[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1266128B1 - Versteifungs- und kühlstruktur einer turbinenschaufel - Google Patents

Versteifungs- und kühlstruktur einer turbinenschaufel Download PDF

Info

Publication number
EP1266128B1
EP1266128B1 EP01927732A EP01927732A EP1266128B1 EP 1266128 B1 EP1266128 B1 EP 1266128B1 EP 01927732 A EP01927732 A EP 01927732A EP 01927732 A EP01927732 A EP 01927732A EP 1266128 B1 EP1266128 B1 EP 1266128B1
Authority
EP
European Patent Office
Prior art keywords
blade
turbulators
vane
wall
vane according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01927732A
Other languages
English (en)
French (fr)
Other versions
EP1266128A1 (de
Inventor
Hans-Thomas Bolms
Peter Tiemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP01927732A priority Critical patent/EP1266128B1/de
Publication of EP1266128A1 publication Critical patent/EP1266128A1/de
Application granted granted Critical
Publication of EP1266128B1 publication Critical patent/EP1266128B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/147Construction, i.e. structural features, e.g. of weight-saving hollow blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • the present invention relates to a blade, in particular a turbine blade with at least one channel, the bounded by walls and acted upon by a cooling fluid is, wherein on at least one wall several turbulators for Improvement of the heat exchange between the wall and the Cooling fluid are provided.
  • Such a turbine blade is for example from the EP 0 758 932 B1.
  • This known turbine blade is hollow and has four channels.
  • the channels will be each of the two outer walls of the turbine blade and Partitions limited and for cooling with a cooling fluid flows through.
  • To improve the heat exchange between the outer walls and the cooling fluid are the outer walls with Provided turbulators.
  • the turbulators serve only to improve the heat exchange.
  • the in operation occurring loads on the turbine blade almost exclusively absorbed by the exterior walls, the must therefore be made relatively thick.
  • the load must continue the wall thickness of the outer walls increase.
  • this increase in wall thickness decreases the cooling efficiency and thus the overall efficiency.
  • Object of the present invention is therefore a blade provide a higher load capacity without magnification the wall thickness or a reduction in the Wall thickness allows for the same load capacity.
  • the turbulators for stiffening used on the wall and merge into each other hereby will be a substantial increase in stiffness without additional Material and without increasing the wall thickness reached.
  • a good heat exchange between the walls and the cooling fluid This results in a high cooling efficiency and high overall efficiency.
  • the stiffening of the wall is not just in the area of one single turbulator. It is rather by the Connecting the turbulators together a large area Stiffening provided.
  • the turbulators are straight.
  • the Use of straight turbulators allows high rigidity with simple production.
  • all include Turbulators with a longitudinal axis of the blade the same angle one. This results in a symmetrical arrangement of the turbulators, the loads from all directions evenly can record.
  • turbulators a right angle.
  • a can Sharp or obtuse angle can be selected.
  • an advantageous second embodiment includes a first group of turbulators with a longitudinal axis of the blade a first angle and a second group of turbulators with the longitudinal axis of the blade a second angle.
  • the two groups of turbulators thus have different Inclinations towards the longitudinal axis of the blade.
  • the rigidity of the blade therefore depends on the direction of attack the burden. Due to the different inclination Thus, a specific adaptation of the stiffness in different Directions are achieved.
  • the turbulators are arranged such that they beside and overlying recesses in the form of Forming polygons, in particular squares, diamonds or hexagons.
  • the inside of the wall is made with a honeycomb structure Mistake.
  • the individual polygons or honeycombs form each a closed, highly loadable cross-section and support off each other. It can be a significant increase to achieve rigidity.
  • the wall thickness of the wall reduced at least in the area between the turbulators. This reduction in wall thickness is thereby made possible that the turbulators effect a stiffening of the wall. By reducing the wall thickness becomes the cooling efficiency increased again.
  • the turbulators can be advantageous here used in casting the blade as metal feed channels become. The honeycomb structure is therefore easy to produce.
  • the blade several with different arrangements of turbulators provided sections. Through these different arrangements settles in the individual sections of the blade influence the rigidity in a targeted manner. It results in an optimal Adapting to the particular section of the Shovel present loads.
  • the sections are mutually spaced. This will be a simple change between different arrangements of turbulators allows.
  • the sections go into each other. It results in a continuous Increasing the rigidity of the blade.
  • the blade according to the invention can be used as a vane or as Blade of a rotary machine can be formed.
  • FIG. 1 shows a longitudinal section through a rotary machine in the form of a turbine 10 with a housing 11 and a rotor 12.
  • the housing 11 is provided with guide vanes 13 and the rotor 12 provided with blades 14.
