EP2926073B1 - Heat exchanger - Google Patents
Heat exchanger Download PDFInfo
- Publication number
- EP2926073B1 EP2926073B1 EP13799266.5A EP13799266A EP2926073B1 EP 2926073 B1 EP2926073 B1 EP 2926073B1 EP 13799266 A EP13799266 A EP 13799266A EP 2926073 B1 EP2926073 B1 EP 2926073B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- flow channel
- heat exchanger
- flow
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003507 refrigerant Substances 0.000 claims description 123
- 239000002826 coolant Substances 0.000 claims description 34
- 239000012530 fluid Substances 0.000 claims description 31
- 238000001816 cooling Methods 0.000 claims description 23
- 238000001035 drying Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 5
- 238000003860 storage Methods 0.000 claims description 4
- 238000010276 construction Methods 0.000 description 10
- 238000009833 condensation Methods 0.000 description 5
- 230000005494 condensation Effects 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- VOPWNXZWBYDODV-UHFFFAOYSA-N Chlorodifluoromethane Chemical compound FC(F)Cl VOPWNXZWBYDODV-UHFFFAOYSA-N 0.000 description 3
- 230000009969 flowable effect Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000004378 air conditioning Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/0408—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
- F28D1/0417—Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/0066—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0093—Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2339/00—Details of evaporators; Details of condensers
- F25B2339/04—Details of condensers
- F25B2339/047—Water-cooled condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2500/00—Problems to be solved
- F25B2500/18—Optimization, e.g. high integration of refrigeration components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
- F28D2021/008—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
- F28D2021/0084—Condensers
Definitions
- the invention relates to a heat exchanger with a first flow channel for a refrigerant, with a second flow channel for a refrigerant and with a third flow channel for a coolant, wherein the first flow channel a first region for first cooling of the refrigerant and a second region for further cooling of the refrigerant wherein, in the first flow channel, the refrigerant can be flowed in a high-pressure phase and in the second flow channel, the refrigerant can be flowed in a low-pressure phase.
- a heat exchanger with the features of the preamble of claim 1 is made FR 2 924 490 known.
- condensers are used to cool a refrigerant to the condensation temperature and then condense the refrigerant. This occurs in particular with refrigerants which experience at least one phase transition from gaseous to liquid within the refrigerant circuit.
- capacitors have a collector, in which a volume of refrigerant can be kept in order to compensate for volume fluctuations in the refrigerant circuit. As a result, a stable supercooling of the refrigerant can be achieved.
- the collector is usually arranged on the capacitor. It is flowed through by the refrigerant, which has already flowed through part of the condenser. After flowing through the collector, the refrigerant is returned to the condenser and subcooled in a subcooling below the condensation temperature.
- capacitors are known in which the refrigerant undergoes no phase transition. These capacitors regularly have only one cooling section, in which the refrigerant is brought into thermal contact with a coolant.
- heat exchangers which after the condensation section and the subcooling an internal heat exchanger is connected downstream.
- a collector is preferably arranged between the condensation section and the subcooling section. While heat transfer takes place between a refrigerant and a coolant within the condensation section and the subcooling section, a heat transfer takes place in the internal heat exchanger between the refrigerant in two different states, namely in a high pressure phase and a low pressure phase.
- a disadvantage of the devices known from the prior art is in particular that when using CO 2 (R744) as refrigerant high pressures within the refrigerant circuit occur, which burden the previously known heat exchanger beyond their load limits.
- the heat exchanger should characterized by a compact design and cost-effective production.
- An embodiment of the invention relates to a heat exchanger with a first flow channel for a refrigerant, with a second flow channel for a refrigerant and with a third flow channel for a coolant, wherein the first flow channel has a first region for first cooling of the refrigerant and a second region for further cooling of the refrigerant, wherein in the first flow channel, the refrigerant is flowable in a high pressure phase and in the second flow channel, the refrigerant is flowable in a low pressure phase, wherein a first heat transfer between the refrigerant in the first region of the first flow channel and the coolant takes place in the third flow channel and a second Heat transfer between the refrigerant takes place in the second region of the first flow channel and the refrigerant in the second flow channel.
- the temperature of the refrigerant can be further lowered in the high pressure phase.
- the cooling capacity in the refrigerant circuit can be increased overall.
- the second region of the first flow channel and the second flow channel form a first unit and the first region of the first flow channel and the third flow channel form a second unit, wherein the first unit and the second unit can be connected as a unit.
- the heat exchanger has an accumulator which stores a storage volume of the refrigerant and / or means for filtering and / or means for drying the refrigerant.
- the accumulator serves as a storage medium for the refrigerant.
- it stores the refrigerant in the low pressure phase between. This is used to compensate for volume fluctuations of the refrigerant or to compensate for refrigerant losses, which may arise for example due to leaks.
- the accumulator may advantageously comprise means for drying and / or filtering the refrigerant. This has an advantageous effect on the quality of the refrigerant and thus also on the efficiency of the refrigerant circuit.
- the accumulator is assigned to the heat exchanger.
- the additional accumulator may be particularly advantageous if the heat exchanger itself must be made as compact as possible.
- the accumulator can be installed independently of the heat exchanger in the vehicle.
- the passage of refrigerant out of the second region of the first flow channel leads into the second flow channel via the accumulator.
- the refrigerant passing through the accumulator can be ensured that volume fluctuations of the refrigerant can be fully compensated at any time. Overall, it improves the efficiency of the refrigerant circuit.
- the third flow channel is adjacent to the first region of the first flow channel and the second flow channel is adjacent to the second region of the first flow channel.
- first unit and / or the second unit is formed in stacked disc design.
- a construction in stacking disk design is particularly simple and particularly cost-effective due to the small number of different elements.
- first unit and / or the second unit is formed in tube-rib construction.
- the first unit and / or the second unit is formed by a plurality of tubes, wherein the tubes are adjacent to each other and at least partially in thermal contact with each other, wherein the tubes of each the refrigerant and / or the coolant can flow through.
- the flow of the refrigerant and the coolant in pipes is particularly advantageous, in particular with regard to the pressure resistance of the heat exchanger.
- a particularly high compressive strength can be achieved.
- the first unit and / or the second unit is formed by a plurality of tubes, wherein between the tubes turbulence inserts are arranged, wherein the arrangement of tubes and turbulence inserts is encased by a housing, wherein the tubes of a Coolant and / or a refrigerant can flow through and can be flowed around by a coolant and / or a refrigerant.
- a structure in which a part of the tubes is flowed through by a first fluid and at the same time flows around a second fluid is particularly advantageous, since in this way a particularly high heat transfer can be realized.
- a preferred embodiment of the invention is characterized in that the heat exchanger is formed in a stacked disk construction, wherein the stacking of individual disc elements, a heat exchanger block is formed and formed between the disc elements channels, wherein a first number of channels is associated with the first flow channel, a second number the channels is associated with the second flow channel and a third number of the channels is associated with the third flow channel.
- one or more of the flow channels experience one or more deflections of their flow direction, as a result of which the fluid flows in the flow channels can run in cocurrent and / or countercurrent and / or crosstalk.
- the fluid flows can be advantageously controlled.
- the heat transfer can be significantly increased and the efficiency of the refrigerant circuit can be improved.
