[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1315894B1 - Mixture adaptation method for internal combustion engines with direct gasoline injection - Google Patents

Mixture adaptation method for internal combustion engines with direct gasoline injection Download PDF

Info

Publication number
EP1315894B1
EP1315894B1 EP01962668A EP01962668A EP1315894B1 EP 1315894 B1 EP1315894 B1 EP 1315894B1 EP 01962668 A EP01962668 A EP 01962668A EP 01962668 A EP01962668 A EP 01962668A EP 1315894 B1 EP1315894 B1 EP 1315894B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
dependent
range
mixture
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01962668A
Other languages
German (de)
French (fr)
Other versions
EP1315894A1 (en
Inventor
Gholamabas Esteghlal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1315894A1 publication Critical patent/EP1315894A1/en
Application granted granted Critical
Publication of EP1315894B1 publication Critical patent/EP1315894B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • From DE 1 98 50 586 is a motor control program known that switching between shift operation and Homogeneous operation controls.
  • the stratified charge is delayed by a late Fuel injection achieved in the ideal case Splitting the combustion chamber into two zones leads: the first Zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, the consists of an insulating layer of air and residual gas.
  • the potential for optimizing consumption results from the Possibility of avoiding the engine Charge change losses largely unthrottled to operate.
  • the shift operation is at comparatively low load preferred.
  • the engine becomes more homogeneous Cylinder filling operated.
  • the homogeneous cylinder filling results from an early fuel injection during the suction process. As a result, stands until the burning a longer time for mixture formation available.
  • the Potential of this mode for performance optimization results for example, from the exploitation of the whole Combustion chamber volume for filling with combustible mixture.
  • the engine temperature must Have reached switch-on temperature threshold and the Lambda probe must be ready for operation.
  • Next must the current values of load and speed in certain Lie areas in which each is learned. This is For example, from US 4,584,982 known.
  • Furthermore must Homogenous operation present. After the familiar program is Switching from shift operation to homogeneous operation not dependent on a fault in the system.
  • the invention aims at the period in which the engine optimal consumption can be driven in shift operation, too enlarge.
  • Switching to homogeneous operation for diagnostics reduces the consumption advantage of Direct fuel injection, since the homogeneous operation is less favorable than the shift operation.
  • a Switching to homogeneous operation increases the Fuel consumption therefore, if no error, unnecessary. It should be avoided as much as possible, without to worsen the discovery of exhaust-related errors.
  • An embodiment provides that the spatialtige Mixture adaptation below the minimum temperature of area-dependent adaptation is activated.
  • Another embodiment provides that the Minimum temperature of the range-dependent adaptation greater or equal to 70 ° Celsius.
  • Another embodiment provides that the short-term Mixture adaptation for a time in the range of about 10 to 20 Seconds is activated.
  • Another embodiment provides that the physical urgency is withdrawn if the Error in normal range-dependent mixture adaptation has been learned, so that the area-dependent Mixture adaptation from the engine control program at normal Urgency is released.
  • Another embodiment provides that the value of Temperature-dependent short-term adaptation when stopping the Cars is maintained and during the initialization phase after the next start around the normal range-dependent mixture adaptation learned value is reset.
  • Another embodiment provides that the operating-parameter-dependent (area-dependent) Mixture adaptation multiplicative and / or additive to the Fuel metering acts.
  • Another embodiment provides that the or Values of the range-dependent adaptation above one Temperature threshold to be renewed and on the Fuel metering regardless of the temperature act.
  • a further embodiment provides that the formation of the Error suspected the deviation of the current temperature-dependent adaptation factor of one Long-term adaptation factor is formed.
  • the invention is also directed to an electronic Control device for carrying out at least one of the above specified methods and embodiments.
  • An essential part of the invention is a short-term mixture adaptation, which is also outside the normal Switch-on conditions of the adaptation, in particular below the minimum temperature of the range-dependent adaptation. According to the short-term mixture adaptation only for a very short time in the range of about 10 to 20 seconds activated. If there is an error, the correction quantity becomes the short-term temperature-dependent adaptation of hers deviate from neutral value.
  • the deviation is according to the invention in the context of Operating mode control program the urgency of normal mixture adaptation up. If then their Running conditions are met, the normal Mixture adaptation started comparatively quickly.
  • Fig. 1 shows the technical environment of the invention.
  • Fig. 2 illustrates the formation of a fuel metering signal the basis of the signals of FIG. 1 and
  • FIG. 3 discloses the Formation of a temperature-dependent adaptation variable, as they are is used in the invention and
  • Fig. 4 represents an embodiment of the invention in the form of Function blocks.
  • FIG. 1 in FIG. 1 represents an internal combustion engine with a suction pipe 2, an exhaust pipe 3, a Fuel metering means 4, sensors 5 - 8 for Operating parameters of the engine and a control unit 9.
  • the Kraftstoffzumessstoff 4 can for example from a Arrangement of injectors for direct injection of fuel into the combustion chambers of the internal combustion engine consist.
  • the sensor 5 provides the controller with a signal on the from Engine aspirated air mass ml.
  • Sensor 6 delivers Engine speed signal n.
  • Sensor 7 sets the engine temperature T ready and sensor 8 provides a signal Us over the Exhaust gas composition of the engine.
  • Out of these and optionally further signals via further Operating parameter of the engine is the control unit next to Further control variables the fuel metering signals ti to Control of the fuel metering 4 so that a desired behavior of the engine, in particular a desired exhaust gas composition sets.
  • FIG. 2 shows the formation of the fuel metering signal.
  • block 2.1 represents a map, the speed n and the relative air charge rl is addressed and in the Pre-tax values rk for the formation of the Fuel metering signals are stored.
  • the relative Air filling rl is based on a maximum filling of the combustion chamber with air and thus gives a fraction of the fraction the maximum combustion chamber or cylinder filling. she will essentially formed from the signal ml.
  • rk corresponds the amount of fuel allocated to the air volume rl.
  • Block 2.2 shows the known multiplicative Lambda control adjustment.
  • a mismatch of fuel quantity the amount of air is reflected in the signal Us of the exhaust gas probe.
  • a controller 2.3 forms the control manipulated variable fr, via the intervention 2.2 reduces the mismatch.
  • Block 2.4 represents the conversion of relative and corrected amount of fuel in a real drive signal taking into account fuel pressure, Injection valve geometry etc.
  • Blocks 2.5 to 2.9 represent the known operating-parameter-dependent (range-dependent) mixture adaptation, which can act multiplicatively and / or additively.
  • the circle 2.9 should represent these 3 possibilities.
  • the switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 operating parameters of the internal combustion engine such as temperature T, air mass ml and speed n are supplied. Means 2.6 in conjunction with the switch 2.5 thus allows a operating parameter range-dependent activation of the three adaptation options mentioned.
  • the formation of the adaptation engagement on fuel metering signal formation is illustrated by blocks 2.7 and 2.8.
  • Block 2.7 forms the mean value frm of the control manipulated variable fr when the switch 2.5 is closed. Deviations of the mean value frm from the neutral value 1 are taken over by the block 2.8 into the adaptation intervention variable fra.
  • the control manipulated variable fr initially goes against 1.05 due to a mismatching of the precontrol.
  • the deviation 0.05 from the value 1 is adopted by the block 2.8 in the value fra of the adaptation intervention.
  • fra goes against 1.05, with the result that again goes to 1.
  • the adaptation ensures that misadjustments of the feedforward control do not have to be compensated for every change of operating point.
  • This adaptation of the adaptation value fra is carried out at high temperatures of the internal combustion engine, for example above a cooling water temperature of 70 ° Celsius, then closed switch 2.5; Once adjusted, fra also acts with open switch 2.5 on the formation of the fuel metering signal ..
  • Block 3.1 provides the deviation of the mean Control variable frm from value 1 to an integrator block 3.2.
  • Block 3.3 activates the integrator for comparatively low engine temperatures T from an interval TMN ⁇ T ⁇ TMX.
  • TMN as the lower interval limit 20 ° Celsuis
  • TMX as the upper interval limit for example, correspond to the temperature at which the conventional adaptation via closing the switch 2.5 is activated.
  • a typical value for this temperature is 70 ° Celsius.
  • the output value of the integrator supplies with the value frak a measure of the mismatch with comparatively cold Engine.
  • the sum frat therefore has the value 1 and changes in the multiplicative Link in block 2.10 the fuel metering signal formation not with warm engine.
  • ftk acts on frak maximally attenuating.
  • ftk is then neutral and acts minimally attenuating or not attenuating frak.
  • the further adaptive (temperature-dependent) correction only works when the engine is cold. Between the illustrated Extreme values, the correction varies steadily.
  • the map 3.10 provides values K for the Integration speed in the integrator 3.2 depends on Values for drl and n. For example, K becomes all the more smaller, the bigger drl is. drl is the change of sucked air mass, for example, at Transitional operating conditions is particularly large. To this Way, mismatches affect in Transient operating conditions only in a weakened form the adaptation.
  • Fig. 4 represents an embodiment of the invention in the form of function blocks.
  • Block 4.1 stands for the formation shown in FIG the sizes frat and frak.
  • a long-term adaptation factor fratia formed (block 4.2). This is to some extent the share of Cold adaptation factor frak, always with cold engine occurs. If the temperature-dependent adaptation in the error-free state always a similar value, for example, a Value of 2.5%, this value does not show any Error. This always occurring value is in the control unit saved.
  • dfrat amount (frak - fratia)
  • Block 4.5 a Comparison of dfrat with a suspected error threshold FVLRAS (Block 4.5). If this is exceeded, the condition becomes B-fvlra is set in block 4.6 via a flip-flop.
  • FVLRAS suspected error threshold
  • the Suspected error corresponds to a high urgency for the normal, warm engine adaptation. Due to the high urgency resulting from the setting of the reasoned Error suspected in the context of the short-term temperature-dependent adaptation has been subsequently, as soon as the remaining switch-on conditions for the normal mixture adaptation, accelerated in the Homogenous mode switched and the normal mixture adaptation activated (block 4.7).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Es ist bereits bekannt, bei der Regelung des Kraftstoff/Luftverhältnisses für Verbrennungsmotoren eine Vorsteuerung mit einer Regelung zu überlagern. Weiter ist bekannt, aus dem Verhalten der Regelstellgröße weitere Korrekturgrößen abzuleiten um Fehlanpassungen der Vorsteuerung an veränderte Betriebsbedingungen zu kompensieren. Diese Kompensation wird auch als Adaption bezeichnet. Die US 4 584 982 beschreibt beispielsweise eine Adaption mit unterschiedlichen Adaptionsgrößen in verschiedenen Bereichen des Last/Drehzahlspektrums eines Verbrennungsmotors (Bereichsadaption) . Die verschiedenen Adaptionsgrößen richten sich auf die Kompensation unterschiedlicher Fehler. Nach Ursache und Wirkung lassen sich drei Fehlerarten unterscheiden: Fehler eines Heißfilmluftmassenmessers wirken sich multiplikativ auf die Kraftstoffzumessung aus. Lecklufteinflüsse wirken additiv pro Zeiteinheit und Fehler bei der Kompensation der Anzugsverzögerung der Einspritzventile wirken additiv pro Einspritzung. It is already known in the regulation of Fuel / air ratio for internal combustion engines a Precontrol with a control to superimpose. Next is known, from the behavior of the control variable more Derive correction values for mismatches of the Pre-control to changed operating conditions too compensate. This compensation is also called adaptation designated. For example, US 4 584 982 describes a Adaptation with different adaptation sizes in different areas of the load / speed spectrum of a Internal combustion engine (range adaptation). The different Adaption variables are aimed at the compensation different mistakes. Leave for cause and effect There are three types of error: error of one Hot film air flow meter have a multiplicative effect on the Fuel metering off. Leakage influences have an additive effect per unit of time and error in the compensation of the Tightening delay of the injection valves have an additive effect Injection.

