[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1398592B1 - Flachrohr-Wärmeübertrager - Google Patents

Flachrohr-Wärmeübertrager Download PDF

Info

Publication number
EP1398592B1
EP1398592B1 EP03020179.2A EP03020179A EP1398592B1 EP 1398592 B1 EP1398592 B1 EP 1398592B1 EP 03020179 A EP03020179 A EP 03020179A EP 1398592 B1 EP1398592 B1 EP 1398592B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
exchanger according
rib
medium
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03020179.2A
Other languages
English (en)
French (fr)
Other versions
EP1398592A1 (de
Inventor
Rainer Dr.-Ing Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1398592A1 publication Critical patent/EP1398592A1/de
Application granted granted Critical
Publication of EP1398592B1 publication Critical patent/EP1398592B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Definitions

  • the invention relates to a heat exchanger with pipes and ribs according to the preamble of claim 1.
  • JP 8-271169 discloses such a heat exchanger.
  • heat exchangers are on the one hand so-called mechanically joined heat exchangers, d. H. with round tubes and flat ribs, which are penetrated by the round tubes and with these over ribbed passages in heat-conducting and mechanical connection.
  • soldered heat exchangers consist of a heat exchanger network with flat tubes and arranged between them corrugated fins, which are soldered to the flat tubes at their wave crests.
  • a liquid medium (coolant) flows through the round tubes or flat tubes, and a gaseous medium (air) flows through the flat ribs or corrugated ribs, ie. H.
  • a liquid medium coolant
  • a gaseous medium air
  • the corrugated fins are approximately zigzag-shaped, ie they form with the walls of the flat tubes approximately triangular flow channels, in which therefore two rib surfaces are arranged inclined to each other (V-type).
  • the newly formed rib surfaces are occupied by so-called gills, ie with slots through which the air is deflected from one flow channel into the adjacent one.
  • This rib configuration serves on the one hand to increase the heat transfer surface on the air side and on the other hand improving the heat transfer by increasing the turbulence.
  • boundary layers are formed, which are broken up again by the gills.
  • a modified ribbed form the so-called parallel rib or U-type, was replaced by the US-A 5,271,478 known, and also for a soldered flat tube heat exchanger.
  • the ribbed surfaces are arranged parallel to one another here, ie the ribbed surfaces and the tube walls form approximately rectangular flow channels for the air.
  • the rib areas are occupied by gills, with the gill angle offering a further possibility for influencing the boundary layers and the turbulence.
  • a problem with the known abovementioned rib configurations is that the gills can not be cut over the full width of the ribbed surfaces, because the ribbed surfaces in the area close to the wall pass into a radius. In the area of this rib bending radius, therefore, no turbulence-increasing means are present, which in this area results in a relatively thick boundary layer, ie. H. laminar flow with poor heat transfer leads. Partly occur in the immediate pipe wall area, the highest flow velocities of the air, whereby the heating of the air and thus the heat dissipation in these areas is the worst. Even with mechanically joined heat exchangers similar problems exist in the near-wall region of the round tubes between the flat ribs.
  • the solution to this problem arises from the features of claim 1.
  • the invention is based on the recognition that the air flow or the heat transfer in the areas of the pipe rib contact point can still be improved - therefore according to the invention there are additional interference elements provided in a different geometric configuration, which act essentially as a vortex generator and thus have a turbulence of the flow result.
  • the boundary layers are also broken or disturbed in the region of the rib close to the tube wall.
  • the interference elements according to the invention can in principle be provided in the above-mentioned rib shapes, ie in flat ribs and corrugated ribs, the latter with inclined and parallel rib surfaces, however, there is an advantage for the parallel rib, because there is a symmetrical flow in the flow channel and in the "wave trough" , That is, the bent portion of the rib more space for the arrangement of the interfering elements is present.
  • the curved rib portion has a flat central portion.
