EP1317617B1 - Method and electronic control device for diagnosing the mixture production in an internal combustion engine - Google Patents
Method and electronic control device for diagnosing the mixture production in an internal combustion engine Download PDFInfo
- Publication number
- EP1317617B1 EP1317617B1 EP01971668A EP01971668A EP1317617B1 EP 1317617 B1 EP1317617 B1 EP 1317617B1 EP 01971668 A EP01971668 A EP 01971668A EP 01971668 A EP01971668 A EP 01971668A EP 1317617 B1 EP1317617 B1 EP 1317617B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- mixture
- fuel
- internal combustion
- tank venting
- active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3076—Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/003—Adding fuel vapours, e.g. drawn from engine fuel reservoir
- F02D41/0032—Controlling the purging of the canister as a function of the engine operating conditions
- F02D41/0035—Controlling the purging of the canister as a function of the engine operating conditions to achieve a special effect, e.g. to warm up the catalyst
- F02D41/0037—Controlling the purging of the canister as a function of the engine operating conditions to achieve a special effect, e.g. to warm up the catalyst for diagnosing the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2454—Learning of the air-fuel ratio control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
Definitions
- the invention relates to a method for the diagnosis of mixture formation in internal combustion engines with tank ventilation.
- exhaust gas-relevant errors should be detected with on-board means and, if necessary, a fault lamp should be activated.
- the mixture adaptation is also used for fault diagnosis. If, for example, the correction intervention of the adaptation is too large, this indicates an error.
- the diagnosis of the fuel supply system is coupled to the mixture adaptation. This can only run with active lambda control, ie in particular not in operating modes in which lambda is only controlled (as for example in stratified operation with direct fuel injection (BDE), in non-regulated lean-burn operation with intake manifold injection).
- active lambda control ie in particular not in operating modes in which lambda is only controlled (as for example in stratified operation with direct fuel injection (BDE), in non-regulated lean-burn operation with intake manifold injection).
- the engine In stratified operation, the engine is operated with a highly stratified cylinder charge and high excess air to achieve the lowest possible fuel consumption.
- the stratified charge is achieved by a late fuel injection, which ideally leads to the division of the combustion chamber into two zones: the first zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas.
- the potential for optimizing consumption arises from the possibility of operating the engine largely unthrottled while avoiding charge cycle losses.
- the shift operation is preferred at comparatively low load.
- the engine is operated with homogeneous cylinder filling.
- the homogeneous cylinder filling results from an early fuel injection during the intake process. As a result, a longer time is available for mixture formation until combustion.
- the potential of this mode of performance optimization results, for example, from the utilization of the entire combustion chamber volume for filling with a combustible mixture.
- the engine temperature must have reached the switch-on temperature threshold and the lambda probe must be ready for operation.
- the current values of load and speed must be within certain ranges in which each is learned. This is known, for example, from US Pat. No. 4,584,982. Furthermore, homogeneous operation must be present.
- the invention aims to increase the period in which the engine can be operated optimally in shift operation.
- Switching to homogeneous operation for diagnostics reduces the fuel consumption advantage of gasoline direct injection, since the homogeneous operation is less favorable than the shift operation. Switching to homogeneous operation therefore increases fuel consumption unnecessarily if there is no fault. It should be avoided as much as possible without worsening the discovery of emissions relevant to exhaust emissions.
- This desired effect is achieved with a method for diagnosing the mixture formation in internal combustion engines with combustion chambers and with tank ventilation, in which the diagnosis is coupled to a mixture adaptation, which runs only with active lambda control and in the outside of the active lambda control, an indication of a mixture or Probe error is detected by an error suspicion with active tank ventilation and inactive mixture adaptation is formed when a measure of the influence of the tank ventilation on the mixture composition, which is formed under the assumption of an intact system assumes implausible values, and in which then this suspicion exists, the mixture adaptation is requested in order to verify or falsify the suspicion, if necessary.
- the internal combustion engine is operated with gasoline direct injection into the combustion chambers.
- a further development is characterized in that the internal combustion engine at least in a first operating mode with stratified mixture distribution in the combustion chambers (stratified operation) and a second mode with homogeneous mixture distribution in the combustion chambers (homogeneous operation) is operated and that the detection of an indication of a mixture or probe error (suspected fault) takes place outside the active lambda control in the shift operation.
- Another measure provides that when detected in shift operation indication of a mixture or probe error (suspected error), a switchover for diagnostic purposes to verify or falsify the suspected fault in the homogeneous operation.
- Another measure provides for use with a control unit for controlling a tank ventilation system (12) and other functions for achieving efficient combustion of the fuel / air mixture in the combustion chamber, the dancer ventilation system 12 having an activated carbon filter 15 which is connected via corresponding lines or connections to the tank, the ambient air and the suction pipe of the internal combustion engine is connected, and has a arranged in the line to the intake manifold tank vent valve 16.
- a precontrol value rk is formed for a Kraftstoffzumesssignal for fuel injection into at least one of the combustion chambers in response to at least the rotational speed n and a signal ml on the sucked by the engine air quantity, wherein a mismatch of the amount of fuel to the amount of air in the signal Us an exhaust gas probe forms from which a controller 2.3 forms a control manipulated variable fr, which reduces the mismatch by a multiplicative link with the pilot control value rk.
- a further measure provides for forming an adaptation engagement on the fuel metering signal formation by forming an average value frm of the control variable fr and by correcting the fuel metering signal formation with an adaptation intervention variable fra based on said mean value.
- Another measure provides that in shift operation, although no mixture adaptation, but a tank venting takes place.
- a further development provides that if the loading of the regeneration gas of the TE is outside a plausible range, the suspected fault is set.
- the invention is also directed to an electronic control device for carrying out the method according to the above-mentioned methods and developments for the diagnosis of mixture formation.
- the invention provides a method for diagnosing the mixture formation in internal combustion engines with tank ventilation, wherein the diagnosis is coupled to the mixture adaptation and can only run with active lambda control.
- the mixture adaptation thus does not run in particular in operating modes of the internal combustion engine in which lambda is only controlled.
- the method is characterized by the fact that outside the active lambda control, an indication of a mixture or probe error is also detected in stratified or lean operation, in particular in BDE, but basically also in lean operation with intake manifold injection.
- a suspected fault is formed with active tank ventilation and non-active mixture adaptation. If a measure of the influence of the tank ventilation on the mixture composition, which is formed assuming an intact system, assumes implausible values, the mixture adaptation is requested in order to verify the suspicion, if necessary.
- the setting of a suspected error for the mixture in the TE is particularly advantageous in BDE engines, since it allows both in the shift and in the homogeneous operation error detection and thus the activation of the GA.
- the GA in turn requires an active lambda control, ie homogeneous operation, so it can not be activated in shift operation and thus detect no error. Switching to homogeneous operation for diagnostic purposes only takes place in case of justified suspicion of an error. An undesirable restriction of the shift operation is thus avoided.
- Fig. 1 shows the technical environment of the invention.
- FIG. 1 represents the combustion chamber of a cylinder of an internal combustion engine.
- An inlet valve 2 controls the flow of air to the combustion chamber.
- the air is sucked in via a suction pipe 3.
- the intake air amount can be varied via a throttle valve 4, which is controlled by a control unit 5.
- Exhaust gas sensor 16 may be, for example, a lambda probe whose Nernst voltage indicates the oxygen content in the exhaust gas.
- the exhaust gas is passed through at least one catalytic converter 15 in which pollutants are converted from the exhaust gas and / or temporarily stored.
- control unit 5 From these and possibly other input signals via further parameters of the internal combustion engine such as intake air and coolant temperature and so on, the control unit 5 outputs output signals for adjusting the throttle angle alpha by an actuator 9 and for controlling a fuel injection valve 10, dosed by the fuel into the combustion chamber of the engine becomes. In addition, by the Control unit, the triggering of the ignition via an ignition device 11 controlled.
- the throttle valve angle alpha and the injection pulse width ti are essential control variables to be coordinated with each other for realizing the desired torque.
- Another key variable for influencing the torque is the angular position of the ignition relative to the piston movement.
- the determination of the manipulated variables for adjusting the torque is the subject of DE 1 98 51 990, which should be included in the extent to the disclosure.
- controller controls a tank ventilation 12 and other functions to achieve efficient combustion of the fuel / air mixture in the combustion chamber.
- the gas power resulting from the combustion is converted by the piston 13 and crank mechanism 14 into a torque.
