[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1336041B1 - Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine - Google Patents

Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine Download PDF

Info

Publication number
EP1336041B1
EP1336041B1 EP01996679A EP01996679A EP1336041B1 EP 1336041 B1 EP1336041 B1 EP 1336041B1 EP 01996679 A EP01996679 A EP 01996679A EP 01996679 A EP01996679 A EP 01996679A EP 1336041 B1 EP1336041 B1 EP 1336041B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
fuel
crankshaft
injection
preliminary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01996679A
Other languages
English (en)
French (fr)
Other versions
EP1336041A1 (de
Inventor
Harry SCHÜLE
Klaus Bayerle
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1336041A1 publication Critical patent/EP1336041A1/de
Application granted granted Critical
Publication of EP1336041B1 publication Critical patent/EP1336041B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/047Taking into account fuel evaporation or wall wetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components

Definitions

  • the present invention relates to a method of injecting fuel into a multi-cylinder internal combustion engine.
  • the cylinders are subdivided into a first and a second cylinder group as a function of the two different levels of the camshaft signal.
  • the cylinders of the first group are supplied immediately after a start detection simultaneously with the Voreinein mousseern (group injector), while the pre-injectors for the cylinders of the second group are discontinued delayed.
  • the fuel quantities of Vorabeinspritzer be the same size.
  • the present invention has for its object to provide a method for injecting fuel into a multi-cylinder internal combustion engine, are largely avoided in the start phase fuel-air mixtures with different lambda values.
  • the present invention is based on the recognition that an internal combustion engine always remains at certain discrete positions after being switched off in the disengaged state, the number of discrete positions over two crankshaft revolutions (760 °) corresponding to the number of cylinders. In the case of n cylinders, these are thus n stationary angle positions, which otherwise have equal angular distances relative to each other. Furthermore, tests have shown that the engine speed characteristics as well as the timing of the opening of the intake valves to the speed during the start phases are always similar, regardless of at which of the discrete positions the engine has stopped. Thus, at each start, essentially the same sequence of different air fillings for successive pre-injectors results.
  • the fuel quantities of the pilot injectors can therefore be selected according to the order of the pilot injectors and the expected air fillings, whereby the expected air fillings are determined only once and the corresponding values can then be used at each startup. Since the air fillings depend primarily on the rotational speed in the respective intake phase, the air fillings are preferably determined as a function of the anticipated rotational speeds in the respective intake phases.
  • the fuel quantities of Vorabein mousseer be determined by multiplying a standard amount, each with a pre-injector associated weighting factors.
  • weighting factors could be estimated, they are expediently determined experimentally for each series of an internal combustion engine and then stored in the central control unit.
  • the present invention takes advantage of the fact that the internal combustion engine always remains at certain discrete positions after switching off in the disengaged state.
  • the inventive method in order to carry out the method according to the invention it is not necessary to know these standstill positions. Rather, it is sufficient for the inventive method to know the order of Vorabeinspritzer to specify depending on these, the fuel quantities of Vorabeinspritzer.
  • the pre-injectors are deposited in quantities already in the starting phase which are at least approximately adequate for the respective air filling.
  • too rich or lean fuel air mixtures are avoided, resulting in a corresponding reduction in pollutant emissions.
  • FIG. 1 shows a schematic partial section through an internal combustion engine, which is formed in the described embodiment for illustrative purposes as a four-cylinder gasoline engine with gasoline injection.
  • the internal combustion engine 3 is associated in a conventional manner with a central electronic control unit 1, which controls the ignition, fuel injection and other operations of the internal combustion engine.
  • Each cylinder 7 is assigned at least one inlet valve 6 and at least one injection valve 2.
  • the injection valve 2 injects fuel into the intake manifold directly onto the valve disk of the intake valve 6.
  • the crankshaft 8 is associated with a crankshaft sensor 4 with a toothed encoder wheel which generates a crank angle signal CRK (see lower half of FIGS. 2 and 3) representing the crankshaft angle.
  • the camshaft 5, which controls the intake valves 6 and rotates at half the rotational speed of the crankshaft 8, is associated with a camshaft sensor 9 for generating a cam signal CAM (see lower half of Figs. 2 and 3).
  • the camshaft 5 may be angularly adjustable relative to the crankshaft 8, but this is by no means required for the method to be described.
  • crankshaft signal CRK corresponds to a tooth of the encoder wheel, wherein a double tooth gap after every 60 teeth as a synchronization pulse S for each one full revolution of the crankshaft 8 serves.
  • the cam signal CAM has two different levels associated with two consecutive revolutions of the crankshaft. The camshaft signal CAM and the crankshaft signal CRK with its synchronization pulses S allow an unambiguous assignment of the crankshaft position in the working cycle.
  • the injection valves 2 can therefore be controlled and actuated in the usual sequential injection mode with the aid of the crankshaft signal and camshaft signal.
  • the crankshaft position and thus the position of the piston is not yet known, and it is if necessary. Also, no synchronization between the camshaft and the crankshaft available. An injection in the sequential injection mode is therefore not possible.
  • an internal combustion engine always remains at discrete positions after switching off in the disengaged state.
  • these are exactly four positions over each 760 ° crankshaft rotation.
  • the positions are always either 20 ( ⁇ 7) teeth or 50 ( ⁇ 7) teeth before a synchronization pulse S.
  • the angular distance between these positions is thus 180 ° ( ⁇ 42 °).
  • the number of standstill angle positions at which an internal combustion engine stops is equal to the number of cylinders.
  • the standstill angle positions become more and more discrete.
  • the fuel quantities of the pilot injectors are determined by multiplying a standard amount by weighting factors.
  • weighting factors are therefore expediently determined by experiments for the internal combustion engines of a series and stored as fixed values in the central control unit. If, for example, the largest possible fuel quantity of an advance injector is determined as the standard quantity, the weighting factors are, for example, in the range from 0.7 to 1.0.
  • the method according to the invention can be used with any preliminary injection strategies, for example also in the method according to the initially discussed EP 0 371 158 B1, in which the pre-injectors of a first cylinder group are discontinued at the same time and the pre-injectors of the second cylinder group are delayed in time.
  • the method according to the invention is used with particularly good success in a pre-injection strategy in which all pre-injectors are discontinued one after the other in chronological order.
  • An example of such an advance injection strategy is explained in more detail below with reference to FIG.
  • the rotational speed N of the internal combustion engine is plotted over time.
  • the drive signals IV1 - IV4 are plotted for the four injectors over time for the four cylinders 1 to 4 of the four-cylinder internal combustion engine, the four pilot injectors I are denoted by I1 - I4.
  • the drive signals EV1-EV4 for the four intake valves are plotted over time, with the opening pulses for the opening of the intake valves being designated E1-E4.
  • the pulses for the top dead center (TDC1 - TDC4) of the four cylinders and the top dead center (TDC1) of the cylinder 1 are shown.
  • a starting detection E is provided for the start of the internal combustion engine.
  • the cam signal CAM is either high or low, in the example of Figure 2 low level.
  • the cylinders 1 to 4 can be subdivided into two groups (in the example of FIG. 2 into a first group with the cylinders 3, 4 and a second group with the cylinders 1, 2).
  • this is It is also known whether the internal combustion engine has stopped in the first two standstill angular positions or the second two standstill positions. In other words, the number of unknown stall angle positions is reduced to two.
  • the two cylinders 3, 4 of the first cylinder group are supplied at the same time with the pilot injectors at a predetermined angular distance from the start detection E (for example after eight recognized and valid teeth of the crankshaft sensor), as indicated by the pilot injectors I3 '. and I4 is indicated.
  • the pre-injector I3 ' would be delivered just before the closing of the associated intake valve EV3, which would lead to an over-enrichment of the fuel-air mixture and the emission of unburned fuel.
  • the pre-injector I3 ' is not discharged at this time, as indicated by a dotted line P.
  • the crankshaft has stopped 20 teeth before the first synchronization pulse S. If, therefore, the first synchronization pulse S has already occurred after 28 teeth starting detection E (ie 20 teeth after the first preliminary injection I4) (which is the case in the example of FIG. 2), then it can be seen that the crankshaft has 20 teeth before the synchronization pulse S. had stopped. As soon as the synchronization pulse S has occurred, the internal combustion engine is synchronized, and thus a defined sequence of taking place after the synchronization pulse S Vorabeinspritzer be determined by the central control unit 1.
  • this pre-injection strategy results in a defined sequence of the cylinders supplied successively with pre-injectors I, in the illustrated case cylinder 4, cylinder 1, cylinder 2 and cylinder 3.
  • the fuel quantities of the associated pre-injectors 14, I1, I2 and I3 become determined by multiplying the standard amount by the fixed weighting factors.
  • the order of the cylinders supplied with the pilot injectors changes.
  • the rotational speed behavior during the starting phase substantially always remains the same in relation to the intake phases of the successively opening intake valves, the fuel quantities of the successive pre-injectors I can always be determined by means of the same weighting factors.
  • the pre-injection method described above is only one example of a pre-injection strategy in which the method of the invention can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