  • the rib base is slightly widened and created the necessary space for the arrangement of the interfering elements.
  • interfering elements themselves can have a wide variety of embodiments, with an expression of the ribbed sheet in the form of a round or elongated nub or in the form of a truncated cone or a conical tip are advantageous embodiments that can be relatively easily stamped in the conventional production of the rib.
  • a further advantageous embodiment of the ribbed sheet partially cut or punched out and bent-surface elements, eg. B. in the form of a ramp which forms a trailing edge for the air flow and thus causes turbulence.
  • flaps can be bent out of the ribbed plate and placed parallel or obliquely in the air flow become. The angle of attack of the lobes or flags also results in a turbulence.
  • the interference elements develop their maximum effect when they are within predetermined dimensions, which also result from the dependent claims.
  • the upper limit for the height of the interfering elements results from the fact that they do not protrude into the region of the gill flow and also must not significantly increase the pressure drop of the air flow.
  • similar interference elements can be arranged in or on the pipe wall between two wave crests, z. B. by impressing the pipe wall inwards, d. H. to the liquid side.
  • An expression of the pipe wall to the air side is possible, for.
  • winglets d. H. V-shaped forms.
  • Fig. 1 shows a corrugated fin 1 only partially shown in cross section, arranged between two flat tubes 2, 3, which are only partially shown as pipe wall pieces.
  • the corrugated fin 1 and the flat tubes 2, 3 are parts of a heat exchanger network, not shown, which is part of a heat exchanger in a known type.
  • heat exchangers can be, for example, coolant radiators for cooling an internal combustion engine of a motor vehicle or else refrigerant condensers as part of an automotive air conditioning system.
  • Both heat exchangers have in common that a liquid and / or vapor medium flows through the tubes, while the outside of the tubes, whose surface is enlarged by the corrugated fins, is exposed to ambient air. The air is thereby promoted by back pressure or by a blower.
  • the corrugated fin 1 has two mutually inclined, ie an acute angle with each other forming rib surfaces 4, 5, which are connected to each other via a bend piece 6, the so-called wave crest.
  • the wave crest 6 is soldered to the pipe wall 2.
  • the rib surfaces 4, 5 have so-called gills 7, 8, which in each case extend to the beginning of the elbow 6, ie, to a distance a to the pipe wall 2, 3.
  • the rib surfaces 4, 5 form with the pipe wall 3 is an approximately triangular flow channel 9.
  • the mean distance of the rib surfaces 4, 5 is measured in a median plane m and is denoted by t.
  • the corrugated fin 1 extends to the right and left in analog training and with the same pitch t.
  • a recess 11 is formed in dashed lines in the pipe wall 3, which is to act as a disturbance element or vortex generator for the air flow in this near-wall area.
  • a disruptive element which in principle also in the opposite direction, d. H. can be formed into the flow channel 9, is intended as an additional option to the rib-side interfering element 10.
  • this simultaneously acts as a disruptive element on the inside of the tube wall for the coolant or refrigerant flowing there.
  • Fig. 2 shows a different rib shape, namely a so-called parallel rib 12 with parallel to each other or U-shaped rib surfaces 13, 14 which are interconnected via a bend piece 15.
  • the two rib surfaces 14, 15 also have known gills 16, 17, which have a length l and thus do not extend over the entire channel cross-section, but in each case have a distance a from the pipe walls 18.
  • the elbow 15 is composed of three sections, namely two outer approximately circularly curved portions 15a, 15b and a middle relatively flat portion 15c together.
  • the rib surfaces 13, 14 in conjunction with the elbow 15 and the tube wall 19 thus form an approximately rectangular flow channel 20 with a constant rib spacing or a rib pitch t.
  • a knob-shaped interference element 21 is arranged, which is formed from the rib material in the direction of the flow channel 20.
  • the contour of this knob-shaped interference element 21 shows a view in the direction A: the shape 21 has an approximately oval contour with a longitudinal extent K and a width B.
  • These interference elements 21 are - as also apparent from the following representations - aligned in the air flow direction one behind the other, so that in these areas the boundary layer is disturbed and a turbulence is generated.
