[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1250519A2 - Ventilabstimmung mit hilfe der abgaswerte und der lambdasonde für einen verbrennungsmotor - Google Patents

Ventilabstimmung mit hilfe der abgaswerte und der lambdasonde für einen verbrennungsmotor

Info

Publication number
EP1250519A2
EP1250519A2 EP00992089A EP00992089A EP1250519A2 EP 1250519 A2 EP1250519 A2 EP 1250519A2 EP 00992089 A EP00992089 A EP 00992089A EP 00992089 A EP00992089 A EP 00992089A EP 1250519 A2 EP1250519 A2 EP 1250519A2
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
valve
valves
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00992089A
Other languages
English (en)
French (fr)
Other versions
EP1250519B1 (de
Inventor
Jochen Burgdorf
Bernhard Giers
Peter Volz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Teves AG and Co OHG
Original Assignee
Continental Teves AG and Co OHG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10048263A external-priority patent/DE10048263A1/de
Application filed by Continental Teves AG and Co OHG filed Critical Continental Teves AG and Co OHG
Publication of EP1250519A2 publication Critical patent/EP1250519A2/de
Application granted granted Critical
Publication of EP1250519B1 publication Critical patent/EP1250519B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit

Definitions

  • the invention relates to a method for operating an internal combustion engine according to the preamble of patent claim 1.
  • FIG. 1 is a schematic diagram of an electrohydraulic valve actuation system
  • FIG. 2 shows the variable valve adjustment of the gas exchange valves resulting from the valve actuation system according to FIG. 1, illustrated by several valve lift curves,
  • FIG. 4 shows a current, voltage, and stroke characteristic curve for one of the electromagnetic valves of the valve actuation or injection system, which is representative of the program flow chart according to FIG. 3.
  • FIG. 1 discloses a basic illustration of an electrohydraulic valve actuation system with a valve arranged in the cylinder head 1 of an internal combustion engine. driven, consisting of a camshaft 2, a plunger assembly 3 and a gas exchange valve 5 extending into the intake port 4 of the internal combustion engine as an inlet valve.
  • the gas exchange valve 5 is not directly through the plunger assembly 3, but by means of a pressure medium volume provided by the engine oil pump 6 with regard to the Movement sequence actuated variably, for which purpose an electromagnetic valve 7 is inserted in the cylinder head 1 in order to be able to vary the pressure medium volume clamped between the ram assembly 3 and the gas exchange valve 5.
  • the valve actuation system Since it is a multi-cylinder internal combustion engine, the other components of the electrohydraulic valve actuation system already mentioned at the beginning are also present several times in accordance with the number of gas exchange valves.
  • the valve actuation system also has an intermediate store 8 for each engine cylinder, which stores excess pressure medium volume that is not required for regulating the valve actuation system if necessary.
  • an injection valve 20 is arranged in the intake duct 4 and, like the solenoid valve 7, can also be operated by means of variable control voltage and / or variable control current to adjust all engine cylinders to uniform injection quantities.
  • the system tolerances in the control, the magnetic circuit and the component tolerances within the valve train can no longer lead to an unacceptable spread of the valve opening cross sections, since the hydraulic control pressure between the piston assembly 3 and the associated gas exchange valve 5 is now in accordance with the invention is adjusted individually for each engine cylinder by regulating the valve switching voltage or the valve current applied to the solenoid valve 7 as a function of the crank angle, so that the same valve lift results for all gas exchange valves 5 per work cycle. Theoretically, this would also be technically possible with the help of displacement sensors in the area of gas exchange valves. However, this solution is ruled out for reasons of cost and construction costs. It should also be noted that the exhaust gas emission is usually regulated by means of a single lambda probe per cylinder bank.
  • FIG. 2 shows, by way of example, the valve lift curves that can be fundamentally adjusted with the variable valve actuation system presented in FIG. 1, which, based on a maximum camshaft angle shown on the abscissa, are also plotted for reduced valve opening clearances of 40 degrees, 80 degrees and 120 degrees camshaft angle.
  • the valve stroke possible for each camshaft angle is plotted along the ordinate, which inevitably has the smallest valve stroke of approximately 3.8 mm with the smallest camshaft angle of 40 degrees.
  • FIG. 3 shows, according to the invention, the individual method steps for comparing the valve lift and thus the valve opening times for all gas exchange valves 5 of a multi-cylinder internal combustion engine, which is preferably with the 1 is known electro-hydraulic valve actuation system.