  • the turbine 10 flows through a fluid according to arrow 15, the on the guide vanes 13 and blades 14 flows along and the rotor 12 is rotated about an axis 16.
  • the temperature of the fluid is in many applications, in particular in the area of the first blade row (in FIG. 1) shown on the left), relatively high. It is therefore a cooling the guide vanes 13 and blades 14 are provided.
  • the Flow of the cooling fluid is schematically indicated by the arrows 17, 18th indicated. In particular, air can be used as the cooling fluid become.
  • Figure 2 shows schematically a broken-away view of a Guide vane 13.
  • the vane 13 has curved outer walls 19, 20 on.
  • the lying between the outer walls 19, 20 Interior is divided into two partitions 21 in total divided into three channels 22.
  • the channels 22 subjected to a cooling fluid.
  • the outer walls 19,20 with several turbulators 23 provided.
  • the turbulators 23 in Figure 2 are strong shown in simplified form. However, it is clear that the Turbulators 23 merge into one another and a honeycomb structure form. This honeycomb structure causes a stiffening of the outer walls 19, 20.
  • FIG 3 shows an enlarged view of the detail X. from Figure 2.
  • the turbulators 23 are straight and formed go into each other. In the illustrated embodiment is limited by four turbulators each a recess 24.
  • the wall thickness d of the outer wall 19 decreases starting from the turbulators 23 kontiunierlich to Center of the recess 24. This reduction in the wall thickness d is thereby made possible that the turbulators 23 to each other support and thereby the rigidity of the vane 13 increase significantly.
  • the turbulators 23 serve simultaneously as impact protection.
  • the turbulators 23 are approximately triangular in cross section designed and rejuvenated starting from the outer wall 19. You can therefore when pouring the vane 13 than Serve metal feed channels.
  • the guide vane according to the invention 13 is thus easy to manufacture.
  • FIGS. 4 to 6 show a schematic plan view the inside of the outer wall 19 in three different Configurations.
  • All turbulators 23a, 23b the same angle ⁇ , ⁇ with a longitudinal axis 25 of the vane 13 a.
  • the turbulators 23a, 23b close together a right angle 26 a.
  • the recesses 24 delimited by the turbulators 23a, 23b thus form squares.
  • a turbulator 23a, 23b extends between each two Touch points 31. In the area of touch points 31 go the Turbulators 23a, 23b into each other. By use straight turbulators 23a, 23b, the production is simplified. Next results in a high rigidity.
  • a first one closes Group of turbulators 23 a a first angle ⁇ with the Longitudinal axis 25, while a second group of turbulators 23b includes a second angle ⁇ with the longitudinal axis 25.
  • the angle 26 between the turbulators is in this Design greater than 90 °. It follows accordingly a recess 24 in the form of a rhombus.
  • each turbulators each form 23 a recess 24 in the form of a hexagon. It This results in a honeycomb structure that reduces the rigidity of the vane 13 substantially increased.
  • turbulators 23 are used. Be beneficial the turbulators 23 arranged such that in the figures 4 to 6 shown recesses 24 arise. These recesses 24 have a closed plan view Cross-section and therefore a high rigidity.
  • the turbulators 23 may also be arranged in the form of a V or X. become.
  • the turbulators 23 also at a Blade 14 may be provided.
  • Figure 7 is schematic such a blade 14 is shown, the more with different arrangements of turbulators 23 provided Sections 28, 29, 30 has.
  • the arrangement of the section 28 corresponds to the representation according to FIG. 4, while FIG the sections 29, 30 formed according to Figures 5 and 6 are.
  • the individual sections 28, 29, 30 are mutually spaced. In the area between sections 28, 29, 30 may cross-sectional or shape changes of the blade 14 be made with low production costs.
  • To achieve the required rigidity is the Wall thickness d of the outer walls 19, 20 in these transition areas increased accordingly.
  • the use of different Arrangements of turbulators 23 allows a targeted influence the stiffness of the blade 14 in the individual Sections 28, 29, 30. This results in an optimal Adaptation to different boundary conditions along the Longitudinal axis 25.
  • the sections 28, 29, 30 can also merge into one another, as shown schematically on the basis of a vane 13 in Figure 8.
  • the turbulators 23 of the individual sections 28, 29, 30 go here in touch points not shown into each other. This results in a continuous Stiffening of the vane 13 along its longitudinal axis 25th
  • the present invention enables an increase in rigidity through a targeted arrangement of improvement heat exchangers provided turbulators. At the same Load can reduce the wall thickness d of the outer walls 19, 20 become. By this reduction in wall thickness is the Cooling efficiency increased, so that an overall higher Overall efficiency of the turbine 10 results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Die Erfindung betrifft eine Schaufel (13, 14) für eine Turbine (10), die mindestens einen Kanal (22) zur Beaufschlagung mit einem Kühlfluid aufweist. An mindestens einer Wand (19; 20) des Kanals (22) sind mehrere Turbulatoren (23) vorgesehen, die den Wärmeaustausch zwischen der Wand (19, 20) und dem Kühlfluid verbessern. Erfindungsgemäß dienen die Turbula-toren (23) zur Versteifung der Wand (19, 20) und gehen ineinander über. Wegen der Versteifung kann die Dicke (d) der Wand (19, 20) im Bereich zwischen den Turbulatoren (23) verringert werden.