  • a turbulent flow is generated.
  • Fig. 3 shows a parallel rib 22 of the same configuration as the parallel rib 12 in FIG Fig. 2 with the difference that instead of the knob-like expression 21 here a metal strip in the form of a flag 23 is provided as a disruptive element.
  • This flag 23 extends with a height H, which corresponds approximately to the distance a, in the air flow channel, ie until the beginning of the gills.
  • Fig. 4 shows a longitudinal section through a rib or air flow channel with a view of a rib surface 30 with gills 31.
  • the rib 30 is soldered with its upper corrugation 30 a with a tube wall 32 of a not fully illustrated flat tube, and a lower crest 30 b is connected to a tube wall 33 a soldered to adjacent flat tube.
  • interference elements 34 are arranged, which have approximately the shape of a conical tip and are embossed from the material of the rib 30.
  • the air flow is thus disturbed in the lower region 30b of the rib 30 by the interference elements 34, which are arranged one behind the other and project with their tips into the air flow. There are formed behind each interfering element 34 vortex, which improve the heat transfer in this area.
  • the interference elements 34 thus act as a vortex generator.
  • a partial section in the plane IV-IV shows the profile of the gills 31, which - in the direction of employment - have a Kiementiefe T.
  • Fig. 5 shows the same representation as in Fig. 4 However, with another embodiment of interference elements 35 which are round or oval and also embossed from the fin material.
  • Fig. 6 shows a similar representation as 4 and 5
  • the interference elements 36 are formed as a ramp 37, which are cut out of a rib 38 and bent into the air flow L.
  • the ramp 37 is characterized by a height H and a length K.
  • the rib 38 is soldered in this area with a tube wall 39.
  • the ramp 37 has a tear-off edge 40, at which air turbulence form.
  • Fig. 7 shows a further embodiment of interference elements 41, the flap-shaped and as a detail Y in Fig. 9 are shown.
  • the interference element 41 is formed as a rectangular flap 42, which is cut out of a ribbed bottom 43 and bent into the air flow L.
  • the tab 42 which has a height H and a length K, is in this embodiment with its surfaces parallel to the air flow L and thus acts with its leading edge 43 as a "boundary layer breaker".
  • Fig. 10 shows an enlarged sectional view of the knob-shaped expression 21 in Fig. 2 ,
  • the rib 15 is soldered via Lötmenisken 45 with the tube wall 18.
  • the central region 15c has a knob-like expression 21, which protrudes with a height H in the air flow channel.
  • the production of this expression 21 is possible without great effort when rolling the ribs by appropriate embossing nubs are provided on the rollers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung betrifft einen Wärmeübertrager mit Rohren und Rippen nach dem Oberbegriff des Patentanspruches 1. JP 8-271169 offenbart einen derartigen Wärmeübertrager.
  • Bekannte Wärmeübertrager sind einerseits so genannte mechanisch gefügte Wärmeüberträger, d. h. mit Rundrohren und Flachrippen, die von den Rundrohren durchsetzt werden und mit diesen über Rippendurchzüge in wärmeleitender und mechanischer Verbindung stehen. Andererseits sind gelötete Wärmeübertrager bekannt, die aus einem Wärmeübertragernetz mit Flachrohren und zwischen diesen angeordneten Wellrippen bestehen, die mit den Flachrohren an ihren Wellenkämmen verlötet sind. Durch die Rundrohre bzw. Flachrohre strömt ein flüssiges Medium (Kühlmittel), und über die Flachrippen bzw. Wellrippen strömt ein gasförmiges Medium (Luft), d. h. es stehen stark unterschiedliche Wärmekapazitätsströme im Wärmeaustausch. Mann muss daher auf der Luftseite zusätzliche Maßnahmen ergreifen, um dort die Wärmeübertragung zu verbessern.
  • Nach der US-A 3.250.325 sind die Wellrippen etwa zickzackförmig ausgebildet, d. h. sie bilden mit den Wandungen der Flachrohre etwa dreieckförmige Strömungskanäle, bei denen also jeweils zwei Rippenflächen zueinander geneigt angeordnet sind (V-Typ). Die eben ausgebildeten Rippenflächen sind mit so genannten Kiemen besetzt, d. h. mit Schlitzen, durch welche die Luft von einem Strömungskanal in den benachbarten umgelenkt wird. Diese Rippenkonfiguration dient einerseits der Vergrößerung der Wärmeübertragungsfläche auf der Luftseite und andererseits der Verbesserung des Wärmeübergangs durch Erhöhung der Turbulenz. Bei der Strömung der Luft über die Rippen bilden sich Grenzschichten aus, die durch die Kiemen jeweils wieder neu aufgebrochen werden.