  • the system-related imponderabilities and tolerances in the control of the solenoid valves 7 and in the valve train already mentioned can be regulated in such a way that each valve actuation system is selectively matched to an optimal exhaust gas emission while the internal combustion engine is running, the control parameters obtained for the Solenoid valves 7 are stored in a data memory.
  • the internal combustion engine is preferably operated in the speed range in which there are inadmissible deviations from one another in the exhaust gas emission of the individual engine cylinders.
  • the exhaust gas emission is recorded in a manner known per se via a lambda control loop.
  • the control voltage or control currents of each solenoid valve 7 are then varied according to the program flowchart and stored cylinder-selectively in the data memory and recorded as a function of the engine speed. Building on the parameter map thus defined from cylinder to cylinder, the entire actuation of the electromagnetic valves 7 takes place.
  • the solenoid valves 7 of all the engine cylinders are initialized in accordance with a first operation step 9 for the purpose of actuation and thus specifically to compare the gas exchange valves 5 with one another.
  • a second operation step 10 the worst exhaust gas value is initiated, as well as the number of iteration steps and the iteration step size established.
  • a third operation step according to diamond 11 it is determined whether the engine speed is in a predetermined speed range. If this condition is not fulfilled, the engine speed is queried again from the engine control unit via a loop 11a.
  • a subroutine be called up according to operation step 12, in which a currently valid and stabilized exhaust gas value is read into a data memory of the engine control unit becomes what can be done, for example, by linking to a lambda control loop of the engine management. Then it is checked according to the following diamond 13 whether the current exhaust gas value is better than the previously stored exhaust gas value. If this requirement is met, the current control value for the solenoid valve 7 to be activated is stored in the next step 14 as a function of the engine speed and the associated engine cylinder.
  • step 16 it is checked whether all iteration steps have been completed. If not pass through all iteration steps, via the loop 16a re ⁇ HOLUNG of the valve adjustment method starting from the diamond 2. Unless but COMPLETE iteration steps have been completed, the box 17 detects the next solenoid valve 7 according to. In step 18 it is checked whether the solenoid valves 7 of all engine cylinders have been adapted. In the case of a negative answer a repeat of the flow chart is then carried over the loop 18a beginning with the Operati ⁇ onsuze 10. However, if the adaptation of all the engine cylinders completed, then the valve adjustment method explained herewith is ended with step 19.
  • values for different speed ranges can be determined and stored in a data memory of the engine management or engine control unit. In this way, a map or a parameter set can be determined for a mathematical description.
  • the algorithm can be used in a measurement run to determine the parameters.
  • the algorithm can also be used in the normal operating mode of the internal combustion engine, for example to optimize the parameters, e.g. counteract the influence of component aging.
  • operation step 2 according to FIG. 3 would have to be modified and the engine speed specified as an index in the map.
  • a method for operating an internal combustion engine which, by varying the triggering times of the electromagnetic valves 7 and thus the synchronous actuation of the gas exchange valves 5 (intake valves), enables the exhaust gas values to be optimized by, to a certain extent, the triggering parameters of the electromagnetic valves 7 using a search method described in FIG can be varied. In this way, for a quality criterion optimal valve control is achieved.
  • an optimized current characteristic curve according to FIG. 4 results for each motor cylinder for the solenoid valve 7 to be activated in each case, the optimum current curve being determined as a function of time and thus proportional to the engine crank angle and by the trigger point T. becomes.
  • the adjustment process according to the invention results in a sawtooth-shaped current curve, which begins with a comparatively low quiescent current II (inrush current), which, with the rise to the excitation current 12, simultaneously sets the magnet armature of the solenoid valve 7 in motion and keeps it in the open position until it is lowered Excitation current 12 to the holding current 13, the amount of which is slightly greater than the quiescent current II, the trigger point T is reached, so that the magnet armature of the solenoid valve 7 moves back to its original rest position.
  • the trigger point T is recorded on the basis of the method shown in FIG. 3 for each solenoid valve 7 and thus for each gas exchange valve 5 in the engine cylinder in a data memory of the engine control unit.
  • the time course of the current pulse as well as the movements of the Magne ⁇ tankers are plotted identical phase below the current characteristic with which a direct assignment of the current pulse duration and the armature movement to the current characteristic is possible.