- the Tankentluftungsstrom 12 consists of an activated carbon filter 18 which communicates via corresponding lines or connections to the tank 20, the ambient air 17 and the intake manifold of the engine, wherein in the line to the intake manifold a tank vent valve 19 is arranged.
- the activated carbon filter 18 stores in the tank 20 evaporating fuel.
- the tank venting valve 19 is opened by the control unit 5
- air is sucked out of the environment 17 through the activated carbon filter, which discharges the stored fuel into the air.
- This also called Tankentlwestsgemisch or as a regeneration gas fuel-air mixture affects the Composition of the total internal combustion engine supplied mixture.
- the proportion of fuel in the mixture is also determined by metering fuel via the fuel metering device 10, which is adapted to the intake air quantity.
- the fuel sucked in via the tank ventilation system can correspond in extreme cases to a proportion of about one third to half of the total fuel quantity.
- FIG. 2 illustrates the formation of a fuel metering signal based on the signals of FIG. 1 and the operation of an adaptation.
- FIG. 2 shows the formation of the fuel metering signal.
- Block 2.1 represents a map, which is addressed by the rotational speed n and the relative air charge rl and are stored in the pilot control values rk for the formation of the fuel metering signals.
- the relative air charge rl is related to a maximum filling of the combustion chamber with air and thus to a certain extent indicates the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml.
- rk corresponds to the amount of fuel allocated to the air quantity rl.
- Block 2.2 shows the known multiplicative lambda control intervention.
- a mismatch of the amount of fuel to the amount of air is reflected in the signal Us of the exhaust probe.
- a controller 2.3 forms the control manipulated variable fr, which reduces the mismatch via the intervention 2.2.
- Block 2.4 thus represents the conversion of the relative and corrected fuel quantity into a real drive signal taking into account fuel pressure, injection valve geometry, etc.
- the blocks 2.5 to 2.9 represent the known operating parameter-dependent mixture adaptation which can act multiplicatively and / or additively.
- the circle 2.9 should represent these 3 possibilities.
- the switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 operating parameters of the internal combustion engine such as temperature T, air mass ml and speed n is supplied. Means 2.6 in conjunction with the switch 2.5 thus allows a operating parameter range-dependent activation of the three adaptation options mentioned.
- the formation of the adaptation engagement on fuel metering signal formation is illustrated by blocks 2.7 and 2.8.
- Block 2.7 forms the mean value frm of the control manipulated variable fr when the switch 2.5 is closed. Deviations of the mean value frm from the neutral value 1 are taken over by the block 2.8 into the adaptation intervention variable fra.
- control manipulated variable fr initially goes against 1.05 due to a mismatching of the precontrol.
- the deviation 0.05 from the value 1 is adopted by the block 2.8 in the value fra of the adaptation intervention.
- fra goes against 1.05, with the result that again goes to 1.
- the adaptation ensures that misadjustments of the feedforward control do not have to be compensated for every change of operating point.
- This adaptation of the ⁇ daptions united fra is carried out at high temperatures of the internal combustion engine, for example, above a cooling water temperature of 70 ° Celsius then closed switch 2.5; once adjusted, fra also acts with open switch 2.5 on the formation of the fuel metering signal.
- the solution according to the invention is based on the fact that in shift operation, although no mixture adaptation, but a tank ventilation takes place.
- the tank ventilation is used to equalize the pressure between the fuel tank and the environment, which is required for example in case of increased evaporation of the fuel due to heating or decrease in ambient pressure.
- Input variables of this calculation are in addition to the Lämbdasondensignal the measured intake air quantity, the metered via the injectors fuel quantity and off the Regeneriergasmenge deducible the Anêttastiety for the tank venting valve and other boundary conditions.
- a certain (known) intake air quantity and a certain (known) quantity of fuel metered in via the injection valves, in conjunction with a specific (known) amount of regeneration gas and a certain (unknown) fuel vapor fraction, at the regeneration gas quantity results in a specific oxygen concentration in the exhaust gas.
- oxygen concentration When measured by measurement with an exhaust gas probe (known) oxygen concentration thus results in the desired load by calculation.
- the fuel fraction of the tank ventilation is determined based on the total fuel quantity.
- This proportion of fuel is the control variable of the tank ventilation, which is regulated to a working point dependent preset value. For example, at a certain operating point, perhaps 30% of the total fuel flow is to flow through the tank vent valve while the other 70% is injected via fuel injectors.
- this fuel fraction is limited to predetermined limits depending on the total fuel amount, for example, to 50%. If there is no error, these limits are not reached.
- a mixture or sensor error outside of the tank ventilation is interpreted as a loading of the regeneration gas with active tank ventilation.
- the actual load will not match the calculated load.
- the specified limits can be achieved. If, at the same time, the mixture control factor is not within a predetermined range around its normal position, this is interpreted as an indication of a mixture or probe error and the error suspicion is set. As soon as one of the limit values is reached, further opening of the tank ventilation valve is actively prevented.
- the mixture control factor is the factor for the mixture deviation formed in the tank ventilation phase (control factor of the lambda control multiplied by the ratio of the lambda actual value to the lambda nominal value). From the deviation of this factor from its neutral value (one), the loading of the regeneration gas is adapted and thus the fuel content of the tank ventilation on the total fuel.
- the mixture adaptation is requested, the activation of which is switched to an operating mode with active lambda control, ie to homogeneous operation in the case of BDE, and the tank venting is switched off. This ensures that an existing mixture error is adapted; If the adaptation values run against limit values, an error entry occurs. The previous suspicion is thus verified.
- the loading of the regeneration gas is incorrectly adapted.
- the loading is reset to a neutral value after a closure of the tank-venting valve due to operational conditions before the next opening.
- the suspected error is reset after the mixture has been adapted.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Diagnose der Gemischbildung bei Verbrennungsmotoren mit Tankentlüftung.The invention relates to a method for the diagnosis of mixture formation in internal combustion engines with tank ventilation.
Es ist bereits bekannt, bei der Regelung des Kraftstoff/Luftverhältnisses für Verbrennungsmotoren eine Vorsteuerung mit einer Regelung zu überlagern. Weiter ist bekannt, aus dem Verhalten der Regelstellgröße weitere Korrekturgrößen abzuleiten um Fehlanpassungen der Vorsteuerung an veränderte Betriebsbedingungen zu kompensieren. Diese Kompensation wird auch als Adaption bezeichnet. Die US 4 584 982 beschreibt beispielsweise eine Adaption mit unterschiedlichen Adaptionsgrößen in verschiedenen Bereichen des Last/Drehzahlspektrums eines Verbrennungsmotors. Die verschiedenen Adaptionsgrößen richten sich auf die Kompensation unterschiedlicher Fehler. Nach Ursache und Wirkung lassen sich drei Fehlerarten unterscheiden: Fehler eines Heißfilmluftmassenmessers wirken sich multiplikativ auf die Kraftstoffzumessung aus. Lecklufteinflüsse wirken additiv pro Zeiteinheit und Fehler bei der Kompensation der Anzugsverzögerung der Einspritzventile wirken additiv pro Einspritzung.It is already known, in the regulation of the fuel / air ratio for internal combustion engines to superimpose a precontrol with a control. It is also known to derive further correction variables from the behavior of the control manipulated variable in order to compensate for incorrect adjustments of the precontrol to changed operating conditions. This compensation is also referred to as adaptation. For example, US Pat. No. 4,584,982 describes an adaptation with different adaptation variables in different regions of the load / rotational speed spectrum of an internal combustion engine. The different adaptation variables are aimed at the compensation of different errors. According to cause and effect, three types of errors can be distinguished: Errors of a hot-film air mass meter have a multiplicative effect on the fuel metering. Leakage effects have an additive effect per unit of time and error in the compensation of the pull-in delay of the injection valves act additive per injection.
Nach gesetzlichen Vorschriften sollen abgasrelevante Fehler mit On Board Mitteln erkannt werden und gegebenenfalls soll eine Fehlerlampe aktiviert werden. Die Gemischadaption wird auch zur Fehlerdiagnose genutzt. Ist beispielsweise der Korrektureingriff der Adaption zu groß, deutet dies auf einen Fehler hin.According to legal regulations, exhaust gas-relevant errors should be detected with on-board means and, if necessary, a fault lamp should be activated. The mixture adaptation is also used for fault diagnosis. If, for example, the correction intervention of the adaptation is too large, this indicates an error.