  • Eine abgewandelte Rippenform, die so genannte Parallelrippe oder U-Typ, wurde durch die US-A 5.271,478 bekannt, und zwar ebenfalls für einen gelöteten Flachrohr-Wärmeübertrager. Im Unterschied zu der oben beschriebenen Rippe sind die Rippenflächen hier parallel zueinander angeordnet, d. h. die Rippenflächen und die Rohrwandungen bilden etwa rechteckförmige Strömungskanäle für die Luft. Auch hier sind die Rippenflächen mit Kiemen besetzt, wobei der Kiemenwinkel eine weitere Möglichkeit zur Beeinflussung der Grenzschichten und der Turbulenz bietet.
  • Ein Problem bei den bekannten vorgenannten Rippenkonfigurationen besteht darin, dass die Kiemen nicht über die volle Breite der Rippenflächen eingeschnitten werden können, weil die Rippenflächen im wandnahen Bereich in einen Radius übergehen. Im Bereich dieses Rippenbiegradius' sind also keine turbulenzerhöhenden Mittel vorhanden, was in diesem Bereich zu einer relativ dicken Grenzschicht, d. h. laminaren Strömung mit schlechtem Wärmeübergang führt. Teilweise treten im unmittelbaren Rohrwandbereich die höchsten Strömungsgeschwindigkeiten der Luft auf, wodurch die Aufheizung der Luft und damit die Wärmeabfuhr in diesen Bereichen am schlechtesten ist. Auch bei mechanisch gefügten Wärmeübertragern bestehen im wandnahen Bereich der Rundrohre zwischen den Flachrippen ähnliche Probleme.
  • Es ist Aufgabe der vorliegenden Erfindung, die möglichen Potenziale einer verbesserten Wärmeübertragung für Wärmeübertrager der eingangs genannten Art auszuschöpfen, d. h. den luftseitigen Wärmeübergang zu verbessern, und zwar möglichst ohne zusätzliche Kosten.
  • Die Lösung dieser Aufgabe ergibt sich aus den Merkmalen des Patentanspruches 1. Die Erfindung geht von der Erkenntnis aus, dass die Luftströmung bzw. der Wärmeübergang in den Bereichen der Rohrrippenkontaktstelle noch verbessert werden kann - daher sind erfindungsgemäß dort zusätzliche Störelemente in unterschiedlicher geometrischer Ausgestaltung vorgesehen, die im Wesentlichen als Wirbelerzeuger wirken und damit eine Verwirbelung der Strömung zur Folge haben. Durch diese erfindungsgemäße Maßnahme werden auch im rohrwandnahen Bereich der Rippe die Grenzschichten aufgebrochen bzw. gestört. Es kommt somit zu einer verbesserten Wärmeübertragung, ohne dass die Rippenkonfiguration erheblich geändert werden müsste, d. h. ohne nennenswerte Kostensteigerung. Die erfindungsgemäßen Störelemente können grundsätzlich bei den oben erwähnten Rippenformen, d. h. bei Flachrippen und Wellrippen, letztere mit geneigten und parallelen Rippenflächen, vorgesehen werden, allerdings ergibt sich ein Vorteil für die Parallelrippe, weil sich dort im Strömungskanal eine symmetrische Strömung ergibt und im "Wellental", d. h. dem gebogenen Bereich der Rippe mehr Raum für die Anordnung der Störelemente vorhanden ist.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen.
  • Für die Parallelrippe ist es vorteilhaft, wenn der gebogene Rippenabschnitt einen flachen mittleren Abschnitt aufweist. Hierdurch wird die Rippenbasis etwas verbreitert und der notwendige Platz für die Anordnung der Störelemente geschaffen.
  • Die Störelemente selbst können die verschiedensten Ausführungsformen aufweisen, wobei eine Ausprägung aus dem Rippenblech in Form einer runden oder länglichen Noppe oder in Form eines Kegelstumpfes oder einer Kegelspitze vorteilhafte Ausbildungen sind, die sich relativ einfach bei der konventionellen Herstellung der Rippe prägen lassen.
  • Eine weitere vorteilhafte Ausführungsform sind aus dem Rippenblech partiell ausgeschnittene bzw. ausgestanzte und herausgebogene Flächenelemente, z. B. in Form einer Rampe, die eine Abrisskante für die Luftströmung bildet und somit eine Verwirbelung bewirkt. Ebenso können Lappen aus dem Rippenblech herausgebogen und parallel oder schräg in die Luftströmung gestellt werden. Durch den Anstellwinkel der Lappen oder Fahnen ergibt sich ebenfalls eine Verwirbelung. Dadurch, dass jeweils eine Vielzahl von Störelementen hintereinander und im Abstand angeordnet sind, wird die Grenzschichtströmung immer wieder gestört und somit der Verdickung der Grenzschicht entgegengewirkt.
  • Nach einer vorteilhaften Weiterbildung der Erfindung entfalten die Störelemente ihre maximale Wirkung, wenn sie innerhalb vorgegebener Abmessungen liegen, die sich ebenfalls aus den Unteransprüchen ergeben. Somit ergibt sich die Obergrenze für die Höhe der Störelemente dadurch, dass sie nicht in den Bereich der Kiemenströmung hineinragen und auch den Druckverlust der Luftströmung nicht wesentlich erhöhen dürfen.