Beim Start einer Brennkraftmaschine mit Benzineinspritzung werden zum Aufbau eines Wandfilms in den Zylindern und gleichzeitiger Bereitstellung eines zündfähigen Gemisches für die erste Verbrennung sogenannte Vorabeinspritzer (I) nach einer bestimmten Vorabeinspritzstrategie abgesetzt. Um zu vermeiden, dass die Vorabfüllungen während der Startphase zu fett oder zu mager sind, werden bei dem erfindungsgemäßen Verfahren die Kraftstoffmengen der Vorabeinspritzer (I) in Abhängigkeit von den zu erwartenden Füllungen der betreffenden Zylinder unterschiedlich groß gewählt.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Einspritzen von Kraftstoff in eine mehrzylindrige Brennkraftmaschine.
  • Es ist bekannt, beim Start eines Ottomotors die Zylinder je einmal mit einem sogenannten Vorabeinspritzer zu versorgen, um die Zylinderwände zu benetzen und gleichzeitig ein zündfähiges Gemisch für die erste Verbrennung bereitzustellen. Da zu diesem Zeitpunkt noch keine Synchronisation zwischen Nockenwelle und der Kurbelwelle vorhanden und die Position der Kolben unbekannt ist, ist eine gezielte Vorabeinspritzstrategie erforderlich, um den Ausstoß von unverbranntem Kraftstoff und somit die Schadstoffemissionen während des Starts zu minimieren.
  • Bei einem aus der EP 0 371 158 B1 bekannten Verfahren werden die Zylinder in Abhängigkeit von den beiden unterschiedlichen Pegeln des Nockenwellensignals in eine erste und eine zweite Zylindergruppe unterteilt. Die Zylinder der ersten Gruppe werden unmittelbar nach einer Starterkennung zeitgleich mit den Vorabeinspritzern (Gruppeneinspritzer) versorgt, während die Vorabeinspritzer für die Zylinder der zweiten Gruppe zeitlich verzögert abgesetzt werden. Hierbei werden die Kraftstoffmengen der Vorabeinspritzer gleich groß gewählt.
  • Es hat sich nun gezeigt, dass infolge der Gasdynamik im Saugrohr die Luftfüllungen der Zylinder bereits beim Start nicht gleich sind. So werden die ersten Zylinder infolge der im Saugrohr stehenden Luftsäule nicht so gut gefüllt wie die nachfolgenden Zylinder, bei denen die Luft im Saugrohr bereits eine merkliche Strömungsgeschwindigkeit und entsprechende Bewegungsenergie erreicht hat. Die Folge ist, dass die Kraftstoff-Luft-Gemische (Lambda-Werte) der ersten Vorabfüllungen fetter als die nachfolgenden Vorabfüllungen sind. Dies führt zu erhöhten Schadstoffemissionen in der Startphase, was insbesondere bei schadstoffoptimierten Brennkraftmaschinen zu vermeiden ist.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Einspritzen von Kraftstoff in eine mehrzylindrische Brennkraftmaschine anzugeben, bei der in der Startphase Kraftstoff-Luft-Gemische mit unterschiedlichen LambdaWerten weitgehend vermieden werden.
  • Das Verfahren gemäß der Erfindung ist in Anspruch 1 definiert.
  • Die vorliegende Erfindung basiert auf der Erkenntnis, dass eine Brennkraftmaschine nach dem Abschalten im ausgekuppelten Zustand immer an bestimmten diskreten Positionen stehen bleibt, wobei die Anzahl der diskreten Positionen über zwei Kurbelwellenumdrehungen (760°) der Anzahl der Zylinder entspricht. Im Fall von n Zylindern sind dies somit n Stillstands-Winkelpositionen, die im übrigen gleiche Winkelabstände relativ zueinander haben. Ferner haben Versuche gezeigt, dass das Drehzahlverhalten der Brennkraftmaschine sowie die zeitliche Zuordnung der Öffnung der Einlassventile zu der Drehzahl während den Startphasen immer ähnlich sind, unabhängig davon, an welcher der diskreten Positionen die Brennkraftmaschine stehen geblieben ist. Somit ergibt sich bei jedem Start im wesentlichen die gleiche Folge unterschiedlicher Luftfüllungen für aufeinanderfolgende Vorabeinspritzer.
  • Dies erlaubt es, die zu erwartenden Luftfüllungen für die aufeinanderfolgenden Vorabeinspritzer abzuschätzen. Die Kraftstoffmengen der Vorabeinspritzer können daher in Abhängigkeit von der Reihenfolge der Vorabeinspritzer und den zu erwartenden Luftfüllungen entsprechend gewählt werden, wobei die zu erwartenden Luftfüllungen nur einmal bestimmt werden müssen und die entsprechenden Werte dann bei jedem Start verwendet werden können. Da die Luftfüllungen in erster Linie von der Drehzahl in der jeweiligen Ansaugphase abhängen, werden die Luftfüllungen vorzugsweise in Abhängigkeit von den zu erwartenden Drehzahlen in den jeweiligen Ansaugphasen bestimmt.