- the accumulator has the second region of the first flow channel and the second flow channel, wherein heat transfer takes place within the accumulator between the second region of the first flow channel and the second flow channel.
- Such a design is advantageous because the heat exchanger can be made even more compact, which is particularly advantageous in terms of the available space.
- a further preferred embodiment is characterized in that the accumulator and the heat exchanger are designed as a structural unit.
- An assembly of the accumulator and the heat exchanger is advantageous because the required space can be reduced overall. In addition, a simpler installation in the vehicle is possible because no additional piping between the heat exchanger and the accumulator must be provided.
- the refrigerant is CO 2 (R744).
- the heat exchanger has a compressive strength that allows internal pressures greater than 100 bar.
- the compressive strength of 100 bar and more is particularly advantageous for the areas through which the high-pressure refrigerant flows. Also for the areas through which the low-pressure refrigerant and the coolant flow, this pressure resistance may be advantageous.
- the Fig. 1 shows a schematic view of a heat exchanger 1.
- the heat exchanger 1 is divided into a cooling section 6 and in an inner heat exchanger 5.
- a refrigerant in a high-pressure phase (high-pressure refrigerant) 2 is brought into thermal contact with a coolant 3, so that a heat transfer from the high-pressure refrigerant 2 to the coolant 3 is formed.
- the Hochdrucckältesch 2 is thus further cooled.
- the high-pressure refrigerant 2 flows via a fluid inlet 7 into the cooling section 6.
- a plurality of flow channels are arranged, which are partially flowed through by the high-pressure refrigerant 2 and through which the coolant 3 flows.
- Within the internal heat exchanger 5 also a plurality of flow channels are arranged, wherein a number of these flow channels is associated with the low-pressure refrigerant 4 and a further number of channels is associated with the high-pressure refrigerant 2. Both the flow channels in the internal heat exchanger 5 and in the cooling section 6 are not shown for reasons of clarity.
- the flow channels for the high-pressure refrigerant 2, the coolant 3 and the low-pressure refrigerant 4 may be arranged within the heat exchanger in any order.
- the flow channels of the different fluids can be arranged, for example, alternately.
- an arrangement may be provided in which a plurality of flow channels for the same fluid are arranged adjacent to each other.
- the flow of the high-pressure refrigerant 2 through the heat exchanger 1 runs along the fluid inlet 7 through the flow channels in the interior of the cooling section 6 along the flow channels in the inner heat exchanger 5 and finally out of the heat exchanger 1 from the fluid outlet 8.
- the coolant 3 flows via the fluid inlet 9 into the cooling section 6 of the heat exchanger 1 and there along the flow channels within the cooling section 6 to the fluid outlet 10. There, it flows out of the heat exchanger 1 from.
- the low-pressure refrigerant 4 flows via a fluid inlet 11 into the inner heat exchanger 5 and there along the flow channels associated therewith through the inner heat exchanger 5. It finally flows out of the inner heat exchanger 5 via the fluid outlet 12.
- deflections may be provided, whereby the flow direction of the individual fluids is deflected. In this case, areas can be generated in which two fluids flow in cocurrent or in countercurrent to each other.
- the high-pressure refrigerant 2 is within the refrigerant circuit, softer in the Fig. 1 is not shown, transferred via a likewise not shown expansion valve in a low pressure phase and thus to the low pressure refrigerant 4.
- the Fig. 2 shows a further schematic view of the heat exchanger 1, as already in Fig. 1 was shown.
- the with the Fig. 1 identical features of the heat exchanger 1 are denoted by identical reference numerals.
- an accumulator 13 is shown.
- This accumulator 13 serves to store the low-pressure refrigerant 4, which flows into the accumulator 13 via a fluid inlet 14 and flows out of the accumulator 13 via a fluid outlet 15.
- the accumulator 13 may include means for filtering, cleaning and drying the low-pressure refrigerant 4. Via a storage volume in the interior of the accumulator 13, a fluctuation of the refrigerant volume within the refrigerant circuit can be compensated. This ensures a stable cooling of the refrigerant 2, 4 within the refrigerant circuit. Likewise, leaks within the refrigerant circuit can be at least partially compensated.
- the accumulator 13 is arranged immediately in front of the fluid inlet 11 of the heat exchanger 1.
- the low-pressure refrigerant 4 thus flows directly from the accumulator 13 into the internal heat exchanger 5 of the heat exchanger 1.
- the accumulator 13 can as in Fig. 2 be shown as a separate component, which is arranged in the vicinity of the heat exchanger 1.
- an integration of the accumulator in the heat exchanger is providable.
- the design of the heat exchanger and the accumulator in a unit is particularly advantageous in terms of the required installation space of the unit.
- the Fig. 3 shows a sectional view through a heat exchanger.
- the arrangement of the various flow channels 23, 24, 25 is shown.
- the high-pressure refrigerant 20 is assigned the first flow channel 23, which divides into a first region 23a and a second region 23b.
- the high-pressure refrigerant 20 comes into thermal contact with a coolant 21, whereby a heat transfer between the high-pressure refrigerant 20 and the coolant 21 is formed.
- the second region 23b of the first flow channel 23 the heat transfer between the high-pressure refrigerant 20 and the low-pressure refrigerant 22 takes place.
- the flow channel 23 is in thermal contact with another flow channel 24.
- the flow channel 24 in this case has a plurality of rib elements 26, which serve to increase the heat transfer surface.
- FIG. 3 shown example of the arrangement of the flow channels within a heat exchanger provides that the heat transfer between the high-pressure refrigerant 20 and the coolant 21 via flow channels in pipe rib design.
- the first region 23a of the flow channels 23 flows through the refrigerant, wherein the flow channels 24 are arranged between the flow channels 23 and by a coolant, such as the ambient air or cooling water, flows through.
- a coolant such as the ambient air or cooling water
- the first regions 23a of the flow channels 23 are substantially bypassed by the coolant 21 while flowing through the high-pressure refrigerant 20.
- the operation of the cooling section 27 corresponds to the ordinary pipe-fin type heat exchanger in which a fluid flows through a first number of pipes while a second fluid flows around this number of pipes.
- Fig. 3 shown arrangement can be covered by a housing.
- the housing can be flowed through by the coolant whereby the tubes through which the refrigerant flows, are flowed around.
- the heat transfer between the high-pressure refrigerant 20 and the low-pressure refrigerant 22 takes place between the second region 23b of the flow channels 23 of the high-pressure refrigerant 20 and the flow channels 25 of the low-pressure refrigerant 22.
- the area of Fig. 3 which is formed by the flow channels 24 and the first region 23 of the first flow channels 23, corresponds to the Abkühlumble 27.
- the range of Fig. 3 which is formed by the second region 23b of the first flow channels 23 and the flow channels 25, corresponds to the internal heat exchanger 28.
- the cooling section 27 can be represented by flow channels brought together in thermally conductive contact. It is also conceivable to use a liquid coolant.
- the first unit of the heat exchanger which is formed by the second region 23b of the first flow channel 23 and the second flow channel 25 and the second unit of the heat exchanger, which is formed from the first region 23a of the first flow channel 23 and the third flow channel 24 can optionally by a construction in stacking disk construction, in pipe-fin construction or by a juxtaposition of pipes, which are flowed through by the refrigerant or the coolant to be formed.
- a housing is advantageously provided, which surrounds the arrangement of tubes and turbulence inserts.