Description

Die vorliegende Erfindung betrifft eine Schaufel, insbesondere eine Turbinenschaufel mit mindestens einem Kanal, der von Wänden begrenzt und mit einem Kühlfluid beaufschlagbar ist, wobei an mindestens einer Wand mehrere Turbulatoren zur Verbesserung des Wärmeaustausches zwischen der Wand und dem Kühlfluid vorgesehen sind.
Eine derartige Turbinenschaufel ist beispielsweise aus der EP 0 758 932 B1 bekannt. Diese bekannte Turbinenschaufel ist hohl ausgebildet und weist vier Kanäle auf. Die Kanäle werden jeweils von den beiden Außenwänden der Turbinenschaufel und Trennwänden begrenzt und zur Kühlung mit einem Kühlfluid durchströmt. Zur Verbesserung des Wärmeaustausches zwischen den Außenwänden und dem Kühlfluid sind die Außenwände mit Turbulatoren versehen.
Bei der bekannten Turbinenschaufel dienen die Turbulatoren lediglich zur Verbesserung des Wärmeaustausches. Die im Betrieb auftretenden Belastungen der Turbinenschaufel werden praktisch ausschließlich von den Außenwänden aufgenommen, die daher relativ dick ausgebildet werden müssen. Bei Vergrößerungen der Belastung muß die Wandstärke der Außenwände weiter erhöht werden. Durch diese Erhöhung der Wandstärke sinkt allerdings die Kühleffizienz und damit der Gesamtwirkungsgrad.
Aufgabe der vorliegenden Erfindung ist es daher, eine Schaufel bereitzustellen, die eine höhere Belastbarkeit ohne Vergrößerung der Wandstärke oder aber eine Verringerung der Wandstärke bei gleicher Belastbarkeit ermöglicht.
Erfindungsgemäß ist zur Lösung dieser Aufgabe bei einer Schaufel der eingangs genannten Art vorgesehen, daß die Turbulatoren zur Versteifung der Wand dienen und ineinander übergehen.
Erfindungsgemäß werden erstmals die Turbulatoren zur Versteifung der Wand eingesetzt und gehen ineinander über. Hierdurch wird eine wesentliche Erhöhung der Steifigkeit ohne zusätzliches Material und ohne Vergrößerung der Wandstärke erreicht. Gleichzeitig wird ein guter Wärmeaustausch zwischen den Wänden und dem Kühlfluid erreicht. Es ergeben sich somit eine hohe Kühleffizienz und ein hoher Gesamtwirkungsgrad.
Die Versteifung der Wand stellt sich nicht nur im Bereich eines einzelnen Turbulators ein. Es wird vielmehr durch die Verbindung der Turbulatoren miteinander eine großflächige Versteifung bereitgestellt.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung gehen aus den abhängigen Ansprüchen hervor.
Vorteilhaft sind die Turbulatoren gerade ausgebildet. Die Verwendung gerader Turbulatoren ermöglicht eine hohe Steifigkeit bei einfacher Fertigung.
In vorteilhafter erster Ausgestaltung schließen sämtliche Turbulatoren mit einer Längsachse der Schaufel denselben Winkel ein. Es ergibt sich eine symmetrische Anordnung der Turbulatoren, die Belastungen aus allen Richtungen gleichmäßig aufnehmen kann.
Nach einer vorteilhaften Weiterbildung schließen die Turbulatoren einen rechten Winkel ein. Alternativ kann auch ein spitzer oder stumpfer Winkel gewählt werden.
Gemäß einer vorteilhaften zweiten Ausgestaltung schließt eine erste Gruppe von Turbulatoren mit einer Längsachse der Schaufel einen ersten Winkel und eine zweite Gruppe von Turbulatoren mit der Längsachse der Schaufel einen zweiten Winkel ein.
Die beiden Gruppen von Turbulatoren weisen somit unterschiedliche Neigungen gegenüber der Längsachse der Schaufel auf. Die Steifigkeit der Schaufel hängt daher von der Angriffsrichtung der Belastung ab. Durch die unterschiedliche Neigung kann somit eine gezielte Anpassung der Steifigkeit in unterschiedlichen Richtungen erzielt werden.
Vorteilhaft sind die Turbulatoren derart angeordnet, daß sie neben - und übereinanderliegende Ausnehmungen in Form von Vielecken bilden, insbesondere Quadrate, Rauten oder Sechsecke. Die Innenseite der Wand wird mit einer Wabenstruktur versehen. Die einzelnen Vielecke oder Waben bilden jeweils einen geschlossenen, hoch belastbaren Querschnitt und stützen sich gegenseitig ab. Es läßt sich eine wesentliche Erhöhung der Steifigkeit erzielen.