  • Nach einer vorteilhaften Weiterbildung der Erfindung können ähnliche Störelemente in oder an der Rohrwand zwischen zwei Wellenbergen angeordnet werden, z. B. durch Einprägung der Rohrwand nach innen, d. h. zur Flüssigkeitsseite. Auch eine Ausprägung der Rohrwand zur Luftseite hin ist möglich, z. B. in Form von so genannten Winglets, d. h. V-förmig ausgebildeten Ausprägungen.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im Folgenden näher beschreiben. Es zeigen
  • Fig. 1
    eine Wellrippe mit V-förmiger Anordnung (V-Typ),
    Fig. 2
    eine Wellrippe in U-förmiger Anordnung (U-Typ) mit ausgeprägtem Störelement,
    Fig. 3
    eine Wellrippe (U-Typ) mit ausgeschnittenem Störelement,
    Fig. 4
    einen Längsschnitt durch einen Rippenkanal mit spitzen Störelementen,
    Fig. 5
    einen Längsschnitt durch einen Rippenkanal mit noppenförmigen Störelementen,
    Fig. 6
    einen Längsschnitt durch einen Rippenkanal mit rampenförmigen Störelementen,
    Fig. 7
    einen Längsschnitt durch einen Rippenkanal mit lappenförmigen Störelementen,
    Fig. 8
    eine Einzelheit X aus Fig. 6,
    Fig. 9
    eine Einzelheit Y aus Fig. 7 und
    Fig. 10
    eine Teilschnittdarstellung der noppenartigen Ausprägung gemäß Fig. 2.
  • Fig. 1 zeigt eine nur teilweise dargestellte Wellrippe 1 im Querschnitt, angeordnet zwischen zwei Flachrohren 2, 3, die nur teilweise als Rohrwandstücke dargestellt sind. Die Wellrippe 1 sowie die Flachrohre 2, 3 sind Teile eines nicht dargestellten Wärmeübertragernetzes, welches Bestandteil eines Wärmeübertragers in bekannter Bauart ist. Solche Wärmeübertrager können beispielsweise Kühlmittelkühler für die Kühlung eines Verbrennungsmotors eines Kraftfahrzeuges sein oder auch Kältemittelkondensatoren als Teil einer Kraftfahrzeugklimaanlage. Beiden Wärmeübertragern ist gemein, dass durch die Rohre ein flüssiges und/oder dampfförmiges Medium fließt, während die Außenseite der Rohre, deren Fläche durch die Wellrippen vergrößert wird, von Umgebungsluft beaufschlagt wird. Die Luft wird dabei durch Staudruck oder durch ein Gebläse gefördert.
  • Die Wellrippe 1 weist zwei geneigt zueinander angeordnete, d. h. einen spitzen Winkel miteinander bildende Rippenflächen 4, 5 auf, die über ein Bogenstück 6, den so genannten Wellenkamm miteinander verbunden sind. Der Wellenkamm 6 ist mit der Rohrwand 2 verlötet. Die Rippenflächen 4, 5 weisen so genannte Kiemen 7, 8 auf, die jeweils bis zum Beginn des Bogenstückes 6 reichen, d. h. bis auf einen Abstand a zur Rohrwandung 2, 3. Die Rippenflächen 4, 5 bilden mit der Rohrwand 3 einen etwa dreieckförmigen Strömungskanal 9. Der mittlere Abstand der Rippenflächen 4, 5 wird in einer Mittelebene m gemessen und ist mit t bezeichnet. Die Wellrippe 1 erstreckt sich nach rechts und links in analoger Ausbildung und mit derselben Teilung t. Aufgrund des etwa dreieckförmigen Strömungsquerschnittes für die Luft ergibt sich eine ungleichmäßige Geschwindigkeit- und Temperaturverteilung über den Strömungskanal 9. So stellt sich z. B. im unteren Bereich des größten Querschnitts die höchste Strömungsgeschwindigkeit ein. Im oberen Bereich des engsten Querschnittes, d. h. im Bereich des Bogenstückes 6 bilden sich bei konventioneller Ausbildung der Wellrippe relativ dicke Grenzschichten mit laminarer Strömung aus. Um dieses zu vermeiden bzw. um eine solche Grenzschicht aufzubrechen ist in diesem Bereich ein Störelement 10 angeordnet, das als Lappen aus dem Rippenmaterial herausgeschnitten und umgebogen ist. In Richtung senkrecht zur Zeichenebene, d. h. in Luftströmungsrichtung sind mehrere solcher Störelemente 10 im Bereich des Bogenstückes 6 angeordnet.
  • Auf der gegenüber liegenden Seite, d. h. im Bereich der Rohrwand 3 ist gestrichelt eine Vertiefung 11 in die Rohrwand 3 eingeformt, die als Störelement oder Wirbelerzeuger für die Luftströmung in diesem wandnahen Bereich wirken soll. Ein solches Störelement, das prinzipiell auch in die entgegengesetzte Richtung, d. h. in den Strömungskanal 9 hinein ausgeformt werden kann, ist als zusätzliche Option zu dem rippenseitigen Störelement 10 gedacht. Bei der gestrichelten Ausbildung der Einprägung 11 wirkt diese gleichzeitig als Störelement auf der Innenseite der Rohrwand für das dort strömende Kühlmittel bzw. Kältemittel.