  • In besonders vorteilhafter Ausgestaltung des erfindungsgemäßen Verfahrens ist vorgesehen, dass die Kraftstoffmengen der Vorabeinspritzer durch Multiplikation einer Standardmenge mit jeweils einem Vorabeinspritzer zugeordneten Gewichtungsfaktoren bestimmt werden. Wenn auch die Gewichtungsfaktoren abgeschätzt werden könnten, werden sie zweckmäßigerweise für jede Baureihe einer Brennkraftmaschine experimentell ermittelt und dann im zentralen Steuergerät abgespeichert.
  • Wie erwähnt, macht sich die vorliegende Erfindung die Tatsache zunutze, dass die Brennkraftmaschine nach dem Abschalten im ausgekuppelten Zustand immer an bestimmten diskreten Positionen stehen bleibt. Es sei jedoch betont, dass zum Durchführen des erfindungsgemäßen Verfahrens nicht erforderlich ist, diese Stillstandspositionen zu kennen. Vielmehr ist es für das erfindungsgemäße Verfahren ausreichend, die Reihenfolge der Vorabeinspritzer zu kennen, um in Abhängigkeit von diesen die Kraftstoffmengen der Vorabeinspritzer vorzugeben.
  • Durch das erfindungsgemäße Verfahren wird erreicht, dass bereits in der Startphase die Vorabeinspritzer in Mengen abgesetzt werden, die zumindest näherungsweise für die jeweilige Luftfüllung adäquat sind. Somit werden zu fette oder zu magere Kraftstoffluftgemische vermieden, was eine entsprechende Reduzierung der Schadstoffemissionen zur Folge hat.
  • Anhand der Zeichnungen wird das erfindungsgemäße Verfahren näher erläutert. Es zeigt:
  • Figur 1
    eine schematische Schnittdarstellung einer Brennkraftmaschine in Form eines Ottomotors mit Benzineinspritzung;
    Figur 2
    ein Diagramm, in dem über der Zeit Drehzahl-, Nockenwellen-, Kurbelwellen-, Einspritzventil- und Einlassventil-Signale aufgetragen sind.
  • Die Figur 1 zeigt einen schematischen Teilschnitt durch eine Brennkraftmaschine, welche im beschriebenen Ausführungsbeispiel zu Veranschaulichungszwecken als Vierzylinder-Ottomotor mit Benzineinspritzung ausgebildet ist.
  • Der Brennkraftmaschine 3 ist in üblicher Weise ein zentrales elektronisches Steuergerät 1 zugeordnet, das die Zündung, Kraftstoffeinspritzung und andere Vorgänge der Brennkraftmaschine steuert. Jedem Zylinder 7 ist mindestens ein Einlassventil 6 und mindestens ein Einspritzventil 2 zugeordnet. Das Einspritzventil 2 spritzt Kraftstoff in das Saugrohr unmittelbar auf den Ventilteller des Einlassventils 6 ab.
  • Der Kurbelwelle 8 ist ein Kurbelwellensensor 4 mit einem gezahnten Geberrad zugeordnet, das ein den Kurbelwellenwinkel darstellendes Kurbelwellensignal CRK (siehe untere Hälfte der Figuren 2 und 3) erzeugt. Der Nockenwelle 5, die die Einlassventile 6 steuert und mit der halben Drehzahl der Kurbelwelle 8 dreht, ist ein Nockenwellensensor 9 zum Erzeugen eines Nockenwellensignals CAM (siehe untere Hälfte der Figuren 2 und 3) zugeordnet. Die Nockenwelle 5 kann relativ zur Kurbelwelle 8 winkelverstellbar sein, was jedoch für das zu beschreibende Verfahren keineswegs erforderlich ist.
  • In den Figuren 2 und 3, untere Hälfte, sind jeweils das Kurbelwellensignal CRK, das Nockenwellensignal CAM und die Drehzahl N über der Zeit aufgetragen. Jeder Impuls des Kurbelwellensignals CRK entspricht einem Zahn des Geberrades, wobei eine doppelte Zahnlücke nach jeweils 60 Zähnen als Synchronisationsimpuls S für jeweils eine volle Umdrehung der Kurbelwelle 8 dient. Das Nockenwellensignal CAM hat zwei unterschiedliche Pegel, die zwei aufeinanderfolgenden Umdrehungen der Kurbelwelle zugeordnet sind. Das Nockenwellensignal CAM und das Kurbelwellensignal CRK mit seinen Synchronisationsimpulsen S erlauben eine eindeutige Zuordnung der Kurbelwellenstellung im Arbeitsspiel.
  • Bei normalem Betrieb der Brennkraftmaschine können daher mit Hilfe des Kurbelwellensignals und Nockenwellensignals die Einspritzventile 2 im üblichen sequentiellen Einspritzbetrieb angesteuert und betätigt werden. Beim Start ist jedoch die Kurbelwellenstellung und damit die Stellung der Kolben noch nicht bekannt, und es ist ggfs. auch noch keine Synchronisation zwischen der Nockenwelle und der Kurbelwelle vorhanden. Eine Einspritzung im sequentiellen Einspritzbetrieb ist daher nicht möglich.