  • valve actuation method in which the exhaust gas emission is measured for each engine cylinder and in which the actuation voltage or actuation is then alternated with the aim of optimizing the exhaust gas values.
  • Control current as a function of the engine crank angle is varied for each solenoid valve 7 and the optimal trigger point T is determined.
  • the optimal switching points of the electromagnetic valves 7 determined during the method are thus recorded individually for each engine cylinder and stored as a function of the engine speed as a parameter field in the data memory of the engine control unit. Building on this defined parameter field, a cylinder-selective valve actuation thus takes place, which ultimately leads to the same valve strokes of the gas exchange valves 5 in the present example.
  • valve strokes of the solenoid valves 7 do not necessarily have to be the same, however, but rather can be varied to meet the task, as required and thus as desired. According to this valve control method, the tolerances of the injection quantity can also be adjusted by cylinder-selective control of the injection valves 20.
  • the invention is not limited to the design embodiment according to FIG. 1, but is also suitable for alternative valve train designs which, for example, provide direct electromagnetic actuation of the gas exchange valves and which have either an intake manifold or direct injection. LIST OF REFERENCE NUMBERS

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb eines mehrzylindrigen Verbrennungsmotors, dessen Gaswechselventile (5) entweder direkt elektromagnetisch oder mittels eines elektrohydraulischen, mehrere Elektromagnetventile (7) aufweisenden Ventilbetätigungssystems hinsichtlich der Ventilöffnungscharakteristik variabel einstellbar sind. Die Elektromagnetventile (7) werden zwecks Abgleich aller Gaswechselventile (5) auf die gewünschte Ventilöffnungscharakteristik im Betrieb des Verbrennungsmotors zylinderselektiv mittels variabler Ansteuerspannungen und/oder Ansteuerströme (I1, I2, I3) betrieben.

Description

Verfahren zum Betrieb eines Verbrennungsmotors
Die Erfindung betrifft ein Verfahren zum Betrieb eines Verbrennungsmotors nach dem Oberbegriff des Patentanspruchs 1.
In der Zeitschrift Auto Motor und Sport, Ausgabe 17, 1999, ist auf Seite 49 bereits ein elektrohydraulisches Ventilbe- tatigungssystem für einen Verbrennungsmotor erläutert, das einen von einer Nockenwelle betätigten Stößel aufweist, der nicht unmittelbar, sondern mittels Hydraulikol (Motorol) auf ein Gaswechselventil (Einlassventil) im Zylinderkopf des Verbrennungsmotors einwirkt. Der Druck der Hydraulikflussig- keit pflanzt sich dabei über einen Bremskolben auf das Gaswechselventil fort, wobei abhangig von der Ventilschaltstellung eines im Zylinderkopf integrierten Elektromagnetventils sich diese Hydraulikolmenge und damit auch der Hub des Gas- wechselventils im Zylinderkopf variieren lasst. Infolge von Fertigungstoleranzen für vorgenannte Bauteile ist eine Streuung der Ventiloffnungszeiten nicht auszuschließen, so dass gerade im Hinblick auf die Mehrzylinderbauweise des Verbrennungsmotors ungleiche Zylinderfullungen zwangsläufig auch zu einer Streuung der Abgasemissionen fuhren.
Daher ist es die Aufgabe der vorliegenden Erfindung, ein Verfahren zum Betrieb eines mehrzylindrigen Verbrennungsmotors zu entwickeln, mit dem sich die Zylinderfullungen aller Motorzylinder angleichen lassen, so daß vorgenannte Nachteile vermieden werden. Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Patentanspruchs 1 gelöst.
Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der Erfindung gehen im nachfolgenden aus der Beschreibung eines anhand mehrerer Zeichnungen erläuterten Ausführungsbeispiels hervor .
Es zeigen:
Fig. 1 eine Prinzipdarstellung eines elektrohydraulischen VentilbetätigungsSystems,
Fig. 2 die aus dem Ventilbetätigungssystem nach Fig. 1 resultierende variable Ventilverstellung der Gaswechselventile, veranschaulicht durch mehrere Ventilhubkurven,
Fig. 3 eine Erläuterung einzelner Verfahrensschritte anhand eines Programmablaufplans, welche die Vergleichmäßigung bzw. Synchronisierung der Ventilsteuerzeiten aller Motorzylinder unter Berücksichtigung minimaler Abgaswerte ermöglichen,
Fig. 4 eine aus dem Programmablaufplan nach Fig. 3 repräsentative Strom-, Spannugsimpuls, - und Hubkennlinie für eines der Elektromagnetventile des Ventilbetätigungs- bzw. Einspritzsystems.