In vorteilhafter Weiterbildung ist die Wandstärke der Wand zumindest im Bereich zwischen den Turbulatoren verringert. Diese Verringerung der Wandstärke wird dadurch ermöglicht, daß die Turbulatoren eine Versteifung der Wand bewirken. Durch die Verringerung der Wandstärke wird die Kühleffizienz nochmals erhöht. Die Turbulatoren können hierbei vorteilhaft beim Gießen der Schaufel als Metalleinspeisungskanäle verwendet werden. Die Wabenstruktur ist daher gut herstellbar.
Nach einer vorteilhaften Ausgestaltung weist die Schaufel mehrere mit unterschiedlichen Anordnungen von Turbulatoren versehene Abschnitte auf. Durch diese unterschiedlichen Anordnungen läßt sich in den einzelnen Abschnitten der Schaufel die Steifigkeit gezielt beeinflussen. Es ergibt sich eine optimale Anpassung an die in dem jeweiligen Abschnitt der Schaufel vorliegenden Belastungen.
In vorteilhafter erster Weiterbildung sind die Abschnitte zueinander beabstandet. Hierdurch wird ein einfacher Wechsel zwischen unterschiedlichen Anordnungen von Turbulatoren ermöglicht.
Gemäß einer zweiten vorteilhaften Weiterbildung gehen die Abschnitte ineinander über. Es ergibt sich eine durchgehende Erhöhung der Steifigkeit der Schaufel.
Die erfindungsgemäße Schaufel kann als Leitschaufel oder als Laufschaufel einer Rotationsmaschine ausgebildet werden.
Nachstehend wird die Erfindung an Hand von Ausführungsbeispielen näher beschrieben, die schematisch in der Zeichnung dargestellt sind. Für gleiche oder funktionsidentische Bauteile werden durchgehend dieselben Bezugszeichen verwendet. Dabei zeigt:
FIG 1
einen Längsschnitt durch eine Rotationsmaschine;
FIG 2
eine perspektivische, aufgebrochene Darstellung einer Schaufel;
FIG 3
eine vergrößerte Darstellung der Einzelheit X aus Figur 2;
FIG 4
eine Draufsicht auf die Innenseite einer Außenwand der Schaufel in erster Ausgestaltung;
FIG 5
eine Ansicht ähnlich Figur 4 in zweiter Ausgestaltung;
FIG 6
eine Ansicht ähnlich Figur 4 in dritter Ausgestaltung;
FIG 7
eine schematische Darstellung einer Laufschaufel; und
FIG 8
eine schematische Darstellung einer Leitschaufel.
Figur 1 zeigt einen Längsschnitt durch eine Rotationsmaschine in Form einer Turbine 10 mit einem Gehäuse 11 und einem Rotor 12. Das Gehäuse 11 ist mit Leitschaufeln 13 und der Rotor 12 mit Laufschaufeln 14 versehen. Im Betrieb wird die Turbine 10 gemäß Pfeilrichtung 15 von einem Fluid durchströmt, das an den Leitschaufeln 13 und Laufschaufeln 14 entlangströmt und den Rotor 12 in Drehung um eine Achse 16 versetzt.
Die Temperatur des Fluids ist in vielen Anwendungsfällen, insbesondere im Bereich der ersten Schaufelreihe (in Figur 1 links dargestellt), relativ hoch. Es ist daher eine Kühlung der Leitschaufeln 13 und Laufschaufeln 14 vorgesehen. Das Strömen des Kühlfluids ist schematisch mit den Pfeilen 17, 18 angedeutet. Als Kühlfluid kann insbesondere Luft verwendet werden.
Figur 2 zeigt schematisch eine aufgebrochene Darstellung einer Leitschaufel 13. Die Leitschaufel 13 weist gebogene Außenwände 19, 20 auf. Der zwischen den Außenwänden 19, 20 liegende Innenraum wird über zwei Trennwände 21 in insgesamt drei Kanäle 22 unterteilt. Im Betrieb werden die Kanäle 22 mit einem Kühlfluid beaufschlagt.
Zur Verbesserung des Wärmeaustausches zwischen den Außenwänden 19, 20 und dem Kühlfluid sind die Außenwände 19,20 mit mehreren Turbulatoren 23 versehen. Aus Gründen der zeichnerischen Darstellung sind die Turbulatoren 23 in Figur 2 stark vereinfacht dargestellt. Es ist allerdings erkennbar, daß die Turbulatoren 23 ineinander übergehen und eine Wabenstruktur bilden. Diese Wabenstruktur bewirkt eine Versteifung der Außenwände 19, 20.
Figur 3 zeigt eine vergrößerte Darstellung der Einzelheit X aus Figur 2. Die Turbulatoren 23 sind gerade ausgebildet und gehen ineinander über. Im dargestellten Ausführungsbeispiel wird von jeweils vier Turbulatoren eine Ausnehmung 24 begrenzt. Die Wandstärke d der Außenwand 19 verringert sich ausgehend von den Turbulatoren 23 kontiunierlich bis zur Mitte der Ausnehmung 24. Diese Verringerung der Wandstärke d wird dadurch ermöglicht, daß sich die Turbulatoren 23 aneinander abstützen und hierdurch die Steifigkeit der Leitschaufel 13 wesentlich erhöhen. Die Turbulatoren 23 dienen gleichzeitig als Einschlagschutz.
Aufgrund der verringerten Wandstärke d ergibt sich eine höhere Kühleffizienz. Es wird daher weniger Kühlfluid benötigt, so daß sich ein höherer Gesamtwirkungsgrad der Turbine 10 erreichen läßt.