  • Versuche haben gezeigt, dass eine Brennkraftmaschine nach dem Abschalten im ausgekuppelten Zustand immer an diskreten Positionen stehen bleibt. Bei einer Vierzylinder-Brennkraftmaschine sind dies genau vier Positionen über jeweils 760° der Kurbelwellendrehung. Für das verzahnte Geberrad des Kurbelwellensensors 4 ergeben sich hierbei beispielsweise immer die Positionen entweder 20 (± 7) Zähne oder 50 (± 7) Zähne vor einem Synchronisationsimpuls S. Der Winkelabstand zwischen diesen Positionen beträgt somit 180° (± 42°). Bei einer Sechszylinder-Brennkraftmaschine ergeben sich in entsprechender Weise als Positionen für das verzahnte Geberrad des Kurbelwellensensors 5 oder 25 oder 45 Zähne vor dem nächsten Synchronisationsimpuls S; der Winkelabstand zwischen den Positionen beträgt dann 120°. Generell gilt, dass die Anzahl der Stillstands-Winkelpositionen, an der eine Brennkraftmaschine stehen bleibt, der Anzahl der Zylinder entspricht. Im übrigen hat sich gezeigt, dass mit größer werdender Zylinderzahl die Stillstands-Winkelpositionen immer diskreter werden.
  • Ferner haben Versuche gezeigt, dass beim Start einer Brennkraftmaschine das Drehzahlverhalten in Relation zu der Betätigung der Einlassventile immer gleich oder zumindest ähnlich ist, unabhängig davon, aus welcher Position die Brennkraftmaschine angelassen wurde. Anders ausgedrückt, hat die Drehzahl beim Öffnen des ersten Einlassventils einen ersten Wert, beim Öffnen des zweiten Einlassventils einen zweiten (höheren) Wert, usw., wobei diese Werte bei gleicher Starttemperatur und gleicher Kraftstoffqualität für alle Starts ungefähr gleich bleiben. Hieraus folgt, dass beim Start auch die Luftfüllungen der nacheinander beaufschlagten Zylinder entsprechende Werte haben, die in der Reihenfolge ihrer Beaufschlagung wegen der größer werdenden Strömungsgeschwindigkeiten im Saugrohr größer werden, die jedoch für alle Starts im wesentlichen gleich sind.
  • Dieser Sachverhalt lässt sich, wie bereits in der Beschreibungseinleitung geschildert, dazu ausnutzen, die Kraftstoffmengen der Vorabeinspritzer in Abhängigkeit von der Reihenfolge der gesetzten Vorabeinspritzer und den zu erwartenden Luftfüllungen der betreffenden Zylinder bzw. der Drehzahl der Brennkraftmaschine vorzugeben.
  • In der Praxis geht man zweckmäßigerweise so vor, dass die Kraftstoffmengen der Vorabeinspritzer durch Multiplikation einer Standardmenge mit Gewichtungsfaktoren bestimmt werden. Bei der Bestimmung der Gewichtungsfaktoren müssen natürlich auch andere Betriebseigenschaften der Brennkraftmaschine, insbesondere ein einwandfreies Anlaufverhalten, berücksichtigt werden. Die Gewichtungsfaktoren werden daher zweckmäßigerweise für die Brennkraftmaschinen einer Baureihe durch Versuche ermittelt und als feste Werte in das zentrale Steuergerät eingespeichert. Legt man als Standardmenge beispielsweise die größtmögliche Kraftstoffmenge eines Vorabeinspritzer fest, so liegen die Gewichtungsfaktoren beispielsweise im Bereich von 0,7 bis 1,0.
  • Das erfindungsgemäße Verfahren lässt sich grundsätzlich bei beliebigen Vorabeinspritzstrategien einsetzen, beispielsweise auch bei dem Verfahren nach der eingangs diskutierten EP 0 371 158 B1, bei der die Vorabeinspritzer einer ersten Zylindergruppe zeitgleich und die Vorabeinspritzer der zweiten Zylindergruppe zeitlich verzögert abgesetzt werden. Mit besonders gutem Erfolg wird das erfindungsgemäße Verfahren jedoch bei einer Vorabeinspritzstrategie eingesetzt, bei der sämtliche Vorabeinspritzer in zeitlicher Reihenfolge nacheinander abgesetzt werden. Ein Beispiel für eine derartige Vorabeinspritzstrategie wird im folgenden anhand der Figur 2 näher erläutert.
  • In der unteren Hälfte der Figur 2 sind neben dem Kurbelwellensignal CRK und dem Nockenwellensignal CAM die Drehzahl N der Brennkraftmaschine über der Zeit aufgetragen. In der oberen Hälfte der Figur 2 sind für die vier Zylinder 1 bis 4 der Vierzylinder-Brennkraftmaschine die Ansteuersignale IV1 - IV4 für die vier Einspritzventile über der Zeit aufgetragen, wobei die vier Vorabeinspritzer I mit I1 - I4 bezeichnet sind. Außerdem sind die Ansteuersignale EV1 - EV4 für die vier Einlassventile über der Zeit aufgetragen, wobei die Öffnungsimpulse für die Öffnung der Einlassventile mit E1 - E4 bezeichnet sind. Außerdem sind in den beiden obersten Zeilen der Figur 2 die Impulse für den oberen Totpunkt (TDC1 - TDC4) der vier Zylinder bzw. den oberen Totpunkt (TDC1) des Zylinders 1 dargestellt.