Die Fig. 1 offenbart eine Prinzipdarstellung eines elektrohydraulischen Ventilbetätigungssystems, mit einem im Zylinderkopf 1 eines Verbrennungsmotors angeordneten Ventil- trieb, bestehend aus einer Nockenwelle 2, einer Stoßelbaugruppe 3 und einem in den Ansaugkanal 4 des Verbrennungsmotors sich als Einlassventil erstreckenden Gaswechselventils 5. Das Gaswechselventil 5 wird nicht unmittelbar durch die Stoßelbaugruppe 3, sondern mittels eines von der Motorolpum- pe 6 bereitgestellten Druckmittelvolumens hinsichtlich des Bewegungsablaufs variabel betätigt, wozu in den Zylinderkopf 1 ein Elektromagnetventil 7 eingesetzt ist, um das zwischen der Stoßelbaugruppe 3 und dem Gaswechselventil 5 eingespannte Druckmittelvolumen variieren zu können. Da es sich um einen mehrzylindrigen Verbrennungsmotor handelt, sind entsprechend der Anzahl der Gaswechselventile auch die bereits eingangs erwähnten übrigen Bauteile des elektrohydraulischen Ventilbetatigungssystem mehrfach vorhanden. Das Ventilbeta- tigungssystem weist ferner je Motorzylinder einen Zwischenspeicher 8 auf, der im Bedarfsfall überschüssiges Druckmittelvolumen, das nicht zur Regelung des Ventilbetatigungssystem benotigt wird, aufnimmt. Außerdem ist in dem Ansaugkanal 4 ein Einspritzventil 20 angeordnet, das gleichfalls wie das Elektromagnetventil 7 mittels variabler Ansteuerspannung und/oder variablem Ansteuerstrom zum Abgleich aller Motorzylinder auf einheitliche Einspritzmengen betrieben werden kann .
Die abbildungsgemaße Prinzipdarstellung des elektrohydraulischen Ventilbetätigungssystems ist folglich regelungstechnisch für einen mehrzylindrigen und damit mehrventiligen Verbrennungsmotor ausgelegt, mit der Aufgabe, für jeden Motorzylinder den Ventilhub elektrohydraulisch beeinflussen zu können. Bei hohen Motordrehzahlen stehen nur wenige Millisekunden zur Ansteuerung der Elektromagnetventile 7 zur Verfugung . Durch ein geeignetes Verfahren zum Betrieb des Verbrennungsmotors können die Systemtoleranzen in der Ansteuerung, dem magnetischen Kreis und die Bauteiltoleranzen innerhalb des Ventiltriebs nicht mehr zu einer unakzeptablen Streuung der Ventiloffnungsquerschnitte fuhren, da nunmehr jeweils der hydraulische Steuerdruck zwischen der Stoßelbaugruppe 3 und dem zugehörigen Gaswechselventil 5 erfindungsgemaß durch die Regelung der am Elektromagnetventil 7 angelegten Ventilschaltspannung bzw. des Ventilstroms als Funktion des Kurbelwinkels individuell für jeden Motorzylinder eingestellt wird, so daß sich pro Arbeitsspiel gleiche Ventilhube für alle Gaswechselventile 5 ergeben. Dies wäre theoretisch auch unter Zuhilfenahme von Wegsensoren im Bereich der Gaswechselventile technisch möglich. Diese Losung scheidet aber aus Kosten- und Bauaufwandsgrunden aus. Ferner ist zu beachten, dass die Abgasemission üblicherweise mittels einer einzigen Lambda-Sonde je Zylinderreihe eingeregelt wird.
Die Fig. 2 zeigt beispielhaft die mit dem vorgestellten variablen Ventilbetatigungssystem nach Fig. 1 grundsatzlich einstellbaren Ventilhubkurven, die ausgehend von einem auf der Abszisse dargestellten maximalen Nockenwellenwinkel auch für reduzierte Ventiloffnungsspiele von 40 Grad ,80 Grad sowie 120 Grad Nockenwellenwinkel aufgetragen sind. Entlang der Ordinate ist der für jeden Nockenwellenwinkel mögliche Ventilhub aufgetragen, der zwangsläufig mit dem kleinsten Nockenwellenwinkel von 40 Grad auch den kleinsten Ventilhub von etwa 3,8 mm aufweist.