Nach gesetzlichen Vorschriften sollen abgasrelevante Fehler mit On Board Mitteln erkannt werden und gegebenenfalls soll eine Fehlerlampe aktiviert werden. Die Gemischadaption wird auch zur Fehlerdiagnose genutzt. Ist beispielsweise der Korrektureingriff der Adaption zu groß, deutet dies auf einen Fehler hin.According to legal regulations, emissions-related errors should be considered be recognized with on-board means and if necessary should a fault lamp will be activated. The mixture adaptation becomes also used for fault diagnosis. Is for example the Correction intervention of the adaptation too large, this suggests a mistake.

Über der Lebensdauer, der Exemplarstreuung und bei nichtgeregelter Sondenheizung weicht der gemessene Lambdawert vom physikalisch vorhandenen Lambdawert bei Motoren mit Benzindirekteinspritzung hauptsächlich im Schichtbetrieb ab.Over the life span, the copy spread and at Non-regulated probe heating gives way to the measured Lambda value of the physically available lambda value Engines with gasoline direct injection mainly in Shift operation.

Da die Gemischadaption das gemessene Lambda für das Lernen des Fehlers in Betracht zieht, ist die Adaption im Schichtbetrieb nicht zielführend. Für die Adaption wird daher in den Homogenbetrieb umgeschaltet und die Gemischadaption aktiviert.Since the mixture adaptation is the measured lambda for learning of the error is the adaptation in the Shift operation not effective. For the adaptation will therefore switched to the homogeneous operation and the Mixture adaptation activated.

Aus der DE 1 98 50 586 ist ein Motorsteuerungsprogramm bekannt, das die Umschaltung zwischen Schichtbetrieb und Homogenbetrieb steuert.From DE 1 98 50 586 is a motor control program known that switching between shift operation and Homogeneous operation controls.

Im Schichtbetrieb wird der Motor mit einer stark geschichteten Zylinderladung und hohem Luftüberschuß betrieben, um einen möglichst niedrigen Kraftstoffverbrauch zu erreichen. Die geschichtete Ladung wird durch eine späte Kraftstoffeinspritzung erreicht, die im Idealfall zur Aufteilung des Brennraums in zwei Zonen führt: Die erste Zone enthält eine brennfähige Luft-Kraftstoff-Gemischwolke an der Zündkerze. Sie wird von der zweiten Zone umgeben, die aus einer isolierenden Schicht aus Luft und Restgas besteht. Das Potential zur Verbrauchsoptimierung ergibt sich aus der Möglichkeit, den Motor unter Vermeidung von Ladungswechselverlusten weitgehend ungedrosselt zu betreiben. Der Schichtbetrieb wird bei vergleichsweise niedriger Last bevorzugt.In shift operation, the engine with a strong layered cylinder charge and high excess air operated to the lowest possible fuel consumption to reach. The stratified charge is delayed by a late Fuel injection achieved in the ideal case Splitting the combustion chamber into two zones leads: the first Zone contains a combustible air-fuel mixture cloud at the spark plug. It is surrounded by the second zone, the consists of an insulating layer of air and residual gas. The potential for optimizing consumption results from the Possibility of avoiding the engine Charge change losses largely unthrottled to operate. The shift operation is at comparatively low load preferred.

