierungseffekten ein wesentliches Anliegen der Halbleiterlithographie ist.As shown in Fig. 1a, an incident bundle of rays is prevented from reaching points lying in a depression of the surface of a semiconductor wafer, for example, if the slope leading to the depression is steeper than the incidence of light, so if a <8. 1 b, disturbing effects already occur when the incident rays still hit the embankment leading to the depression, but are incident almost parallel to it. Such a grazing incidence leads to underexposure of the embankment area and corresponding overexposure to the bottom of the depression by reflected rays. In connection with FIG. 2, which shows the cross section through the surface structure of a semiconductor wafer which has already been subjected to a plurality of exposure steps, even if it is increased tenfold, it becomes clear that the limitation of the opening angle to avoid vignetting effects is a major concern of semiconductor lithography.

Wie ebenfalls aus Fig. 2 hervorgeht, weist die photoempfindliche Lackschicht 7 auf der Scheibe 8 erhebliche Dickenunterschiede auf. Diese rühren daher, daß nach dem Auftragen der flüssige Lack zunächst ungeachtet der darunterlie, genden Struktur eine ebene Lackoberfläche bildet, die nach dem Trocknen infolge des Entweichens des Lösungsmittels zwar in etwa, jedoch nicht genau, dem Profil der Substratoberfläche folgt. Vertiefungen der Oberfläche sind mit einer wesentlich höheren Lackschicht bedeckt, als Vorsprünge der Oberfläche.As can also be seen from FIG. 2, the photosensitive lacquer layer 7 on the pane 8 has considerable differences in thickness. This is due to the fact that after application, the liquid lacquer initially forms a flat lacquer surface, regardless of the underlying structure, which, after drying due to the escape of the solvent, does roughly but not exactly follow the profile of the substrate surface. Recesses on the surface are covered with a much higher layer of lacquer than projections on the surface.

Die dargestellten Schwankungen in der Lackdicke führen dadurch zu erheblichen Konsequenzen, als es von der Lackdicke abhängt, ob sich die in der Lackschicht entstehenden stehenden Wellen durch Interferenz verstärken oder schwächen. Betreffend die dieser Erscheinung zugrunde liegende Theorie wird beispielsweise auf die ArbeitenThe fluctuations in the paint thickness shown lead to considerable consequences as it depends on the paint thickness whether the standing waves in the paint layer increase or weaken due to interference. Regarding the theory underlying this phenomenon, for example, the work

J.D. Cuthbert, Solid State Technology, August 1977, Seite 59J.D. Cuthbert, Solid State Technology, August 1977, page 59

Dietrich W. Widmann, Applied Optics, April 1975, Vol 14, No. 4, Seite 932Dietrich W. Widmann, Applied Optics, April 1975, Vol 14, No. 4, page 932

Dietrich W. Widmann and Hans Binder, IEEE Transactions on Electron Devices, Vol. ED-22, No. 7, July 1975, Seite 467-469
verwiesen. Im ungünstigsten Fall kann durch Unterschiede in der Lackdicke trotz homogener Belichtung ein örtlicher Unterschied in der Belichtungsintensität entstehen, welcher für die wenig belichteten Bereiche eine Verlängerung der Belichtungszeit um den Faktor 2,5 bedingt. Gravierender als die dadurch generell notwendig werdende Verlängerung der Belichtungszeit ist die Tatsache, daß die durch die Dickenunterschiede der Lackschicht bedingte verschiedene Lichtempfindlichkeit der einzelnen Oberflächenbereiche höhere Anforderungen an den Bildkontrast bedingt, d.h. die Möglichkeit der Abbildung feinerer Linien herabsetzt.
Dietrich W. Widmann and Hans Binder, IEEE Transactions on Electron Devices, Vol. ED-22, No. 7, July 1975, pages 467-469
referred. In the worst case, differences in the thickness of the lacquer, despite homogeneous exposure, can result in a local difference in the exposure intensity, which means that the exposure time is extended by a factor of 2.5 for the less exposed areas. More serious than the generally necessary lengthening of the exposure time is the fact that the different light sensitivity of the individual surface areas due to the differences in thickness of the lacquer layer imposes higher demands on the image contrast, ie the possibility of imaging finer lines is reduced.

Wie bereits ausgeführt worden ist, lassen sich die angeführten Nachteile vermeiden, wenn die zu belichtende Halbleiterscheibe 8 bei der Belichtung ebenso wie das Projektionsobjektiv 3 in eine Flüssigkeit 6 eingetaucht wird, wie in Fig. 3 schematisch dargestellt ist. Einige Flüssigkeiten, die im Rahmen der Erfindung verwendbar sind, werden anschließend zusammen mit ihrem Brechungsindex, der in etwa jenem von Photolack (n = 1,6) entspricht, angeführt.