Die Fig. 3 zeigt erfindungsgemaß die einzelnen Verfahrensschritte zur Vergleichmaßigung der Ventilhube und damit der Ventiloffnungszeiten für samtliche Gaswechselventile 5 eines mehrzylindrigen Verbrennungsmotors, der vorzugsweise mit dem aus Fig. 1 bekannten elektrohydraulischen Ventilbetätigungssystem ausgerüstet ist. Unter Beachtung des Programmablaufs nach Fig. 3 lassen sich die eingangs bereits erwähnten systembedingten Unwägbarkeiten und Toleranzen in der Ansteuerung der Elektromagnetventile 7 sowie im Ventiltrieb derart ausregeln, dass jedes Ventilbetätigungssystem bei laufendem Verbrennungsmotor selektiv auf eine optimale Abgasemission abgestimmt wird, wobei die gewonnenen Ansteuerparameter für die Elektromagnetventile 7 in einem Datenspeicher abgelegt werden. Hierzu wird der Verbrennungsmotor vorzugsweise im Drehzahlband betrieben, in dem sich unzulässige Abweichungen der Abgasemission der einzelnen Motorzylinder voneinander ergeben. Die Abgasemission wird auf an sich bekannte Weise über einen Lambda-Regelkreis erfasst. Die Ansteuerspannung bzw. Ansteuerströme eines jeden Elektromagnetventils 7 werden dann gemäß dem Programmablaufplan variiert und zylinderselektiv im Datenspeicher abgelegt und als Funktion der Motordrehzahl parameterhaft erfasst. Aufbauend auf dem so von Zylinder zu Zylinder festgelegten Parameterkennfeld erfolgt die gesamte Ansteuerung der Elektromagnetventile 7.
Das Verfahren zur Bestimmung der exakt synchronisierten Ventilsteuerzeiten wird nunmehr im einzelnen anhand des Programmablaufplans nach Fig. 3 erläutert.
In jedem Betrieb des Verbrennungsmotors erfolgt zum Zwecke der Ansteuerung und damit konkret zum Abgleich der Gaswechselventile 5 untereinander eine Initialisierung der Elektromagnetventile 7 aller Motorzylinder gemäß einem ersten Operationsschritt 9. In einem zweiten Operationsschritt 10 wird der schlechteste Abgaswert initiiert sowie die Anzahl der Iterationsschritte sowie die Iterationsschrittweite festgelegt. In einem dritten Operationsschritt gemäß der Raute 11 wird festgestellt, ob sich die Motordrehzahl in einem vorgegebenen Drehzahlband befindet. Wenn diese Bedingung nicht erfüllt ist, erfolgt über eine Schleife 11a eine erneute Abfrage der Motordrehzahl aus dem Motorsteuergerät. Nur wenn sich der Verbrennungsmotor in dem vorgegebenen, insbesondere abgaskritischen Drehzahlband befindet, in dem ein Abgleich- prozess der Elektromagnetventile 7 erfolgen soll, folgt der Aufruf eines Unterprogramms gemäß dem Operationsschritt 12, in dem in einem Datenspeicher des Motorsteuergerats ein aktuell gültiger und stabilisierter Abgaswert eingelesen wird, was beispielhaft über eine Verknüpfung zu einem Lambda- Regelkreis des Motormanagements geschehen kann. Danach wird gemäß der nachfolgenden Raute 13 überprüft, ob der aktuelle Abgaswert besser als der bisher gespeicherte Abgaswert ist. Ist diese Forderung erfüllt, wird im nächsten Schritt 14 der aktuelle Ansteuerwert für das zu aktivierende Elektromagnetventil 7 als Funktion der Motordrehzahl und des zugehörigen Motorzylinders gespeichert. Ist jedoch die Forderung nach einem verbesserten Abgaswert nach Schritt 13 nicht erfüllt, wird anstelle deι Schritt^ 14 über die Schleife 14a das Ite¬ rationsverfahren und damit die Ventilverstellung für den gegenwartig betroffenen Motorzylinder fortgesetzt. Im Operationsschritt 16 wird überprüft, ob samtliche Iterationsschritte durchlaufen sind. Sofern nicht alle Iterationsschritte durchlaufen sind, erfolgt über die Schleife 16a eine Wieder¬ holung des Ventilabgleichverfahrens beginnend ab der Raute 2. Sofern aber samtliche Iterationsschritte abgeschlossen sind, wird gemäß dem Feld 17 das nächste Elektromagnetventil 7 erfaßt. Im Schritt 18 wird überprüft, ob die Elektromagnetventile 7 aller Motorzylinder adaptiert sind. Im Falle einer Verneinung erfolgt sodann über die Schleife 18a eine Wiederholung des Ablaufdiagramms beginnend mit dem Operati¬ onsschritt 10. Ist hingegen die Adaption aller Motorzylinder abgeschlossen, dann ist das hiermit erläuterte Ventilabgleichverfahren mit dem Schritt 19 beendet.