  • Wie in Figur 2 in Zusammenhang mit der Drehzahl angedeutet, ist für den Start der Brennkraftmaschine eine Starterkennung E vorgesehen. Zu diesem Zeitpunkt ist das Nockenwellensignal CAM entweder hoch- oder niederpegelig, im Beispiel der Figur 2 niederpegelig. Damit können - z.B. wie bei dem eingangs beschriebenen Verfahren nach der EP 0 371 158 B1 die Zylinder 1 bis 4 in zwei Gruppen unterteilt werden (im Beispiel der Figur 2 in eine erste Gruppe mit den Zylindern 3, 4 und einer zweiten Gruppe mit den Zylindern 1, 2). Außerdem ist hierdurch auch bekannt, ob die Brennkraftmaschine in den ersten beiden Stillstands-Winkelpositionen oder den zweiten beiden Stillstandspositionen stehen geblieben ist. Anders ausgedrückt, reduziert sich die Anzahl der unbekannten Stillstands-Winkelpositionen auf zwei.
  • Bei dem vorbekannten Verfahren nach der EP 0 371 158 B1 werden in vorgegebenem Winkelabstand zur Starterkennung E (beispielsweise nach acht erkannten und gültigen Zähnen des Kurbelwellensensors) die beiden Zylinder 3, 4 der ersten Zylindergruppe zeitgleich mit den Vorabeinspritzern versorgt, wie durch die Vorabeinspritzer I3' und I4 angedeutet ist. Hierbei würde jedoch der Vorabeinspritzer I3' kurz vor Schließen des zugehörigen Einlassventils EV3 abgegeben werden, was zu einer Überfettung des Kraftstoff-Luft-Gemischs und zum Ausstoß unverbrannten Kraftstoffs führen würde.
  • Gemäß der bevorzugten Vorabeinspritzstrategie wird daher nach der Starterkennung E nur derjenige Zylinder, dessen Einlassventil mit Sicherheit geschlossen oder überwiegend geschlossen ist, mit dem Vorabeinspritzer versorgt; im Beispiel der Figur 2 ist dies der Zylinder 4 mit dem Vorabeinspritzer 14. Der Vorabeinspritzer I3' wird dagegen, wie durch eine gepunktete Linie P angedeutet, zu diesem Zeitpunkt nicht abgegeben.
  • Wie bereits erwähnt, ist zum Zeitpunkt der Abgabe des ersten Vorabeinspritzers I4 noch nicht bekannt, ob die Brennkraftmaschine an der ersten oder zweiten Stillstands-Winkelposition (50 oder 20 Zähne vor dem ersten Synchronisationsimpuls S) stehen geblieben ist. Bei dem Beispiel der Figur 2 ist die Kurbelwelle 20 Zähne vor dem ersten Synchronisationsimpuls S stehen geblieben. Wenn daher nach 28 Zähnen ab Starterkennung E (also 20 Zähne nach dem ersten Vorabeinspritzer I4) bereits der erste Synchronisationsimpuls S aufgetreten ist (was im Beispiel der Figur 2 der Fall ist), so ist erkennbar, dass die Kurbelwelle 20 Zähne vor dem Synchronisationsimpuls S stehen geblieben war. Sobald der Synchronisationsimpuls S aufgetreten ist, ist die Brennkraftmaschine synchronisiert, und somit kann eine definierte Reihenfolge der nach dem Synchronisationsimpuls S erfolgenden Vorabeinspritzer von dem zentralen Steuergerät 1 bestimmt werden.
  • Wie aus Figur 2 ersichtlich, ergibt sich bei dieser Vorabeinspritzstrategie eine definierte Reihenfolge der nacheinander mit Vorabeinspritzern I versorgten Zylinder, im dargestellten Fall Zylinder 4, Zylinder 1, Zylinder 2 und Zylinder 3. Die Kraftstoffmengen der zugehörigen Vorabeinspritzer 14, I1, I2 und I3 werden durch Multiplikation der Standardmenge mit den fest vorgegebenen Gewichtungsfaktoren bestimmt.
  • Wenn die Brennkraftmaschine an einer der anderen drei möglichen Stillstands-Winkelpositionen stehen geblieben ist, so ändert sich zwar die Reihenfolge der mit den Vorabeinspritzern versorgten Zylinder. Da jedoch das Drehzahlverhalten während der Startphase in Relation zu den Ansaugphasen der nacheinander öffnenden Einlassventile im wesentlichen immer gleich bleibt, können die Kraftstoffmengen der aufeinanderfolgenden Vorabeinspritzer I immer mit Hilfe derselben Gewichtungsfaktoren bestimmt werden.
  • Bei dem oben beschriebenen Vorabeinspritzverfahren handelt es sich nur um ein Beispiel einer Vorabeinspritzstrategie, bei der das erfindungsgemäße Verfahren verwendet werden kann. Insbesondere sei nochmals hervorgehoben, dass es zum Durchführen des erfindungsgemäßen Verfahrens nicht erforderlich ist, die Stillstands-Winkelpositionen der Brennkraftmaschine zu kennen.