Figure imgb0001
As has already been explained, the disadvantages mentioned can be avoided if the semiconductor wafer 8 to be exposed, like the projection objective 3, is immersed in a liquid 6 during the exposure, as is shown schematically in FIG. 3. Some liquids which can be used in the context of the invention are then listed together with their refractive index, which corresponds approximately to that of photoresist (n = 1.6).
Figure imgb0001

Alle diese Flüssigkeiten wirken gegenüber dem Photolack benetzend. Sie liegen dicht an der Oberfläche des Lacks an, wobei Verunreinigungen unterspült und damit optisch unwirksam gemacht werden. Die zweitgenannte Gruppe von Flüssigkeiten hat zudem den Vorzugdaß sie kleinste Wassertröpfchen aufzulösen vermögen, sodaß diese nicht als kleine Kugellinsen wirken können.All of these liquids have a wetting effect on the photoresist. They are close to the Surface of the lacquer, whereby impurities are washed down and thus rendered ineffective. The second group of liquids also has the advantage that they can dissolve the smallest water droplets, so that they cannot act as small spherical lenses.

Wie bereits ausgeführt worden ist, erhöht sich durch die Verwendung der Immersionsflüssigkeit 6 automatisch die numerische Apertur der Anordnung entsprechend dem Brechungsindex der Flüssigkeit, wodurch das Auflösungsvermögen steigt. Außerdem ergibt sich die Möglichkeit, bei der Konstruktion des Objektivs mit dem Öffnungswinkel bis an die durch das Auftreten von Vignettierung gegebene Grenze zu gehen, da bei einem bestimmten Öffnungswinkel der Bildfehler eines Immersionsobjektivs geringer ist als der des trockenen Systems. Gleichzeitig erlaubt der Wegfall der beim trockenen System an der Lackoberfläche entstehenden Effekte eine Abbildung bei wesentlich herabgesetztem Bildkontrast und damit eine weitere Herabsetzung der übertragbaren Linienbreite. Ein weiterer Effekt, der mit der optischen Einrichtung und dem durch diese abgebildeten Muster nichts zu tun hat, in seiner Bedeutung jedoch keineswegs unterschätzt werden soll, wird anschließend diskutiert :As has already been explained, the use of the immersion liquid 6 automatically increases the numerical aperture of the arrangement in accordance with the refractive index of the liquid, as a result of which the resolving power increases. In addition, there is the possibility of designing the lens with the opening angle up to the limit given by the occurrence of vignetting, since at a certain opening angle the image error of an immersion lens is less than that of the dry system. At the same time, the elimination of the effects of the dry system on the paint surface allows imaging with a significantly reduced image contrast and thus a further reduction in the transferable line width. Another effect that has nothing to do with the optical device and the pattern shown by it, but whose importance should not be underestimated, is discussed below:

Obwohl die Vorbereitung der Halbleiterscheiben für die Belichtung unter Bedingungen erfolgt, die denen für einen chirurgischen Eingriff entsprechen, ist es fast unmöglich, die Scheiben völlig staubfrei unter die Belichtungseinrichtung zu bringen. Bei der Feinheit der erzeugten Strukturen kann sich aber bereits ein normales Staubkorn dahin auswirken, daß der erzeugte Schaltkreis unbrauchbar ist. Die Ausschußrate bei den heute angewendeten Verfahren ist daher hoch, obwohl versucht wird z.B. durch Abblasen der Halbleiterscheibe kurz vor der Belichtung restliche Staubteilchen zu entfernen. Ein weiteres Problem in der Schwierigkeit, die Temperatur im Belichtungsbereich möglichst konstant zu halten, wobei Schwankungen über 1 °C bereits ausgesprochen schädlich sind.Although the preparation of the semiconductor wafers for the exposure takes place under conditions which correspond to those for a surgical intervention, it is almost impossible to bring the wafers under the exposure device completely dust-free. With the fineness of the structures produced, however, a normal grain of dust can have the effect that the circuit produced is unusable. The reject rate in the methods used today is therefore high, although attempts are being made e.g. by blowing off the semiconductor wafer shortly before exposure to remove any remaining dust particles. Another problem is the difficulty in keeping the temperature in the exposure area as constant as possible, with fluctuations above 1 ° C being extremely harmful.

Sowohl die Reinigung wie die Temperaturstabilisierung der Halbleiterscheibe ergeben sich bei der in Fig. 3 und 4 dargestellten Einrichtung als natürliche Folge des erfinderischen Grundgedankens. Die auf dem Träger 1 durch Vakuumleitungen 9 festgehaltene Halbleiterscheibe 8 wird von der Flüssigkeit 6 sowohl rein gehalten wie temperiert, wobei durch in den Behälter 2 führende Zuleitungen 4 und Ableitungen 5 stets konstante Verhältnisse hergestellt werden. Diese Zu- bzw. Ableitungen, die flexibel gestaltet sind und die zur schrittweisen Belichtung notwendige Verschiebung in den Richtungen X und Y und die Justierung in Z-Richtung erlauben, gehören zu einem Kreislauf, der außer einem nicht dargestellten Vorratsbehälter eine Pumpe 10, ein Filter 11 und eine in Abhängigkeit von der festgestellten Temperatur heizende oder kühlende Temperiereinrichtung 12 umfaßt.Both the cleaning and the temperature stabilization of the semiconductor wafer result in the device shown in FIGS. 3 and 4 as a natural consequence of the inventive concept. The semiconductor wafer 8 held on the carrier 1 by vacuum lines 9 is both kept clean and tempered by the liquid 6, constant conditions being always produced by leads 4 and leads 5 leading into the container 2. These supply and discharge lines, which are designed flexibly and allow the shift in the X and Y directions and the adjustment in the Z direction necessary for step-wise exposure, belong to a circuit which, in addition to a storage container (not shown), a pump 10 and a filter 11 and a heating or cooling temperature control device 12 depending on the determined temperature.