Bei höherer Last, wenn die Leistungsoptimierung im Vordergrund steht, wird der Motor mit homogener Zylinderfüllung betrieben. Die homogene Zylinderfüllung ergibt sich aus einer frühen Kraftstoffeinspritzung während des Ansaugvorganges. Als Folge steht bis zur Verbrennung eine größere Zeit zur Gemischbildung zur Verfügung. Das Potential dieser Betriebsart zur Leistungsoptimierung ergibt sich zum Beispiel aus der Ausnutzung des gesamten Brennraumvolumens zur Füllung mit brennfähigem Gemisch.At higher load, if the performance optimization in the Foremost, the engine becomes more homogeneous Cylinder filling operated. The homogeneous cylinder filling results from an early fuel injection during the suction process. As a result, stands until the burning a longer time for mixture formation available. The Potential of this mode for performance optimization results for example, from the exploitation of the whole Combustion chamber volume for filling with combustible mixture.

Hinsichtlich der bekannten Adaption existieren mehrere Einschaltbedingungen:With regard to the known adaptation, there are several activation:

So muß beispielsweise die Motortemperatur die Einschalttemperaturschwelle erreicht haben und die Lambdasonde muß betriebsbereit sein. Weiter müssen die aktuellen Werte von Last und Drehzahl in bestimmten Bereichen liegen, in denen jeweils gelernt wird. Dies ist beispielsweise aus der US 4 584 982 bekannt. Weiterhin muß Homogenbetrieb vorliegen. Nach dem bekannten Programm ist die Umschaltung vom Schichtbetrieb in den Homogenbetrieb nicht davon abhängig, ob ein Fehler im System vorliegt.For example, the engine temperature must Have reached switch-on temperature threshold and the Lambda probe must be ready for operation. Next must the current values of load and speed in certain Lie areas in which each is learned. This is For example, from US 4,584,982 known. Furthermore must Homogenous operation present. After the familiar program is Switching from shift operation to homogeneous operation not dependent on a fault in the system.

Die Erfindung zielt darauf, den Zeitraum, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann, zu vergrößern. Die Umschaltung auf Homogenbetrieb zur Diagnose verringert den Verbrauchsvorteil der Benzindirekteinspritzung, da der Homogenbetrieb verbrauchsungünstiger ist als der der Schichtbetrieb. Eine Umschaltung in den Homogenbetrieb erhöht den Kraftstoffverbrauch daher dann, wenn kein Fehler vorliegt, unnötig. Sie soll soweit wie möglich vermieden werden, ohne die Entdeckung abgasrelevanter Fehler zu verschlechtern.The invention aims at the period in which the engine optimal consumption can be driven in shift operation, too enlarge. Switching to homogeneous operation for diagnostics reduces the consumption advantage of Direct fuel injection, since the homogeneous operation is less favorable than the shift operation. A Switching to homogeneous operation increases the Fuel consumption therefore, if no error, unnecessary. It should be avoided as much as possible, without to worsen the discovery of exhaust-related errors.

Diese Wirkung wird mit den Merkmalen des Anspruchs 1 erzielt.This effect is achieved with the features of claim 1 achieved.

Im einzelnen wird dazu ein Verfahren zur Kompensation von Fehlanpassungen der Vorsteuerung einer Kraftstoffzumessung (Adaption) für einen Verbrennungsmotor offenbart, der in den wenigstens zwei verschiedenen Betriebsarten Homogenbetrieb und Schichtbetrieb betrieben wird,

  • bei dem im Homogenbetrieb eine Gemischregelung und eine Adaption der Gemischregelung stattfindet
  • und bei dem zwischen den Betriebsarten in Abhängigkeit von einer Soll-Betriebsart umgeschaltet wird, die aus einer Mehrzahl von Betriebsartenanforderungen ermittelt wird, wobei jeder der Betriebsartenanforderungen eine Priorität zugeordnet ist
  • und bei dem die Ermittlung der Soll-Betriebsart in Abhängigkeit von den Prioritäten der Betriebsartenanforderungen durchgeführt wird,
  • wobei kurzzeitig auch außerhalb der normalen Einschaltbedingungen einer bereichsabhängigen Adaption auf Homogenbetrieb mit Aktivierung einer temperaturabhängigen Adaption umgeschaltet wird
  • und bei dem eine Abweichung der Adaptionsgröße von ihrem neutralen Wert während der kurzzeitigen Aktivierung der temperaturabhängigen Adaption als Fehlerverdacht gewertet wird und bei dem das Motorsteuerungsprogramm beim Vorliegen eines Fehlerverdachtes die Priorität der bereichsabhängigen Adaption unter normalen Einschaltbedingungen heraufsetzt.
In detail, a method for compensating for maladjustments of the pilot control of a fuel metering (adaptation) for an internal combustion engine is disclosed, which is operated in the at least two different operating modes homogeneous operation and stratified operation,
  • in which a mixture control and an adaptation of the mixture control takes place in homogeneous operation
  • and switching between modes in response to a desired mode determined from a plurality of mode requests, wherein each of the mode requests is assigned a priority
  • and in which the determination of the desired operating mode is carried out as a function of the priorities of the operating mode requirements,
  • wherein, for a short time outside the normal switch-on conditions, an area-dependent adaptation to homogeneous operation is switched over with activation of a temperature-dependent adaptation
  • and in which a deviation of the adaptation value from its neutral value during the short-term activation of the temperature-dependent adaptation is evaluated as a suspected error and in which the engine control program increases the priority of the range-dependent adaptation under normal switch-on conditions in the presence of an error suspicion.

Eine Ausführungsform sieht vor, daß die kurzeitige Gemischadaption unterhalb der Mindesttemperatur der bereichsabhängigen Adaption aktiviert wird.An embodiment provides that the kurzeitige Mixture adaptation below the minimum temperature of area-dependent adaptation is activated.

Eine weitere Ausführungsform sieht vor, daß die Mindesttemperatur der bereichsabhängigen Adaption größer oder gleich 70° Celsius ist.Another embodiment provides that the Minimum temperature of the range-dependent adaptation greater or equal to 70 ° Celsius.

Eine weitere Ausführungsform sieht vor, daß die kurzzeitige Gemischadaption für eine Zeit im Bereich von etwa 10 bis 20 Sekunden aktiviert wird.Another embodiment provides that the short-term Mixture adaptation for a time in the range of about 10 to 20 Seconds is activated.

Eine weitere Ausführungsform sieht vor, daß die physikalische Dringlichkeit zurückgenommen wird wenn der Fehler in der normalen bereichsabhängigen Gemischadaption gelernt worden ist, so daß die bereichsabhängige Gemischadaption von dem Motorsteuerungsprogramm bei normaler Dringlichkeit freigegeben wird.Another embodiment provides that the physical urgency is withdrawn if the Error in normal range-dependent mixture adaptation has been learned, so that the area-dependent Mixture adaptation from the engine control program at normal Urgency is released.

Eine weitere Ausführungsform sieht vor, daß der Wert der temperaturabhängigen Kurzzeitadaption beim Abstellen des Autos beibehalten wird und während der Initialisierungsphase nach dem nächsten Start um den im Rahmen der normalen bereichsabhängigen Gemischadadaption gelernten Wert zurückgesetzt wird.Another embodiment provides that the value of Temperature-dependent short-term adaptation when stopping the Cars is maintained and during the initialization phase after the next start around the normal range-dependent mixture adaptation learned value is reset.

Eine weitere Ausführungsform sieht vor, daß die betriebsparameterabhängige (bereichsabhängige) Gemischadaption multiplikativ und/oder additiv auf die Kraftstoffzumessung einwirkt.Another embodiment provides that the operating-parameter-dependent (area-dependent) Mixture adaptation multiplicative and / or additive to the Fuel metering acts.

Eine weitere Ausführungsform sieht vor, daß der oder die Werte der bereichsabhängigen Adaption oberhalb einer Temperaturschwelle erneuert werden und auf die Kraftstoffzumessung unabhängig von der Temperatur einwirken.Another embodiment provides that the or Values of the range-dependent adaptation above one Temperature threshold to be renewed and on the Fuel metering regardless of the temperature act.