- the Fig. 4 shows an alternative embodiment of the heat exchanger 30.
- the heat exchanger 30 now consists only of a cooling section, in which the high-pressure refrigerant 39 is brought into thermal contact with the coolant 40.
- the structure of the heat exchanger 30 corresponds essentially to the cooling section 6 of the heat exchanger 1 of Fig. 1 ,
- a low-pressure refrigerant 41 flows in via the fluid inlet 32 and out of the accumulator 31 out of the fluid outlet 33.
- the high-pressure refrigerant 39 which has flowed out of the fluid outlet 36 of the heat exchanger 30, flows into the accumulator 31.
- the accumulator 31 has in particular the second region 34 of the first flow channel, which is brought into thermally conductive contact with the low-pressure refrigerant 41.
- the accumulator 31 may have in its interior a plurality of flow channels.
- the accumulator 31 of the Fig. 4 be designed as a separate component as shown. In alternative embodiments, it may also be integrated directly into the heat exchanger 30.
- the positioning of the fluid inlets and the fluid outlets represents only one possibility of the arrangement.
- the fluid inlets and fluid outlets can be arbitrarily arranged on the heat exchanger and the accumulator.
- Advantageous solutions result in particular by the choice of the internal structure of the Heat exchanger.
- the fluid inlets and the fluid outlets are advantageously arranged on the two outer disc elements closing off the stack.
- Fig. 1 to 4 the refrigerant circuit surrounding each heat exchanger is not shown.
- the embodiments of the Fig. 1 to 4 are merely exemplary in nature and are not an exhaustive list and representation of the embodiments. They are not of a restrictive nature.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
Die Erfindung betrifft einen Wärmeübertrager mit einem ersten Strömungskanal für ein Kältemittel, mit einem zweiten Strömungskanal für ein Kältemittel und mit einem dritten Strömungskanal für ein Kühlmittel, wobei der erste Strömungskanal einen ersten Bereich zur ersten Abkühlung des Kältemittels und einen zweiten Bereich zur weiteren Abkühlung des Kältemittels aufweist, wobei im ersten Strömungskanal das Kältemittel in einer Hochdruckphase strömbar ist und im zweiten Strömungskanal das Kältemittel in einer Niederdruckphase strömbar ist. Ein Wärmeübertrager mit den Merkmalen des Oberbegriff von Anspruch 1 ist aus
In Kältemittelkreisläufen von Klimaanlagen für Kraftfahrzeuge werden Kondensatoren eingesetzt, um ein Kältemittel auf die Kondensationstemperatur abzukühlen und anschließend das Kältemittel zu kondensieren. Dies geschieht insbesondere bei Kältemitteln, die innerhalb des Kältemittelkreislaufes zumindest einen Phasenübergang von gasförmig zu flüssig erfahren. Regelmäßig weisen Kondensatoren einen Sammler auf, in welchem ein Kältemittelvolumen vorgehalten werden kann, um Volumenschwankungen im Kältemittelkreislauf auszugleichen. Dadurch kann eine stabile Unterkühlung des Kältemittels erreicht werden.In automotive vehicle air conditioning refrigerant circuits, condensers are used to cool a refrigerant to the condensation temperature and then condense the refrigerant. This occurs in particular with refrigerants which experience at least one phase transition from gaseous to liquid within the refrigerant circuit. Regularly, capacitors have a collector, in which a volume of refrigerant can be kept in order to compensate for volume fluctuations in the refrigerant circuit. As a result, a stable supercooling of the refrigerant can be achieved.
Oftmals sind in dem Sammler zusätzliche Mittel zur Trocknung und/oder Filterung des Kältemittels vorgesehen. Der Sammler ist im Regelfall am Kondensator angeordnet. Er wird von dem Kältemittel durchströmt, welches bereits einen Teil des Kondensators durchströmt hat. Nach dem Durchströmen des Sammlers wird das Kältemittel in den Kondensator zurückgeleitet und in einer Unterkühlungsstrecke unter die Kondensationstemperatur unterkühlt.Often, additional means for drying and / or filtering the refrigerant are provided in the collector. The collector is usually arranged on the capacitor. It is flowed through by the refrigerant, which has already flowed through part of the condenser. After flowing through the collector, the refrigerant is returned to the condenser and subcooled in a subcooling below the condensation temperature.
Auch sind Kondensatoren bekannt, bei denen das Kältemittel keinen Phasenübergang erfährt. Diese Kondensatoren weisen regelmäßig nur eine Abkühlstrecke auf, in welcher das Kältemittel mit einem Kühlmittel in thermischen Kontakt gebracht wird.Also, capacitors are known in which the refrigerant undergoes no phase transition. These capacitors regularly have only one cooling section, in which the refrigerant is brought into thermal contact with a coolant.
Weiterhin sind Wärmeübertrager bekannt, denen nach der Kondensationsstrecke und der Unterkühlstrecke ein innerer Wärmeübertrager nachgeschaltet ist. Ein Sammler ist dabei vorzugsweise zwischen der Kondensationsstrecke und der Unterkühlstrecke angeordnet. Während innerhalb der Kondensationsstrecke und der Unterkühlstrecke ein Wärmeübertrag zwischen einem Kältemittel und einem Kühlmittel stattfindet, findet im inneren Wärmeübertrager ein Wärmeübertrag zwischen dem Kältemittel in zwei verschiedenen Zuständen, nämlich in einer Hochdruckphase und einer Niederdruckphase, statt.Furthermore, heat exchangers are known, which after the condensation section and the subcooling an internal heat exchanger is connected downstream. A collector is preferably arranged between the condensation section and the subcooling section. While heat transfer takes place between a refrigerant and a coolant within the condensation section and the subcooling section, a heat transfer takes place in the internal heat exchanger between the refrigerant in two different states, namely in a high pressure phase and a low pressure phase.
Nachteilig an den aus dem Stand der Technik bekannten Vorrichtungen ist insbesondere, dass bei der Verwendung von CO2 (R744) als Kältemittel hohe Drücke innerhalb des Kältemittelkreislaufes auftreten, die die bisher bekannten Wärmeübertrager über ihre Belastungsgrenzen hinaus belasten.A disadvantage of the devices known from the prior art is in particular that when using CO 2 (R744) as refrigerant high pressures within the refrigerant circuit occur, which burden the previously known heat exchanger beyond their load limits.
Daher ist es die Aufgabe der vorliegenden Erfindung einen Wärmeübertrager bereitzustellen, der mit hohen Drücken, wie sie beispielsweise beim Einsatz von CO2 (R744) auftreten, beaufschlagt werden kann. Darüber hinaus soll sich der Wärmeübertrager durch ein kompakte Bauform und eine kostengünstige Herstellung auszeichnen.It is therefore the object of the present invention to provide a heat exchanger which can be subjected to high pressures, as occur, for example, when CO 2 (R 744) is used. In addition, the heat exchanger should characterized by a compact design and cost-effective production.