Claims (11)

1. A photolithographic method of copying a pattern onto a semiconductor disk, particularly for the manufacture of integrated circuits, whereby a mask is imaged onto a photosensitive layer of the semiconductor disk by means of an interposed projection lens, characterized in that at least during exposure the space between the semiconductor disk and the boundary face of the projection lens facing the disk remains filled with a transparent liquid.
2. A method according to claim 1, characterized in that the refractive indic of the liquid is selected to be similar to the refractive index of the photosensitive layer of the semiconductor disk, preferably differing not more than 10 % from the refractive index of said layer.
3. A method according to claim 1 or 2, characterized in that the liquid between the semiconductor disk and the projection lens is continuously exchanged and thereby influenced with respect to its temperature and/or filtered.
4. A method according to one of claims 1 to 3, characterized in that a liquid is used which wettens a resist forming the photosensitive layer and has a low viscosity.
5. A method according to claim 4, characterized in that benzene, monobromo benzene, 1-bromo-2-iodo benzene, dimethyl naphtalene or ethyl naphtalene are used.
6. A method according to claim 4, characterized in that a water-absorbing liquid is used.
7. A method according to claim 6, characterized in that 2.3-dimethyl aniline, 2-phenylethyl amine, isopropyl oxybenzene or monobromo naphtalene are used.
8. A device for implementing the method according to one of claims 1 to 7 in which a semiconductor disk is arranged below a projection lens on a support, characterized in that the support (1) is arranged in a container (2) which is open at the upper end, its upper rim lying above the lower boundary face of the projection lens (3).
9. A device according to claim 8, characterized in that the container (2) is provided with feeding and discharge pipes (4, 5) for a liquid (6).
10. A device according to claim 9, characterized in that at least one filter is provided in the liquid cycle.
11. A device according to claim 9 or 10, characterized in that means for increasing and/or reducing the temperature of the liquid are provided in the liquid cycle.
EP79102675A 1979-07-27 1979-07-27 Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer Expired EP0023231B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE7979102675T DE2963537D1 (en) 1979-07-27 1979-07-27 Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
EP79102675A EP0023231B1 (en) 1979-07-27 1979-07-27 Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
AT79102675T ATE1462T1 (en) 1979-07-27 1979-07-27 OPTICAL LITHOGRAPHY PROCESS AND DEVICE FOR COPYING A PATTERN ONTO A SEMICONDUCTOR DISC.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP79102675A EP0023231B1 (en) 1979-07-27 1979-07-27 Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer

Publications (2)

Publication Number Publication Date
EP0023231A1 EP0023231A1 (en) 1981-02-04
EP0023231B1 true EP0023231B1 (en) 1982-08-11

Family

ID=8186163

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79102675A Expired EP0023231B1 (en) 1979-07-27 1979-07-27 Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer

Country Status (3)