Die Diagnose des Kraftstoffversorgungssystems ist an die Gemischadaption gekoppelt. Diese kann nur bei aktiver Lambdaregelung laufen, insbesondere also nicht in Betriebsarten, in denen Lambda nur gesteuert wird (wie z.B. im Schichtbetrieb bei Benzindirekteinspritzung (BDE), im nicht geregelten Magerbetrieb bei BDE und Saugrohreinspritzung).The diagnosis of the fuel supply system is coupled to the mixture adaptation. This can only run with active lambda control, ie in particular not in operating modes in which lambda is only controlled (as for example in stratified operation with direct fuel injection (BDE), in non-regulated lean-burn operation with intake manifold injection).
Für die Adaption wird daher in den Homogenbetrieb umgeschaltet und die Gemischadaption aktiviert.For the adaptation, therefore, the system switches to homogeneous operation and the mixture adaptation is activated.
Aus der DE 1 98 50 586 ist ein Motorsteuerungsprogramm bekannt, das die Umschaltung zwischen Schichtbetrieb und Homogenbetrieb steuert.From DE 1 98 50 586 a motor control program is known which controls the switching between stratified operation and homogeneous operation.
Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt.In stratified operation, the engine is operated with a highly stratified cylinder charge and high excess air to achieve the lowest possible fuel consumption. The stratified charge is achieved by a late fuel injection, which ideally leads to the division of the combustion chamber into two zones: the first zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, which consists of an insulating layer of air and residual gas. The potential for optimizing consumption arises from the possibility of operating the engine largely unthrottled while avoiding charge cycle losses. The shift operation is preferred at comparatively low load.
Bei höherer Last, wenn die Leistungsoptimierung im Vordergrund steht, wird der Motor mit homogener Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftstoffeinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.At higher load, when performance optimization is the priority, the engine is operated with homogeneous cylinder filling. The homogeneous cylinder filling results from an early fuel injection during the intake process. As a result, a longer time is available for mixture formation until combustion. The potential of this mode of performance optimization results, for example, from the utilization of the entire combustion chamber volume for filling with a combustible mixture.
Hinsichtlich der Adaption existieren mehrere Einschaltbedingungen:With regard to adaptation, there are several switch-on conditions:
So muß beispielsweise die Motortemperatur die Einschalttemperaturschwelle erreicht haben und die Lambdasonde muß betriebsbereit sein. Weiter müssen die aktuellen Werte von Last und Drehzahl in bestimmten Bereichen liegen, in denen jeweils gelernt wird. Dies ist beispielsweise aus der US 4 584 982 bekannt. Weiterhin muß Homogenbetrieb vorliegen.For example, the engine temperature must have reached the switch-on temperature threshold and the lambda probe must be ready for operation. Furthermore, the current values of load and speed must be within certain ranges in which each is learned. This is known, for example, from US Pat. No. 4,584,982. Furthermore, homogeneous operation must be present.
Die Erfindung zielt darauf, den Zeitraum, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann, zu vergrößern. Die Umschaltung auf Homogenbetrieb zur Diagnose verringert den Verbrauchsvorteil der Benzindirekteinspritzung, da der Homogenbetrieb verbrauchsungünstiger ist als der Schichtbetrieb. Eine Umschaltung in den Homogenbetrieb erhöht den Kraftstoffverbrauch daher dann, wenn kein Fehler vorliegt, unnötig. Sie soll soweit wie möglich vermieden werden, ohne die Entdeckung abgasrelevanter Fehler zu verschlechtern.The invention aims to increase the period in which the engine can be operated optimally in shift operation. Switching to homogeneous operation for diagnostics reduces the fuel consumption advantage of gasoline direct injection, since the homogeneous operation is less favorable than the shift operation. Switching to homogeneous operation therefore increases fuel consumption unnecessarily if there is no fault. It should be avoided as much as possible without worsening the discovery of emissions relevant to exhaust emissions.
Diese gewünschte Wirkung wird mit einem Verfahren zur Diagnose der Gemischbildung bei Verbrennungsmotoren mit Brennräumen und mit Tankentlüftung erzielt, bei dem die Diagnose an eine Gemischadaption gekoppelt ist, die nur bei aktiver Lambdaregelung läuft und bei dem außerhalb der aktiven Lambdaregelung ein Hinweis auf einen Gemisch- oder Sondenfehler erkannt wird, indem ein Fehlerverdacht bei aktiver Tankentlüftung und nicht aktiver Gemischadaption dann gebildet wird, wenn ein Maß für den Einfluss der Tankentlüftung auf die Gemischzusammensetzung, das unter der Annahme eines intakten Systems gebildet wird, unplausible Werte annimmt, und bei dem dann, wenn dieser Verdacht vorliegt, die Gemischadaption angefordert wird, um den Verdacht ggf. zu verifizieren oder falsifizieren.This desired effect is achieved with a method for diagnosing the mixture formation in internal combustion engines with combustion chambers and with tank ventilation, in which the diagnosis is coupled to a mixture adaptation, which runs only with active lambda control and in the outside of the active lambda control, an indication of a mixture or Probe error is detected by an error suspicion with active tank ventilation and inactive mixture adaptation is formed when a measure of the influence of the tank ventilation on the mixture composition, which is formed under the assumption of an intact system assumes implausible values, and in which then this suspicion exists, the mixture adaptation is requested in order to verify or falsify the suspicion, if necessary.
In einer Weiterbildung der Erfindung wird der Verbrennungsmotor mit Benzindirekteinspritzung in die Brennräume betrieben wird.In one embodiment of the invention, the internal combustion engine is operated with gasoline direct injection into the combustion chambers.
Eine weitere Weiterbildung zeichet sich dadurch aus, daß der Verbrennungsmotor wenigstens in einer ersten Betriebsart mit geschichteter Gemischverteilung in den Brennräumen (Schichtbetrieb) und einer zweiten Betriebsart mit homogener Gemischverteilung in den Brennräumen (Homogenbetrieb) betrieben wird und daß die Erkennung eines Hinweises auf einen Gemisch- oder Sondenfehler (Fehlerverdacht) außerhalb der aktiven Lambdaregelung im Schichtbetrieb stattfindet.A further development is characterized in that the internal combustion engine at least in a first operating mode with stratified mixture distribution in the combustion chambers (stratified operation) and a second mode with homogeneous mixture distribution in the combustion chambers (homogeneous operation) is operated and that the detection of an indication of a mixture or probe error (suspected fault) takes place outside the active lambda control in the shift operation.
Eine weitere Maßnahme sieht vor, daß bei im Schichtbetrieb erkanntem Hinweis auf einen Gemisch- oder Sondenfehler (Fehlerverdacht) eine Umschaltung zu Diagnosezwecken zur Verifizierung oder Falsifizierung des Fehlerverdachtes in den Homogenbetrieb erfolgt.Another measure provides that when detected in shift operation indication of a mixture or probe error (suspected error), a switchover for diagnostic purposes to verify or falsify the suspected fault in the homogeneous operation.
Eine weitere Maßnahme sieht eine Verwendung mit einem Steuergerät zur Steuerung einer Tankentlüftungsanlage (12) sowie weiterer Funktionen zur Erzielung einer effizienten Verbrennung des Kraftstoff/Luftgemisches im Brennraum vor, wobei die Tänkentlüftungsanlage 12 einen Aktivkohlefilter 15, der über entsprechende Leitungen beziehungsweise Anschlüsse mit dem Tank, der Umgebungsluft und dem Saugrohr des Verbrennungsmotors verbunden ist, und ein in der Leitung zum Saugrohr angeordnetes Tankentlüftungsventil 16 aufweist.Another measure provides for use with a control unit for controlling a tank ventilation system (12) and other functions for achieving efficient combustion of the fuel / air mixture in the combustion chamber, the
Gemäß einer anderen Weiterbildung wird ein Vorsteuerwert rk für ein Kraftstoffzumesssignal zur Kraftstoffeinspritzung in wenigstens einen der Brennräume in Abhängigkeit von wenigstens der Drehzahl n und einem Signal ml über die von dem Verbrennungsmotor angesaugte Luftmenge gebildet, wobei sich eine Fehlanpassung der Kraftstoffmenge an die Luftmenge im Signal Us einer Abgassonde abbildet, aus dem ein Regler 2.3 eine Regelstellgröße fr formt, die durch eine multiplikative Verknüpfung mit dem Vorsteuerwert rk die Fehlanpassung verringert.According to another embodiment, a precontrol value rk is formed for a Kraftstoffzumesssignal for fuel injection into at least one of the combustion chambers in response to at least the rotational speed n and a signal ml on the sucked by the engine air quantity, wherein a mismatch of the amount of fuel to the amount of air in the signal Us an exhaust gas probe forms from which a controller 2.3 forms a control manipulated variable fr, which reduces the mismatch by a multiplicative link with the pilot control value rk.