Die Aufgabe der vorliegenden Erfindung wird durch einen Wärmeübertrager mit den Merkmalen gemäß Anspruch 1 gelöst.The object of the present invention is achieved by a heat exchanger with the features of
Ein Ausführungsbeispiel der Erfindung betrifft einen Wärmeübertrager mit einem ersten Strömungskanal für ein Kältemittel, mit einem zweiten Strömungskanal für ein Kältemittel und mit einem dritten Strömungskanal für ein Kühlmittel, wobei der erste Strömungskanal einen ersten Bereich zur ersten Abkühlung des Kältemittels und einen zweiten Bereich zur weiteren Abkühlung des Kältemittels aufweist, wobei im ersten Strömungskanal das Kältemittel in einer Hochdruckphase strömbar ist und im zweiten Strömungskanal das Kältemittel in einer Niederdruckphase strömbar ist, wobei ein erster Wärmeübertrag zwischen dem Kältemittel im ersten Bereich des ersten Strömungskanals und dem Kühlmittel im dritten Strömungskanal stattfindet und ein zweiter Wärmeübertrag zwischen dem Kältemittel im zweiten Bereich des ersten Strömungskanals und dem Kältemittel im zweiten Strömungskanal stattfindet.An embodiment of the invention relates to a heat exchanger with a first flow channel for a refrigerant, with a second flow channel for a refrigerant and with a third flow channel for a coolant, wherein the first flow channel has a first region for first cooling of the refrigerant and a second region for further cooling of the refrigerant, wherein in the first flow channel, the refrigerant is flowable in a high pressure phase and in the second flow channel, the refrigerant is flowable in a low pressure phase, wherein a first heat transfer between the refrigerant in the first region of the first flow channel and the coolant takes place in the third flow channel and a second Heat transfer between the refrigerant takes place in the second region of the first flow channel and the refrigerant in the second flow channel.
Durch einen zusätzlichen Wärmeübertrag zwischen dem Kältemittel in seiner Hochdruckphase und dem Kältemittel in seiner Niederdruckphase kann die Temperatur des Kältemittels in der Hochdruckphase noch weiter abgesenkt werden. Dadurch kann die Kühlleistung im Kältemittelkreislauf insgesamt erhöht werden.By an additional heat transfer between the refrigerant in its high pressure phase and the refrigerant in its low pressure phase, the temperature of the refrigerant can be further lowered in the high pressure phase. As a result, the cooling capacity in the refrigerant circuit can be increased overall.
In einer weiteren Ausgestaltung der Erfindung kann es vorgesehen sein, dass der zweite Bereich des ersten Strömungskanals und der zweite Strömungskanal eine erste Einheit bilden und der erste Bereich des ersten Strömungskanals und der dritte Strömungskanal eine zweite Einheit bilden, wobei die erste Einheit und die zweite Einheit als Baueinheit verbindbar sind.In a further embodiment of the invention, it may be provided that the second region of the first flow channel and the second flow channel form a first unit and the first region of the first flow channel and the third flow channel form a second unit, wherein the first unit and the second unit can be connected as a unit.
Erfindungsgemäß weist der Wärmeübertrager einen Akkumulator auf, der ein Speichervolumen zur Bevorratung des Kältemittels aufweist und/oder Mittel zur Filterung und/oder Mittel zur Trocknung des Kältemittels.According to the invention, the heat exchanger has an accumulator which stores a storage volume of the refrigerant and / or means for filtering and / or means for drying the refrigerant.
Der Akkumulator dient als Speichermedium für das Kältemittel. Vorteilhafterweise speichert er das Kältemittel in der Niederdruckphase zwischen. Dies dient zum Ausgleich von Volumenschwankungen des Kältemittels oder zur Kompensation von Kältemittelverlusten, die beispielsweise durch Leckagen entstehen können. Zusätzlich kann der Akkumulator vorteilhafterweise Mittel zur Trocknung und/oder Filterung des Kältemittels aufweisen. Dies wirkt sich vorteilhaft auf die Qualität des Kältemittels und damit auch auf die Effizienz des Kältemittelkreislaufes aus.The accumulator serves as a storage medium for the refrigerant. Advantageously, it stores the refrigerant in the low pressure phase between. This is used to compensate for volume fluctuations of the refrigerant or to compensate for refrigerant losses, which may arise for example due to leaks. In addition, the accumulator may advantageously comprise means for drying and / or filtering the refrigerant. This has an advantageous effect on the quality of the refrigerant and thus also on the efficiency of the refrigerant circuit.
Auch kann es vorteilhaft sein, wenn der Akkumulator dem Wärmeübertrager zugeordnet ist.It may also be advantageous if the accumulator is assigned to the heat exchanger.
Durch eine Zuordnung des zusätzlichen Akkumulators zum Wärmeübertrager kann besonders vorteilhaft sein, wenn der Wärmeübertrager selbst möglichst kompakt ausgeführt sein muss. Der Akkumulator kann dabei unabhängig vom Wärmeübertrager im Fahrzeug verbaut werden.By assigning the additional accumulator to the heat exchanger may be particularly advantageous if the heat exchanger itself must be made as compact as possible. The accumulator can be installed independently of the heat exchanger in the vehicle.
Erfindungsgemäß führt der Kältemittelübertritt aus dem zweiten Bereich des ersten Strömungskanals in den zweiten Strömungskanal über den Akkumulator.According to the invention, the passage of refrigerant out of the second region of the first flow channel leads into the second flow channel via the accumulator.
Durch den Kältemittelübertritt durch den Akkumulator kann sichergestellt werden, dass Volumenschwankungen des Kältemittels zu jeder Zeit vollständig ausgeglichen werden können. Insgesamt verbessert sie die Effizienz des Kältemittelkreislaufes.By the refrigerant passing through the accumulator can be ensured that volume fluctuations of the refrigerant can be fully compensated at any time. Overall, it improves the efficiency of the refrigerant circuit.
Weiterhin kann es zweckmäßig sein, wenn dem ersten Bereich des ersten Strömungskanals der dritte Strömungskanal benachbart ist und dem zweiten Bereich des ersten Strömungskanals der zweite Strömungskanal benachbart ist.Furthermore, it may be expedient if the third flow channel is adjacent to the first region of the first flow channel and the second flow channel is adjacent to the second region of the first flow channel.
Durch die Anordnung der Strömungskanäle in dieser Weise wird der Wärmeübertrag zwischen dem Kältemittel im ersten Bereich des ersten Strömungskanals und dem Kühlmittel im dritten Strömungskanal und außerdem der Wärmeübertrag zwischen dem Kältemittel im zweiten Bereich des ersten Strömungskanals und dem Kältemittel im zweiten Strömungskanal begünstigt.By arranging the flow channels in this way, the heat transfer between the refrigerant in the first region of the first flow channel and the coolant in the third flow channel and also the heat transfer between the refrigerant in the second region of the first flow channel and the refrigerant in the second flow channel is favored.
Außerdem kann es vorteilhaft sein, wenn die erste Einheit und/oder die zweite Einheit in Stapelscheibenbauweise gebildet ist.In addition, it may be advantageous if the first unit and / or the second unit is formed in stacked disc design.
Ein Aufbau in Stapelscheibenbauweise ist besonders einfach und aufgrund der geringen Anzahl an unterschiedlichen Elementen besonders kostengünstig.A construction in stacking disk design is particularly simple and particularly cost-effective due to the small number of different elements.
Auch ist es zu bevorzugen, wenn die erste Einheit und/oder die zweite Einheit in Rohr-Rippe-Bauweise gebildet ist.It is also preferable if the first unit and / or the second unit is formed in tube-rib construction.