Eine weitere Ausführungsform sieht vor, daß zur Bildung des Fehlerverdachtes die Abweichung des aktuellen temperaturabhängigen Adaptionsfaktors von einem Langzeitadaptionsfaktor gebildet wird.A further embodiment provides that the formation of the Error suspected the deviation of the current temperature-dependent adaptation factor of one Long-term adaptation factor is formed.

Die Erfindung richtet sich auch auf eine elektronische Steuereinrichtung zur Durchführung wenigstens einer der oben angegebenen Verfahren und Ausführungsformen.The invention is also directed to an electronic Control device for carrying out at least one of the above specified methods and embodiments.

Ein wesentlicher Bestandteil der Erfindung ist eine kurzeitige Gemischadaption, die auch außerhalb der normalen Einschaltbedingungen der Adaption, insbesondere unterhalb der Mindesttemperatur der bereichsabhängigen Adaption. Erfindungsgemäß wird die kurzzeitige Gemischadaption nur für eine sehr kurze Zeit im Bereich von etwa 10 bis 20 Sekunden aktiviert. Wenn ein Fehler vorliegt, wird die Korrekturgröße der kurzzeitigen temperaturabhängigen Adaption von ihrem neutralen Wert abweichen.An essential part of the invention is a short-term mixture adaptation, which is also outside the normal Switch-on conditions of the adaptation, in particular below the minimum temperature of the range-dependent adaptation. According to the short-term mixture adaptation only for a very short time in the range of about 10 to 20 seconds activated. If there is an error, the correction quantity becomes the short-term temperature-dependent adaptation of hers deviate from neutral value.

Die Abweichung setzt erfindungsgemäß im Rahmen des Betriebsartensteuerungsprogramms die Dringlichkeit der normalen Gemischadaption herauf. Wenn dann deren Laufbedingungen erfüllt sind, wird die normale Gemischadaption vergleichsweise schnell gestartet.The deviation is according to the invention in the context of Operating mode control program the urgency of normal mixture adaptation up. If then their Running conditions are met, the normal Mixture adaptation started comparatively quickly.

Wenn der Fehler in der normalen bereichsbhängigen Gemischadaption gelernt worden ist, wird die physikalische Dringlichkeit zurückgenommen und damit läuft die bereichsabhängige Gemischadaption nur dann, wenn sie von dem Motorsteuerungsprogramm bei normaler Dringlichkeit freigegeben wird. If the error is in the normal domain-dependent Mixture adaptation has been learned, the physical Urgency withdrawn and that runs range-dependent mixture adaptation only if they are derived from the Engine control program with normal urgency is released.

Da die temperaturabhängige Kurzzeitadaption beim Abstellen des Autos ihren Wert behält und bei dem nächsten Start wieder im ausadaptierten Zustand falsch ist, wird sie während der Initialisierungsphase nach dem nächsten Start um den im Rahmen der normalen bereichsabhängigen Gemischadadaption gelernten Wert zurückgesetzt.Since the temperature-dependent short-term adaptation when turning off the car retains its value and at the next start again in the adapted state is wrong, it becomes during the initialization phase after the next start within the scope of the normal domain Mixture adaptation learned value reset.

Dies hat den Vorteil, dass im nicht adaptierten Zustand sofort die physikalische Dringlichkeit der normalen Adaption steigt.This has the advantage that in the unadapted state immediately the physical urgency of the normal adaptation increases.

Da die temperaturabhängige Adaption im normalen Zustand nur 3 bis 4 % Korrektur liefern soll, wird das Maximum des Integrators abhängig von dem gelernten Fehler nach unten oder oben korrigiert, so dass zum Beispiel bei einem zu 20 % gelernten Fehler nur noch 5 % Korrektur erlaubt wird.Since the temperature-dependent adaptation in the normal state only 3 to 4% correction is to be the maximum of Integrators depending on the learned error down or corrected above, so that for example at a 20% learned error only 5% correction is allowed.

Die Erfindung liefert folgende Vorteile:The invention provides the following advantages:

Im fehlerfreien Zustand wird nur in großen Zeitabständen in den Homogenbetrieb umgeschaltet. Im fehlerhaften Zustand beim kalten Motor werden zuerst sehr kurze und dann lange Zeitabstände gefahren. Die kurzen Zeitabstände werden beim nicht gelernten Fehler nach dem Start wiederholt. Beim gelernten Fehler wird wieder in langen Zeitabständen Homogenbetrieb gefahren. Beim Verfahren nach der Erfindung wird nur sehr kurz in den verbrauchsungünstigeren Homogenbetrieb umgeschaltet und beim Fehlerverdacht die temperaturabhängige Gemischadaption sofort aktiviert. Wenn kein Fehler im System vorliegt, wird die Gemischadaption seltener aktiviert so dass sich der Zeitraum verlängert, in dem der Motor verbrauchsoptimal im Schichtbetrieb gefahren werden kann. In the faultless condition is only in large time intervals in switched to homogeneous operation. In faulty condition When the engine is cold first very short and then long Time intervals drove. The short time intervals are at Unlearned error repeated after startup. At the learned mistakes will be again at long intervals Homogeneous operation. In the method of the invention is only very short in the most economical Homogenous mode switched and the suspected error Temperature-dependent mixture adaptation activated immediately. If there is no error in the system, the mixture adaptation becomes less frequently activated, so that the period lengthens, in where the engine is operated optimally in shift operation can be.

Im folgenden wird ein Ausführungsbeispiel der Erfindung unter Bezug auf die Zeichnung erläutert.The following is an embodiment of the invention explained with reference to the drawing.

Fig. 1 zeigt das technische Umfeld der Erfindung. Fig. 2 verdeutlicht die Bildung eines Kraftstoffzumesssignals auf der Basis der Signale aus Fig. 1 und Fig. 3 offenbart die Bildung einer temperaturabhängigen Adaptionsgröße, wie sie bei der Erfindung verwendet wird und Fig. 4 repräsentiert ein Ausführungsbeispiel der Erfindung in Form von Funktionsblöcken.Fig. 1 shows the technical environment of the invention. Fig. 2 illustrates the formation of a fuel metering signal the basis of the signals of FIG. 1 and FIG. 3 discloses the Formation of a temperature-dependent adaptation variable, as they are is used in the invention and Fig. 4 represents an embodiment of the invention in the form of Function blocks.

Die 1 in der Fig. 1 repräsentiert einen Verbrennungsmotor mit einem Saugrohr 2, einem Abgasrohr 3, einem Kraftstoffzumessmittel 4, Sensoren 5 - 8 für Betriebsparameter des Motors und einem Steuergerät 9. Das Kraftstoffzumessmittel 4 kann beispielsweise aus einer Anordnung von Einspritzventilen zur direkten Einspritzung von Kraftstoff in die Brennräume des Verbrennungsmotors bestehen.1 in FIG. 1 represents an internal combustion engine with a suction pipe 2, an exhaust pipe 3, a Fuel metering means 4, sensors 5 - 8 for Operating parameters of the engine and a control unit 9. The Kraftstoffzumessmittel 4 can for example from a Arrangement of injectors for direct injection of fuel into the combustion chambers of the internal combustion engine consist.