Eine weitere Maßnahme sieht eine Bildung eines Adaptionseingriffs fra auf die Kraftstoffzumeßsignalbildung durch Bildung eines Mittelwerts frm der Regelstellgröße fr und durch Korrektur der Kraftstoffzumeßsignalbildung mit einer auf dem genannten Mittelwert basierenden Adaptionseingriffsgröße fra vor.A further measure provides for forming an adaptation engagement on the fuel metering signal formation by forming an average value frm of the control variable fr and by correcting the fuel metering signal formation with an adaptation intervention variable fra based on said mean value.
Eine weitere Maßnahme sieht vor, daß im Schichtbetrieb zwar keine Gemischadaption, wohl aber eine Tankentlüftung stattfindet.Another measure provides that in shift operation, although no mixture adaptation, but a tank venting takes place.
Gemäß einer weiteren Weiterbildung wird der Einfluß des Regeneriergases bei aktiver Tankentlüftung auf die Zusammensetzung des Gesamt-Kraftstoff/Luftverhältnisses aus dem Signal einer Lambdasonde abgeleitet, daraus die Kraftstoffkonzentration (= Beladung) des Regeneriergases gelernt (adaptiert), und der über das TEV eingeleitete Kraftstoffanteil wird mit folgenden Eingangsgrößen berechnet:
- Abgassondensignal
- gemessene Ansaugluftmenge,
- über die Einspritzventile zugemessene Kraftstoffmenge
- aus dem Ansteuertastverhältnis für das Tankentlüftungsventil und weiteren Randbedingungen ableitbare Regeneriergäsmenge.
- Exhaust gas probe signal
- measured intake air quantity,
- amount of fuel metered through the injectors
- From the Ansteuertastverhältnis for the tank ventilation valve and other boundary conditions derivable Regeneriergäsmenge.
Eine weitere Weiterbildung sieht vor, daß dann, wenn die Beladung des Regeneriergases der TE außerhalb eines plausiblen Bereichs liegt, der Fehlerverdacht gesetzt wird.A further development provides that if the loading of the regeneration gas of the TE is outside a plausible range, the suspected fault is set.
Die Erfindung richtet sich auch auf eine elektronische Steuereinrichtung zur Durchführung der Verfahren nach den oben genannten Verfahren und Weiterbildungen zur Diagnose einer Gemischbildung dar.The invention is also directed to an electronic control device for carrying out the method according to the above-mentioned methods and developments for the diagnosis of mixture formation.
Damit stellt die Erfindung ein Verfahren zur Diagnose der Gemischbildung bei Verbrennungsmotoren mit Tankentlüftung dar, wobei die Diagnose an die Gemischadaption gekoppelt ist und nur bei aktiver Lambdaregelung laufen kann. Die Gemischadaption läuft damit insbesondere nicht in Betriebsarten des Verbrennungsmotors, in denen Lambda nur gesteuert wird. Das Verfahren zeichnet sich dadurch aus, dass außerhalb der aktiven Lambdaregelung ein Hinweis auf einen Gemisch- oder Sondenfehler auch im Schicht- oder Magerbetrieb, insbesondere bei BDE, grundsätzlich aber auch im Magerbetrieb bei Saugrohreinspritzung erkannt wird. Dazu wird ein Fehlerverdacht bei aktiver Tankentlüftung und nichtaktiver Gemischadaption gebildet. Wenn dabei ein Maß für den Einfluss der Tankentlüftung auf die Gemischzusammensetzung, das unter der Annahme eines intakten Systems gebildet wird, unplausible Werte annimmt, wird die Gemischadaption angefordert, um den Verdacht ggf. zu verifizieren.Thus, the invention provides a method for diagnosing the mixture formation in internal combustion engines with tank ventilation, wherein the diagnosis is coupled to the mixture adaptation and can only run with active lambda control. The mixture adaptation thus does not run in particular in operating modes of the internal combustion engine in which lambda is only controlled. The method is characterized by the fact that outside the active lambda control, an indication of a mixture or probe error is also detected in stratified or lean operation, in particular in BDE, but basically also in lean operation with intake manifold injection. For this purpose, a suspected fault is formed with active tank ventilation and non-active mixture adaptation. If a measure of the influence of the tank ventilation on the mixture composition, which is formed assuming an intact system, assumes implausible values, the mixture adaptation is requested in order to verify the suspicion, if necessary.
Das Setzen eines Fehlerverdachts für das Gemisch in der TE ist insbesondere bei BDE-Motoren vorteilhaft, da es sowohl im Schicht- als auch im Homogenbetrieb eine Fehlererkennung und damit die Aktivierung der GA ermöglicht. Die GA benötigt ihrerseits eine aktive Lambdaregelung, d.h. Homogenbetrieb, kann also im Schichtbetrieb nicht aktiviert werden und somit keinen Fehler erkennen. Eine Umschaltung auf Homogenbetrieb nur zu Diagnosezwecken erfolgt nur bei begründetem Verdacht auf einen Fehler. Eine unerwünschte Einschränkung des Schichtbetriebes wird damit vermieden.The setting of a suspected error for the mixture in the TE is particularly advantageous in BDE engines, since it allows both in the shift and in the homogeneous operation error detection and thus the activation of the GA. The GA in turn requires an active lambda control, ie homogeneous operation, so it can not be activated in shift operation and thus detect no error. Switching to homogeneous operation for diagnostic purposes only takes place in case of justified suspicion of an error. An undesirable restriction of the shift operation is thus avoided.
Im folgenden wird ein Ausführungsbeispiel der Erfindung mit Bezug zu den Figuren erläutert.In the following an embodiment of the invention will be explained with reference to the figures.
Fig 1 zeigt das technische Umfeld der Erfindung.Fig. 1 shows the technical environment of the invention.
Die 1 in der Fig. 1 repräsentiert den Brennraum eines Zylinders eines Verbrennungsmotors. Über ein Einlaßventil 2 wird der Zustrom von Luft zum Brennraum gesteuert. Die Luft wird über ein Saugrohr 3 angesaugt. Die Ansaugluftmenge kann über eine Drosselklappe 4 variiert werden, die von einem Steuergerät 5 angesteuert wird. Dem Steuergerät werden Signale über den Drehmomentwunsch des Fahrers, bspw. über die Stellung eines Fahrpedals 6, ein Signal über die Motordrehzahl n von einem Drehzahlgeber 7 und ein Signal über die Menge ml der angesaugten Luft von einem Luftmengenmesser 8 zugeführt und ein Signal Us über die Abgaszusammensetzung und/oder Abgastemperatur von einem Abgassensor 16 zugeführt. Abgassensor 16 kann beispielsweise eine Lambdasonde sein, deren Nernstspannung den Sauerstoffgehalt im Abgas angibt. Das Abgas wird durch wenigstens einen Katalysator 15 geführt, in dem Schadstoffe aus dem Abgas konvertiert und/oder vorübergehend gespeichert werden.1 in FIG. 1 represents the combustion chamber of a cylinder of an internal combustion engine. An inlet valve 2 controls the flow of air to the combustion chamber. The air is sucked in via a suction pipe 3. The intake air amount can be varied via a throttle valve 4, which is controlled by a
Aus diesen und ggf. weiteren Eingangssignalen über weitere Parameter des Verbrennungsmotors wie Ansaugluft- und Kühlmitteltemperatur und so weiter bildet das Steuergerät 5 Ausgangssignale zur Einstellung des Drosselklappenwinkels alpha durch ein Stellglied 9 und zur Ansteuerung eines Kraftstoffeinspritzventils 10, durch das Kraftstoff in den Brennraum des Motors dosiert wird. Außerdem wird durch das Steuergerät die Auslösung der Zündung über eine Zündeinrichtung 11 gesteuert.From these and possibly other input signals via further parameters of the internal combustion engine such as intake air and coolant temperature and so on, the
Der Drosselklappenwinkel alpha und die Einspritzimpulsbreite ti sind wesentliche, aufeinander abzustimmende Stellgrößen zur Realisierung des gewünschten Drehmomentes. Eine weitere wesentliche Stellgröße zur Beeinflussung des Drehmomentes ist die Winkellage der Zündung relativ zur Kolbenbewegung. Die Bestimmung der Stellgrößen zur Einstellung des Drehmomentes ist Gegenstand der DE 1 98 51 990, die insoweit in die Offenbarung einbezogen sein soll.The throttle valve angle alpha and the injection pulse width ti are essential control variables to be coordinated with each other for realizing the desired torque. Another key variable for influencing the torque is the angular position of the ignition relative to the piston movement. The determination of the manipulated variables for adjusting the torque is the subject of DE 1 98 51 990, which should be included in the extent to the disclosure.