Country Link
EP (1) EP0023231B1 (en)
AT (1) ATE1462T1 (en)
DE (1) DE2963537D1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7113259B2 (en) 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7489020B2 (en) 2004-04-29 2009-02-10 Micron Technology, Inc. Semiconductor wafer assemblies
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7713841B2 (en) 2003-09-19 2010-05-11 Micron Technology, Inc. Methods for thinning semiconductor substrates that employ support structures formed on the substrates
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US7993008B2 (en) 2003-08-26 2011-08-09 Nikon Corporation Optical element and exposure apparatus
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US8154708B2 (en) 2003-06-09 2012-04-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US8472002B2 (en) 2002-11-12 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8553201B2 (en) 2004-05-21 2013-10-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8704998B2 (en) 2004-04-14 2014-04-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5754317A (en) * 1980-09-19 1982-03-31 Hitachi Ltd Method and device for forming pattern
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JPH03209479A (en) * 1989-09-06 1991-09-12 Sanee Giken Kk Exposure method
JP2753930B2 (en) * 1992-11-27 1998-05-20 キヤノン株式会社 Immersion type projection exposure equipment
US7092069B2 (en) 2002-03-08 2006-08-15 Carl Zeiss Smt Ag Projection exposure method and projection exposure system
DE10210899A1 (en) * 2002-03-08 2003-09-18 Zeiss Carl Smt Ag Refractive projection lens for immersion lithography
US10503084B2 (en) 2002-11-12 2019-12-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
CN101470360B (en) 2002-11-12 2013-07-24 Asml荷兰有限公司 Immersion lithographic apparatus and device manufacturing method
DE60335595D1 (en) 2002-11-12 2011-02-17 Asml Netherlands Bv Immersion lithographic apparatus and method of making a device
US7110081B2 (en) 2002-11-12 2006-09-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG131766A1 (en) 2002-11-18 2007-05-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
TWI255971B (en) 2002-11-29 2006-06-01 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7242455B2 (en) 2002-12-10 2007-07-10 Nikon Corporation Exposure apparatus and method for producing device
DE10257766A1 (en) 2002-12-10 2004-07-15 Carl Zeiss Smt Ag Method for setting a desired optical property of a projection lens and microlithographic projection exposure system
EP1606670A4 (en) * 2003-03-04 2009-08-05 Pixelligent Technologies Llc Applications of semiconductor nano-sized particles for photolithography
US8993221B2 (en) 2012-02-10 2015-03-31 Pixelligent Technologies, Llc Block co-polymer photoresist
JP4735258B2 (en) 2003-04-09 2011-07-27 株式会社ニコン Exposure method and apparatus, and device manufacturing method
KR20190007532A (en) * 2003-04-11 2019-01-22 가부시키가이샤 니콘 Cleanup method for optics in immersion lithography
US7348575B2 (en) 2003-05-06 2008-03-25 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
KR20060009891A (en) 2003-05-06 2006-02-01 가부시키가이샤 니콘 Projection optical system, and exposure apparatus and exposure method
TW201806001A (en) 2003-05-23 2018-02-16 尼康股份有限公司 Exposure device and device manufacturing method
TWI442694B (en) 2003-05-30 2014-06-21 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
DE10324477A1 (en) 2003-05-30 2004-12-30 Carl Zeiss Smt Ag Microlithographic projection exposure system
US7317504B2 (en) 2004-04-08 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6867844B2 (en) 2003-06-19 2005-03-15 Asml Holding N.V. Immersion photolithography system and method using microchannel nozzles
EP1498778A1 (en) 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US6809794B1 (en) 2003-06-27 2004-10-26 Asml Holding N.V. Immersion photolithography system and method using inverted wafer-projection optics interface
EP1491956B1 (en) 2003-06-27 2006-09-06 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1975721A1 (en) 2003-06-30 2008-10-01 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1494074A1 (en) 2003-06-30 2005-01-05 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7738074B2 (en) 2003-07-16 2010-06-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1500982A1 (en) 2003-07-24 2005-01-26 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7175968B2 (en) 2003-07-28 2007-02-13 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a substrate
US7326522B2 (en) 2004-02-11 2008-02-05 Asml Netherlands B.V. Device manufacturing method and a substrate
US7085075B2 (en) 2003-08-12 2006-08-01 Carl Zeiss Smt Ag Projection objectives including a plurality of mirrors with lenses ahead of mirror M3
EP2261740B1 (en) 2003-08-29 2014-07-09 ASML Netherlands BV Lithographic apparatus
EP3223074A1 (en) 2003-09-03 2017-09-27 Nikon Corporation Apparatus and method for immersion lithography for recovering fluid
DE60302897T2 (en) 2003-09-29 2006-08-03 Asml Netherlands B.V. Lithographic apparatus and method of making a device
EP1519230A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7158211B2 (en) 2003-09-29 2007-01-02 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524558A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1524557A1 (en) 2003-10-15 2005-04-20 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7352433B2 (en) 2003-10-28 2008-04-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
TWI474132B (en) 2003-10-28 2015-02-21 尼康股份有限公司 Optical illumination device, projection exposure device, exposure method and device manufacturing method
WO2005050324A2 (en) * 2003-11-05 2005-06-02 Dsm Ip Assets B.V. A method and apparatus for producing microchips
EP1530086A1 (en) * 2003-11-05 2005-05-11 DSM IP Assets B.V. A method and an apparatus for producing micro-chips
TWI512335B (en) 2003-11-20 2015-12-11 尼康股份有限公司 Light beam converter, optical illuminating apparatus, exposure device, and exposure method
US7545481B2 (en) 2003-11-24 2009-06-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7385764B2 (en) 2003-12-15 2008-06-10 Carl Zeiss Smt Ag Objectives as a microlithography projection objective with at least one liquid lens
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7589818B2 (en) 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
TWI259319B (en) 2004-01-23 2006-08-01 Air Prod & Chem Immersion lithography fluids
TWI511182B (en) 2004-02-06 2015-12-01 尼康股份有限公司 Optical illumination apparatus, light-exposure apparatus, light-exposure method and device manufacturing method
US7050146B2 (en) 2004-02-09 2006-05-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
CN100592210C (en) 2004-02-13 2010-02-24 卡尔蔡司Smt股份公司 Projection objective for a microlithographic projection exposure apparatus
US7227619B2 (en) 2004-04-01 2007-06-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7034917B2 (en) 2004-04-01 2006-04-25 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and device manufactured thereby
US7295283B2 (en) 2004-04-02 2007-11-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379159B2 (en) 2004-05-03 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4913041B2 (en) * 2004-06-04 2012-04-11 カール・ツァイス・エスエムティー・ゲーエムベーハー Projection system with compensation for intensity variation and compensation element therefor
US8520184B2 (en) 2004-06-09 2013-08-27 Nikon Corporation Immersion exposure apparatus and device manufacturing method with measuring device
US7481867B2 (en) 2004-06-16 2009-01-27 Edwards Limited Vacuum system for immersion photolithography
US20060001851A1 (en) * 2004-07-01 2006-01-05 Grant Robert B Immersion photolithography system