In einer weiteren Ausführungsform der Erfindung kann es vorgesehen sein, dass die erste Einheit und/oder die zweite Einheit durch eine Mehrzahl von Rohren gebildet ist, wobei die Rohre benachbart zueinander angeordnet sind und zumindest teilweise in thermischen Kontakt miteinander stehen, wobei die Rohre jeweils von dem Kältemittel und/oder dem Kühlmittel durchströmbar sind.In a further embodiment of the invention, it may be provided that the first unit and / or the second unit is formed by a plurality of tubes, wherein the tubes are adjacent to each other and at least partially in thermal contact with each other, wherein the tubes of each the refrigerant and / or the coolant can flow through.
Das Strömen des Kältemittels und des Kühlmittels in Rohren ist insbesondere hinsichtlich der Druckfestigkeit des Wärmeübertragers besonders vorteilhaft. Durch die Verwendung von Rohren lässt sich eine besonders hohe Druckfestigkeit erreichen.The flow of the refrigerant and the coolant in pipes is particularly advantageous, in particular with regard to the pressure resistance of the heat exchanger. By using pipes, a particularly high compressive strength can be achieved.
Weiterhin kann es vorteilhaft sein, wenn die erste Einheit und/oder die zweite Einheit von einer Mehrzahl von Rohren gebildet ist, wobei zwischen den Rohren Turbulenzeinlagen angeordnet sind, wobei die Anordnung von Rohren und Turbulenzeinlagen von einem Gehäuse ummantelt ist, wobei die Rohre von einem Kühlmittel und/oder einem Kältemittel durchströmbar sind und von einem Kühlmittel und/oder einem Kältemittel umströmbar sind.Furthermore, it may be advantageous if the first unit and / or the second unit is formed by a plurality of tubes, wherein between the tubes turbulence inserts are arranged, wherein the arrangement of tubes and turbulence inserts is encased by a housing, wherein the tubes of a Coolant and / or a refrigerant can flow through and can be flowed around by a coolant and / or a refrigerant.
Ein Aufbau, bei der ein Teil der Rohre von einem ersten Fluid durchströmt wird und gleichzeitig von einem zweiten Fluid umströmt wird ist besonders vorteilhaft, da auf diese Weise ein besonders hoher Wärmeübertrag realisiert werden kann.A structure in which a part of the tubes is flowed through by a first fluid and at the same time flows around a second fluid is particularly advantageous, since in this way a particularly high heat transfer can be realized.
Insbesondere durch eine Mischbauweise aus einer Einheit, die in Stapelscheibenbauweise gebildet ist und einer Einheit, die in Rohr-Rippe-Bauweise gebildet ist, lassen sich die Vorteile beider Bauweisen kombinieren.In particular, by a mixed construction of a unit which is formed in stacked disk construction and a unit which is formed in tube-rib construction, the advantages of both designs can be combined.
Ein bevorzugtes Ausführungsbeispiel der Erfindung ist dadurch gekennzeichnet, dass der Wärmeübertrager in Stapelscheibenbauweise gebildet ist, wobei durch das Aufeinanderstapeln von einzelnen Scheibenelementen ein Wärmeübertragerblock entsteht und zwischen den Scheibenelementen Kanäle ausgebildet sind, wobei eine erste Anzahl der Kanäle dem ersten Strömungskanal zugeordnet ist, eine zweite Anzahl der Kanäle dem zweiten Strömungskanal zugeordnet ist und eine dritte Anzahl der Kanäle dem dritten Strömungskanal zugeordnet ist.A preferred embodiment of the invention is characterized in that the heat exchanger is formed in a stacked disk construction, wherein the stacking of individual disc elements, a heat exchanger block is formed and formed between the disc elements channels, wherein a first number of channels is associated with the first flow channel, a second number the channels is associated with the second flow channel and a third number of the channels is associated with the third flow channel.
Der Aufbau in einer Stapelscheibenbauwese ist besonders vorteilhaft, da eine große Anzahl von Gleichteilen verwendet werden kann. Je nach Ausführung des Wärmeübertragers müssen nur die beiden jeweils äußeren Scheibenelemente von den übrigen abweichen. Dadurch können die Kosten und der Herstellungsaufwand deutlich reduziert werden.The construction in a Stapelscheibenbauwese is particularly advantageous because a large number of identical parts can be used. Depending on the design of the heat exchanger, only the two respective outer disk elements must deviate from the others. As a result, the costs and the production costs can be significantly reduced.
Außerdem kann es vorteilhaft sein, wenn einer oder mehrere der Strömungskanäle eine oder mehrerer Umlenkungen ihrer Strömungsrichtung erfahren, wodurch die Fluidströmungen in den Strömungskanälen zueinander im Gleichstrom und/oder im Gegenstrom und/oder im Kreuzstrom verlaufen können.In addition, it may be advantageous if one or more of the flow channels experience one or more deflections of their flow direction, as a result of which the fluid flows in the flow channels can run in cocurrent and / or countercurrent and / or crosstalk.
Durch Umlenkungen im Inneren des Wärmeübertragers können die Fluidströme vorteilhaft gelenkt werden. Dadurch kann der Wärmeübertrag deutlich erhöht werden und die Effizienz des Kältemittelkreislaufes verbessert werden.By deflections in the interior of the heat exchanger, the fluid flows can be advantageously controlled. As a result, the heat transfer can be significantly increased and the efficiency of the refrigerant circuit can be improved.
Erfindungs gemäß weist der Akkumulator den zweiten Bereich des ersten Strömungskanals und den zweiten Strömungskanal auf, wobei innerhalb des Akkumulators ein Wärmeübertrag zwischen dem zweiten Bereich des ersten Strömungskanals und dem zweiten Strömungskanal stattfindet.According to the Invention, the accumulator has the second region of the first flow channel and the second flow channel, wherein heat transfer takes place within the accumulator between the second region of the first flow channel and the second flow channel.
Eine solche Gestaltung ist vorteilhaft, da der Wärmeübertrager dadurch noch kompakter gebaut werden kann, was insbesondere hinsichtlich des zur Verfügung stehenden Bauraumes vorteilhaft ist.Such a design is advantageous because the heat exchanger can be made even more compact, which is particularly advantageous in terms of the available space.
Ein weiteres bevorzugtes Ausführungsbeispiel ist dadurch gekennzeichnet, dass der Akkumulator und der Wärmeübertrager als Baueinheit ausgeführt sind.A further preferred embodiment is characterized in that the accumulator and the heat exchanger are designed as a structural unit.
Eine Baueinheit des Akkumulators und des Wärmeübertragers ist vorteilhaft, da der benötigte Bauraum insgesamt verringert werden kann. Außerdem ist eine einfachere Montage im Fahrzeug möglich, da keine zusätzlichen Verrohrungen zwischen dem Wärmeübertrager und dem Akkumulator vorgesehen werden müssen.An assembly of the accumulator and the heat exchanger is advantageous because the required space can be reduced overall. In addition, a simpler installation in the vehicle is possible because no additional piping between the heat exchanger and the accumulator must be provided.
Weiterhin ist es vorteilhaft, wenn das Kältemittel CO2 (R744) ist.Furthermore, it is advantageous if the refrigerant is CO 2 (R744).