Die Turbulatoren 23 sind im Querschnitt näherungsweise dreieckig gestaltet und verjüngen sich ausgehend von der Außenwand 19. Sie können daher beim Gießen der Leitschaufel 13 als Metalleinspeisungskanäle dienen. Die erfindungsgemäße Leitschaufel 13 ist somit einfach herzustellen.
Die Figuren 4 bis 6 zeigen eine schematische Draufsicht auf die Innenseite der Außenwand 19 in drei unterschiedlichen Ausgestaltungen. Bei der Ausgestaltung gemäß Figur 4 schließen sämtliche Turbulatoren 23a, 23b denselben Winkel α, β mit einer Längsachse 25 der Leitschaufel 13 ein. Die Turbulatoren 23a, 23b schließen miteinander einen rechten Winkel 26 ein. Die von den Turbulatoren 23a, 23b begrenzten Ausnehmungen 24 bilden somit Quadrate.
Ein Turbulator 23a, 23b erstreckt sich jeweils zwischen zwei Berührpunkten 31. Im Bereich der Berührpunkte 31 gehen die Turbulatoren 23a, 23b ineinander über. Durch die Verwendung gerader Turbulatoren 23a, 23b wird die Herstellung vereinfacht. Weiter ergibt sich eine hohe Steifigkeit.
Bei der Ausgestaltung gemäß Figur 5 schließt eine erste Gruppe von Turbulatoren 23a einen ersten Winkel α mit der Längsachse 25 ein, während eine zweite Gruppe von Turbulatoren 23b einen zweiten Winkel β mit der Längsachse 25 einschließt. Der Winkel 26 zwischen den Turbulatoren ist in dieser Ausgestaltung größer als 90°. Es ergibt sich entsprechend eine Ausnehmung 24 in Form einer Raute. Durch die unterschiedliche Neigung der Turbulatoren 23a, 23b gegenüber der Längsachse ergibt sich eine unterschiedliche Steifigkeit der Leitschaufel 13 in Abhängigkeit von der Belastungsrichtung.
Es wird somit eine gute Anpassung an unterschiedliche Randbedingungen erreicht.
Bei der Ausgestaltung gemäß Figur 6 bilden jeweils sechs Turbulatoren 23 eine Ausnehmung 24 in Form eines Sechsecks. Es ergibt sich eine Wabenstruktur, die die Steifigkeit der Leitschaufel 13 wesentlich erhöht.
Es können selbstverständlich auch andere geeignete Anordnungen von Turbulatoren 23 verwendet werden. Vorteilhaft werden die Turbulatoren 23 derart angeordnet, daß die in den Figuren 4 bis 6 dargestellten Ausnehmungen 24 entstehen. Diese Ausnehmungen 24 weisen in der Draufsicht einen geschlossenen Querschnitt und daher eine hohe Steifigkeit auf. Alternativ können die Turbulatoren 23 auch in Form eines V oder X angeordnet werden.
Selbstverständlich können die Turbulatoren 23 auch bei einer Laufschaufel 14 vorgesehen werden. In Figur 7 ist schematisch eine derartige Laufschaufel 14 dargestellt, die mehrere mit unterschiedlichen Anordnungen von Turbulatoren 23 versehene Abschnitte 28, 29, 30 aufweist. Die Anordnung des Abschnitts 28 entspricht hierbei der Darstellung gemäß Figur 4, während die Abschnitte 29, 30 entsprechend den Figuren 5 und 6 ausgebildet sind. Die einzelnen Abschnitte 28, 29, 30 sind zueinander beabstandet. Im Bereich zwischen den Abschnitten 28, 29, 30 können Querschnitts- oder Formänderungen der Laufschaufel 14 mit geringem Fertigungsaufwand vorgenommen werden. Zum Erreichen der erforderlichen Steifigkeit wird die Wandstärke d der Außenwände 19, 20 in diesen Übergangsbereichen entsprechend erhöht. Die Verwendung unterschiedlicher Anordnungen von Turbulatoren 23 ermöglicht eine gezielte Beeinflussung der Steifigkeit der Schaufel 14 in den einzelnen Abschnitten 28, 29, 30. Es ergibt sich somit eine optimale Anpassung an unterschiedliche Randbedingungen entlang der Längsachse 25.
Die Abschnitte 28, 29, 30 können auch ineinander übergehen, wie schematisch an Hand einer Leitschaufel 13 in Figur 8 dargestellt. Die Turbulatoren 23 der einzelnen Abschnitte 28, 29, 30 gehen hierbei in nicht näher dargestellten Berührpunkten ineinander über. Es ergibt sich somit eine durchgehende Versteifung der Leitschaufel 13 entlang ihrer Längsachse 25.
Die vorliegende Erfindung ermöglicht eine Erhöhung der Steifigkeit durch eine gezielte Anordnung der zur Verbesserung des Wärmeaustausches vorgesehenen Turbulatoren. Bei gleicher Belastung kann die Wandstärke d der Außenwände 19, 20 verringert werden. Durch diese Verringerung der Wandstärke wird die Kühleffizienz gesteigert, so daß sich ein insgesamt höherer Gesamtwirkungsgrad der Turbine 10 ergibt.