US7161663B2 (en) 2004-07-22 2007-01-09 Asml Netherlands B.V. Lithographic apparatus
US7304715B2 (en) 2004-08-13 2007-12-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7133114B2 (en) 2004-09-20 2006-11-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7522261B2 (en) 2004-09-24 2009-04-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7355674B2 (en) 2004-09-28 2008-04-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and computer program product
US7894040B2 (en) 2004-10-05 2011-02-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7209213B2 (en) 2004-10-07 2007-04-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7379155B2 (en) 2004-10-18 2008-05-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7119876B2 (en) 2004-10-18 2006-10-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
WO2006045748A2 (en) * 2004-10-22 2006-05-04 Carl Zeiss Smt Ag Projection exposure apparatus for microlithography
US7423720B2 (en) 2004-11-12 2008-09-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7251013B2 (en) 2004-11-12 2007-07-31 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7414699B2 (en) 2004-11-12 2008-08-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7583357B2 (en) 2004-11-12 2009-09-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411657B2 (en) 2004-11-17 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7145630B2 (en) 2004-11-23 2006-12-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7161654B2 (en) 2004-12-02 2007-01-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7446850B2 (en) 2004-12-03 2008-11-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7196770B2 (en) 2004-12-07 2007-03-27 Asml Netherlands B.V. Prewetting of substrate before immersion exposure
US7248334B2 (en) 2004-12-07 2007-07-24 Asml Netherlands B.V. Sensor shield
US7365827B2 (en) 2004-12-08 2008-04-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7403261B2 (en) 2004-12-15 2008-07-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7528931B2 (en) 2004-12-20 2009-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7405805B2 (en) 2004-12-28 2008-07-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7491661B2 (en) 2004-12-28 2009-02-17 Asml Netherlands B.V. Device manufacturing method, top coat material and substrate
US20060147821A1 (en) 2004-12-30 2006-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
SG124359A1 (en) 2005-01-14 2006-08-30 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
KR20160135859A (en) 2005-01-31 2016-11-28 가부시키가이샤 니콘 Exposure apparatus and method for manufacturing device
JP5162254B2 (en) 2005-02-10 2013-03-13 エーエスエムエル ネザーランズ ビー.ブイ. Immersion lithography system and device manufacturing method
US7378025B2 (en) 2005-02-22 2008-05-27 Asml Netherlands B.V. Fluid filtration method, fluid filtered thereby, lithographic apparatus and device manufacturing method
US8018573B2 (en) 2005-02-22 2011-09-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7224431B2 (en) 2005-02-22 2007-05-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7428038B2 (en) 2005-02-28 2008-09-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and apparatus for de-gassing a liquid
US7324185B2 (en) 2005-03-04 2008-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684010B2 (en) 2005-03-09 2010-03-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, seal structure, method of removing an object and a method of sealing
US7330238B2 (en) 2005-03-28 2008-02-12 Asml Netherlands, B.V. Lithographic apparatus, immersion projection apparatus and device manufacturing method
US7411654B2 (en) 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7291850B2 (en) 2005-04-08 2007-11-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US20060232753A1 (en) 2005-04-19 2006-10-19 Asml Holding N.V. Liquid immersion lithography system with tilted liquid flow
US7317507B2 (en) 2005-05-03 2008-01-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8248577B2 (en) 2005-05-03 2012-08-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7433016B2 (en) 2005-05-03 2008-10-07 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101455551B1 (en) 2005-05-12 2014-10-27 가부시키가이샤 니콘 Projection optical system, exposure apparatus and exposure method
WO2006133800A1 (en) 2005-06-14 2006-12-21 Carl Zeiss Smt Ag Lithography projection objective, and a method for correcting image defects of the same
US7652746B2 (en) 2005-06-21 2010-01-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7751027B2 (en) 2005-06-21 2010-07-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7474379B2 (en) 2005-06-28 2009-01-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7468779B2 (en) 2005-06-28 2008-12-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7834974B2 (en) 2005-06-28 2010-11-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7535644B2 (en) 2005-08-12 2009-05-19 Asml Netherlands B.V. Lens element, lithographic apparatus, device manufacturing method, and device manufactured thereby
US8054445B2 (en) 2005-08-16 2011-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411658B2 (en) 2005-10-06 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7864292B2 (en) 2005-11-16 2011-01-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7804577B2 (en) 2005-11-16 2010-09-28 Asml Netherlands B.V. Lithographic apparatus
US7656501B2 (en) 2005-11-16 2010-02-02 Asml Netherlands B.V. Lithographic apparatus
US7633073B2 (en) 2005-11-23 2009-12-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7773195B2 (en) 2005-11-29 2010-08-10 Asml Holding N.V. System and method to increase surface tension and contact angle in immersion lithography
US7420194B2 (en) 2005-12-27 2008-09-02 Asml Netherlands B.V. Lithographic apparatus and substrate edge seal
US7839483B2 (en) 2005-12-28 2010-11-23 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method and a control system
US8045134B2 (en) 2006-03-13 2011-10-25 Asml Netherlands B.V. Lithographic apparatus, control system and device manufacturing method
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045135B2 (en) 2006-11-22 2011-10-25 Asml Netherlands B.V. Lithographic apparatus with a fluid combining unit and related device manufacturing method
US9632425B2 (en) 2006-12-07 2017-04-25 Asml Holding N.V. Lithographic apparatus, a dryer and a method of removing liquid from a surface
US8634053B2 (en) 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7791709B2 (en) 2006-12-08 2010-09-07 Asml Netherlands B.V. Substrate support and lithographic process
EP1939689A1 (en) * 2006-12-28 2008-07-02 DSM IP Assets B.V. Immersion fluid and method for producing microchips
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
JP5267029B2 (en) 2007-10-12 2013-08-21 株式会社ニコン Illumination optical apparatus, exposure apparatus, and device manufacturing method
EP2179330A1 (en) 2007-10-16 2010-04-28 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
CN101681125B (en) 2007-10-16 2013-08-21 株式会社尼康 Illumination optical system, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
CN101910817B (en) 2008-05-28 2016-03-09 株式会社尼康 Lamp optical system, exposure device and device making method
NL2005207A (en) 2009-09-28 2011-03-29 Asml Netherlands Bv Heat pipe, lithographic apparatus and device manufacturing method.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346475A (en) * 1963-02-25 1967-10-10 Australia Res Lab Electrophotographic method using an unsymmetrical ac current during development
DE1944448B2 (en) * 1969-09-02 1972-03-30 Fa. Carl Zeiss, 7920 Heidenheim METHOD AND DEVICE FOR THE PRODUCTION OF INTEGRATED SEMI-CIRCUIT CIRCUITS IN A MONOLITHIC DESIGN