Auch kann es zweckmäßig sein, wenn der Wärmeübertrager eine Druckfestigkeit aufweist, die Innendrücke größer 100 bar erlaubt.It may also be expedient if the heat exchanger has a compressive strength that allows internal pressures greater than 100 bar.
Insbesondere bei der Verwendung von CO2 (R744) als Kältemittel ist es vorteilhaft, wenn der Wärmeübertrager hohen Innendrücken standhalten kann. Im Betrieb mit CO2 (R744) als Kältemittel können Drücke von 100 bar und mehr auftreten.In particular, when using CO 2 (R744) as a refrigerant, it is advantageous if the heat exchanger can withstand high internal pressures. When operating with CO 2 (R744) as a refrigerant, pressures of 100 bar and more can occur.
Die Druckfestigkeit von 100 bar und mehr ist insbesondere für die Bereiche vorteilhaft, die von dem Hochdruckkältemittel durchströmt sind. Auch für die Bereiche, die von dem Niederdruckkältemittel und dem Kühlmittel durchströmt sind, kann diese Druckfestigkeit vorteilhaft sein.The compressive strength of 100 bar and more is particularly advantageous for the areas through which the high-pressure refrigerant flows. Also for the areas through which the low-pressure refrigerant and the coolant flow, this pressure resistance may be advantageous.
Vorteilhafte Weiterbildungen der vorliegenden Erfindung sind in den Unteransprüchen und der nachfolgenden Figurenbeschreibung beschrieben.Advantageous developments of the present invention are described in the subclaims and the following description of the figures.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen detailliert erläutert. In den Zeichnungen zeigen:
- Fig.1
- eine perspektivische Ansicht eines Wärmeübertragers mit einer inneren Abkühlstrecke und einem inneren Wärmeübertrager,
- Fig. 2
- eine perspektivische Ansicht eines Wärmeübertragers gemäß
Figur 1 und einen zusätzlichen Akkumulator, - Fig. 3
- eine Schnittansicht durch einen Wärmeübertrager mit einer Mehrzahl von Strömungskanälen für ein Niederdruckkältemittel, ein Hochdruckkältemittel und ein Kühlmittel, und
- Fig. 4
- eine perspektivische Ansicht eines Wärmeübertragers mit einer Abkühlstrecke und einen Akkumulator, in den ein innerer Wärmeübertrager integriert ist.
- Fig.1
- a perspective view of a heat exchanger with an inner cooling path and an internal heat exchanger,
- Fig. 2
- a perspective view of a heat exchanger according to
FIG. 1 and an additional accumulator, - Fig. 3
- a sectional view through a heat exchanger having a plurality of flow channels for a low-pressure refrigerant, a high-pressure refrigerant and a coolant, and
- Fig. 4
- a perspective view of a heat exchanger with a cooling line and an accumulator, in which an internal heat exchanger is integrated.
Die
Das Hochdruckkältemittel 2 strömt über einen Fluideinlass 7 in die Abkühlstrecke 6. Im Inneren der Abkühlstrecke 6 ist eine Mehrzahl von Strömungskanälen angeordnet, welche teilweise vom Hochdruckkältemittel 2 durchströmt werden und teilweise von dem Kühlmittel 3 durchströmt werden. Innerhalb des inneren Wärmeübertragers 5 sind ebenfalls mehrere Strömungskanäle angeordnet, wobei eine Anzahl dieser Strömungskanäle dem Niederdruckkältemittel 4 zugeordnet ist und eine weitere Anzahl der Kanäle dem Hochdruckkältemittel 2 zugeordnet ist. Sowohl die Strömungskanäle im inneren Wärmeübertrager 5 als auch in der Abkühlstrecke 6 sind aus Gründen der Übersichtlichkeit nicht dargestellt.The high-
Die Strömungskanäle für das Hochdruckkältemittel 2, das Kühlmittel 3 und das Niederdruckkältemittel 4 können innerhalb des Wärmeübertragers in beliebiger Reihenfolge angeordnet sein. Hierbei können die Strömungskanäle der unterschiedlichen Fluide beispielsweise abwechselnd angeordnet sein. Alternativ kann auch eine Anordnung vorgesehen sein, bei der mehrere Strömungskanäle für das gleiche Fluid aneinander angrenzend angeordnet sind.The flow channels for the high-
Die Strömung des Hochdruckkältemittels 2 durch den Wärmeübertrager 1 verläuft entlang des Fluideinlasses 7 durch die Strömungskanäle im Inneren der Abkühlstrecke 6 entlang der Strömungskanäle im inneren Wärmeübertrager 5 und schließlich aus dem Fluidauslass 8 aus dem Wärmeübertrager 1 hinaus. Das Kühlmittel 3 strömt über den Fluideinlass 9 in die Abkühlstrecke 6 des Wärmeübertragers 1 ein und dort entlang der Strömungskanäle innerhalb der Abkühlstrecke 6 zum Fluidauslass 10. Dort strömt es aus dem Wärmeübertrager 1 aus.The flow of the high-
Das Niederdruckkältemittel 4 strömt über einen Fluideinlass 11 in den inneren Wärmeübertrager 5 ein und dort entlang der ihm zugeordneten Strömungskanäle durch den inneren Wärmeübertrager 5. Es strömt schließlich über den Fluidauslass 12 aus dem inneren Wärmeübertrager 5 aus.The low-
Im Inneren des Wärmeübertragers 1 können Umlenkungen vorgesehen sein, wodurch die Strömungsrichtung der einzelnen Fluide umgelenkt wird. Dabei können Bereiche erzeugt werden, in denen zwei Fluide im Gleichstrom oder im Gegenstrom zueinander strömen. Durch eine geschickte Anordnung der Strömungskanäle und Umlenkungen im Inneren des Wärmeübertragers 1 ist auch erreichbar, dass zwei Fluide im Kreuzstrom zueinander fließen.In the interior of the
Das Hochdruckkältemittel 2 wird innerhalb des Kältemittelkreislaufes, weicher in der
Die
Zusätzlich ist in
Der Akkumulator 13 ist unmittelbar vor dem Fluideinlass 11 des Wärmeübertragers 1 angeordnet. Das Niederruckkältemittel 4 strömt somit aus dem Akkumulator 13 direkt in den inneren Wärmeübertrager 5 des Wärmeübertragers 1.The
Der Akkumulator 13 kann wie in
Die
Um einen Wärmeübertrag zwischen dem ersten Bereich 23a des ersten Strömungskanals 23 und dem darin strömenden Hochdruckkältemittel 20 und dem Kühlmittel 21 darzustellen, ist der Strömungskanal 23 mit einem weiteren Strömungskanal 24 in thermischen Kontakt. Der Strömungskanal 24 weist hierbei eine Mehrzahl von Rippenelementen 26 auf, welche der Vergrößerung der Wärmeübertragungsfläche dienen.In order to represent a heat transfer between the
Das in
Die ersten Bereiche 23a der Strömungskanäle 23 werden im Wesentlichen von dem Kühlmittel 21 umströmt, während sie von dem Hochdruckkältemittel 20 durchströmt werden. Die Funktionsweise des Abkühlbereichs 27 entspricht der gewöhnlicher Wärmeübertrager in Rohr-Rippe-Bauweise, bei der ein Fluid durch eine erste Anzahl von Rohren strömt, während diese Anzahl von Rohren von einem zweiten Fluid umströmt wird.The
Die in
Der Wärmeübertrag zwischen dem Hochdruckkältemittel 20 und dem Niederruckkältemittel 22 findet zwischen dem zweiten Bereich 23b der Strömungskanäle 23 des Hochdruckkältemittels 20 und den Strömungskanälen 25 des Niederruckkältemittels 22 statt. Der Bereich der
In abweichenden Ausführungen kann auch die Abkühlstrecke 27 durch miteinander in thermisch leitenden Kontakt gebrachte Strömungskanälen dargestellt werden. Dabei ist es auch vorsehbar, ein flüssiges Kühlmittel einzusetzen.In alternative embodiments, the
Die erste Einheit des Wärmeübertragers, welche durch den zweiten Bereich 23b des ersten Strömungskanals 23 und dem zweiten Strömungskanal 25 gebildet ist und die zweite Einheit des Wärmeübertragers, welche aus dem ersten Bereich 23a des ersten Strömungskanals 23 und dem dritten Strömungskanal 24 gebildet ist, können wahlweise durch einen Aufbau in Stapelscheibenbauweise, in Rohr-Rippe-Bauweise oder durch eine Aneinanderreihung von Rohren, welche von dem Kältemittel oder dem Kühlmittel durchströmt werden gebildet sein.The first unit of the heat exchanger, which is formed by the second region 23b of the
Alternativ ist auch eine Anordnung von Rohren, zwischen welchen Turbulenzeinlagen angeordnet sind, vorsehbar, wobei die Rohre und Turbulenzeinlagen dann von entweder dem Kältemittel oder dem Kühlmittel umströmt werden. Dabei ist vorteilhafterweise ein Gehäuse vorgesehen, welches die Anordnung von Rohren und Turbulenzeinlagen ummantelt.Alternatively, an arrangement of tubes, between which turbulence liners are arranged, providable, wherein the tubes and turbulence inserts are then flowed around by either the refrigerant or the coolant. In this case, a housing is advantageously provided, which surrounds the arrangement of tubes and turbulence inserts.