Claims (11)

  1. Schaufel, insbesondere Turbinenschaufel (13; 14), mit mindestens einem Kanal (22), der von Wänden (19, 20, 21) begrenzt und mit einem Kühlfluid beaufschlagbar ist, wobei an mindestens einer Wand (19; 20) mehrere Turbolatoren (23) zur Verbesserung des Wärmeaustausches zwischen der Wand (19; 20) und dem Kühlfluid vorgesehen sind,
    dadurch gekennzeichnet, daß die Turbulatoren (23) zur Versteifung der Wand (19; 20) dienen und ineinander übergehen.
  2. Schaufel nach Anspruch 1,
    dadurch gekennzeichnet, daß die Turbulatoren (23) gerade ausgebildet sind.
  3. Schaufel nach Anspruch 2,
    dadurch gekennzeichnet, daß die sämtliche Turbulatoren (23a, 23 b) mit einer Längsachse (25) der Schaufel (13; 14) denselben Winkel (α; β) einschließen.
  4. Schaufel nach Anspruch 2 oder 3,
    dadurch gekennzeichnet, daß die Turbulatoren (23a, 23b) einen rechten Winkel (26) einschließen.
  5. Schaufel nach Anspruch 2,
    dadurch gekennzeichnet, daß eine erste Gruppe von Turbulatoren (23a) mit einer Längsachse (25) der Schaufel (13; 14) einen ersten Winkel (α) und eine zweite Gruppe von Turbulatoren (23b) mit der Längsachse (25) der Schaufel (13; 14) einen zweiten Winkel (β) einschließt.
  6. Schaufel nach einem der Ansprüche 2 bis 5,
    dadurch gekennzeichnet, daß die Turbulatoren (23) derart angeordnet sind, daß sie neben- und übereinanderliegende Ausnehmungen in Form von Vielecken, insbesondere Quadraten, Rauten oder Sechsecken, bilden.
  7. Schaufel nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß die Wandstärke (d) der Wand (19; 20) zumindest im Bereich zwischen den Turbulatoren (23) verringert ist.
  8. Schaufel nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß die Schaufel (13; 14) mehrere mit unterschiedlichen Anordnungen von Turbulatoren (23) versehene Abschnitte (28, 29, 30) aufweist.
  9. Schaufel nach Anspruch 8,
    dadurch gekennzeichnet, daß die Abschnitte (28, 29, 30) zueinander beabstandet sind.
  10. Schaufel nach Anspruch 8,
    dadurch gekennzeichnet, daß die Abschnitte (28, 29, 30) ineinander übergehen.
  11. Schaufel nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß die Schaufel als Leitschaufel (13) oder als Laufschaufel (14) einer Rotationsmaschine (10) ausgebildet ist.
EP01927732A 2000-03-22 2001-03-15 Versteifungs- und kühlstruktur einer turbinenschaufel Expired - Lifetime EP1266128B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01927732A EP1266128B1 (de) 2000-03-22 2001-03-15 Versteifungs- und kühlstruktur einer turbinenschaufel