Claims (5)

  1. Verfahren zum Einspritzen von Kraftstoff in eine mehrzylindrige Brennkraftmaschine mit
    mindestens einem Einspritzventil (2) je Zylinder (7),
    einer Nockenwelle (5) zur Betätigung der Einlassventile (6), die mit der halben Drehzahl der Kurbelwelle (8) umläuft,
    einem Kurbelwellensensor (4), der ein den Kurbelwellenwinkel darstellendes Kurbelwellensignal (CRK) mit einem Synchronisationsimpuls (S) je Kurbelwellenumdrehung liefert, und
    einem zentralen Steuergerät (1), das die Einspritzventile (2) so steuert, dass sie während einer Startphase in einer bestimmten Reihenfolge je einen Kraftstoff-Vorabeinspritzer (I) pro Zylinder (7) und anschließend von dem Steuergerät (1) ermittelte Kraftstoffmengen im normalen sequentiellen Einspritzbetrieb einspritzen,
    dadurch gekennzeichnet, dass die Kraftstoffmengen der Vorabeinspritzer (I) in Abhängigkeit von der Reihenfolge der Vorabeinspritzer (I) und den zu erwartenden Luftfüllungen der betreffenden Zylinder (7) unterschiedlich groß vorgegeben werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass die Luftfüllungen in Abhängigkeit von den zu erwartenden Drehzahlen (N) der Brennkraftmaschine (3) während den jeweiligen Ansaugphasen der betreffenden Zylinder (7) bestimmt werden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Kraftstoffmengen der Vorabeinspritzer (I) durch Multiplikation einer Standardmenge mit vorgegebenen Gewichtungsfaktoren bestimmt werden, die jeweils einem Vorabeinspritzer (I) zugeordnet sind.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet, dass die Gewichtungsfaktoren für jeweils eine Baureihe von Brennkraftmaschinen experimentell ermittelt werden.
  5. Verfahren nach Anspruch 3 oder 4,
    dadurch gekennzeichnet, dass die Gewichtungsfaktoren von dem oder den in der Reihenfolge ersten bis letzten Vorabeinspritzer (I) zunehmend größer werden.
EP01996679A 2000-11-16 2001-11-15 Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine Expired - Lifetime EP1336041B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10056863 2000-11-16
DE10056863A DE10056863C1 (de) 2000-11-16 2000-11-16 Verfahren zum Einspritzen von Kraftstoff während der Startphase einer Brennkraftmaschine
PCT/DE2001/004285 WO2002040848A1 (de) 2000-11-16 2001-11-15 Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine

Publications (2)

Publication Number Publication Date
EP1336041A1 EP1336041A1 (de) 2003-08-20
EP1336041B1 true EP1336041B1 (de) 2006-06-28

Family

ID=7663547

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01996679A Expired - Lifetime EP1336041B1 (de) 2000-11-16 2001-11-15 Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US6769412B2 (de)
EP (1) EP1336041B1 (de)
DE (2) DE10056863C1 (de)
WO (1) WO2002040848A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6931840B2 (en) * 2003-02-26 2005-08-23 Ford Global Technologies, Llc Cylinder event based fuel control
DE102004028092A1 (de) 2004-06-09 2005-12-29 Robert Bosch Gmbh Verfahren zum Start einer Brennkraftmaschine
DE102004057260A1 (de) * 2004-11-26 2006-06-01 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Zylindern
DE102005000612A1 (de) * 2005-01-03 2006-07-13 Robert Bosch Gmbh Verfahren zum Start einer Brennkraftmaschine
DE102005016067B4 (de) * 2005-04-07 2007-06-21 Siemens Ag Verfahren zur Erhöhung der Start-Reproduzierbarkeit bei Start-Stopp-Betrieb einer Brennkraftmachine
CN110566358B (zh) * 2019-09-30 2022-03-01 潍柴动力股份有限公司 发动机起动控制方法、装置、设备及存储介质
CN113217248B (zh) * 2021-06-02 2022-08-16 江门市大长江集团有限公司 摩托车、喷油量控制方法与设备、计算机可读存储介质

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623042A1 (de) * 1986-07-09 1988-01-14 Bosch Gmbh Robert Verfahren zur kraftstoffeinspritzung
EP0371158B1 (de) * 1988-11-28 1991-09-11 Siemens Aktiengesellschaft Verfahren zum Einspritzen von Kraftstoff in eine Brennkraftmaschine
DE3923478C2 (de) * 1989-07-15 2000-02-03 Bosch Gmbh Robert Sequentielle Kraftstoffeinspritzung mit Vorabspritzer
DE4141713C2 (de) * 1991-12-18 2003-11-06 Bosch Gmbh Robert Geberanordnung zur Zylindererkennung und zum Notlaufbetrieb bei einer Brennkraftmaschine mit n Zylindern
DE4141714C2 (de) * 1991-12-18 2002-11-14 Bosch Gmbh Robert Steuersystem für eine Brennkraftmaschine
US5209202A (en) * 1992-07-27 1993-05-11 Ford Motor Company Multiple functions cam sensing
DE4230616A1 (de) * 1992-09-12 1994-03-17 Bosch Gmbh Robert Einrichtung zur Erkennung der Stellung wenigstens einer, eine Referenzmarke aufweisenden Welle
JPH06185387A (ja) * 1992-12-18 1994-07-05 Nippondenso Co Ltd 内燃機関の燃料噴射制御装置
DE4304163A1 (de) * 1993-02-12 1994-08-25 Bosch Gmbh Robert Einrichtung zur Steuerung der Kraftstoffeinspritzung bei einer Brennkraftmaschine
DE19524112A1 (de) 1994-07-30 1996-02-01 Volkswagen Ag Verfahren und Vorrichtung zum schnellen Anlassen eines Ottomotors mit sequentieller Kraftstoffeinspritzung
DE19734595A1 (de) * 1997-08-09 1999-02-11 Bosch Gmbh Robert Verfahren zur Ermittlung von Segmentzeiten
DE19735720A1 (de) * 1997-08-18 1999-02-25 Bayerische Motoren Werke Ag Verfahren zur Erkennung des Verbrennungstaktes eines bestimmten Zylinders beim Start einer Brennkraftmaschine
DE19741966C2 (de) * 1997-09-23 2002-11-07 Siemens Ag Verfahren zum Einspritzen von Kraftstoff bei einer Mehrzylinderbrennkraftmaschine
JP2000199445A (ja) * 1998-12-28 2000-07-18 Hitachi Ltd エンジン駆動モ―タ制御装置
DE19933845A1 (de) * 1999-07-20 2001-01-25 Bosch Gmbh Robert Einrichtung zur Erkennung des Rückdrehens eines rotierenden Teils einer Brennkraftmaschine
US6679223B2 (en) * 2001-04-20 2004-01-20 Denso Corporation Engine control system with cam sensor