Die
Ähnlich wie in
Der Akkumulator 31 weist hierzu insbesondere den zweiten Bereich 34 des ersten Strömungskanals auf, welcher in thermisch leitenden Kontakt mit dem Niederruckkältemittel 41 gebracht wird. Hierzu kann der Akkumulator 31 in seinem Inneren eine Mehrzahl von Strömungskanälen aufweisen.For this purpose, the
Wie auch in
Insbesondere die Positionierung der Fluideinlässe und der Fluidauslässe stellt nur eine Möglichkeit der Anordnung dar. Die Fluideinlässe und Fluidauslässe können beliebig am Wärmeübertrager und am Akkumulator angeordnet werden. Vorteilhafte Lösungen ergeben sich insbesondere durch die Wahl des inneren Aufbaus des Wärmeübertragers. So sind bei einer Ausführung in Stapelscheibenbauweise die Fluideinlässe und die Fluidauslässe vorteilhafterweise an den beiden den Stapel abschließenden äußeren Scheibenelementen angeordnet.In particular, the positioning of the fluid inlets and the fluid outlets represents only one possibility of the arrangement. The fluid inlets and fluid outlets can be arbitrarily arranged on the heat exchanger and the accumulator. Advantageous solutions result in particular by the choice of the internal structure of the Heat exchanger. Thus, in an embodiment in stacked disc design, the fluid inlets and the fluid outlets are advantageously arranged on the two outer disc elements closing off the stack.
In allen
Claims (10)
- A heat exchanger (1, 30) with a first flow channel (23) for a refrigerant (2, 20, 39), a second flow channel (25) for a refrigerant (4, 22, 41), and a third flow channel (24) for a coolant (3, 21, 40), wherein the first flow channel (23) has a first region (23a) for the initial cooling of the refrigerant (2, 20, 39) and a second region (23b) for the further cooling of the refrigerant (2, 20, 39), wherein the refrigerant (2, 20, 39) can flow in a high-pressure phase in the first flow channel (23) and the refrigerant (4, 22, 41) can flow in a low-pressure phase in the second flow channel (25), wherein a first heat transfer occurs between the refrigerant in the first region (23a) of the first flow channel (23) and the coolant in the third flow channel (24) and a second heat transfer occurs between the refrigerant in the second region (23b) of the first flow channel (23) and the refrigerant in the second flow channel (25), wherein the heat exchanger (1, 30) has an accumulator (13, 31) which has a storage volume for storing the refrigerant (4, 22, 41) and/or means for filtering and/or means for drying the refrigerant (4, 22, 41), wherein the refrigerant transfer from the second region (23b) of the first flow channel (23) to the second flow channel (25) passes through the accumulator (13, 31), and characterised in that the accumulator (31) has the second region (23b, 34) of the first flow channel (23) and the second flow channel (25), wherein a heat transfer occurs between the second region (23b, 34) of the first flow channel (23) and the second flow channel (25) within the accumulator (31).
- The heat exchanger (1, 30) according to claim 1, characterised in that the second region (23b) of the first flow channel (23) and the second flow channel (25) form a first unit and the first region (23a) of the first flow channel (23) and the third flow channel (24) form a second unit, wherein the first unit and the second unit can be connected as a structural unit.
- The heat exchanger (1, 30) according to claim 1 or 2, characterised in that the third flow channel (24) is adjacent to the first region (23a) of the first flow channel (23) and the second flow channel (25) is adjacent to the second region (23b) of the first flow channel (23).
- The heat exchanger (1, 30) according to one of claims 1 to 3, characterised in that the first unit and/or the second unit are formed with a stacked plate design.
- The heat exchanger (1, 30) according to one of claims 1 to 4, characterised in that the first unit and/or the second unit are formed with a tube-fin design.
- The heat exchanger (1, 30) according to one of claims 1 to 5, characterised in that the first unit and/or the second unit are formed by a plurality of tubes, wherein the tubes are arranged adjacent to one another and are at least partially in thermal contact with one another, wherein the refrigerant (2, 4, 20, 22, 39, 41) and/or the coolant (3, 21, 40) can flow through the tubes.
- The heat exchanger (1, 30) according to one of claims 1 to 6, characterised in that the first unit and/or the second unit are formed by a plurality of tubes, wherein turbulence inserts (26) are arranged between the tubes, wherein the arrangement of tubes and turbulence inserts (26) is encased by a housing, wherein a coolant (3, 21, 40) and/or a refrigerant (2, 4, 20, 22, 39, 41) can flow through the tubes and a coolant (3, 21, 40) and/or a refrigerant (2, 4, 20, 22, 39, 41) can flow around them.
- The heat exchanger (1, 30) according to one of the preceding claims, characterised in that one or more of the flow channels (23, 24, 25) experience one or more redirections in their flow direction, as a result of which the fluid flows in the flow channels (23, 24, 25) can run in a co-current flow and/or in a counter-flow and/or in a cross-flow to one another.
- The heat exchanger (1, 30) according to one of the preceding claims, characterised in that the accumulator (13, 31) and the heat exchanger (1, 30) are made as a structural unit.