Weiterhin steuert das Steuergerät eine Tankentlüftung 12 sowie weitere Funktionen zur Erzielung einer effizienten Verbrennung des Kraftstoff/Luftgemisches im Brennraum. Die aus der Verbrennung resultierende Gaskraft wird durch Kolben 13 und Kurbeltrieb 14 in ein Drehmoment gewandelt.Furthermore, the controller controls a
Die Tankentluftungsanlage 12 besteht aus einem Aktivkohlefilter 18, der über entsprechende Leitungen beziehungsweise Anschlüsse mit dem Tank 20, der Umgebungsluft 17 und dem Saugrohr des Verbrennungsmotors kommuniziert, wobei in der Leitung zum Saugrohr ein Tankentlüftungsventil 19 angeordnet ist.The
Der Aktivkohlefilter 18 speichert im Tank 20 verdunstenden Kraftstoff. Bei vom Steuergerät 5 öffnend angesteuertem Tankentlüftungsventil 19 wird Luft aus der Umgebung 17 durch den Aktivkohlefilter gesaugt, der dabei den gespeicherten Kraftstoff an die Luft abgibt. Dieses auch als Tankentlüftungsgemisch oder auch als Regeneriergas bezeichnete Kraftstoff-Luft-Gemisch beeinflußt die Zusammensetzung des dem Verbrennungsmotor insgesamt zugeführten Gemisches. Der Kraftstoffanteil am Gemisch wird im übrigen durch eine Zumessung von Kraftstoff über die Kraftstoffzumeßvorrichtung 10 mitbestimmt, die der angesaugten Luftmenge angepaßt ist. Dabei kann der über das Tankentlüftungssystem angesaugte Kraftstoff in Extremfällen einem Anteil von ca. einem Drittel bis zur Hälfte der Gesamtkraftstoffmenge entsprechen.The activated
Fig. 2 verdeutlicht die Bildung eines Kraftstoffzumesssignals auf der Basis der Signale aus Fig. 1 und die Funktionsweise einer Adaption.FIG. 2 illustrates the formation of a fuel metering signal based on the signals of FIG. 1 and the operation of an adaptation.
FIG. 2 zeigt die Bildung des Kraftstoffzumesssignals. Block 2.1 stellt ein Kennfeld dar, das durch die Drehzahl n und die relative Luftfüllung rl adressiert wird und in dem Vorsteuerwerte rk für die Bildung der Kraftstoffzumesssignale abgelegt sind. Die relative Luftfüllung rl ist auf eine maximale Füllung des Brennraums mit Luft bezogen und gibt damit gewissermaßen den Bruchteil der maximalen Brennraum- oder Zylinderfüllung an. Sie wird im wesentlichen aus dem Signal ml gebildet. rk entspricht der zur Luftmenge rl zugeordneten Kraftstoffmenge.FIG. 2 shows the formation of the fuel metering signal. Block 2.1 represents a map, which is addressed by the rotational speed n and the relative air charge rl and are stored in the pilot control values rk for the formation of the fuel metering signals. The relative air charge rl is related to a maximum filling of the combustion chamber with air and thus to a certain extent indicates the fraction of the maximum combustion chamber or cylinder filling. It is essentially formed from the signal ml. rk corresponds to the amount of fuel allocated to the air quantity rl.
Block 2.2 zeigt den bekannten multiplikativen Lambdaregeleingriff. Eineee Fehlanpassung der Kraftstoffmenge an die Luftmenge bildet sich im Signal Us der Abgassonde ab. Aus diesem formt ein Regler 2.3 die Regelstellgröße fr, die über den Eingriff 2.2 die Fehlanpassung verringert.Block 2.2 shows the known multiplicative lambda control intervention. A mismatch of the amount of fuel to the amount of air is reflected in the signal Us of the exhaust probe. For this purpose, a controller 2.3 forms the control manipulated variable fr, which reduces the mismatch via the intervention 2.2.
Aus dem so korrigierten Signal kann im Block 2.4 bereits das Zumesssignal, beispielsweise eine Ansteuerimpulsbreite für die Einspritzventile gebildet werden. Block 2.4 repräsentiert damit die Umrechnung der relativen und korrigierten Kraftstoffmenge in ein reales Ansteuersignal unter Berücksichtigung von Kraftstoffdruck, Einspritzventilgeometrie etc.From the signal thus corrected, the metering signal, for example a drive pulse width for the injection valves, can already be formed in block 2.4. Block 2.4 thus represents the conversion of the relative and corrected fuel quantity into a real drive signal taking into account fuel pressure, injection valve geometry, etc.
Die Blöcke 2.5 bis 2.9 repräsentieren die bekannte betriebsparameterabhängige Gemischadaption die multiplikativ und/oder additiv wirken kann. Der Kreis 2.9 soll diese 3 Möglichkeiten repräsentieren. Der Schalter 2.5 wird vom Mittel 2.6 geöffnet oder geschlossen, wobei dem Mittel 2.6 Betriebsparameter des Verbrennungsmotors wie Temperatur T, Luftmasse ml und Drehzahl n zugeführt wird. Mittel 2.6 in Verbindung mit dem Schalter 2.5 erlaubt damit eine betriebsparameterbereichsabhängige Aktivierung der drei genannten Adaptionsmöglichkeiten. Die Bildung des Adaptionseingriffs fra auf die Kraftstoffzumeßsignalbildung wird durch die Blöcke 2.7 und 2.8 veranschaulicht. Block 2.7 bildet bei geschlossenem Schalter 2.5 den Mittelwert frm der Regelstellgröße fr. Abweichungen des Mittelwerts frm vom neutralen Wert 1 werden vom Block 2.8 in die Adaptionseingriffsgröße fra übernommen. Beispielsweise gehe die Regelstellgrösse fr aufgrund einer Fehlanpassung der Vorsteuerung zunächst gegen 1,05. Die Abweichung 0,05 vom Wert 1 wird vom Block 2.8 in den Wert fra des Adaptionseingriffs übernommen. Bei einem multiplikativen fra-Eingriff geht dann fra gegen 1,05 mit der Folge, dass fr wieder gegen 1 geht. Die Adaption sorgt damit dafür, dass Fehlanpassungen der Vorsteuerung nicht bei jedem Betriebspunktwechsel erneut ausgeregelt werden müssen.The blocks 2.5 to 2.9 represent the known operating parameter-dependent mixture adaptation which can act multiplicatively and / or additively. The circle 2.9 should represent these 3 possibilities. The switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 operating parameters of the internal combustion engine such as temperature T, air mass ml and speed n is supplied. Means 2.6 in conjunction with the switch 2.5 thus allows a operating parameter range-dependent activation of the three adaptation options mentioned. The formation of the adaptation engagement on fuel metering signal formation is illustrated by blocks 2.7 and 2.8. Block 2.7 forms the mean value frm of the control manipulated variable fr when the switch 2.5 is closed. Deviations of the mean value frm from the neutral value 1 are taken over by the block 2.8 into the adaptation intervention variable fra. For example, the control manipulated variable fr initially goes against 1.05 due to a mismatching of the precontrol. The deviation 0.05 from the value 1 is adopted by the block 2.8 in the value fra of the adaptation intervention. In a multiplicative fra intervention then fra goes against 1.05, with the result that again goes to 1. The adaptation ensures that misadjustments of the feedforward control do not have to be compensated for every change of operating point.
Diese Anpassung der Ädaptionsgröße fra wird bei hohen Temperaturen des Verbrennungsmotors, beispielsweise oberhalb einer Kühlwassertemperatur von 70°Celsius bei dann geschlossenem Schalter 2.5 durchgeführt; einmal angepasst, wirkt fra aber auch bei offenem Schalter 2.5 auf die Bildung des Kraftstoffzumesssignals ein.This adaptation of the Ädaptionsgröße fra is carried out at high temperatures of the internal combustion engine, for example, above a cooling water temperature of 70 ° Celsius then closed switch 2.5; once adjusted, fra also acts with open switch 2.5 on the formation of the fuel metering signal.