Cited By (113)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701640B2 (en) 2002-08-23 2010-04-20 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7619827B2 (en) 2002-08-23 2009-11-17 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7362508B2 (en) 2002-08-23 2008-04-22 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7688517B2 (en) 2002-08-23 2010-03-30 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7551362B2 (en) 2002-08-23 2009-06-23 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7580197B2 (en) 2002-08-23 2009-08-25 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US7609455B2 (en) 2002-08-23 2009-10-27 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US9057967B2 (en) 2002-11-12 2015-06-16 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8797503B2 (en) 2002-11-12 2014-08-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method with a liquid inlet above an aperture of a liquid confinement structure
US9091940B2 (en) 2002-11-12 2015-07-28 Asml Netherlands B.V. Lithographic apparatus and method involving a fluid inlet and a fluid outlet
US8472002B2 (en) 2002-11-12 2013-06-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8208120B2 (en) 2002-11-12 2012-06-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8558989B2 (en) 2002-11-12 2013-10-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482966B2 (en) 2002-11-12 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9366972B2 (en) 2002-11-12 2016-06-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7982850B2 (en) 2002-11-12 2011-07-19 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with gas supply
US8102504B2 (en) 2003-02-26 2012-01-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7911583B2 (en) 2003-02-26 2011-03-22 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9348239B2 (en) 2003-02-26 2016-05-24 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7932991B2 (en) 2003-02-26 2011-04-26 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US9182684B2 (en) 2003-02-26 2015-11-10 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907253B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7907254B2 (en) 2003-02-26 2011-03-15 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US8736809B2 (en) 2003-02-26 2014-05-27 Nikon Corporation Exposure apparatus, exposure method, and method for producing device
US7936444B2 (en) 2003-05-13 2011-05-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8964164B2 (en) 2003-05-13 2015-02-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8724084B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9477160B2 (en) 2003-05-13 2016-10-25 Asml Netherland B.V. Lithographic apparatus and device manufacturing method
US8724083B2 (en) 2003-05-13 2014-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8482845B2 (en) 2003-06-09 2013-07-09 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9152058B2 (en) 2003-06-09 2015-10-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a member and a fluid opening
US9541843B2 (en) 2003-06-09 2017-01-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a sensor detecting a radiation beam through liquid
US8154708B2 (en) 2003-06-09 2012-04-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9081299B2 (en) 2003-06-09 2015-07-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving removal of liquid entering a gap
US8363208B2 (en) 2003-06-11 2013-01-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9110389B2 (en) 2003-06-11 2015-08-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7684008B2 (en) 2003-06-11 2010-03-23 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7855777B2 (en) 2003-07-09 2010-12-21 Nikon Corporation Exposure apparatus and method for manufacturing device
US8879043B2 (en) 2003-07-09 2014-11-04 Nikon Corporation Exposure apparatus and method for manufacturing device
US8218125B2 (en) 2003-07-28 2012-07-10 Asml Netherlands B.V. Immersion lithographic apparatus with a projection system having an isolated or movable part
US8964163B2 (en) 2003-07-28 2015-02-24 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method with a projection system having a part movable relative to another part
US9285686B2 (en) 2003-07-31 2016-03-15 Asml Netherlands B.V. Lithographic apparatus involving an immersion liquid supply system with an aperture
US8937704B2 (en) 2003-07-31 2015-01-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a resistivity sensor
US8142852B2 (en) 2003-07-31 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7779781B2 (en) 2003-07-31 2010-08-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7993008B2 (en) 2003-08-26 2011-08-09 Nikon Corporation Optical element and exposure apparatus
US8189170B2 (en) 2003-08-26 2012-05-29 Nikon Corporation Optical element and exposure apparatus
US9046796B2 (en) 2003-08-26 2015-06-02 Nikon Corporation Optical element and exposure apparatus
US10175584B2 (en) 2003-08-26 2019-01-08 Nikon Corporation Optical element and exposure apparatus
US8149381B2 (en) 2003-08-26 2012-04-03 Nikon Corporation Optical element and exposure apparatus
US9316919B2 (en) 2003-08-29 2016-04-19 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8953144B2 (en) 2003-08-29 2015-02-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947637B2 (en) 2003-08-29 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8035798B2 (en) 2003-08-29 2011-10-11 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8629971B2 (en) 2003-08-29 2014-01-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7907255B2 (en) 2003-08-29 2011-03-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9025127B2 (en) 2003-08-29 2015-05-05 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568841B2 (en) 2003-08-29 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9581914B2 (en) 2003-08-29 2017-02-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US6954256B2 (en) 2003-08-29 2005-10-11 Asml Netherlands B.V. Gradient immersion lithography