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP00106246 2000-03-22
EP00106246 2000-03-22
PCT/EP2001/002982 WO2001071164A1 (de) 2000-03-22 2001-03-15 Versteifungs- und kühlstruktur einer turbinenschaufel
EP01927732A EP1266128B1 (de) 2000-03-22 2001-03-15 Versteifungs- und kühlstruktur einer turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1266128A1 EP1266128A1 (de) 2002-12-18
EP1266128B1 true EP1266128B1 (de) 2005-01-12

Family

ID=8168202

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01927732A Expired - Lifetime EP1266128B1 (de) 2000-03-22 2001-03-15 Versteifungs- und kühlstruktur einer turbinenschaufel

Country Status (6)

Country Link
US (1) US20030049125A1 (de)
EP (1) EP1266128B1 (de)
JP (1) JP4610836B2 (de)
CN (1) CN100376766C (de)
DE (1) DE50105063D1 (de)
WO (1) WO2001071164A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2870560B1 (fr) * 2004-05-18 2006-08-25 Snecma Moteurs Sa Circuit de refroidissement a cavite a rapport de forme eleve pour aube de turbine a gaz
JP2007162559A (ja) * 2005-12-13 2007-06-28 Sanden Corp 遠心式多翼送風機
US7513745B2 (en) 2006-03-24 2009-04-07 United Technologies Corporation Advanced turbulator arrangements for microcircuits
JP4957131B2 (ja) * 2006-09-06 2012-06-20 株式会社Ihi 冷却構造
US7967559B2 (en) * 2007-05-30 2011-06-28 General Electric Company Stator-rotor assembly having surface feature for enhanced containment of gas flow and related processes
US7857588B2 (en) * 2007-07-06 2010-12-28 United Technologies Corporation Reinforced airfoils
WO2009122474A1 (ja) * 2008-03-31 2009-10-08 川崎重工業株式会社 ガスタービン燃焼器の冷却構造
US8167560B2 (en) * 2009-03-03 2012-05-01 Siemens Energy, Inc. Turbine airfoil with an internal cooling system having enhanced vortex forming turbulators
US8713909B2 (en) * 2009-03-04 2014-05-06 United Technologies Corporation Elimination of unfavorable outflow margin
US10626729B2 (en) 2013-03-14 2020-04-21 United Technologies Corporation Obtuse angle chevron trip strip
JP6356801B2 (ja) * 2013-11-14 2018-07-11 ゼネラル・エレクトリック・カンパニイ 負のcte特徴を有するタービン部品
JP6245740B2 (ja) * 2013-11-20 2017-12-13 三菱日立パワーシステムズ株式会社 ガスタービン翼
CN112879104B (zh) * 2021-04-28 2021-08-03 中国航发四川燃气涡轮研究院 一种雪花状涡轮叶片冷却结构