  • Fig. 2 zeigt eine andere Rippenform, nämlich eine so genannte Parallelrippe 12 mit parallel zueinander oder U-förmig angeordneten Rippenflächen 13, 14, welche über ein Bogenstück 15 miteinander verbunden sind. Die beiden Rippenflächen 14, 15 weisen ebenfalls an sich bekannte Kiemen 16, 17 auf, die eine Länge l aufweisen und sich somit nicht über den gesamten Kanalquerschnitt erstrecken, sondern jeweils einen Abstand a von den Rohrwandungen 18. 19 aufweisen. Das Bogenstück 15 setzt sich aus drei Abschnitten, nämlich zwei äußeren etwa kreisförmig gebogenen Abschnitten 15a, 15b und einem mittleren relativ flachen Abschnitt 15c zusammen. Die Rippenflächen 13, 14 in Verbindung mit dem Bogenstück 15 und der Rohrwand 19 bilden somit einen etwa rechteckförmigen Strömungskanal 20 mit einem konstanten Rippenabstand bzw. einer Rippenteilung t. Im Bereich des flachen Bogenstückes 15c ist ein noppenförmiges Störelement 21 angeordnet, das aus dem Rippenmaterial in Richtung des Strömungskanals 20 ausgeprägt ist. Die Kontur dieses noppenförmigen Störelements 21 zeigt eine Ansicht in Richtung A: die Ausprägung 21 weist eine etwa ovale Kontur auf mit einer Längserstreckung K und einer Breite B. Diese Störelemente 21 sind - wie auch aus den folgenden Darstellungen hervorgeht - in Luftströmungsrichtung fluchtend hintereinander angeordnet, so dass in diesen Bereichen die Grenzschicht gestört und eine Verwirbelung erzeugt wird. Damit wird in diesem wandnahen Bereich (mit dem Abstand a), wo die Luftströmung nicht durch die Kiemen 16, 17 beeinflusst wird, eine turbulente Strömung erzeugt.
  • Fig. 3 zeigt eine Parallelrippe 22 der gleichen Konfiguration wie die Parallelrippe 12 in Fig. 2 mit dem Unterschied, dass statt der noppenartigen Ausprägung 21 hier ein Blechstreifen in Form einer Fahne 23 als Störelement vorgesehen ist. Diese Fahne 23 erstreckt sich mit einer Höhe H, die ungefähr dem Abstand a entspricht, in den Luftströmungskanal, d. h. bis zum Beginn der Kiemen.
  • Fig. 4 zeigt einen Längsschnitt durch einen Rippen bzw. Luftströmungskanal mit Blick auf eine Rippenfläche 30 mit Kiemen 31. Die Rippe 30 ist mit ihrem oberen Wellenberg 30a mit einer Rohrwand 32 eines nicht vollständig dargestellten Flachrohres verlötet, und ein unterer Wellenberg 30b ist mit einer Rohrwand 33 eines benachbarten Flachrohres verlötet. Auf dem Boden bzw. im Wellental 30b der Rippe 30 sind Störelemente 34 angeordnet, die etwa die Form einer Kegelspitze aufweisen und aus dem Material der Rippe 30 herausgeprägt sind. Die Luftströmung, deren Richtung durch einen Pfeil L gekennzeichnet ist, wird somit im unteren Bereich 30b der Rippe 30 durch die hintereinander angeordneten, mit ihren Spitzen in den Luftstrom ragenden Störelementen 34 gestört. Es bilden sich hinter jedem Störelement 34 Wirbel aus, die den Wärmeübergang in diesem Bereich verbessern. Die Störelemente 34 wirken also als Wirbelerzeuger.
  • Ein Teilschnitt in der Ebene IV-IV zeigt das Profil der Kiemen 31, die - in Richtung der Anstellung - eine Kiementiefe T aufweisen.
  • Fig. 5 zeigt die gleiche Darstellung wie in Fig. 4, allerdings mit einer anderen Ausführungsform von Störelementen 35, die rund oder oval ausgebildet und ebenfalls aus dem Rippenmaterial herausgeprägt sind.
  • Fig. 6 zeigt eine ähnliche Darstellung wie Fig. 4 und 5, allerdings mit einer anderen Ausführungsform von Störelementen 36, die rampenförmig ausgebildet sind und als Einzelheit X in Fig. 8 dargestellt sind. Die Störelemente 36 sind als Rampe 37 ausgebildet, die aus einer Rippe 38 ausgeschnitten und in den Luftstrom L hineingebogen sind. Die Rampe 37 ist durch eine Höhe H und eine Länge K gekennzeichnet. Die Rippe 38 ist in diesem Bereich mit einer Rohrwand 39 verlötet. Die Rampe 37 weist eine Abrisskante 40 auf, an welcher sich Luftwirbel ausbilden.
  • Fig. 7 zeigt eine weitere Ausführungsform von Störelementen 41, die lappenförmig ausgebildet und als Einzelheit Y in Fig. 9 dargestellt sind. Das Störelement 41 ist als rechteckförmiger Lappen 42 ausgebildet, der aus einem Rippenboden 43 ausgeschnitten und in den Luftstrom L hineingebogen ist. Der Lappen 42, der eine Höhe H und eine Länge K aufweist, steht bei diesem Ausführungsbeispiel mit seinen Flächen parallel zum Luftstrom L und wirkt somit mit seiner Anströmkante 43 als "Grenzschichtbrecher". Es ist jedoch auch möglich, einen solchen Lappen schräg, d. h. mit einem Anstellwinkel zur Luftströmung L zu stellen, womit sich zusätzliche Verwirbelungseffekte ergeben.
  • Fig. 10 zeigt eine vergrößerte Schnittdarstellung der noppenförmigen Ausprägung 21 in Fig. 2. Die Rippe 15 ist über Lötmenisken 45 mit der Rohrwand 18 verlötet. Der mittlere Bereich 15c weist eine noppenartige Ausprägung 21 auf, die mit einer Höhe H in den Luftströmungskanal hineinragt. Die Herstellung dieser Ausprägung 21 ist beim Walzen der Rippen ohne großen Aufwand möglich, indem entsprechende Prägenoppen auf den Walzen vorgesehen werden.