US7960829B2 (en) 2003-09-19 2011-06-14 Micron Technology, Inc. Support structure for use in thinning semiconductor substrates and for supporting thinned semiconductor substrates
US7713841B2 (en) 2003-09-19 2010-05-11 Micron Technology, Inc. Methods for thinning semiconductor substrates that employ support structures formed on the substrates
US8860923B2 (en) 2003-10-28 2014-10-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9482962B2 (en) 2003-10-28 2016-11-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8542343B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus
US8638418B2 (en) 2003-10-28 2014-01-28 Asml Netherlands B.V. Lithographic apparatus
US8542344B2 (en) 2003-10-28 2013-09-24 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7868998B2 (en) 2003-10-28 2011-01-11 Asml Netherlands B.V. Lithographic apparatus
US7113259B2 (en) 2003-10-31 2006-09-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634056B2 (en) 2003-11-14 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8547519B2 (en) 2003-11-14 2013-10-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134622B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9134623B2 (en) 2003-11-14 2015-09-15 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9568840B2 (en) 2004-04-14 2017-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9207543B2 (en) 2004-04-14 2015-12-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a groove to collect liquid
US8755033B2 (en) 2004-04-14 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US8704998B2 (en) 2004-04-14 2014-04-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method involving a barrier to collect liquid
US7615119B2 (en) 2004-04-29 2009-11-10 Micron Technology, Inc. Apparatus for spin coating semiconductor substrates
US7489020B2 (en) 2004-04-29 2009-02-10 Micron Technology, Inc. Semiconductor wafer assemblies
US8638415B2 (en) 2004-05-18 2014-01-28 Asml Netherlands B.V. Active drying station and method to remove immersion liquid using gas flow supply with gas outlet between two gas inlets
US8553201B2 (en) 2004-05-21 2013-10-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8749754B2 (en) 2004-05-21 2014-06-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8319939B2 (en) 2004-07-07 2012-11-27 Asml Netherlands B.V. Immersion lithographic apparatus and device manufacturing method detecting residual liquid
US9104117B2 (en) 2004-07-07 2015-08-11 Bob Streefkerk Lithographic apparatus having a liquid detection system
US8446563B2 (en) 2004-08-19 2013-05-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8031325B2 (en) 2004-08-19 2011-10-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9097992B2 (en) 2004-08-19 2015-08-04 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9488923B2 (en) 2004-08-19 2016-11-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8755028B2 (en) 2004-08-19 2014-06-17 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9507278B2 (en) 2004-08-19 2016-11-29 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8045137B2 (en) 2004-12-07 2011-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9182222B2 (en) 2004-12-10 2015-11-10 Asml Netherlands B.V. Substrate placement in immersion lithography
US8941811B2 (en) 2004-12-20 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7880860B2 (en) 2004-12-20 2011-02-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8115899B2 (en) 2004-12-20 2012-02-14 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8638419B2 (en) 2004-12-20 2014-01-28 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8675173B2 (en) 2005-01-14 2014-03-18 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7924403B2 (en) 2005-01-14 2011-04-12 Asml Netherlands B.V. Lithographic apparatus and device and device manufacturing method
US8692973B2 (en) 2005-01-31 2014-04-08 Nikon Corporation Exposure apparatus and method for producing device
US8941810B2 (en) 2005-12-30 2015-01-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9436096B2 (en) 2005-12-30 2016-09-06 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8947631B2 (en) 2005-12-30 2015-02-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7969548B2 (en) 2006-05-22 2011-06-28 Asml Netherlands B.V. Lithographic apparatus and lithographic apparatus cleaning method
US8654305B2 (en) 2007-02-15 2014-02-18 Asml Holding N.V. Systems and methods for insitu lens cleaning in immersion lithography
US8817226B2 (en) 2007-02-15 2014-08-26 Asml Holding N.V. Systems and methods for insitu lens cleaning using ozone in immersion lithography
US7900641B2 (en) 2007-05-04 2011-03-08 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US8947629B2 (en) 2007-05-04 2015-02-03 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US9013672B2 (en) 2007-05-04 2015-04-21 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7841352B2 (en) 2007-05-04 2010-11-30 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US7866330B2 (en) 2007-05-04 2011-01-11 Asml Netherlands B.V. Cleaning device, a lithographic apparatus and a lithographic apparatus cleaning method
US8011377B2 (en) 2007-05-04 2011-09-06 Asml Netherlands B.V. Cleaning device and a lithographic apparatus cleaning method
US9256136B2 (en) 2010-04-22 2016-02-09 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method involving gas supply