Die erfindungsgemäße Lösung basiert darauf, dass im Schichtbetrieb zwar keine Gemischadaption, wohl aber eine Tankentlüftung stattfindet.The solution according to the invention is based on the fact that in shift operation, although no mixture adaptation, but a tank ventilation takes place.
Die Tankentlüftung dient dem Druckausgleich zwischen Kraftstoffbehälter und Umgebung, der beispielsweise bei vermehrter Ausdampfung des Kraftstoffs aufgrund von Erwärmung oder Abnahme des Umgebungsdrucks erforderlich ist. Der im Kraftstoffdampf enthaltene Kraftstoff wird in einem Aktivkohlefilter (AKF) absorbiert, das aufgrund seiner begrenzten Aufnahmekapazität regelmäßig entleert werden muss. Dies geschieht durch Zufuhr des gespeicherten Kraftstoffs (=Regeneriergas) zur Verbrennung über das Tankentlüftungsventil (TEV).The tank ventilation is used to equalize the pressure between the fuel tank and the environment, which is required for example in case of increased evaporation of the fuel due to heating or decrease in ambient pressure. The fuel contained in the fuel vapor is absorbed in an activated carbon filter (AKF), which must be emptied regularly due to its limited absorption capacity. This is done by supplying the stored fuel (= regeneration gas) for combustion via the tank ventilation valve (TEV).
Dabei kann auf der Basis des Einflusses des Regeneriergases auf die Zusammensetzung des Gesamt-Kraftstoff/Luftverhältnisses, die aus dem Signal einer Lambdasonde ableitbar ist, die Kraftstoffkonzentration (= Beladung) des Regeneriergases adaptiert und der über das TEV eingeleitete Kraftstoffanteil berechnet werden. Eingangsgrößen dieser Berechnung sind neben dem Lämbdasondensignal die gemessene Ansaugluftmenge, die über die Einspritzventile zugemessene Kraftstoffmenge und die aus dem Ansteuertastverhältnis für das Tankentlüftungsventil und weiteren Randbedingungen ableitbare Regeneriergasmenge. Eine bestimmte (bekannte) Ansaugluftmenge und eine bestimmte (bekannte), über die Einspritzventile zugemessene Kraftstoffmenge ergibt in Verbindung mit einer bestimmten (bekannten) Regeneriergasmenge und einem bestimmten (unbekanntem) Kraftstoffdampfanteil an der Regeneriergasmenge eine bestimmte Sauerstoffkonzentration im Abgas. Bei durch Messung mit einer Abgassonde gemessener (bekannter) Sauerstoffkonzentration ergibt sich damit die gesuchte Beladung durch Berechnung.In this case, on the basis of the influence of the regeneration gas on the composition of the total fuel / air ratio, which can be derived from the signal of a lambda probe, the fuel concentration (= loading) of the regeneration gas adapted and the fuel fraction introduced via the TEV be calculated. Input variables of this calculation are in addition to the Lämbdasondensignal the measured intake air quantity, the metered via the injectors fuel quantity and off the Regeneriergasmenge deducible the Ansteuertastverhältnis for the tank venting valve and other boundary conditions. A certain (known) intake air quantity and a certain (known) quantity of fuel metered in via the injection valves, in conjunction with a specific (known) amount of regeneration gas and a certain (unknown) fuel vapor fraction, at the regeneration gas quantity results in a specific oxygen concentration in the exhaust gas. When measured by measurement with an exhaust gas probe (known) oxygen concentration thus results in the desired load by calculation.
Wenn die so ermittelte Beladung des Regeneriergases der TE außerhalb eines plausiblen Bereichs liegt, wird erfindungsgemäß ein Fehlerverdacht gesetzt.If the thus determined loading of the regeneration gas of the TE is outside a plausible range, a suspected error is set according to the invention.
Mit der bestimmten Beladung des Regeneriergases wird der Kraftstoffanteil der Tankentlüftung an der Gesamtkraftstoffmenge bestimmt. Dieser Kraftstoffanteil ist die Regelgröße der Tankentlüftung, die auf einen arbeitspunktabhängig vorzugebenden Sollwert geregelt wird. Beispielsweise sollen in einem bestimmten Betriebspunkt möglicherweise 30% der Gesamtkraftstoffmenge über das Tankentlüftungsventil fließen, während die anderen 70% über Kraftstoffeinspritzventile eingespritzt werden.With the specific loading of the regeneration gas, the fuel fraction of the tank ventilation is determined based on the total fuel quantity. This proportion of fuel is the control variable of the tank ventilation, which is regulated to a working point dependent preset value. For example, at a certain operating point, perhaps 30% of the total fuel flow is to flow through the tank vent valve while the other 70% is injected via fuel injectors.
Darüberhinaus wird dieser Kraftstoffanteil auf vorbestimmte Grenzwerte in Abhängigkeit von der Gesamtkraftstoffmenge beschränkt, bspw. auf 50%. Liegt kein Fehler vor, werden diese Grenzwerte nicht erreicht.In addition, this fuel fraction is limited to predetermined limits depending on the total fuel amount, for example, to 50%. If there is no error, these limits are not reached.
Ein außerhalb der Tankentlüftung vorliegender Gemisch- oder Sondenfehler wird bei aktiver Tankentlüftung als Beladung des Regeneriergases interpretiert. Die tatsächliche Beladung stimmt dann nicht mit der berechneten Beladung überein. In diesem Fall können die genannten Grenzwerte erreicht werden. Liegt gleichzeitig der Gemischregelfaktor nicht innerhalb eines vorbestimmten Bereiches um seine Normallage, so wird dies als Hinweis auf einen Gemisch- oder Sondenfehler gewertet und der Fehlerverdacht gesetzt. Sobald einer der Grenzwerte erreicht wird, wird ein weiteres Öffnen des Tankentlüftungsventils aktiv verhindert.A mixture or sensor error outside of the tank ventilation is interpreted as a loading of the regeneration gas with active tank ventilation. The actual load will not match the calculated load. In this case, the specified limits can be achieved. If, at the same time, the mixture control factor is not within a predetermined range around its normal position, this is interpreted as an indication of a mixture or probe error and the error suspicion is set. As soon as one of the limit values is reached, further opening of the tank ventilation valve is actively prevented.
Der Gemischregelfaktor ist der in der Tankentlüftungsphase gebildete Faktor für die Gemischabweichung (Regelfaktor der Lambdaregelung multipliziert mit dem Verhältnis des Lambda-Istwerts zum Lambda-Sollwert). Aus der Abweichung dieses Faktors von seinem Neutralwert (Eins) wird die Beladung des Regeneriergases adaptiert und damit der Kraftstoffanteil der Tankentlüftung am Gesamtkraftstoff.The mixture control factor is the factor for the mixture deviation formed in the tank ventilation phase (control factor of the lambda control multiplied by the ratio of the lambda actual value to the lambda nominal value). From the deviation of this factor from its neutral value (one), the loading of the regeneration gas is adapted and thus the fuel content of the tank ventilation on the total fuel.
Zur Verdeutlichnung sei der Fall von Leckluft betrachtet, die ein fehlerhaft zu mageres Gemisch zur Folge hat. Dies führt zu einer fortgesetzten rechnerischen Abnahme der Beladung des Regeneriergases und somit auch des Kraftstoffanteils der Tankentlüftung. Die Tankentlüftung stellt damit eine zunehmende Abweichung des Ist- vom Sollkraftstoffanteil fest und öffnet infolgedessen das Tankentlüftungsventil weiter. Somit wird der untere der genannten Grenzwerte erreicht und bei fortgesetzt zu magerem Gemisch, das nicht innerhalb eines Bereichs um seine Neutrallage steht, der Fehlerverdacht gesetzt.For clarification, the case of leakage air is considered, which has a faulty too lean mixture result. This leads to a continued computational decrease in the loading of the regeneration gas and thus also the fuel content of the tank ventilation. The tank vent thus establishes an increasing deviation of the actual and desired fuel content and consequently opens the tank venting valve further. Thus, the lower of said limits is reached and, if the mixture continues too lean, which is not within a range around its neutral position, the error is suspected.
Um einen weiteren Störeinfluss zu verhindern, wird ein weiteres Öffnen des Tankentlüftungsventils bei Erreichen des Grenzwerts nicht zugelassen.In order to prevent further interference, further opening of the tank venting valve is not permitted when the limit value is reached.