Der Sensor 5 liefert dem Steuergerät ein Signal über die vom Motor angesaugte Luftmasse ml. Sensor 6 liefert ein Motordrehzahlsignal n. Sensor 7 stellt die Motortemperatur T bereit und Sensor 8 liefert ein Signal Us über die Abgaszusammensetzung des Motors. Aus diesen und gegebenenfalls weiteren Signalen über weitere Betriebsparameter des Motors bildet das Steuergerät neben weiteren Stellgrößen die Kraftstoffzumesssignale ti zur Ansteuerung des Kraftstoffzumessmittels 4 so, dass sich ein gewünschtes Verhalten des Motors, insbesondere eine gewünschte Abgaszusammensetzung einstellt.The sensor 5 provides the controller with a signal on the from Engine aspirated air mass ml. Sensor 6 delivers Engine speed signal n. Sensor 7 sets the engine temperature T ready and sensor 8 provides a signal Us over the Exhaust gas composition of the engine. Out of these and optionally further signals via further Operating parameter of the engine is the control unit next to Further control variables the fuel metering signals ti to Control of the fuel metering 4 so that a desired behavior of the engine, in particular a desired exhaust gas composition sets.

FIG. 2 zeigt die Bildung des Kraftstoffzumesssignals. Block 2.1 stellt ein Kennfeld dar, das durch die Drehzahl n und die relative Luftfüllung rl adressiert wird und in dem Vorsteuerwerte rk für die Bildung der Kraftstoffzumesssignale abgelegt sind. Die relative Luftfüllung rl ist auf eine maximale Füllung des Brennraums mit Luft bezogen und gibt damit gewissermaßen den Bruchteil der maximalen Brennraum- oder Zylinderfüllung an. Sie wird im wesentlichen aus dem Signal ml gebildet. rk entspricht der zur Luftmenge rl zugeordneten Kraftstoffmenge.FIG. 2 shows the formation of the fuel metering signal. block 2.1 represents a map, the speed n and the relative air charge rl is addressed and in the Pre-tax values rk for the formation of the Fuel metering signals are stored. The relative Air filling rl is based on a maximum filling of the combustion chamber with air and thus gives a fraction of the fraction the maximum combustion chamber or cylinder filling. she will essentially formed from the signal ml. rk corresponds the amount of fuel allocated to the air volume rl.

Block 2.2 zeigt den bekannten multiplikativen Lambdaregeleingriff. Eine Fehlanpassung der Kraftstoffmenge an die Luftmenge bildet sich im Signal Us der Abgassonde ab. Aus diesem formt ein Regler 2.3 die Regelstellgröße fr, die über den Eingriff 2.2 die Fehlanpassung verringert.Block 2.2 shows the known multiplicative Lambda control adjustment. A mismatch of fuel quantity the amount of air is reflected in the signal Us of the exhaust gas probe. For this purpose, a controller 2.3 forms the control manipulated variable fr, via the intervention 2.2 reduces the mismatch.

Aus dem so korrigierten Signal kann im Block 2.4 bereits das Zumesssignal, beispielsweise eine Ansteuerimpulsbreite für die Einspritzventile gebildet werden. Block 2.4 repräsentiert damit die Umrechnung der relativen und korrigierten Kraftstoffmenge in ein reales Ansteuersignal unter Berücksichtigung von Kraftstoffdruck, Einspritzventilgeometrie etc.From the signal thus corrected, in block 2.4, the Zumesssignal, for example, a drive pulse width for the injection valves are formed. Block 2.4 represents the conversion of relative and corrected amount of fuel in a real drive signal taking into account fuel pressure, Injection valve geometry etc.

Die Blöcke 2.5 bis 2.9 repräsentieren die bekannte betriebsparameterabhängige (bereichsabhängige) Gemischadaption, die multiplikativ und/oder additiv wirken kann. Der Kreis 2.9 soll diese 3 Möglichkeiten repräsentieren. Der Schalter 2.5 wird vom Mittel 2.6 geöffnet oder geschlossen, wobei dem Mittel 2.6 Betriebsparameter des Verbrennungsmotors wie Temperatur T, Luftmasse ml und Drehzahl n zugeführt werden. Mittel 2.6 in Verbindung mit dem Schalter 2.5 erlaubt damit eine betriebsparameterbereichsabhängige Aktivierung der drei genannten Adaptionsmöglichkeiten. Die Bildung des Adaptionseingriffs fra auf die Kraftstoffzumeßsignalbildung wird durch die Blöcke 2.7 und 2.8 veranschaulicht. Block 2.7 bildet bei geschlossenem Schalter 2.5 den Mittelwert frm der Regelstellgröße fr. Abweichungen des Mittelwerts frm vom neutralen Wert 1 werden vom Block 2.8 in die Adaptionseingriffsgröße fra übernommen. Beispielsweise gehe die Regelstellgrösse fr aufgrund einer Fehlanpassung der Vorsteuerung zunächst gegen 1,05. Die Abweichung 0,05 vom Wert 1 wird vom Block 2.8 in den Wert fra des Adaptionseingriffs übernommen. Bei einem multiplikativen fra-Eingriff geht dann fra gegen 1,05 mit der Folge, dass fr wieder gegen 1 geht. Die Adaption sorgt damit dafür, dass Fehlanpassungen der Vorsteuerung nicht bei jedem Betriebspunktwechsel erneut ausgeregelt werden müssen.
Diese Anpassung der Adaptionsgröße fra wird bei hohen Temperaturen des Verbrennungsmotors, beispielsweise oberhalb einer Kühlwassertemperatur von 70°Celsius bei dann geschlossenem Schalter 2.5 durchgeführt; einmal angepasst, wirkt fra aber auch bei offenem Schalter 2.5 auf die Bildung des Kraftstoffzumesssignals ein..
Blocks 2.5 to 2.9 represent the known operating-parameter-dependent (range-dependent) mixture adaptation, which can act multiplicatively and / or additively. The circle 2.9 should represent these 3 possibilities. The switch 2.5 is opened or closed by the means 2.6, wherein the means 2.6 operating parameters of the internal combustion engine such as temperature T, air mass ml and speed n are supplied. Means 2.6 in conjunction with the switch 2.5 thus allows a operating parameter range-dependent activation of the three adaptation options mentioned. The formation of the adaptation engagement on fuel metering signal formation is illustrated by blocks 2.7 and 2.8. Block 2.7 forms the mean value frm of the control manipulated variable fr when the switch 2.5 is closed. Deviations of the mean value frm from the neutral value 1 are taken over by the block 2.8 into the adaptation intervention variable fra. For example, the control manipulated variable fr initially goes against 1.05 due to a mismatching of the precontrol. The deviation 0.05 from the value 1 is adopted by the block 2.8 in the value fra of the adaptation intervention. In a multiplicative fra intervention then fra goes against 1.05, with the result that again goes to 1. The adaptation ensures that misadjustments of the feedforward control do not have to be compensated for every change of operating point.
This adaptation of the adaptation value fra is carried out at high temperatures of the internal combustion engine, for example above a cooling water temperature of 70 ° Celsius, then closed switch 2.5; Once adjusted, fra also acts with open switch 2.5 on the formation of the fuel metering signal ..

Diese bekannte Adaption wird im Rahmen der Erfindung durch die weitere Korrektur frat ergänzt, die in der Verknüpfung 2.10 wirksam wird.This known adaptation is in the context of the invention the further correction frat supplements that in the linkage 2.10 becomes effective.

Ein Ausführungsbeispiel der frat-Bildung ist in der Fig. 3 dargestellt. Block 3.1 liefert die Abweichung der mittleren Regelstellgröße frm vom Wert 1 an einen Integratorblock 3.2. Block 3.3 aktiviert den Integrator für vergleichsweise niedrige Motortemperaturen T aus einem Intervall TMN < T < TMX. TMN als untere Intervallgrenze kann beispielsweise 20°Celsuis betragen; TMX als oberer Intervallgrenze kann beispielsweise der Temperatur entsprechen, bei der die herkömmliche Adaption über ein Schließen des Schalters 2.5 aktiviert wird. Ein typischer Wert für diese Temperatur ist 70°Celsius.An embodiment of the frat formation is shown in FIG. 3 shown. Block 3.1 provides the deviation of the mean Control variable frm from value 1 to an integrator block 3.2. Block 3.3 activates the integrator for comparatively low engine temperatures T from an interval TMN <T < TMX. For example, TMN as the lower interval limit 20 ° Celsuis; TMX as the upper interval limit for example, correspond to the temperature at which the conventional adaptation via closing the switch 2.5 is activated. A typical value for this temperature is 70 ° Celsius.