Also Published As

Publication number Publication date
DE2963537D1 (en) 1982-10-07
EP0023231A1 (en) 1981-02-04
ATE1462T1 (en) 1982-08-15

Similar Documents

Publication Publication Date Title
EP0023231B1 (en) Optical lithographic method and apparatus for copying a pattern onto a semiconductor wafer
DE69922132T2 (en) MIRROR PROJECTION SYSTEM FOR A LITHOGRAPHIC SCRAP PROJECTION APPARATUS AND LITHOGRAPHIC APPARATUS WITH SUCH A SYSTEM
DE69128771T2 (en) Device and method for transverse position measurement for near-distance lithography systems
DE10324477A1 (en) Microlithographic projection exposure system
DE69702641T2 (en) EXPOSURE SYSTEM AND EXPOSURE DEVICE FOR UV LITHOGRAPHY
DE10297658T5 (en) Method and system for repairing defective photomasks
DE69837961T2 (en) Irradiation device for an alignment layer for liquid crystal displays
DE102005048107A1 (en) A method of determining an optimal absorber stack geometry for a lithographic reflective mask
WO2007039519A1 (en) Device and method for influencing polarisation distribution in an optical system, in particular in a microlithography exposure system
EP1922587A1 (en) Method for determining intensity distribution in the focal plane of a projection exposure arrangement
DE69126456T2 (en) Exposure device
DE69510902T2 (en) Embedded phase shift masks and method for their production
DE3036555C2 (en) Process for producing colored photomasks from glass by means of photographic emulsions
DE10065198A1 (en) Light integrator for a lighting device
DE69221350T2 (en) Manufacture of submicrometric arrays
EP0025805B1 (en) Process for the transfer of a pattern to a semiconductor slice
DE102004021151B4 (en) A method for reducing nonuniformity and image shortening in an image exposed to a substrate using a photolithographic mask, and photolithographic mask
DE60218412T2 (en) Lithographic apparatus, method of making an article and computer program therefor
DE2123887C3 (en)
DE10235255B4 (en) Reflective mirror for lithographic exposure and manufacturing process
DE69223759T2 (en) Phase shift mask and method for creating a resist pattern using this mask
DE2259759C2 (en) Imaging material, its uses and method of making an image
DE102008043324B4 (en) Optical arrangement for the three-dimensional structuring of a material layer
DE102023201742A1 (en) Optical module for the ultraviolet wavelength range
DE1303704C2 (en) METHOD FOR GENERATING A MICROSTRUCTURE FOR SEMICONDUCTOR COMPONENTS AND DEVICE FOR CARRYING OUT THE METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19791107

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19820811

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19820811

Ref country code: BE

Effective date: 19820811

REF Corresponds to:

Ref document number: 1462

Country of ref document: AT

Date of ref document: 19820815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 2963537

Country of ref document: DE

Date of ref document: 19821007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19830727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19830731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19840621

Year of fee payment: 6

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: PERKIN-ELMER CENSOR ANSTALT TE VADUZ, LIECHTENSTEI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19880731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19890621

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19890623

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19890731

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: MERCOTRUST AKTIENGESELLSCHAFT TE VADUZ, LIECHTENST

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900727

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19910403

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT