[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1217319B1 - Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture - Google Patents

Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture Download PDF

Info

Publication number
EP1217319B1
EP1217319B1 EP00128034A EP00128034A EP1217319B1 EP 1217319 B1 EP1217319 B1 EP 1217319B1 EP 00128034 A EP00128034 A EP 00128034A EP 00128034 A EP00128034 A EP 00128034A EP 1217319 B1 EP1217319 B1 EP 1217319B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat exchanger
spiral
heat
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00128034A
Other languages
German (de)
French (fr)
Other versions
EP1217319A1 (en
Inventor
Dienhart Bernd
Lorenz-Börnert Marion
Fröhling Jörn
Hoffmann Hanskarl
Heyl Peter Dr.
Kubitz Bernd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Visteon Global Technologies Inc
Original Assignee
Visteon Global Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Visteon Global Technologies Inc filed Critical Visteon Global Technologies Inc
Priority to DE50014069T priority Critical patent/DE50014069D1/en
Priority to AT00128034T priority patent/ATE354070T1/en
Priority to EP00128034A priority patent/EP1217319B1/en
Publication of EP1217319A1 publication Critical patent/EP1217319A1/en
Application granted granted Critical
Publication of EP1217319B1 publication Critical patent/EP1217319B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • F28D7/0033Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes the conduits for one medium or the conduits for both media being bent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/04Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2265/00Safety or protection arrangements; Arrangements for preventing malfunction
    • F28F2265/12Safety or protection arrangements; Arrangements for preventing malfunction for preventing overpressure

Definitions

  • the invention relates to a heat exchanger for heat transfer between a refrigerant and a water / glycol mixture.
  • Heat exchangers are apparatuses or components in which an indirect heat transfer takes place. In this case, heat is transferred from a fluid stream of higher temperature to another fluid stream of lower temperature. The two streams flow through the heat exchanger, without mixing, so are spatially separated from each other.
  • the refrigerant circuit is a material cycle in which heat is absorbed in the evaporator with evaporation of the refrigerant and in the condenser, heat is released from the refrigerant.
  • Such heat exchangers are e.g. from documents DE 19808893, DE 19635454, US 3340588, DE 19623259 and EP 0529819.
  • heat exchangers are used according to the preamble of the present invention.
  • Carbon dioxide is increasingly being studied as a refrigerant and the production of such systems is being considered.
  • Carbon dioxide is referred to as a high-pressure refrigerant, since the critical temperature of the carbon dioxide in the range of the ambient temperature (31 ° C) and the associated pressure is significantly higher than that of today's conventional refrigerants (R134a, R290, R212).
  • the maximum occurring high pressure is in systems with carbon dioxide as a refrigerant in a range of 100 to 170 bar, depending on the application of the system.
  • Heat exchangers are already known for the use of the refrigerant carbon dioxide in the refrigeration plant - heat pump process, which operate with very small flow cross sections and capacities in the heat exchangers.
  • the object is achieved with a heat exchanger according to claim 1.
  • the spiral package is structurally designed so that the safety requirements are met by maintaining low flow cross-sections in the refrigerant channels and small filling volume in the spiral package.
  • the spiral packages consist of flat tube with refrigerant channels, wherein the flat tube is wound along its length.
  • the position of winding axis of the spiral pack and cylinder axis of the heat exchanger is identical.
  • the flat tube is advantageously formed with ribs for spacing between adjacent windings and channeling for the heat / cold carrier in the wound state and for enlarging the surface.
  • the advantages of the heat exchanger according to the invention are that in a confined space a heat exchanger is provided, which has a large heat-transferring surface and also by its design meets the safety requirements for use in a circuit with refrigerant.
  • FIG. 1 An advantageous embodiment of the heat exchanger according to the invention is shown in Fig. 1 in longitudinal section.
  • the cylindrical jacket of the heat exchanger 1 is designed as a circular cylinder in the form of a tube which is tapered at its ends to connecting piece 7.
  • In the interior of the heat exchanger 1 is at least one, in the present case three spiral packets 2 are arranged, which are flowed around in order from the heat / brine.
  • the heat exchanger 1 further has connection possibilities for the refrigerant supply 3 and the Refrigerant discharge 4, the heat / refrigerant supply 5 and the heat / refrigerant removal 6 on.
  • the spiral packets 2 are flowed through by a refrigerant and flows around it by a heat / refrigerant, wherein heat is transferred between the high-pressure refrigerant and the heat / refrigerant in the cross-flow or funnelurgi- or cross-direct current.
  • the spiral packages 2 are formed of a flat tube 9 having the width (B) of five to one hundred and twenty millimeters (5 to 120 mm) and the height (H) of one to ten millimeters (1 to 10 mm).
  • the flat tube 9, which has at least one refrigerant channel 10, is flowed through by these refrigerant channels of refrigerant.
  • the spiral packets 2 are formed from wound flat tube 9, which is wound along its length (L) in a double layer.
  • the winding axis 13 of the spiral package 2 is shown in FIG. 1 advantageously in the same position as the cylinder axis 13 of the heat exchanger. 1
  • the flat tube 9 ribs 11 for spacing between adjacent windings within the spiral pack 2 and channel formation for the heat / cold carrier in the wound state and to increase the surface area.
  • the heat exchanger 1 also has a safety device 8 against overpressure, for example in the form of a rupture disk or a safety valve and is equipped at a suitable location with a venting device.
  • a safety device 8 against overpressure for example in the form of a rupture disk or a safety valve and is equipped at a suitable location with a venting device.
  • FIG. 2 a shows the cross section of a heat exchanger 1 with a double-flow refrigerant flow in the spiral pack 2.
  • the double spiral is then flowed through in multiple flutes spirally from inside to outside by refrigerant and exits at the refrigerant discharge 4 from the spiral pack 2 and leaves the heat exchanger 1.
  • FIG. 2 b shows the cross section of a heat exchanger 1 with a single-flow refrigerant flow in the spiral package 2.
  • the double spiral is first flowed through by the refrigerant supply 3 from the outside to the inside of the refrigerant and after reaching the winding and cylinder axis 13, the refrigerant flows from the inside to the outside to the refrigerant discharge 4, through which the spiral pack 2 and after the heat exchanger 1 is left.
  • Fig. 2c shows an embodiment of a spiral package 2 as a single spiral with single-flow refrigerant flow from the inside to the outside or from outside to inside, which is not part of the invention.
  • Fig. 3a shows a perspective view of the flat tube with a transverse and longitudinal section. Arrows indicate the flow of the refrigerant through the refrigerant channels 10 and the flow of the water / glycol mixture between the ribs 11.
  • the refrigerant channels 10 are shown in cross section also in FIG. 3b in their sectional view as a circle. Equally possible, but less advantageous because of the pressure resistance, the formation of the refrigerant channels 10 in an oval or polygonal cross-sectional geometry.
  • the ribs 11 of the flat tube 9 are shown in Fig. 3a and the penetration of the flat tube 9 of refrigerant channels 10 along the length L of the flat tube is to be seen by the longitudinal section in the refrigerant flow direction.
  • the flat tubes 9 are advantageously formed with a large width B and height H ratio.
  • the flat tube 9 is flattened at the ends of its width B, which is aerodynamically advantageous in the flow and outflow of heat / brine and from the spiral package 2 and large-volume accumulation areas along the height H of the flat tube are thereby avoided.
  • FIG. 4a The formation of the flat tube 9 with ribs 11 on the upper side is shown in FIG. 4a.
  • the ribs 11 are shown as rectangular elevations on the flat tube 9. This form is favorable in terms of manufacturing and easily results in the winding of the flat tube 9 along its length L channel formation for the flow of heat / refrigerant, however, wide rib shapes are also advantageously used , Both round, oval or triangular shapes are possible embodiments for ribs 11 of the flat tube 9.
  • the flat tube 9 according to FIG. 4 a is preferably to be used in simple spiral windings of the flat tube 9, wherein in each case one upper side comes into contact with the underside of the flat tube 9 and the spaces forming between the ribs 11 form the channels for the heat / cold carrier.
  • the formation of the flat tube 9 according to FIG. 4b is advantageous because in the production of the spiral package 2, the flat tube 9 is bent in the region of the winding axis 13 by 180 ° and thus the top and bottom of the flat tube 9 to each other lie.
  • the flat tube 9 is provided with ribs 11 both on the upper and lower side.
  • FIG. 4c shows an embodiment in which the flat tube 9 was provided with ribs 11 along a region A with ribs 11 on the upper side and along a region B on the underside.
  • This design is advantageous for the production of a double spiral, provided that the winding axis 13 is placed in the region of the transition of the change of the ribs 11 from the top to the bottom.
  • the ribs themselves have a height of 0.01 to 10 mm.
  • the range from 4 to 10 mm is used for large flow cross sections.
  • a preferred embodiment of the ribs 11 for smaller flow cross sections, such as for heat exchangers for use in refrigeration systems or heat pumps in motor vehicles consists at a height of 0.1 to 2 mm.
  • For special applications with thin thin tube 9 and correspondingly many windings ribs 11 are used from 0.01 to 0.1 mm.
  • the ribs 11 according to FIG. 5a extend at an angle of 90 ° to the refrigerant channels 10, whereby the heat transfer between the heat / cold carrier and the high-pressure refrigerant takes place in crossflow.
  • the flat tube 9 is shown in plan view.
  • the heat / refrigerant flows through the channels formed between the ribs 11 and the refrigerant 3 flows in the flat tube 9 through the refrigerant channels 10. If, according to FIG. 1, the refrigerant supply 3 is displaced after the refrigerant discharge 4 in the flow direction of the heat / cold carrier, then there is a coupled cross counterflow.
  • Other circuit variants, such as the cross-direct current or mixed forms can also be realized with the heat exchanger 1 according to the invention.
  • the ribs 11 extend at an angle ⁇ according to FIG. 5b of greater than 0 ° and less than 90 ° or greater than 90 ° and less than 180 ° to the refrigerant channels 10, whereby the heat transfer between the heat - / Brine and the high pressure refrigerant is carried out directly in cross-counter or DC.
  • a particularly good heat transfer is achieved, wherein the angle ⁇ is to be selected for a particularly efficient heat transfer between 30 ° and 50 °.
  • carbon dioxide R744
  • tetrafluoroethane R134a
  • propane R290

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The heat transfer assembly, and especially between a coolant and a water/glycol mixture, has at least one spiral packet (2) within the cylindrical mantle of the heat exchanger (1), to carry a high pressure coolant flow e.g. of carbon dioxide, tetrafluoroethane or propane. A heat/cold carrier flows through the cylindrical structure, to transfer heat/cold between the flow and the coolant in a counter flow or a common flow or intersecting flows. The assembly has connections for coolant feed (3) and outflow (4), for the inflow (5) of the heat/cold carrier and its outflow (6).

Description

Die Erfindung betrifft einen Wärmeübertrager zur Wärmeübertragung zwischen einem Kältemittel und einem Wasser/Glykol-Gemisch.The invention relates to a heat exchanger for heat transfer between a refrigerant and a water / glycol mixture.

Wärmeübertrager sind Apparate bzw. Komponenten, in denen eine indirekte Wärmeübertragung stattfindet. Dabei wird Wärme von einem fluiden Stoffstrom höherer Temperatur auf einen anderen fluiden Stoffstrom niedrigerer Temperatur übertragen. Die beiden Stoffströme durchströmen dabei den Wärmeübertrager, ohne sich zu vermischen, sind also räumlich voneinander getrennt.Heat exchangers are apparatuses or components in which an indirect heat transfer takes place. In this case, heat is transferred from a fluid stream of higher temperature to another fluid stream of lower temperature. The two streams flow through the heat exchanger, without mixing, so are spatially separated from each other.