Claims (16)

  1. Wärmeübertrager mit Flachrohren und Wellrippen, wobei die Flachrohre von einem ersten Medium durchströmbar und die Wellrippen von einem zweiten Medium umströmbar sind und mit Kiemen besetzte Rippenflächen aufweisen, wobei die Flachrohre von Wellenkämmen der Wellrippen berührt werden, wobei im Bereich einer Rohrrippenkontaktstelle zumindest ein Störelement für die Strömung des zweiten Mediums vorgesehen ist, dadurch gekennzeichnet, dass zumindest ein Störelement eine Höhe H senkrecht zu einer Hauptströmungsrichtung des zweiten Mediums und die Kiemen einen Abstand a von der Rohrrippenkontaktstelle aufweisen, wobei folgende Beziehung gilt: 0,1 a ≤ H ≤ 1,0 a.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass die Flachrohre und die Wellrippen miteinander verlötet sind.
  3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Wellrippen gegeneinander geneigte Rippenflächen aufweisen.
  4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Welirippen zueinander parallele Rippenflächen aufweisen.
  5. Wärmeübertrager nach Anspruch 4, dadurch gekennzeichnet, dass die Wellenkämme jeweils drei Abschnitte aufweisen, nämlich zwei äußere Abschnitte mit relativ großer Krümmung und einen mittleren Abschnitt mit kleinerer oder ohne Krümmung.
  6. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich eines Wellenkammes mehrere Störelemente für die Strömung des zweiten Mediums vorgesehen sind.
  7. Wärmeübertrager nach Anspruch 6, dadurch gekennzeichnet, dass mehrere Störelemente eines Wellenkammes in Hauptströmungsrichtung des zweiten Mediums fluchtend angeordnet sind.
  8. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Störelement als noppenartige Ausprägung aus dem Rippenmaterial ausgebildet ist.
  9. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Störelement als Lappen ausgebildet ist, wobei der Lappen insbesondere aus dem Rippenmaterial gestanzt ist.
  10. Wärmeübertrager nach Anspruch 9, dadurch gekennzeichnet, dass der Lappen gegenüber einer Hauptströmungsrichtung des zweiten Mediums angestellt ist.
  11. Wärmeübertrager nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Lappen als Rampe ausgebildet ist.
  12. Wärmeübertrager nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Lappen als Fahne ausgebildet ist.
  13. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Störelement eine Länge K und die Kiemen eine Tiefe T aufweisen, wobei folgende Beziehung gilt: 0,5 T ≤ K ≤ 2,0 T.
  14. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Störelement eine Breite B und die zugehörige Rohrrippenkontaktstelle einen Abstand t zu einer benachbarten Rohrrippenkontaktstelle aufweist, wobei folgende Beziehung gilt: 0,1 t ≤ B ≤ 0,5 t.
  15. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Flachrohr zwischen zwei Wellenkämmen einer Wellrippe zumindest ein zweites Störelement für die Strömung des zweiten Mediums aufweist.
  16. Wärmeübertrager nach Anspruch 15, dadurch gekennzeichnet, dass zumindest ein zweites Störelement als Ausprägung aus einer Rohrwand ausgebildet ist.
EP03020179.2A 2002-09-10 2003-09-05 Flachrohr-Wärmeübertrager Expired - Lifetime EP1398592B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2002142188 DE10242188A1 (de) 2002-09-10 2002-09-10 Flachrohr-Wärmeübertrager
DE10242188 2002-09-10