Der Ausgangswert des Integrators liefert mit dem Wert frak ein Maß für die Fehlanpassung bei vergleichsweise kaltem Motor.The output value of the integrator supplies with the value frak a measure of the mismatch with comparatively cold Engine.

Dieser Wert wird bei kaltem Motor bei der Kraftstoffzumesssignalbildung berücksichtigt, ohne das sich bei hohen Temperaturen Unterschiede zur bekannten Adaption bei warmem Motor ergeben.This value is when the engine is cold Fuel metering signal formation takes into account without that at high temperatures differences to the known adaptation when the engine is warm.

Dies wird beispielsweise durch die Blöcke 3.4 bis 3.6 und 2.10 erreicht.This is exemplified by blocks 3.4 to 3.6 and Reached 2.10.

Wesentlich ist in diesem zusammenhang zunächst die Verknüpfung des Integratorausgangs frak mit einer temperaturabhängigen Größe ftk. In dem Beispiel stellt ftk eine zwischen Null und Eins variierende multiplikative Korrektur dar. Der Wert Null ergibt sich bei warmem Motor, das heißt bei T > TMX. Dann liefert die Minimalauswahl im Block 3.7 den Wert TMX. Im Block 3.8 ergibt sich als Differenz von TMX und TMX der Wert Null, der der Quotientenbildung im Block 3.9 als Zähler zugeführt wird. Block 3.8 liefert entsprechend den Wert Null für die Größe der temperaturabhängigen Größe ftk. Zu diesem Wert ftk = Null wird im Block 3.6 der Wert 1 addiert. Die Summe frat hat demnach den Wert 1 und ändert bei der multiplikativen Verknüpfung im Block 2.10 die Kraftstoffzumesssignalbildung bei warmem Motor nicht. Mit anderen Worten: Bei warmem Motor wirkt ftk maximal abschwächend auf frak ein. Bei kaltem Motor mit beispielsweise T = Null °Celsius liefert die Minimalauswahl den Wert Null und die nachfolgende Quotientenbildung den Wert 1. ftk ist dann neutral und wirkt minimal abschwächend beziehungsweise nicht abschwächend auf frak ein. Um die Addition der 1 im Block 3.6 für diesen Fall zu kompensieren, erfolgt im Block 3.4 eine Subtraktion von 1. Bei kaltem Motor (T = Null) wirkt frak demnach als (frak-1)*1+1=frak unverändert und damit nicht abgeschwächt auf die Kraftstoffzumesssignalbildung ein. Mit anderen Worten: Die weitere adaptive (temperaturabhängige) Korrektur wirkt nur bei kaltem Motor. Zwischen den dargestellten Extremwerten variiert die Korrektur stetig.The essential thing in this context is first Linking the integrator output frak with a temperature dependent size ftk. In the example, ftk a multiplicative varying between zero and one Correction. The value zero results with a warm engine, that is, at T> TMX. Then the minimum selection in the Block 3.7 the value TMX. In block 3.8 results as Difference of TMX and TMX the value zero, which is the Quotient formation in block 3.9 is supplied as a counter. Block 3.8 accordingly returns the value zero for the size the temperature-dependent variable ftk. At this value ftk = Zero, the value 1 is added in block 3.6. The sum frat therefore has the value 1 and changes in the multiplicative Link in block 2.10 the fuel metering signal formation not with warm engine. In other words, with a warm engine ftk acts on frak maximally attenuating. When cold Motor with for example T = zero ° Celsius delivers the Minimum selection the value zero and the following Quotient the value 1. ftk is then neutral and acts minimally attenuating or not attenuating frak. To add the 1 in block 3.6 for this case to compensate, in block 3.4, a subtraction of 1. If the engine is cold (T = zero), then frak acts as (frak-1) * 1 + 1 = frak unchanged and thus not weakened on the fuel metering signal formation. With others Words: the further adaptive (temperature-dependent) correction only works when the engine is cold. Between the illustrated Extreme values, the correction varies steadily.

Das Kennfeld 3.10 liefert Werte K für die Integrationsgeschwindigkeit im Integrator 3.2 abhängig von Werten für drl und n. Dabei wird beispielsweise K umso kleiner, je größer drl ist. drl ist die Änderung der angesaugten Luftmasse, die beispielsweise bei Übergangsbetriebszuständen besonders groß ist. Auf diese Weise wirken sich Fehlanpassungen in Übergangsbetriebszuständen nur in abgeschwächter Form auf die Adaption aus.The map 3.10 provides values K for the Integration speed in the integrator 3.2 depends on Values for drl and n. For example, K becomes all the more smaller, the bigger drl is. drl is the change of sucked air mass, for example, at Transitional operating conditions is particularly large. To this Way, mismatches affect in Transient operating conditions only in a weakened form the adaptation.

Da die Motortemperatur sich ändert und der im Integrator gelernte Wert frak unabhängig von der Temperatur sein soll, wird die frm Abweichung von Eins mit dem Faktor ftk multipliziert.As the engine temperature changes and that in the integrator learned value frak should be independent of the temperature, is the frm deviation of one with the factor ftk multiplied.

Fig. 4 repräsentiert ein Ausführungsbeispiel der Erfindung in Form von Funktionsblöcken.Fig. 4 represents an embodiment of the invention in the form of function blocks.

Block 4.1 steht für die in der Fig. 3 dargestellte Bildung der Größen frat und frak. Zur Bildung des Fehlerverdachtes wird im Bereich der temperaturabbhängigen Gemischadaption zunächst ein Langzeitadaptionsfaktor fratia gebildet (Block 4.2). Dies ist gewissermaßen der Anteil des Kaltadaptionsfaktors frak, der immer bei kaltem Motor auftritt. Wenn sich bei der temperaturabhängigen Adaption im fehlerfreien Zustand immer ein ähnlicher Wert, bspw. ein Wert von 2,5% einstellt, zeigt dieser Wert jedenfalls keinen Fehler an. Dieser immer auftretende Wert wird im Steuergerät gespeichert.Block 4.1 stands for the formation shown in FIG the sizes frat and frak. To the formation of the error suspicion is in the range of temperature-dependent mixture adaptation first, a long-term adaptation factor fratia formed (block 4.2). This is to some extent the share of Cold adaptation factor frak, always with cold engine occurs. If the temperature-dependent adaptation in the error-free state always a similar value, for example, a Value of 2.5%, this value does not show any Error. This always occurring value is in the control unit saved.

Weiter wird zur Bildung des Fehlerverdachtes die Abweichung des aktuellen temperaturabhängigen Adaptionsfaktors frak vom Langzeitadaptionsfaktor fratia gebildet: dfrat = Betrag(frak - fratia) Furthermore, the deviation of the current temperature-dependent adaptation factor frak from the long-term adaptation factor fratia is formed to form the error suspicion: dfrat = amount (frak - fratia)

Die Differenzbildung und die Betragsbildung werden durch die Blöcke 4.3 und 4.4 dargestellt. Anschließend erfolgt ein Vergleich von dfrat mit einer Fehlerverdachtsschwelle FVLRAS (Block 4.5). Wird diese überschritten, so wird die Bedingung B-fvlra im Block 4.6 über ein Flip-Flop gesetzt. Der Fehlerverdacht entspricht einer hohen Dringlichkeit für die normale, bei warmem Motor erfolgende Adaption. Aufgrund der hohen Dringlichkeit, die sich aus dem Setzen des begründeten Fehlerverdachts im Rahmen der kurzzeitigen temperaturabhängigen Adaption ergeben hat, wird anschließend, sobald die übrigen Einschaltbedingungen für die normale Gemischadaption vorliegen, beschleunigt in den Homogenbetrieb umgeschaltet und die normale Gemischadaption aktiviert (Block 4.7).The difference formation and the amount formation are by the Blocks 4.3 and 4.4 are shown. Subsequently, a Comparison of dfrat with a suspected error threshold FVLRAS (Block 4.5). If this is exceeded, the condition becomes B-fvlra is set in block 4.6 via a flip-flop. Of the Suspected error corresponds to a high urgency for the normal, warm engine adaptation. Due to the high urgency resulting from the setting of the reasoned Error suspected in the context of the short-term temperature-dependent adaptation has been subsequently, as soon as the remaining switch-on conditions for the normal mixture adaptation, accelerated in the Homogenous mode switched and the normal mixture adaptation activated (block 4.7).