Also Published As

Publication number Publication date
DE50110362D1 (de) 2006-08-10
EP1336041A1 (de) 2003-08-20
WO2002040848A1 (de) 2002-05-23
US20030000501A1 (en) 2003-01-02
US6769412B2 (en) 2004-08-03
DE10056863C1 (de) 2002-03-14

Similar Documents

Publication Publication Date Title
EP1301706B1 (de) Verfahren zum starten einer mehrzylindrigen brennkraftmaschine
DE60117143T2 (de) Verfahren und vorrichtung zur erzeugung von kraftstoffmehrfacheinspritzungen in den zylindern einer brennkraftmaschine
EP1301705B1 (de) Verfahren zum starten einer mehrzylindrigen brennkraftmaschine
DE19748018C2 (de) Kraftstoff-Direkteinspritzsteuergerät für einen Verbrennungsmotor
EP1151194A1 (de) Verfahren zum starten einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1336040B1 (de) Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
EP1590563B1 (de) Verfahren zur steuerung einer direkten einspritzung einer brennkraftmaschine
DE10221162B4 (de) Getrennte Einspritzvorrichtungshauptzeitsteuerkarten zur Anwendung mit und ohne Voreinspritzung
DE10220176A1 (de) Brennstoffeinspritzung mit Hauptschuß und variabler Ankerverzögerung
EP1485596B1 (de) Verfahren zum betreiben einer brennkraftmaschine mit mehrfacheinspritzung in der startphase
DE10111928B4 (de) Verfahren zum anlasserfreien Starten einer mehrzylindrigen Brennkraftmaschine
DE102013213749B4 (de) Verfahren und Vorrichtung zur Steuerung eines Viertakt-Verbrennungsmotors
DE19815266B4 (de) Verfahren zur Einspritzung von Kraftstoff in eine Brennkraftmaschine
DE10105755A1 (de) Verfahren, Computerprogramm und Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
DE19707706A1 (de) Startsteuersystem und -verfahren für Motor mit direkter Kraftstoffeinspritzung
DE4143094C2 (de) Verfahren und Anordnung für eine elektronische Steuerung von Brennstoffinjektoren für einen Verbrennungsmotor
EP1336041B1 (de) Verfahren zum einspritzen von kraftstoff während der startphase einer brennkraftmaschine
DE102010029935B4 (de) Verfahren und Vorrichtung zum Zuführen von Kraftstoff in einem Verbrennungsmotor
DE60131652T2 (de) Vorrichtung und verfahren zur regelung von kraftstoffeinspritzsignalen während beschleunigung und verzögerung einer brennkraftmaschine
DE10342703B4 (de) Verfahren zum Starten einer mehrzylindrigen Brennkraftmaschine sowie Brennkraftmaschine
DE4121561C2 (de) Zündsteuerungssystem für einen Verbrennungsmotor mit Kraftstoffeinspritzung
DE19741966C2 (de) Verfahren zum Einspritzen von Kraftstoff bei einer Mehrzylinderbrennkraftmaschine
EP0743438B1 (de) Kraftstoffeinspritz-Verfahren für mehrzylindrige Brennkraftnaschinen
DE69401147T2 (de) Einspritzsteuerungs-Verfahren für Mehrpunkteinspritzung, Einspritzmotoren mit gesteuerter Zündung
DE4317635A1 (de) Verfahren und Vorrichtung zum Übergehen von einzelzylindersynchroner auf sequentielle Kraftstoffeinspritzung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20030607

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50110362

Country of ref document: DE

Date of ref document: 20060810

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061004

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081117

Year of fee payment: 8

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20091115

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091115

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181130

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50110362

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

Ref country code: DE

Ref legal event code: R119

Ref document number: 50110362

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200603