In einer klassischen Kälteanlage oder Wärmepumpe sind zumindest zwei Wärmeübertrager vorhanden. Der Verdampfer und der Kondensator / Gaskühler, häufig aber auch noch ein innerer Wärmeübertrager. Der Kältemittelkreislauf ist ein Stoffkreislauf, wobei im Verdampfer Wärme unter Verdampfung des Kältemittels aufgenommen wird und im Kondensator Wärme vom Kältemittel abgegeben wird.In a classic refrigeration system or heat pump, at least two heat exchangers are present. The evaporator and the condenser / gas cooler, but often also an internal heat exchanger. The refrigerant circuit is a material cycle in which heat is absorbed in the evaporator with evaporation of the refrigerant and in the condenser, heat is released from the refrigerant.

Im Stand der Technik sind eine Vielzahl von Wärmeübertragern für verschiedenste Einsatzgebiete bekannt.
Ganz besondere Anforderungen werden an Wärmeübertrager gestellt, welche bei hohen Fluiddrücken der Stoffströme arbeiten.
In the prior art, a variety of heat exchangers for a variety of applications are known.
Very special requirements are placed on heat exchangers, which work at high fluid pressures of the material flows.

Solche Wärmeübertrager sind z.B. aus den Dokumenten DE 19808893, DE 19635454, US 3340588, DE 19623259 und EP 0529819 bekannt.Such heat exchangers are e.g. from documents DE 19808893, DE 19635454, US 3340588, DE 19623259 and EP 0529819.

Für einen solchen Anwendungsfall werden Wärmeübertrager gemäß dem Oberbegriff der vorliegenden Erfindung eingesetzt.For such an application, heat exchangers are used according to the preamble of the present invention.

In der jüngeren Vergangenheit wird Kohlendioxid als Kältemittel verstärkt untersucht und die Herstellung solcher Systeme in Erwägung gezogen. Bei Kohlendioxid (R744) spricht man von einem Hochdruckkältemittel, da die kritische Temperatur des Kohlendioxids im Bereich der Umgebungstemperatur (31°C) und der dazugehörige Druck deutlich über dem der heute üblichen Kältemittel (R134a, R290, R212) liegt.
Der maximal auftretende Hochdruck liegt in Anlagen mit Kohlendioxid als Kältemittel in einem Bereich von 100 bis 170 bar, je nach Anwendungsfall des Systems.
In the recent past, carbon dioxide is increasingly being studied as a refrigerant and the production of such systems is being considered. at Carbon dioxide (R744) is referred to as a high-pressure refrigerant, since the critical temperature of the carbon dioxide in the range of the ambient temperature (31 ° C) and the associated pressure is significantly higher than that of today's conventional refrigerants (R134a, R290, R212).
The maximum occurring high pressure is in systems with carbon dioxide as a refrigerant in a range of 100 to 170 bar, depending on the application of the system.

Für die Anwendung des Kältemittels Kohlendioxid im Kälteanlagen - Wärmepumpen - Prozess sind bereits Wärmeübertrager bekannt, welche mit sehr kleinen Strömungsquerschnitten und Füllmengen in den Wärmeübertragern arbeiten.Heat exchangers are already known for the use of the refrigerant carbon dioxide in the refrigeration plant - heat pump process, which operate with very small flow cross sections and capacities in the heat exchangers.

Zunehmend wird Kohlendioxid als Kältemittel für die Fahrzeugklimatisierung in mobilen Kälteanlagen, Wärmepumpen oder Kombinationen von diesen, eingesetzt. In einem solchen Fall wird Wärme zwischen einem Wasser/Glykol-Gemisch und Kohlendioxid oder einem anderen Kältemittel übertragen. Damit steigen die Anforderungen an einen Wärmeübertrager für diese Anwendung in mehrerlei Hinsicht. Sowohl unter dem Gesichtspunkt der Sicherheit, Störanfälligkeit und Zerstörbarkeit als auch unter dem Gesichtspunkt des minimalen Platzbedarfes bestehen Vorgaben, die von im Stand der Technik bekannten Wärmeübertragern nicht erreicht werden.Increasingly, carbon dioxide is used as refrigerant for vehicle air conditioning in mobile refrigeration systems, heat pumps or combinations of these. In such a case, heat is transferred between a water / glycol mixture and carbon dioxide or another refrigerant. Thus, the requirements for a heat exchanger for this application increase in several respects. From the point of view of safety, susceptibility to damage and destructibility as well as from the point of view of minimum space requirements exist, which are not achieved by known in the art heat exchangers.

Es ist Aufgabe der Erfindung, eine Wärmeübertrager, insbesondere zur Wärmeübertragung zwischen einem Kältemittel und einem Wasser/Glykol-Gemisch derart auszubilden, dass dieser mit einem geringen Bauvolumen bei hohen übertragenen Wärmeströmen arbeitet und gleichzeitig die sicherheitstechnischen Erfordernisse auch für den Einsatz eines Hochdruckkältemittels erfüllt sind.It is an object of the invention to form a heat exchanger, in particular for heat transfer between a refrigerant and a water / glycol mixture such that it works with a low volume at high heat transfer streams transmitted and at the same time the safety requirements are met for the use of a high-pressure refrigerant.

Erfindungsgemäß wird die Aufgabe mit einem Wärmeübertrager gemäß den Anspruch 1 gelöst.According to the invention the object is achieved with a heat exchanger according to claim 1.

Nach der Konzeption der Erfindung wird das Spiralpaket konstruktiv so ausgelegt, dass die sicherheitstechnischen Erfordernisse durch die Einhaltung geringer Strömungsquerschnitte in den Kältemittelkanälen und kleinem Füllvolumen im Spiralpaket erfüllt werden.According to the concept of the invention, the spiral package is structurally designed so that the safety requirements are met by maintaining low flow cross-sections in the refrigerant channels and small filling volume in the spiral package.

Die Spiralpakete bestehen aus Flachrohr mit Kältemittelkanälen, wobei das Flachrohr entlang seiner Länge gewickelt ist.The spiral packages consist of flat tube with refrigerant channels, wherein the flat tube is wound along its length.

In einer bevorzugten Ausführungsform ist die Lage von Wickelachse des Spiralpakets und Zylinderachse des Wärmeübertragers identisch.In a preferred embodiment, the position of winding axis of the spiral pack and cylinder axis of the heat exchanger is identical.

Weiterhin wird das Flachrohr vorteilhaft mit Rippen zur Abstandhaltung zwischen benachbarten Wicklungen und zur Kanalbildung für den Wärme-/ Kälteträger im gewickelten Zustand sowie zur Vergrößerung der Oberfläche ausgebildet.Furthermore, the flat tube is advantageously formed with ribs for spacing between adjacent windings and channeling for the heat / cold carrier in the wound state and for enlarging the surface.

Die Vorteile des erfindungsgemäßen Wärmeübertragers bestehen darin, dass auf engstem Raum ein Wärmeübertrager zur Verfügung gestellt wird, der eine große wärmeübertragende Oberfläche besitzt und der zudem durch seine Gestaltung die sicherheitstechnischen Erfordernisse für den Einsatz in einem Kreislauf mit Kältemittel erfüllt.The advantages of the heat exchanger according to the invention are that in a confined space a heat exchanger is provided, which has a large heat-transferring surface and also by its design meets the safety requirements for use in a circuit with refrigerant.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen mit Bezugnahme auf die zugehörigen Zeichnungen. Es zeigen:

Fig. 1:
Längsschnitt eines Wärmeübertragers
Fig. 2a:
Querschnitt eines Wärmeübertragers mit einem zweiflutigen Kältemittelstrom im Spiralpaket
Fig. 2b:
Querschnitt eines Wärmeübertragers mit einem einflutigen Kältemittelstrom im Spiralpaket
Fig. 2c:
Querschnitt eines Wärmeübertragers mit einer Einfachspirale, der nicht Teil der Erfindung darstellt.
Fig. 3a:
perspektivische Ansicht des Flachrohrs mit Quer- und Längsschnitt
Fig. 3b:
Querschnitt des Flachrohrs
Fig. 4a:
Längsschnitt des Flachrohrs mit Rippen auf der Oberseite
Fig. 4b:
Längsschnitt des Flachrohrs mit Rippen auf der Ober - und Unterseite
Fig. 4c:
Längsschnitt des Flachrohrs mit Rippen entweder auf der Ober - oder der Unterseite jeweils auf einem bestimmten Abschnitt
Fig. 5a:
Draufsicht auf ein Flachrohr mit Rippen quer zur Kältemittelströmungsrichtung
Fig. 5b:
Draufsicht auf ein Flachrohr mit Rippen schräg zur Kältemittelströmungsrichtung
Further details, features and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to the accompanying drawings. Show it:
Fig. 1:
Longitudinal section of a heat exchanger
Fig. 2a:
Cross-section of a heat exchanger with a double-flow refrigerant flow in the spiral package
Fig. 2b:
Cross-section of a heat exchanger with a single-flow refrigerant flow in the spiral package
Fig. 2c:
Cross section of a heat exchanger with a single spiral, which does not form part of the invention.
Fig. 3a:
Perspective view of the flat tube with transverse and longitudinal section
3b:
Cross section of the flat tube
Fig. 4a:
Longitudinal section of the flat tube with ribs on the top
Fig. 4b:
Longitudinal section of the flat tube with ribs on the top and bottom
4c:
Longitudinal section of the flat tube with ribs either on the top or bottom on a specific section
Fig. 5a:
Top view of a flat tube with ribs transverse to the refrigerant flow direction
Fig. 5b:
Top view of a flat tube with ribs obliquely to the refrigerant flow direction

Eine vorteilhafte Ausführung des erfindungsgemäßen Wärmeübertragers ist in Fig. 1 im Längsschnitt dargestellt.
Der zylindrische Mantel des Wärmeübertragers 1 ist als Kreiszylinder in Form eines Rohres ausgeführt, welches an seinen Enden zu Anschlussstutzen 7 verjüngt ist. Im Inneren des Wärmeübertragers 1 ist mindestens ein, im vorliegenden Fall sind drei Spiralpakete 2 angeordnet, welche der Reihe nach vom Wärme- / Kälteträger umströmt werden. Der Wärmeübertrager 1 weist weiterhin Anschlussmöglichkeiten für die Kältemittelzufuhr 3 und die Kältemittelabfuhr 4, die Wärme-/ Kälteträgerzufuhr 5 sowie die Wärme-/ Kälteträgerabfuhr 6 auf.
An advantageous embodiment of the heat exchanger according to the invention is shown in Fig. 1 in longitudinal section.
The cylindrical jacket of the heat exchanger 1 is designed as a circular cylinder in the form of a tube which is tapered at its ends to connecting piece 7. In the interior of the heat exchanger 1 is at least one, in the present case three spiral packets 2 are arranged, which are flowed around in order from the heat / brine. The heat exchanger 1 further has connection possibilities for the refrigerant supply 3 and the Refrigerant discharge 4, the heat / refrigerant supply 5 and the heat / refrigerant removal 6 on.

Die Spiralpakete 2 werden von einem Kältemittel durchströmt und von einem Wärme-/ Kälteträger umströmt, wobei Wärme zwischen dem Hochdruckkältemittel und dem Wärme-/ Kälteträger im Kreuzstrom oder im Kreuzgegen- bzw Kreuzgleichstrom übertragen wird.The spiral packets 2 are flowed through by a refrigerant and flows around it by a heat / refrigerant, wherein heat is transferred between the high-pressure refrigerant and the heat / refrigerant in the cross-flow or Kreuzgegen- or cross-direct current.