Claims (10)

  1. Method for compensating incorrect adaptations of the pilot control of a fuel metering system for an internal combustion engine which is operated in the at least two different operating modes of homogeneous operating mode and stratified operating mode,
    wherein in the homogenous operating mode mixture control and adaptation of the mixture control take place,
    and wherein switching over is carried out between the operating modes as a function of a setpoint operating mode which is determined from a plurality of operating mode requirements,
    wherein each of the operating mode requirements is assigned a priority,
    and wherein the determination of the setpoint operating mode is carried out as a function of the priorities of the operating mode requirements,
    wherein switching over to homogeneous operating mode with activation of a temperature-dependent adaptation is also briefly carried out outside the normal switch-on conditions of a range-dependent adaptation,
    and wherein a deviation of the temperature-dependent adaptation variable from its neutral value during the brief activation is evaluated as a suspected fault, and wherein, when a suspected fault is present, the engine control program increases the priority of the adaptation under normal switch-on conditions.
  2. Method according to Claim 1, characterized in that the brief mixture adaptation is activated below the minimum temperature of the range-dependent adaptation.
  3. Method according to Claim 2, characterized in that the minimum temperature of the range-dependent adaptation is greater than or equal to 70° Celsius.
  4. Method according to Claim 1 or 2, characterized in that the brief mixture adaptation is activated for a time in the range between approximately 10 and 20 seconds.
  5. Method according to Claim 1, characterized in that the physical urgency is reduced if the fault has been learnt in the normal, range-dependent mixture adaptation so that given normal urgency the range-dependent mixture adaptation is enabled by the engine control program.
  6. Method according to Claim 1, characterized in that the value of the temperature-dependent brief adaptation is retained when the car is shut down and is reset by the value learnt within the scope of the normal range-dependent mixture adaptation, during the initialization phase after the next start.
  7. Method according to one of the preceding claims, characterized in that the operating-parameter-dependent, for example range-dependent mixture adaptation has a multiplicative and/or additive effect on the metering of fuel.
  8. Method according to one of the preceding claims, characterized in that the value or the values of the range-dependent adaptation are refreshed above a temperature threshold and act on the metering of fuel independently of the temperature.
  9. Method according to one of the preceding claims, characterized in that in order to form the suspicion of a fault, the deviation of the current temperature-dependent adaptation factor from a long-term adaptation factor is formed.
  10. Electronic control device having means which are configured for carrying out at least one of the methods according to Claims 1 to 9.
EP01962668A 2000-09-01 2001-08-23 Mixture adaptation method for internal combustion engines with direct gasoline injection Expired - Lifetime EP1315894B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043093A DE10043093A1 (en) 2000-09-01 2000-09-01 Mixture adaptation method for internal combustion engines with gasoline direct injection
DE10043093 2000-09-01
PCT/DE2001/003226 WO2002018767A1 (en) 2000-09-01 2001-08-23 Mixture adaptation method for internal combustion engines with direct gasoline injection

Publications (2)

Publication Number Publication Date
EP1315894A1 EP1315894A1 (en) 2003-06-04
EP1315894B1 true EP1315894B1 (en) 2005-12-07

Family

ID=7654635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962668A Expired - Lifetime EP1315894B1 (en) 2000-09-01 2001-08-23 Mixture adaptation method for internal combustion engines with direct gasoline injection

Country Status (8)

Country Link
US (1) US6725826B2 (en)
EP (1) EP1315894B1 (en)
JP (1) JP2004507656A (en)
KR (1) KR20020068333A (en)
CN (1) CN1388858A (en)
DE (2) DE10043093A1 (en)
RU (1) RU2002113751A (en)
WO (1) WO2002018767A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052061A1 (en) 2008-10-17 2010-04-22 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Method for correction of fuel consumption signal of control of internal combustion engine of motor vehicle, involves receiving correction factor as correction value in display such that corrected fuel consumption signal is obtained