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
GB1257041A (de) * 1968-03-27 1971-12-15
DE1801475B2 (de) * 1968-10-05 1971-08-12 Daimler Benz Ag, 7000 Stuttgart Luftgekuehlte turbinenschaufel
FR2698126B1 (fr) * 1992-11-18 1994-12-16 Snecma Aube creuse de soufflante ou compresseur de turbomachine.
DE4430302A1 (de) * 1994-08-26 1996-02-29 Abb Management Ag Prallgekühltes Wandteil
US5468125A (en) * 1994-12-20 1995-11-21 Alliedsignal Inc. Turbine blade with improved heat transfer surface
JP3396360B2 (ja) * 1996-01-12 2003-04-14 三菱重工業株式会社 ガスタービン冷却動翼
DE19634238A1 (de) * 1996-08-23 1998-02-26 Asea Brown Boveri Kühlbare Schaufel
DE59709275D1 (de) * 1997-07-14 2003-03-13 Alstom Switzerland Ltd Kühlsystem für den Hinterkantenbereich einer hohlen Gasturbinenschaufel
DE59709158D1 (de) * 1997-09-30 2003-02-20 Alstom Switzerland Ltd Prallanordnung für ein konvektives Kühl- oder Heizverfahren
SE512384C2 (sv) * 1998-05-25 2000-03-06 Abb Ab Komponent för en gasturbin

Also Published As

Publication number Publication date
US20030049125A1 (en) 2003-03-13
EP1266128A1 (de) 2002-12-18
DE50105063D1 (de) 2005-02-17
JP2003534481A (ja) 2003-11-18
WO2001071164A1 (de) 2001-09-27
CN100376766C (zh) 2008-03-26
JP4610836B2 (ja) 2011-01-12
CN1606655A (zh) 2005-04-13

Similar Documents

Publication Publication Date Title
EP1266127B1 (de) Kühlsystem für eine turbinenschaufel
EP1266128B1 (de) Versteifungs- und kühlstruktur einer turbinenschaufel
EP0889201B1 (de) Prallanordnung für ein konvektives Kühl-oder Heizverfahren
DE10059997B4 (de) Kühlbare Schaufel für eine Gasturbinenkomponente
DE69936243T2 (de) Gasturbinenschaufel
DE2358521C2 (de) Gasturbinenschaufel mit gewelltem Austrittskantenbereich
DE69109011T2 (de) Abstandshalter mit Mischfahnen für Kernbrennstabbündel.
DE3789514T2 (de) Gekühlte Gasturbinenschaufel.
EP3762587B1 (de) Schaufelblatt für eine turbinenschaufel
DE3143394A1 (de) Wandaufbau fuer eine brennkammer
DE3040192A1 (de) Gekuehlte turbinenschaufel
CH697919A2 (de) Turbinenblatt mit konkavem Kühlkanal und darin angeordneten, entgegengesetzte Drallströme bewirkende Turbulatoren.
DE1601550B2 (de) Kuehlbare wand mit porositaet, insbesondere fuer schaufeln oder leitflaechen in einer gasturbine
DE1247072B (de) Hohlschaufel, insbesondere fuer Gasturbinen
EP1136653A2 (de) Beschaufelung mit Dämpfungselementen
DE112020004602B4 (de) Turbinenflügel
DE3518314A1 (de) Turbinenschaufel
DE60118868T3 (de) Turbomaschinenleitschaufel
EP1192333B1 (de) Heissgasbeaufschlagbares bauteil, insbesondere turbinenschaufel
EP1292760A1 (de) Konfiguration einer kühlbaren turbinenschaufel
EP3056677B1 (de) Schaufel und Strömungsmaschine
EP3428402B1 (de) Leitschaufelsegment mit gekrümmter entlastungsfuge
WO2008155248A1 (de) Kühlung der leitschaufel einer gasturbine
EP3263838A1 (de) Turbinenschaufel mit innerem kühlkanal
EP1118831B1 (de) Mit Rippenzug versehene Wärmetauscherwand

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020807

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOLMS, HANS-THOMAS

Inventor name: TIEMANN, PETER

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050112

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50105063

Country of ref document: DE

Date of ref document: 20050217

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20051013

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150513

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160329

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50105063

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001