Die Spiralpakete 2 werden aus einem Flachrohr 9 mit der Breite (B) von fünf bis einhundertzwanzig Millimetern (5 bis 120 mm) und der Höhe (H) von ein bis zehn Millimetern (1 bis 10 mm) gebildet. Das Flachrohr 9, welches mindestens einen Kältemittelkanal 10 aufweist, wird durch diese Kältemittelkanäle von Kältemittel durchströmt. Die Spiralpakete 2 werden aus gewickeltem Flachrohr 9 gebildet, welches entlang seiner Länge (L) in doppelter Lage gewickelt ist. Die Wickelachse 13 des Spiralpaketes 2 liegt gemäß Fig. 1 vorteilhaft in gleicher Lage wie die Zylinderachse 13 des Wärmeübertragers 1.The spiral packages 2 are formed of a flat tube 9 having the width (B) of five to one hundred and twenty millimeters (5 to 120 mm) and the height (H) of one to ten millimeters (1 to 10 mm). The flat tube 9, which has at least one refrigerant channel 10, is flowed through by these refrigerant channels of refrigerant. The spiral packets 2 are formed from wound flat tube 9, which is wound along its length (L) in a double layer. The winding axis 13 of the spiral package 2 is shown in FIG. 1 advantageously in the same position as the cylinder axis 13 of the heat exchanger. 1

In einer besonders vorteilhaften Ausführungsform weist das Flachrohr 9 Rippen 11 zur Abstandhaltung zwischen benachbarten Wicklungen innerhalb des Spiralpaketes 2 und zur Kanalbildung für den Wärme-/ Kälteträger im gewickelten Zustand sowie zur Vergrößerung der Oberfläche auf.In a particularly advantageous embodiment, the flat tube 9 ribs 11 for spacing between adjacent windings within the spiral pack 2 and channel formation for the heat / cold carrier in the wound state and to increase the surface area.

Der Wärmeübertrager 1 weist außerdem eine Sicherheitseinrichtung 8 gegen Überdruck beispielsweise in Form einer Berstscheibe oder eines Sicherheitsventils auf und ist an geeigneter Stelle mit einer Entlüftungseinrichtung ausgestattet.The heat exchanger 1 also has a safety device 8 against overpressure, for example in the form of a rupture disk or a safety valve and is equipped at a suitable location with a venting device.

Die erfindungsgemäße Ausbildung der Spiralpakete 2 ist in den Figuren 2a und 2b im Querschnitt dargestellt. Zu sehen sind jeweils Doppelspiralen, welche sich auf besonders einfache Art herstellen lassen, Der Wärmeübertrager 1 mit Spiralpaketen 2 aus einfachen Spiralen, gemäß Fig. 2c stellt jedoch nicht Teil der Erfindung dar.The inventive design of the spiral packets 2 is shown in Figures 2a and 2b in cross section. You can see double spirals, which can be produced in a particularly simple way, The heat exchanger 1 with spiral packages 2 of simple spirals, according to FIG. 2c, however, does not form part of the invention.

Fig. 2a zeigt den Querschnitt eines Wärmeübertragers 1 mit einem zweiflutigen Kältemittelstrom im Spiralpaket 2. Die Doppelspirale wird dann mehrflutig spiralförmig von innen nach außen von Kältemittel durchströmt und tritt an der Kältemittelabfuhr 4 aus dem Spiralpaket 2 aus und verlässt den Wärmeübertrager 1.FIG. 2 a shows the cross section of a heat exchanger 1 with a double-flow refrigerant flow in the spiral pack 2. The double spiral is then flowed through in multiple flutes spirally from inside to outside by refrigerant and exits at the refrigerant discharge 4 from the spiral pack 2 and leaves the heat exchanger 1.

In Fig. 2b ist der Querschnitt eines Wärmeübertragers 1 mit einem einflutigen Kältemittelstrom im Spiralpaket 2 dargestellt. Dabei wird die Doppelspirale zunächst durch die Kältemittelzufuhr 3 von außen nach innen vom Kältemittel durchströmt und nach Erreichen der Wickel- und Zylinderachse 13 strömt das Kältemittel von innen nach außen zur Kältemittelabfuhr 4, durch welche das Spiralpaket 2 und hernach der Wärmeübertrager 1 verlassen wird.FIG. 2 b shows the cross section of a heat exchanger 1 with a single-flow refrigerant flow in the spiral package 2. In this case, the double spiral is first flowed through by the refrigerant supply 3 from the outside to the inside of the refrigerant and after reaching the winding and cylinder axis 13, the refrigerant flows from the inside to the outside to the refrigerant discharge 4, through which the spiral pack 2 and after the heat exchanger 1 is left.

Fig. 2c zeigt eine Ausführung eines Spiralpakets 2 als Einzelspirale mit einflutigem Kältemittelstrom von innen nach außen oder auch von außen nach innen, die nicht Teil der Erfindung ist.Fig. 2c shows an embodiment of a spiral package 2 as a single spiral with single-flow refrigerant flow from the inside to the outside or from outside to inside, which is not part of the invention.

Die Spiralpakete werden gemäß aus Flachrohr 9 gebildet. Fig. 3a zeigt eine perspektivische Ansicht des Flachrohrs mit Quer- und Längsschnitt. Durch Pfeile ist der Fluss des Kältemittels durch die Kältemittelkanäle 10 und der Fluss des Wasser / Glykol - Gemischs zwischen den Rippen 11 angedeutet.The spiral packages are formed according to the flat tube 9. Fig. 3a shows a perspective view of the flat tube with a transverse and longitudinal section. Arrows indicate the flow of the refrigerant through the refrigerant channels 10 and the flow of the water / glycol mixture between the ribs 11.

Dabei sind im Querschnitt auch gemäß Fig. 3b die Kältemittelkanäle 10 in ihrem Schnittbild als Kreis dargestellt. Gleichfalls möglich, aber wegen der Druckbeständigkeit weniger vorteilhaft, ist die Ausbildung der Kältemittelkanäle 10 in einer ovalen oder eckigen Querschnittsgeometrie.In this case, the refrigerant channels 10 are shown in cross section also in FIG. 3b in their sectional view as a circle. Equally possible, but less advantageous because of the pressure resistance, the formation of the refrigerant channels 10 in an oval or polygonal cross-sectional geometry.

Auch sind in Fig. 3a die Rippen 11 des Flachrohres 9 dargestellt und die Durchdringung des Flachrohres 9 von Kältemittelkanälen 10 entlang der Länge L des Flachrohres ist durch den Längsschnitt in Kältemittelströmungsrichtung zu sehen.Also, the ribs 11 of the flat tube 9 are shown in Fig. 3a and the penetration of the flat tube 9 of refrigerant channels 10 along the length L of the flat tube is to be seen by the longitudinal section in the refrigerant flow direction.