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10308650B3 (en) * 2003-02-27 2004-12-30 Siemens Ag Motor control and associated operating procedures
JP4085900B2 (en) * 2003-07-08 2008-05-14 日産自動車株式会社 Fuel injection control device for in-cylinder direct injection spark ignition engine
DE102004041217A1 (en) * 2004-08-26 2006-03-02 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE102006006552B8 (en) * 2006-02-13 2007-06-06 Siemens Ag Method and device for operating an internal combustion engine
US8116931B2 (en) * 2007-05-15 2012-02-14 GM Global Technology Operations LLC Fast fuel adjustment system diagnostic systems and methods
JP4407730B2 (en) * 2007-08-31 2010-02-03 株式会社デンソー Fuel injection control device for internal combustion engine
US8365700B2 (en) 2008-01-07 2013-02-05 Mcalister Technologies, Llc Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
US8225768B2 (en) * 2008-01-07 2012-07-24 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8074625B2 (en) * 2008-01-07 2011-12-13 Mcalister Technologies, Llc Fuel injector actuator assemblies and associated methods of use and manufacture
US8413634B2 (en) * 2008-01-07 2013-04-09 Mcalister Technologies, Llc Integrated fuel injector igniters with conductive cable assemblies
US7628137B1 (en) 2008-01-07 2009-12-08 Mcalister Roy E Multifuel storage, metering and ignition system
US8387599B2 (en) 2008-01-07 2013-03-05 Mcalister Technologies, Llc Methods and systems for reducing the formation of oxides of nitrogen during combustion in engines
US8635985B2 (en) 2008-01-07 2014-01-28 Mcalister Technologies, Llc Integrated fuel injectors and igniters and associated methods of use and manufacture
US8192852B2 (en) * 2008-01-07 2012-06-05 Mcalister Technologies, Llc Ceramic insulator and methods of use and manufacture thereof
US8561598B2 (en) * 2008-01-07 2013-10-22 Mcalister Technologies, Llc Method and system of thermochemical regeneration to provide oxygenated fuel, for example, with fuel-cooled fuel injectors
EP2470775B1 (en) 2009-08-27 2015-04-29 McAlister Technologies, LLC Shaping a fuel charge in a combustion chamber with multiple drivers and/or ionization control
AU2010328632B2 (en) 2009-12-07 2014-12-18 Mcalister Technologies, Llc An injector for introducing fuel into a combustion chamber and for introducing and igniting fuel at an interface with a combustion chamber
KR20120086375A (en) 2009-12-07 2012-08-02 맥알리스터 테크놀로지즈 엘엘씨 Adaptive control system for fuel injectors and igniters
US20110297753A1 (en) 2010-12-06 2011-12-08 Mcalister Roy E Integrated fuel injector igniters configured to inject multiple fuels and/or coolants and associated methods of use and manufacture
JP5260804B2 (en) 2010-02-13 2013-08-14 マクアリスター テクノロジーズ エルエルシー Fuel injector assembly with acoustic force modifier and related methods of use and manufacturing
CN102844540A (en) 2010-02-13 2012-12-26 麦卡利斯特技术有限责任公司 Methods and systems for adaptively cooling combustion chambers in engines
US8528519B2 (en) 2010-10-27 2013-09-10 Mcalister Technologies, Llc Integrated fuel injector igniters suitable for large engine applications and associated methods of use and manufacture
US8091528B2 (en) 2010-12-06 2012-01-10 Mcalister Technologies, Llc Integrated fuel injector igniters having force generating assemblies for injecting and igniting fuel and associated methods of use and manufacture
US8820275B2 (en) 2011-02-14 2014-09-02 Mcalister Technologies, Llc Torque multiplier engines
US8683988B2 (en) 2011-08-12 2014-04-01 Mcalister Technologies, Llc Systems and methods for improved engine cooling and energy generation
US8919377B2 (en) 2011-08-12 2014-12-30 Mcalister Technologies, Llc Acoustically actuated flow valve assembly including a plurality of reed valves
US8851047B2 (en) 2012-08-13 2014-10-07 Mcallister Technologies, Llc Injector-igniters with variable gap electrode
US9169821B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Fuel injection systems with enhanced corona burst
US9169814B2 (en) 2012-11-02 2015-10-27 Mcalister Technologies, Llc Systems, methods, and devices with enhanced lorentz thrust
US8752524B2 (en) 2012-11-02 2014-06-17 Mcalister Technologies, Llc Fuel injection systems with enhanced thrust
US9200561B2 (en) 2012-11-12 2015-12-01 Mcalister Technologies, Llc Chemical fuel conditioning and activation
US9115325B2 (en) 2012-11-12 2015-08-25 Mcalister Technologies, Llc Systems and methods for utilizing alcohol fuels
US9309846B2 (en) 2012-11-12 2016-04-12 Mcalister Technologies, Llc Motion modifiers for fuel injection systems
US20140131466A1 (en) 2012-11-12 2014-05-15 Advanced Green Innovations, LLC Hydraulic displacement amplifiers for fuel injectors
US8800527B2 (en) 2012-11-19 2014-08-12 Mcalister Technologies, Llc Method and apparatus for providing adaptive swirl injection and ignition
US9194337B2 (en) 2013-03-14 2015-11-24 Advanced Green Innovations, LLC High pressure direct injected gaseous fuel system and retrofit kit incorporating the same
US9562500B2 (en) 2013-03-15 2017-02-07 Mcalister Technologies, Llc Injector-igniter with fuel characterization
US8820293B1 (en) 2013-03-15 2014-09-02 Mcalister Technologies, Llc Injector-igniter with thermochemical regeneration
DE102014217112A1 (en) * 2014-08-28 2016-03-03 Robert Bosch Gmbh Method for adapting a common rail injection system of an internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3341015C2 (en) 1983-11-12 1987-03-26 Robert Bosch Gmbh, 7000 Stuttgart Device for a fuel metering system in an internal combustion engine
DE4423241C2 (en) * 1994-07-02 2003-04-10 Bosch Gmbh Robert Method for adjusting the composition of the operating mixture for an internal combustion engine
JP3753166B2 (en) * 1998-08-27 2006-03-08 株式会社日立製作所 Evaporative fuel processing device for internal combustion engine
DE19850586A1 (en) 1998-11-03 2000-05-04 Bosch Gmbh Robert Method for operating an internal combustion engine
DE19906378A1 (en) * 1999-02-16 2000-08-17 Bosch Gmbh Robert Method and device for operating an internal combustion engine incorporates a control device and its software with multiple functions and a scheduler to activate them in different assigned operating modes.
US6510834B1 (en) * 1999-08-31 2003-01-28 Nissan Motor Co., Ltd. Control for spark-ignited direct fuel injection internal combustion engine
DE19941528A1 (en) * 1999-09-01 2001-03-08 Bosch Gmbh Robert Method for operating an internal combustion engine
DE10043072A1 (en) * 2000-09-01 2002-03-14 Bosch Gmbh Robert Mixture adaptation method for internal combustion engines with gasoline direct injection
DE10046446A1 (en) * 2000-09-18 2002-03-28 Daimler Chrysler Ag Regulating of IC engine regarding engagements in at least one adjustable variable of IC engine so that desired torque or work to be applied at crankshaft of IC engine is determined

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052061A1 (en) 2008-10-17 2010-04-22 Dr.Ing.H.C.F.Porsche Aktiengesellschaft Method for correction of fuel consumption signal of control of internal combustion engine of motor vehicle, involves receiving correction factor as correction value in display such that corrected fuel consumption signal is obtained

Also Published As

Publication number Publication date
WO2002018767A1 (en) 2002-03-07
RU2002113751A (en) 2004-03-10
US20030106522A1 (en) 2003-06-12
DE50108335D1 (en) 2006-01-12
JP2004507656A (en) 2004-03-11
KR20020068333A (en) 2002-08-27
US6725826B2 (en) 2004-04-27
DE10043093A1 (en) 2002-03-14
CN1388858A (en) 2003-01-01
EP1315894A1 (en) 2003-06-04

Similar Documents

Publication Publication Date Title
EP1315894B1 (en) Mixture adaptation method for internal combustion engines with direct gasoline injection
EP1317617B1 (en) Method and electronic control device for diagnosing the mixture production in an internal combustion engine
EP1218628B1 (en) Method for operating an internal combustion engine
DE102014202101B4 (en) MITIGATION OF ERROR TREND TO DEGRADATE AIR-FUEL RATIO SENSORS
EP1721070A1 (en) Method for operating an internal combustion engine
DE102006040743A1 (en) Method for operating an internal combustion engine
DE4423241C2 (en) Method for adjusting the composition of the operating mixture for an internal combustion engine
EP1315895B1 (en) Method for adapting mixture control in internal combustion engines with direct fuel injection
DE102020131252A1 (en) SYSTEMS AND PROCEDURES FOR DETERMINING AIR AND FUEL DISPOSAL IN AN ANTI-CHAMBER
EP1179130B1 (en) Method for operating a multi-cylinder internal combustion engine
DE19758725B4 (en) Method for operating an internal combustion engine, in particular of a motor vehicle
DE102013225253B4 (en) A fuel injection quantity control apparatus for an internal combustion engine and a fuel injection amount control method for an internal combustion engine
DE102009028638A1 (en) Method for compensating gas exchange losses between combustion chambers of a gasoline engine
DE102007042229A1 (en) Method for determining the composition of a fuel mixture
EP1315892B1 (en) Mixture adaptation method
DE102007060224A1 (en) Method for determining the composition of a fuel mixture for operating a combustion engine comprises using the maximum torque of the combustion engine at a known air mass in the combustion chamber
EP1382822B1 (en) Process for adapting a fuel-air mixture in a combustion engine and electronic control device
DE102015220022A1 (en) Method and device for diagnosing a combustion chamber pressure sensor
DE102021114990B4 (en) Method for operating an internal combustion engine
EP1046803B1 (en) Method for the operation of an internal-combustion engine
DE102007062171A1 (en) Internal-combustion engine operating method for motor vehicle, involves obtaining desired values for secondary control element, and controlling secondary control element based on obtained desired values
DE102023101347A1 (en) METHODS AND SYSTEMS FOR DIAGNOSTING NON-DEACTIVATED VALVES FROM DEACTIVATED ENGINE CYLINDERS
DE102015223217A1 (en) Method for operating an internal combustion engine
WO2006002959A1 (en) Method for controlling an internal combustion engine with direct injection
DE102005017130A1 (en) Control method for an internal combustion engine uses an adjusting element to apportion an amount of fuel by relying on a triggering period

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030401

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR SE

REF Corresponds to:

Ref document number: 50108335

Country of ref document: DE

Date of ref document: 20060112

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060908

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091026

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50108335

Country of ref document: DE

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301