Bei gesetztem Fehlerverdacht wird die Gemischadaption angefordert, zu deren Aktivierung auf eine Betriebsart mit aktiver Lambdaregelung, bei BDE also auf Homogenbetrieb, umgeschaltet und die Tankentlüftung ausgeschaltet wird. Damit wird erreicht, dass ein vorhandener Gemischfehler adaptiert wird; laufen die Adaptionswerte dabei gegen Grenzwerte, so erfolgt ein Fehlereintrag. Der vorherige Verdacht ist damit verifiziert.If the suspect error is set, the mixture adaptation is requested, the activation of which is switched to an operating mode with active lambda control, ie to homogeneous operation in the case of BDE, and the tank venting is switched off. This ensures that an existing mixture error is adapted; If the adaptation values run against limit values, an error entry occurs. The previous suspicion is thus verified.
Bei gesetzem Fehlerverdacht ist von einem falsch adaptierten Wert der Beladung des Regeneriergases auszugehen. In diesem Fall wird nach einem betriebsbedingt erfolgten Schliessen des Tankentlüftungsventils vor dem nächsten Öffnen die Beladung auf einen Neutralwert zurückgesetzt.In the case of a suspected fault, it is assumed that the loading of the regeneration gas is incorrectly adapted. In this case, the loading is reset to a neutral value after a closure of the tank-venting valve due to operational conditions before the next opening.
Der Fehlerverdacht wird nach erfolgter Gemischadaption zurückgesetzt.The suspected error is reset after the mixture has been adapted.
Claims (11)
- Method for diagnosing the mixture formation in internal combustion engines with combustion chambers and tank venting, the diagnosis being coupled to a mixture adaptation which runs only when lambda control is active, characterized in that outside the active lambda control, an indication of a mixture or sensor error is recognized by forming an error suspicion when tank venting is active and mixture adaptation is not active if a measure of the influence of the tank venting on the mixture composition which is formed assuming an intact system adopts implausible values, and in which method, if this suspicion is present, mixture adaptation is requested, in order to verify or disprove the suspicion as appropriate.
- Method according to Claim 1, characterized in that the internal combustion engine is operated with direct injection of petrol into the combustion chambers.
- Method according to Claim 2, characterized in that the internal combustion engine at least in a first operating mode is operated with stratified mixture distribution in the combustion chambers (stratified operation) and in a second operating mode with a homogenous mixture distribution in the combustion chambers (homogenous operation), and in that the recognition of an indication of a mixture or sensor error (error suspicion) outside the active lambda control takes place in stratified operation.
- Method according to Claim 3, characterized in that if an indication of a mixture or sensor error (error suspicion) is recognized in stratified operation, for diagnosis purposes the engine is switched to homogenous operation to verify or disprove the error suspicion.
- Method according to one of the preceding claims, characterized by its use with a control unit for controlling a tank venting installation (12) and further functions for achieving efficient combustion of the fuel/air mixture in the combustion chamber, the tank venting installation 12 having an activated carbon filter 15, which is connected via corresponding lines or connections to the tank, to ambient air and to the induction pipe of the internal combustion engine, and a tank venting valve 16 arranged in the line leading to the induction pipe.
- Method according to one of the preceding claims, characterized in that a pilot control value rk for a fuel metering signal for the injection of fuel into at least one of the combustion chambers as a function of at least the engine speed n and a signal ml is formed by means of the air quantity drawn in by the internal combustion engine, with incorrect matching of the fuel quantity to the air quantity being reflected in the signal Us from an exhaust-gas sensor, from which signal a controller 2.3 forms a control variable fr which, by being linked by multiplication to the pilot control value rk, reduces the incorrect matching.
- Method according to Claim 6, characterized by the formation of an adaption intervention fra on the fuel metering signal formation by forming a mean value frm of the control variable fr and by correcting the fuel metering signal formation using an adaption intervention variable fra based on the said mean value.
- Method according to one of the preceding claims, characterized in that mixture adaptation does not take place in stratified operation, but tank venting does.
- Method according to Claim 8, characterized in that the influence of the regeneration gas with active tank venting on the composition of the overall fuel/air ratio is derived from the signal from a lambda sensor, the fuel concentration (= loading) of the regeneration gas is learnt (adapted) therefrom, and the proportion of fuel introduced by way of the tank venting valve is calculated using the following input variables:- exhaust-gas sensor signal,- measured intake air quantity,- quantity of fuel metered in via the injection valves,- regeneration gas quantity, which can be derived from the actuation duty cycle for the tank venting valve and further boundary conditions.
- Method according to Claim 9, characterized in that the fault suspicion is set if the loading of the regeneration gas of the tank venting is outside a plausible range.
- Electronic control device for carrying out the method according to Claims 1-10.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10043859 | 2000-09-04 | ||
DE10043859A DE10043859A1 (en) | 2000-09-04 | 2000-09-04 | Method of diagnosing mixture formation |
PCT/DE2001/003301 WO2002020969A1 (en) | 2000-09-04 | 2001-08-29 | Method and electronic control device for diagnosing the mixture production in an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1317617A1 EP1317617A1 (en) | 2003-06-11 |
EP1317617B1 true EP1317617B1 (en) | 2006-02-15 |
Family
ID=7655156
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01971668A Expired - Lifetime EP1317617B1 (en) | 2000-09-04 | 2001-08-29 | Method and electronic control device for diagnosing the mixture production in an internal combustion engine |
Country Status (9)
Country | Link |
---|---|
US (1) | US6739310B2 (en) |
EP (1) | EP1317617B1 (en) |
JP (1) | JP4700258B2 (en) |
KR (1) | KR20020068336A (en) |
DE (2) | DE10043859A1 (en) |
ES (1) | ES2257442T3 (en) |
MX (1) | MXPA02004305A (en) |
RU (1) | RU2002113762A (en) |
WO (1) | WO2002020969A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008007030A1 (en) * | 2008-01-31 | 2009-08-06 | Continental Automotive Gmbh | Method and device for checking the functionality of a tank ventilation device for an internal combustion engine |
US8082905B2 (en) | 2007-11-30 | 2011-12-27 | Continental Automotive Gmbh | Tank venting device for a motor vehicle |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10043071A1 (en) * | 2000-09-01 | 2002-03-14 | Bosch Gmbh Robert | Procedure for diagnosing the tank vent valve |
KR20040014488A (en) * | 2001-04-10 | 2004-02-14 | 로베르트 보쉬 게엠베하 | System and method for correcting the injection behavior of at least one injector |
DE10324813B4 (en) * | 2003-06-02 | 2015-12-31 | Robert Bosch Gmbh | Method for diagnosing a tank venting valve |
JP2008196441A (en) * | 2007-02-15 | 2008-08-28 | Toyota Motor Corp | Control device for vehicle |
DE102007053406B3 (en) | 2007-11-09 | 2009-06-04 | Continental Automotive Gmbh | Method and device for carrying out both an adaptation and a diagnosis in emission-relevant control devices in a vehicle |
FR2923864B1 (en) * | 2007-11-20 | 2010-02-26 | Renault Sas | METHOD FOR DIAGNOSING THE STATE OF A FUEL SUPPLY SYSTEM OF AN ENGINE |
DE102008020928B4 (en) * | 2008-04-25 | 2014-04-17 | Continental Automotive Gmbh | A method for controlling an air-fuel ratio and method for detecting a fuel quality |
DE102009059662B4 (en) * | 2009-12-19 | 2014-03-13 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Method for diagnosing line systems of internal combustion engines |
US10161351B2 (en) * | 2012-11-20 | 2018-12-25 | Ford Global Technologies, Llc | Gaseous fuel system and method for an engine |
DE102016211907A1 (en) * | 2016-06-30 | 2018-01-04 | Bayerische Motoren Werke Aktiengesellschaft | Method for monitoring a fuel supply system of a motor vehicle with a gaseous fuel component storage unit |
US11636870B2 (en) | 2020-08-20 | 2023-04-25 | Denso International America, Inc. | Smoking cessation systems and methods |
US12017506B2 (en) | 2020-08-20 | 2024-06-25 | Denso International America, Inc. | Passenger cabin air control systems and methods |