Die Flachrohre 9 sind vorteilhaft mit einem großen Breite B und Höhe H Verhältnis ausgebildet.The flat tubes 9 are advantageously formed with a large width B and height H ratio.

Nicht dargestellt aber vorteilhaft ist, wenn das Flachrohr 9 an den Enden seiner Breite B abgeflacht ist, was bei der Anströmung und Abströmung von Wärme/Kälteträger an und vom Spiralpaket 2 strömungstechnisch vorteilhaft ist und großvolumige Staugebiete entlang der Höhe H des Flachrohres hierdurch vermieden werden.Not shown but is advantageous if the flat tube 9 is flattened at the ends of its width B, which is aerodynamically advantageous in the flow and outflow of heat / brine and from the spiral package 2 and large-volume accumulation areas along the height H of the flat tube are thereby avoided.

Die Ausbildung des Flachrohrs 9 mit Rippen 11 auf der Oberseite zeigt Fig. 4a. Die Rippen 11 sind dargestellt als rechteckige Erhebungen auf dem Flachrohr 9. Diese Form ist fertigungstechnisch günstig und führt ohne weiteres bei der Wicklung des Flachrohres 9 entlang seiner Länge L zur Kanalbildung für die Strömung des Wärme-/ Kälteträgers, jedoch sind weite Rippenformen ebenso vorteilhaft einsetzbar. Sowohl runde, ovale oder dreieckige Formen sind mögliche Ausgestaltungen für Rippen 11 des Flachrohres 9.The formation of the flat tube 9 with ribs 11 on the upper side is shown in FIG. 4a. The ribs 11 are shown as rectangular elevations on the flat tube 9. This form is favorable in terms of manufacturing and easily results in the winding of the flat tube 9 along its length L channel formation for the flow of heat / refrigerant, however, wide rib shapes are also advantageously used , Both round, oval or triangular shapes are possible embodiments for ribs 11 of the flat tube 9.

Das Flachrohr 9 gemäß Fig. 4a ist bevorzugt zu verwenden bei einfachen Spiralwicklungen des Flachrohres 9, wobei jeweils eine Oberseite in Kontakt mit der Unterseite des Flachrohres 9 kommt und die sich zwischen den Rippen 11 bildenden Räume die Kanäle für den Wärme-/ Kälteträger bilden.The flat tube 9 according to FIG. 4 a is preferably to be used in simple spiral windings of the flat tube 9, wherein in each case one upper side comes into contact with the underside of the flat tube 9 and the spaces forming between the ribs 11 form the channels for the heat / cold carrier.

Für die erfindungsgemäße Doppelspiralwicklungen ist die Ausbildung des Flachrohres 9 gemäß Fig. 4b vorteilhaft, weil bei der Herstellung des Spiralpaketes 2 das Flachrohr 9 im Bereich der Wickelachse 13 um 180° gebogen wird und somit Ober- und Unterseite des Flachrohres 9 aufeinander liegen. Um dabei die Kanalbildung für die Wärme-/ Kälteträgerdurchströmung zu realisieren wird das Flachrohr 9 sowohl auf der Ober - und Unterseite mit Rippen 11 versehen.For the double helical windings according to the invention, the formation of the flat tube 9 according to FIG. 4b is advantageous because in the production of the spiral package 2, the flat tube 9 is bent in the region of the winding axis 13 by 180 ° and thus the top and bottom of the flat tube 9 to each other lie. In order to realize the channel formation for the heat / refrigerant flow, the flat tube 9 is provided with ribs 11 both on the upper and lower side.

In Fig. 4c ist eine Ausführungsform dargestellt bei welcher das Flachrohr 9 entlang eines Bereiches A mit Rippen 11 auf der Oberseite und entlang eines Bereiches B auf der Unterseite mit Rippen 11 versehen wurde.
Diese Ausbildung ist für die Herstellung einer Doppelspirale vorteilhaft, sofern die Wickelachse 13 in den Bereich des Überganges des Wechsels der Rippen 11 von der Ober- auf die Unterseite gelegt wird.
FIG. 4c shows an embodiment in which the flat tube 9 was provided with ribs 11 along a region A with ribs 11 on the upper side and along a region B on the underside.
This design is advantageous for the production of a double spiral, provided that the winding axis 13 is placed in the region of the transition of the change of the ribs 11 from the top to the bottom.

Die Rippen selbst besitzen eine Höhe von 0,01 bis 10 mm. Wobei der Bereich von 4 bis 10 mm bei großen Strömungsquerschnitten eingesetzt wird. Eine bevorzugte Ausbildung der Rippen 11 für kleinere Strömungsquerschnitte, etwa für Wärmeübertrager zum Einsatz in Kälteanlagen oder Wärmepumpen in Kraftfahrzeugen besteht bei einer Höhe von 0,1 bis 2 mm. Für Spezialanwendungsfälle mit dünnem Flachrohr 9 und entsprechend vielen Wicklungen werden Rippen 11 von 0,01 bis 0,1 mm eingesetzt.The ribs themselves have a height of 0.01 to 10 mm. The range from 4 to 10 mm is used for large flow cross sections. A preferred embodiment of the ribs 11 for smaller flow cross sections, such as for heat exchangers for use in refrigeration systems or heat pumps in motor vehicles consists at a height of 0.1 to 2 mm. For special applications with thin thin tube 9 and correspondingly many windings ribs 11 are used from 0.01 to 0.1 mm.