Publications (2)

Publication Number Publication Date
EP1398592A1 EP1398592A1 (de) 2004-03-17
EP1398592B1 true EP1398592B1 (de) 2015-07-22

Family

ID=31724654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03020179.2A Expired - Lifetime EP1398592B1 (de) 2002-09-10 2003-09-05 Flachrohr-Wärmeübertrager

Country Status (2)

Country Link
EP (1) EP1398592B1 (de)
DE (1) DE10242188A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006000634A1 (de) * 2006-01-03 2007-07-05 Modine Manufacturing Co., Racine Wellrippen für Wärmetauscher
DE102008007608A1 (de) 2008-02-04 2009-08-06 Behr Gmbh & Co. Kg Wärmeübertrager mit Rohren
DE102008045845A1 (de) 2008-09-05 2010-03-11 Behr Gmbh & Co. Kg Strömungsleitelement und Wärmetauscher
DE102016213197A1 (de) 2016-07-19 2018-01-25 Mahle International Gmbh Wellrippe eines Wärmeübertragers und Wärmeübertrager
DE102019218266A1 (de) * 2019-11-26 2021-05-27 Mahle International Gmbh Wellrippenstruktur
DE102020100105A1 (de) 2020-01-06 2021-07-08 Volkswagen Aktiengesellschaft Wärmeübertrager

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3250325A (en) * 1963-02-19 1966-05-10 Ford Motor Co Heat exchange device
US4311193A (en) * 1980-07-14 1982-01-19 Modine Manufacturing Company Serpentine fin heat exchanger
JP2949963B2 (ja) * 1991-10-18 1999-09-20 株式会社デンソー コルゲートルーバフィン型熱交換器
JP3622297B2 (ja) * 1995-02-03 2005-02-23 株式会社デンソー 熱交換器
WO2000063631A2 (en) * 1999-04-19 2000-10-26 Peerless Of America, Inc. Corrugated fin and method of making
US6598669B2 (en) * 1999-04-19 2003-07-29 Peerless Of America Fin array for heat transfer assemblies and method of making same

Also Published As

Publication number Publication date
DE10242188A1 (de) 2004-03-18
EP1398592A1 (de) 2004-03-17

Similar Documents

Publication Publication Date Title
DE60219538T2 (de) Wärmetauscher
EP1527311B1 (de) Flachrohr-wärmeübertrager
EP2267393B1 (de) Strömungskanal für einen wärmeübertrager
EP1654508B1 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
DE69509976T2 (de) Wärmeaustauschrohr
DE202005009948U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
EP0798529B1 (de) Wärmeaustauscherrohr
DE102004033459B4 (de) Wärmetauscherrippe für eine Fahrzeug-Klimaanlage mit paralleler Schichtung von flachen Wärmeübertragerrohren
DE2330076A1 (de) Rippenrohr-waermeaustauscher
DE112014003247B4 (de) Rippe für Wärmetauscher
DE10162198A1 (de) Wärmetauscher
DE19510124A1 (de) Austauscherrohr für einen Wärmeaustauscher
DE102010027704A1 (de) Wärmeaustauscher
EP1357345B1 (de) Gewellter Wärmetauschkörper
DE4220823C1 (en) Two section car heat-exchanger - has lugs bent out from fins common to both sections to form partition between them preventing airflow in that direction
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
EP1640684A1 (de) Wärmeübertrager aus Flachrohren und Wellrippen
EP2096397B1 (de) Rippe für einen Wärmetauscher
EP1398592B1 (de) Flachrohr-Wärmeübertrager
DE19531383A1 (de) Wärmeübertrager
DE3116033A1 (de) Blechrippenwaermeaustauscher
EP2185884B1 (de) Rippe für einen wärmetauscher
DE202004020294U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
EP0268831B1 (de) Lamelle
DE10342241A1 (de) Wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040917

AKX Designation fees paid

Designated state(s): DE ES FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20090130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150212

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICHTER, RAINER, DR.-ING

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315310

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315310

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160425

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181001

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50315310

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930