- Use of the heat exchanger according to one of the preceding claims, wherein CO2 (R744) is used as the refrigerant.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012221925.0A DE102012221925A1 (en) | 2012-11-29 | 2012-11-29 | Heat exchanger |
PCT/EP2013/074865 WO2014083061A1 (en) | 2012-11-29 | 2013-11-27 | Heat exchanger |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2926073A1 EP2926073A1 (en) | 2015-10-07 |
EP2926073B1 true EP2926073B1 (en) | 2019-07-10 |
Family
ID=49709651
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13799266.5A Active EP2926073B1 (en) | 2012-11-29 | 2013-11-27 | Heat exchanger |
Country Status (5)
Country | Link |
---|---|
US (1) | US9945614B2 (en) |
EP (1) | EP2926073B1 (en) |
CN (1) | CN104823014B (en) |
DE (1) | DE102012221925A1 (en) |
WO (1) | WO2014083061A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014221168A1 (en) | 2014-10-17 | 2016-04-21 | Mahle International Gmbh | Heat exchanger |
CN111615290B (en) * | 2019-02-25 | 2022-07-26 | 龙大昌精密工业有限公司 | Heat radiation structure of condenser |
DE102020202313A1 (en) * | 2020-02-24 | 2021-08-26 | Mahle International Gmbh | Heat exchanger |
DE102021213376A1 (en) | 2021-11-26 | 2023-06-01 | Mahle International Gmbh | Heat exchanger and refrigerant circuit with a heat exchanger |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE491409C (en) * | ||||
JPH1019421A (en) * | 1996-07-05 | 1998-01-23 | Nippon Soken Inc | Refrigerating cycle and accumulator used for the cycle |
US6892803B2 (en) * | 2002-11-19 | 2005-05-17 | Modine Manufacturing Company | High pressure heat exchanger |
DE10328746A1 (en) * | 2003-06-25 | 2005-01-13 | Behr Gmbh & Co. Kg | Multi-stage heat exchange apparatus and method of making such apparatus |
US7343965B2 (en) * | 2004-01-20 | 2008-03-18 | Modine Manufacturing Company | Brazed plate high pressure heat exchanger |
DE112006001300T5 (en) | 2005-05-24 | 2008-04-10 | Dana Canada Corp., Oakville | Multi-fluid heat exchanger |
US7753105B2 (en) * | 2006-05-16 | 2010-07-13 | Delphi Technologies, Inc. | Liquid cooled condenser having an integrated heat exchanger |
US8191615B2 (en) * | 2006-11-24 | 2012-06-05 | Dana Canada Corporation | Linked heat exchangers having three fluids |
FR2924490A1 (en) * | 2007-11-29 | 2009-06-05 | Valeo Systemes Thermiques | CONDENSER FOR AIR CONDITIONING CIRCUIT WITH SUB-COOLING PART |
FR2940420B1 (en) * | 2008-12-22 | 2010-12-31 | Valeo Systemes Thermiques | COMBINED DEVICE COMPRISING AN INTERNAL HEAT EXCHANGER AND AN ACCUMULATOR COMPRISING A CLIMATEING MOUTH |
US8011201B2 (en) * | 2009-09-30 | 2011-09-06 | Thermo Fisher Scientific (Asheville) Llc | Refrigeration system mounted within a deck |
US8590328B2 (en) * | 2010-02-03 | 2013-11-26 | Hill Phoenix, Inc. | Refrigeration system with multi-function heat exchanger |
US20120080173A1 (en) * | 2010-10-04 | 2012-04-05 | Ford Global Technologies, Llc | Heat exchanger assembly having multiple heat exchangers |
DE102010048015B4 (en) * | 2010-10-09 | 2015-11-05 | Modine Manufacturing Co. | Plant with a heat exchanger |
DE102011007701A1 (en) * | 2011-04-19 | 2012-10-25 | Behr Gmbh & Co. Kg | Refrigerant condenser assembly |
-
2012
- 2012-11-29 DE DE102012221925.0A patent/DE102012221925A1/en not_active Withdrawn
-
2013
- 2013-11-27 CN CN201380061683.5A patent/CN104823014B/en not_active Expired - Fee Related
- 2013-11-27 WO PCT/EP2013/074865 patent/WO2014083061A1/en active Application Filing
- 2013-11-27 EP EP13799266.5A patent/EP2926073B1/en active Active
-
2015
- 2015-05-29 US US14/725,372 patent/US9945614B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN104823014B (en) | 2017-06-23 |
EP2926073A1 (en) | 2015-10-07 |
US20150260457A1 (en) | 2015-09-17 |
CN104823014A (en) | 2015-08-05 |
DE102012221925A1 (en) | 2014-06-05 |
WO2014083061A1 (en) | 2014-06-05 |
US9945614B2 (en) | 2018-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69219421T2 (en) | Heat exchanger | |
EP2904335B1 (en) | Condenser | |
EP0789213B1 (en) | Heat exchanger for automotive vehicle | |
EP3119623A1 (en) | Heating and cooling module | |
EP2926073B1 (en) | Heat exchanger | |
DE102013217287A1 (en) | Internal heat exchanger for refrigerant circuit for air conditioning system for motor car, has refrigerant-carrying tubes for transferring refrigerant heat from high pressure side to low pressure side, and are placed one above other | |
EP2997318B1 (en) | Condenser | |
DE60307323T2 (en) | Heat Exchanger | |
DE102012209431A1 (en) | Inner heat exchanger i.e. plate heat exchanger, for refrigerant circuit utilized for automobile applications, has inlets for fluids, where fluids flow parallel in first and second sections and flow opposite to each other in third section | |
DE202014101213U1 (en) | Heizkühlmodul | |
EP2937658B1 (en) | Internal heat exchanger | |
WO2014095594A1 (en) | Heat exchanger | |
DE102019119124A1 (en) | Combination heat exchanger with a chiller and an internal heat exchanger as well as a cooling / cooling circuit system and a motor vehicle with one | |
DE102014113863A1 (en) | Heat transfer device and method of manufacturing the device | |
DE102019132955B4 (en) | Heat exchanger with integrated dryer and plate for a plate heat exchanger | |
EP3009780A1 (en) | Heat exchanger | |
EP2570754A2 (en) | Multi channel evaporator system | |
EP3569953A1 (en) | Coolant circuit running device and method for operating a coolant circuit running device with a hybrid evaporator | |
EP2818817B1 (en) | Condenser module | |
DE102011005177A1 (en) | Condenser for heat engine and in refrigeration plants to liquefy exhaust steam and vaporous refrigerant, has collection container arranged between upper condenser section and lower under cooling section | |
EP4302040A1 (en) | Device for transferring heat from a gaseous working medium | |
DE102005028510A1 (en) | Adjustable internal heat exchanger | |
AT214950B (en) | Heat exchanger | |
DE102020213172A1 (en) | Stacking plate for a stacking plate heat exchanger and associated stacking plate heat exchanger | |
DE102022211047A1 (en) | Heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150629 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MAHLE INTERNATIONAL GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20180615 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20190225 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1154037 Country of ref document: AT Kind code of ref document: T Effective date: 20190715 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013013155 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190710 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191010 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191010 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191111 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191011 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20191110 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200224 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013013155 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG2D | Information on lapse in contracting state deleted |
Ref country code: IS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
26N | No opposition filed |
Effective date: 20200603 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20191130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1154037 Country of ref document: AT Kind code of ref document: T Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131127 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190710 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231121 Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240527 |