Nach einem bevorzugten Anwendungsfall der Erfindung verlaufen die Rippen 11 gemäß Fig. 5a im Winkel von 90° zu den Kältemittelkanälen 10, wodurch die Wärmeübertragung zwischen dem Wärme-/ Kälteträger und dem Hochdruckkältemittel im Kreuzstrom erfolgt. Dabei ist das Flachrohr 9 in der Draufsicht dargestellt. Der Wärme-/ Kälteträger strömt durch die sich zwischen den Rippen 11 bildenden Kanäle und das Kältemittel 3 strömt im Flachrohr 9 durch die Kältemittelkanäle 10. Liegt gemäß Fig. 1 die Kältemittelzufuhr 3 nach der Kältemittelabfuhr 4 in Strömungsrichtung des Wärme-/ Kälteträgers versetzt, so liegt ein gekoppelter Kreuzgegenstrom vor. Weitere Schaltungsvarianten, wie der Kreuzgleichstrom oder Mischformen sind ebenso mit dem erfindungsgemäßen Wärmeübertrager 1 realisierbar.According to a preferred application of the invention, the ribs 11 according to FIG. 5a extend at an angle of 90 ° to the refrigerant channels 10, whereby the heat transfer between the heat / cold carrier and the high-pressure refrigerant takes place in crossflow. In this case, the flat tube 9 is shown in plan view. The heat / refrigerant flows through the channels formed between the ribs 11 and the refrigerant 3 flows in the flat tube 9 through the refrigerant channels 10. If, according to FIG. 1, the refrigerant supply 3 is displaced after the refrigerant discharge 4 in the flow direction of the heat / cold carrier, then there is a coupled cross counterflow. Other circuit variants, such as the cross-direct current or mixed forms can also be realized with the heat exchanger 1 according to the invention.

In einer weiteren Ausgestaltung der Erfindung verlaufen die Rippen 11 in einem Winkel α gemäß Fig. 5b von größer als 0° und kleiner als 90° bzw. größer als 90° und kleiner als 180° zu den Kältemittelkanälen 10, wodurch die Wärmeübertragung zwischen dem Wärme-/ Kälteträger und dem Hochdruckkältemittel unmittelbar im Kreuz-Gegen- oder Gleichstrom erfolgt. Bei dieser Ausführungsform wird ein besonders guter Wärmeübergang erreicht, wobei der Winkel α für einen besonders effizienten Wärmeübergang zwischen 30° und 50° zu wählen ist.In a further embodiment of the invention, the ribs 11 extend at an angle α according to FIG. 5b of greater than 0 ° and less than 90 ° or greater than 90 ° and less than 180 ° to the refrigerant channels 10, whereby the heat transfer between the heat - / Brine and the high pressure refrigerant is carried out directly in cross-counter or DC. In this embodiment, a particularly good heat transfer is achieved, wherein the angle α is to be selected for a particularly efficient heat transfer between 30 ° and 50 °.

Die Anordnung von mehreren Spiralpaketen 2 im Wärmeübertrager 1 wird, abhängig vom Einsatzfall, derart ausgeführt, dass das Hochdruckkältemittel die Spiralpakete 2 in einer Reihenschaltung oder in Parallelschaltung durchströmt.The arrangement of several spiral packets 2 in the heat exchanger 1, depending on the application, carried out such that the high-pressure refrigerant flows through the spiral packets 2 in a series circuit or in parallel.

Als Kältemittel im Sinne des Oberbegriffs der Erfindung sind insbesondere Kohlendioxid (R744), Tetrafluorethan (R134a) und Propan (R290) anzusehen.As refrigerant in the context of the preamble of the invention, carbon dioxide (R744), tetrafluoroethane (R134a) and propane (R290) are to be regarded in particular.

LISTE DER BEZUGSZEICHENLIST OF REFERENCE SIGNS

11
WärmeübertragerHeat exchanger
22
Spiralpaketspiral package
33
KältemittelzufuhrRefrigerant supply
44
KältemittelabfuhrRefrigerant discharge
55
Wärme- / KälteträgerzufuhrHeat / brine feed
66
Wärme- / KälteträgerabfuhrHeat / refrigerant removal
77
Anschlussstutzenspigot
88th
Sicherheitseinrichtungsafety device
99
Flachrohrflat tube
1010
KältemittelkanalRefrigerant passage
1111
Ripperib
1212
Entlüftungsvorrichtungventing device
1313
Wickelachse / ZylinderachseWinding axis / cylinder axis
BB
FlachrohrbreiteFlat tube width
HH
FlachrohrhöheFlat tube height
LL
FlachrohrlängeFlat tube length

Claims (11)

  1. Heat exchanger for heat transfer between a refrigerant and a heat transfer medium/secondary refrigerant, comprising a cylindrical jacket containing at least one spiral package (2) of wound flat tubing (9) with channels (10) for refrigerant to flow therethrough and winding spacers provided thereon for formation of channels for the heat transfer medium/secondary refrigerant to flow therethrough, wherein connections for the refrigerant supply (3) and removal (4) and for the heat transfer medium/secondary refrigerant supply (5) and removal (6) are provided,
    characterised in
    that a spiral package (2) has the form of a double spiral around a winding axis (13),
    - wherein the flat tubing (9) is wound from the region surrounding the winding axis (13) along its length L in a double layer, and
    - wherein an S-shaped run-out of the flat tubing (9) bent through an angle of 180° is provided around the winding axis (13), wherein the upper side and the lower side of the flat tubing (9) are superposed at the S-shaped run-out.
  2. The heat exchanger according to claim 1,
    characterised in that fins (11) are provided on the flat tubing (9) as winding spacers of the wound flat tubing (9) and to form channels for the heat transfer medium/secondary refrigerant to flow therethrough, said fins being attached at the top and/or the bottom side of the flat tubing (9).
  3. The heat exchanger according to claim 1,
    characterised in that associated with the cylindrical jacket are radially directed spacers which are joined to the cylindrical spiral end winding.
  4. The heat exchanger according to claim 1 to 3,
    characterised in that the double spiral (2) is constructed for a single-flow refrigerant stream wherein the refrigerant connections (3, 4) of the double spiral (2) are provided in the central region around the winding axis (13) and in the area of the cylindrical jacket.
  5. The heat exchanger according to claim 1 to 3,
    characterised in that the double spiral (2) is constructed for a double-flow refrigerant stream wherein the refrigerant connections (3, 4) of the flat tubing (9) are provided in the area of the cylindrical jacket.
  6. The heat exchanger according to claim 1 to 5,
    characterised in that the flat tubing (9) of the double spiral (2) is provided with fins (11) directed from the winding axis (13) on its first region (A) of one spiral on the upper side and is provided with oppositely directed fins (11) in the region (B) of the other spiral on the underside.
  7. The heat exchanger according to any one of claims 2 or 6, characterised in that the fins (11) run at an angle α greater than 0° and smaller than 90° to the refrigerant channels (10) whereby heat transfer between the fin-supported heat transfer medium/secondary refrigerant channels and the refrigerant channels (10) takes place within the flat tubing (9) in the cross counter-current or cross concurrent stream.
  8. The heat exchanger according to any one of claims 1 to 7, characterised in that a plurality of spiral packages (2) are arranged in a row or parallel inside the cylindrical jacket.
  9. The heat exchanger according to any one of claims 1 to 8, characterised in that at least one safety device (8) and/or ventilation device (12) is provided.
  10. The heat exchanger according to any one of claims 1 to 9, characterised in that the heat transfer medium/secondary refrigerant is a water/glycol mixture.
  11. The heat exchanger according to any one of claims 1 to 10, characterised in that the refrigerants carbon dioxide R744, tetrafluoroethane R134a or propane R290 are provided as high-pressure refrigerant.
EP00128034A 2000-12-21 2000-12-21 Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture Expired - Lifetime EP1217319B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE50014069T DE50014069D1 (en) 2000-12-21 2000-12-21 Heat exchanger for heat transfer between a refrigerant and a water / glycol mixture
AT00128034T ATE354070T1 (en) 2000-12-21 2000-12-21 HEAT EXCHANGER FOR HEAT TRANSFER BETWEEN A REFRIGERANT AND A WATER/GLYCOL MIXTURE
EP00128034A EP1217319B1 (en) 2000-12-21 2000-12-21 Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP00128034A EP1217319B1 (en) 2000-12-21 2000-12-21 Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture

Publications (2)

Publication Number Publication Date
EP1217319A1 EP1217319A1 (en) 2002-06-26
EP1217319B1 true EP1217319B1 (en) 2007-02-14

Family

ID=8170742

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00128034A Expired - Lifetime EP1217319B1 (en) 2000-12-21 2000-12-21 Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture

Country Status (3)

Country Link
EP (1) EP1217319B1 (en)
AT (1) ATE354070T1 (en)
DE (1) DE50014069D1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939187B1 (en) * 2008-12-01 2013-02-22 Valeo Systemes Thermiques SPIRE HEAT EXCHANGER AND AIR CONDITIONING DEVICE COMPRISING SUCH A HEAT EXCHANGER
CN106610241A (en) * 2015-10-26 2017-05-03 北京肯思得能源科技有限公司 Tube and shell heat exchanger and tube and shell heat exchanger set thereof
DE102017217313A1 (en) * 2017-09-28 2019-03-28 Franz Josef Ziegler Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3340588A (en) * 1960-10-19 1967-09-12 Heinz E Mueller Method of making heat exchangers
US5242015A (en) * 1991-08-22 1993-09-07 Modine Manufacturing Co. Heat exchanger
DE19623259C2 (en) * 1996-06-11 1998-07-30 Viessmann Gmbh & Co Heat exchangers for refrigeration circuits
DE19635454B4 (en) * 1996-08-31 2010-06-17 Behr Gmbh & Co. Kg Collector heat exchanger assembly and air conditioning equipped therewith
JP3365273B2 (en) * 1997-09-25 2003-01-08 株式会社デンソー Refrigeration cycle
DE19808893A1 (en) * 1998-03-03 1999-09-09 Behr Gmbh & Co Heat exchanger e.g. for automobile air-conditioning device

Also Published As

Publication number Publication date
DE50014069D1 (en) 2007-03-29
EP1217319A1 (en) 2002-06-26
ATE354070T1 (en) 2007-03-15

Similar Documents

Publication Publication Date Title
EP1202016B1 (en) Air-conditioning system with internal heat exchanger and heat exchanger tube for same
DE60310876T2 (en) DIPPED EVAPORATOR WITH INTEGRATED HEAT EXCHANGER
DE102006017432A1 (en) Internal heat exchanger forms unit with accumulator in car air conditioning units and comprises toroidal housing in which helical finned pipe for high-pressure coolant is mounted, fins having circular radial cross-section
DE102008062486A1 (en) Double-wall tube heat exchanger
DE10303595B4 (en) Multi-channel heat exchanger and connection unit
DE112019003711B4 (en) Integrated liquid/air cooled condenser and low temperature cooler
DE112005001236T5 (en) Refrigeration system and integrated heat exchanger
DE102012100722A1 (en) Internal heat exchanger
DE102006017816A1 (en) Inner chiller heat exchanger
EP1790931A2 (en) Coaxial or pipe in pipe assembly, in particular for a heat exchanger
DE60307323T2 (en) Heat Exchanger
DE102009001720B4 (en) Multichannel flat tube heat exchanger, in particular for household refrigerators
WO2001069157A2 (en) Heat exchanger for a co2 vehicle air conditioner
EP1217319B1 (en) Heat exchanger for heat transfer between a refrigerant and a water/glycol mixture
EP2926073B1 (en) Heat exchanger
EP2937658B1 (en) Internal heat exchanger
DE69802353T2 (en) AIR COOLED CONDENSER
EP1434023B1 (en) Cold dryer
DE102004047304A1 (en) Subcooling condenser
DE102005058153B4 (en) Heat exchanger with multi-channel flat tubes
DE69515443T2 (en) Device for circulating a fluid
DE20022757U1 (en) Air conditioning system with internal heat exchanger and heat exchanger tube for one
DE102005016540A1 (en) Multichannel flat tube
EP3009780B2 (en) Heat exchanger
DE10134761C2 (en) Heat exchanger, in particular for the thermal coupling of a glycol-water circuit and a high pressure refrigerant circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20021115

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20050331

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: HEAT EXCHANGER FOR HEAT TRANSFER BETWEEN A REFRIGERANT AND A WATER/GLYCOL MIXTURE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50014069

Country of ref document: DE

Date of ref document: 20070329

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070525

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070716

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071221

Year of fee payment: 8

BERE Be: lapsed

Owner name: VISTEON GLOBAL TECHNOLOGIES, INC.

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080613

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231