US11760170B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Olfaction sensor preservation systems and methods |
US11813926B2 (en) | 2020-08-20 | 2023-11-14 | Denso International America, Inc. | Binding agent and olfaction sensor |
US11932080B2 (en) | 2020-08-20 | 2024-03-19 | Denso International America, Inc. | Diagnostic and recirculation control systems and methods |
US11828210B2 (en) | 2020-08-20 | 2023-11-28 | Denso International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
US11760169B2 (en) | 2020-08-20 | 2023-09-19 | Denso International America, Inc. | Particulate control systems and methods for olfaction sensors |
US11881093B2 (en) | 2020-08-20 | 2024-01-23 | Denso International America, Inc. | Systems and methods for identifying smoking in vehicles |
CN112412667B (en) * | 2020-12-04 | 2021-11-19 | 安徽江淮汽车集团股份有限公司 | Low desorption pipeline diagnosis method, diagnosis terminal, vehicle and storage medium |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3341015C2 (en) | 1983-11-12 | 1987-03-26 | Robert Bosch Gmbh, 7000 Stuttgart | Device for a fuel metering system in an internal combustion engine |
DE4025544A1 (en) * | 1990-03-30 | 1991-10-02 | Bosch Gmbh Robert | FUEL VENTILATION SYSTEM FOR A MOTOR VEHICLE AND METHOD FOR CHECKING THEIR FUNCTIONALITY |
US5284050A (en) * | 1991-04-08 | 1994-02-08 | Nippondenso Co., Ltd. | Self-diagnosis apparatus in system for prevention of scattering of fuel evaporation gas |
JPH084569A (en) * | 1994-06-22 | 1996-01-09 | Toyota Motor Corp | Evaporative fuel control device for internal combustion engine |
US5754971A (en) * | 1995-02-10 | 1998-05-19 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Fault diagnosis apparatus for a fuel evaporative emission suppressing apparatus |
JP3166538B2 (en) * | 1995-03-14 | 2001-05-14 | トヨタ自動車株式会社 | Failure diagnosis device for fuel supply system |
JPH09242587A (en) | 1996-03-08 | 1997-09-16 | Suzuki Motor Corp | Air-fuel ratio control device for internal combustion engine |
US6161530A (en) * | 1997-07-04 | 2000-12-19 | Nissan Motor Co., Ltd. | Control system for internal combustion engine |
JP3503430B2 (en) * | 1997-07-04 | 2004-03-08 | スズキ株式会社 | Abnormality diagnosis device for evaporation purge system |
JP3627787B2 (en) * | 1997-07-14 | 2005-03-09 | 株式会社デンソー | Fuel supply system abnormality diagnosis device for internal combustion engine |
JP3937258B2 (en) * | 1998-01-30 | 2007-06-27 | 株式会社デンソー | Abnormality diagnosis device for evaporative gas purge system |
DE19851990A1 (en) | 1998-11-03 | 2000-06-21 | Bosch Gmbh Robert | Process for determining manipulated variables in the control of gasoline direct injection engines |
DE19850586A1 (en) | 1998-11-03 | 2000-05-04 | Bosch Gmbh Robert | Method for operating an internal combustion engine |
US6253744B1 (en) * | 1999-03-19 | 2001-07-03 | Unisia Jecs Corporation | Method and apparatus for controlling fuel vapor, method and apparatus for diagnosing fuel vapor control apparatus, and method and apparatus for controlling air-fuel ratio |
JP2001329894A (en) * | 2000-05-19 | 2001-11-30 | Denso Corp | Fuel system abnormality diagnostic device for internal combustion engine |
US6564782B2 (en) * | 2001-02-21 | 2003-05-20 | Denso Corporation | Device for detecting canister deterioration |
-
2000
- 2000-09-04 DE DE10043859A patent/DE10043859A1/en not_active Withdrawn
-
2001
- 2001-08-29 KR KR1020027005716A patent/KR20020068336A/en not_active Application Discontinuation
- 2001-08-29 RU RU2002113762/06A patent/RU2002113762A/en not_active Application Discontinuation
- 2001-08-29 DE DE50108959T patent/DE50108959D1/en not_active Expired - Lifetime
- 2001-08-29 JP JP2002525356A patent/JP4700258B2/en not_active Expired - Fee Related
- 2001-08-29 WO PCT/DE2001/003301 patent/WO2002020969A1/en active IP Right Grant
- 2001-08-29 ES ES01971668T patent/ES2257442T3/en not_active Expired - Lifetime
- 2001-08-29 US US10/129,403 patent/US6739310B2/en not_active Expired - Fee Related
- 2001-08-29 MX MXPA02004305A patent/MXPA02004305A/en unknown
- 2001-08-29 EP EP01971668A patent/EP1317617B1/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8082905B2 (en) | 2007-11-30 | 2011-12-27 | Continental Automotive Gmbh | Tank venting device for a motor vehicle |
DE102008007030A1 (en) * | 2008-01-31 | 2009-08-06 | Continental Automotive Gmbh | Method and device for checking the functionality of a tank ventilation device for an internal combustion engine |
US8041496B2 (en) | 2008-01-31 | 2011-10-18 | Continental Automotive Gmbh | Method and device for checking the operability of a tank venting device for an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
WO2002020969A1 (en) | 2002-03-14 |
ES2257442T3 (en) | 2006-08-01 |
MXPA02004305A (en) | 2003-01-28 |
EP1317617A1 (en) | 2003-06-11 |
JP2004508489A (en) | 2004-03-18 |
KR20020068336A (en) | 2002-08-27 |
RU2002113762A (en) | 2004-01-20 |
US20030075140A1 (en) | 2003-04-24 |
DE10043859A1 (en) | 2002-03-14 |
US6739310B2 (en) | 2004-05-25 |
DE50108959D1 (en) | 2006-04-20 |
JP4700258B2 (en) | 2011-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1317617B1 (en) | Method and electronic control device for diagnosing the mixture production in an internal combustion engine | |
EP1315894B1 (en) | Mixture adaptation method for internal combustion engines with direct gasoline injection | |
EP1132600B1 (en) | Adapting method for the control of injection | |
DE102012205602A1 (en) | METHOD FOR ADJUSTING THE AIR / FUEL RATIO OF A MOTOR | |
DE19631986A1 (en) | Control unit for vehicle direct injection IC petrol engine | |
DE19937095B4 (en) | A control system for a cylinder injection type internal combustion engine having an exhaust gas recirculation feedback control | |
EP1315630B1 (en) | Method for diagnosing a tank ventilation valve and electronic control device | |
DE112019002741T9 (en) | Control device and control method for an internal combustion engine | |
EP1315895B1 (en) | Method for adapting mixture control in internal combustion engines with direct fuel injection | |
EP1179130B1 (en) | Method for operating a multi-cylinder internal combustion engine | |
DE102009000134A1 (en) | Apparatus and method for cylinder equalization of an internal combustion engine, computer program, computer program product | |
DE102013225253B4 (en) | A fuel injection quantity control apparatus for an internal combustion engine and a fuel injection amount control method for an internal combustion engine | |
DE19900729A1 (en) | System for operating internal combustion engine, especially for motor vehicle, divides mass flow through valve into inert and air components depending on air/fuel ratio | |
DE19727297A1 (en) | Method for operating an internal combustion engine, in particular a motor vehicle | |
EP1317610B1 (en) | Method for determining the fuel content of the regeneration gas in an internal combustion engine comprising direct fuel-injection with shift operation | |
DE102011004068B3 (en) | Method for coordinating dispensed torques and/or lambda values of burning cylinders for combustion engine of motor vehicle, involves providing parameters for supply of fuel for incineration in cylinders depending on correction values | |
DE102007060224A1 (en) | Method for determining the composition of a fuel mixture for operating a combustion engine comprises using the maximum torque of the combustion engine at a known air mass in the combustion chamber | |
WO2013113542A1 (en) | Method for controlling an internal combustion engine | |
EP1317609B1 (en) | Method and electronic control unit for controlling the regeneration of a fuel vapour accumulator in internal combustion engines | |
DE102007062171B4 (en) | Method for operating an internal combustion engine | |
DE10029858A1 (en) | Method for operating an internal combustion engine | |
EP1382822B1 (en) | Process for adapting a fuel-air mixture in a combustion engine and electronic control device | |
DE102023101347A1 (en) | METHODS AND SYSTEMS FOR DIAGNOSTING NON-DEACTIVATED VALVES FROM DEACTIVATED ENGINE CYLINDERS | |
EP1046803B1 (en) | Method for the operation of an internal-combustion engine | |
WO2017050547A1 (en) | Method and device for operating an internal combustion engine, in particular of a motor vehicle with dual fuel injection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030404 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR |
|
REF | Corresponds to: |
Ref document number: 50108959 Country of ref document: DE Date of ref document: 20060420 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2257442 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20061116 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20100830 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110830 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140819 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161027 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50108959 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180301 |