Erfasst man diesen Ventilabgleichprozess für die einzelnen Motorzylinder durch einen geeigneten Algorithmus, so lässt sich auf verhältnismäßig einfache Weise der Versatz der Ventilsteuerzeiten gegenüber einer nominalen, d.h. nur Kurbel- wellendrehwinkel-bestimmenden Vorgabe ermitteln, um hier den Optimierungsparameter Abgasqualität einzustellen.
In einer Erweiterung des Grundgedankens können Werte für verschiedene Drehzahlbereiche ermittelt und in einem Datenspeicher des Motormanagements bzw. Motorsteuergeräts abgelegt werden. Hierdurch kann ein Kennfeld oder ein Parametersatz für eine mathematische Beschreibung ermittelt werden.
Zur Bestimmung der Parameter kann der Algorithmus in einem Messlauf benutzt werden. Darüber hinaus kann der Algorithmus aber auch im normalen Betriebsmodus des Verbrennungsmotors genutzt werden, um beispielsweise eine Optimierung der Parameter, z.B. dem Einfluss der Alterung von Bauteilen entgegenzuwirken. Hierzu wäre dann der Operationsschritt 2 nach Fig. 3 zu modifizieren und die Motordrehzahl als Index im Kennfeld anzugeben.
Zusammenfassend wird somit ein Verfahren zum Betrieb eines Verbrennungsmotors dargestellt, das durch Variation der Ansteuerzeitpunkte der Elektromagnetventile 7 und damit der synchronen Betätigung der Gaswechselventile 5 (Einlaßventile) eine Optimierung der Abgaswerte ermöglicht, indem gewissermaßen durch ein nach Figur 3 beschriebenes Suchverfahren die Ansteuerungsparameter der Elektromagnetventile 7 variiert werden. Hierdurch wird für ein Gütekrite- rium oder auch mehrere Gütekriterien eine optimale Ventilansteuerung erreicht .
Unter Bezug auf den Programmablaufplan nach Fig. 3 ergibt sich somit für jeden Motorzylinder eine optimierte Stromkennlinie nach Fig. 4 für das jeweils zu aktivierende Elektromagnetventil 7, wobei jeweils der optimale Stromverlauf als Funktion der Zeit und damit proportional zum Motorkurbelwinkel sowie durch den Triggerpunkt T bestimmt wird. Aus dem erfindungsgemäßen Abgleichprozess resultiert eine säge- zahnförmige Stromverlaufskennlinie, die mit einem vergleichsweise geringen Ruhestrom II (Einschaltstrom) beginnt, die mit dem Anstieg auf den Erregerstrom 12 gleichzeitig den Magnetanker des Elektromagnetventils 7 in Bewegung versetzt und in Offenstellung hält, bis durch das Absenken des Erregerstroms 12 auf den Haltestrom 13, der vom Betrag her geringfügig größer ist als der Ruhestrom II, den Triggerpunkt T erreicht ist, so dass sich der Magnetanker des Elektromagnetventils 7 wieder in seine ursprüngliche Ruhestellung bewegt. Der Triggerpunkt T ist aufgrund des in Fig. 3 dargestellten Verfahrens für jedes Elektromagnetventil 7 und damit für jedes Gaswechselventil 5 im Motorzylinder in einem Datenspeicher des Motorsteuergeräts erfasst. Der zeitliche Verlauf des Stromimpulses als auch die Bewegungen des Magne¬ tankers sind unterhalb der Stromkennlinie phasenidentisch aufgetragen, womit eine direkte Zuordnung der Stromimpulsdauer und der Magnetankerbewegung zur Stromkennlinie möglich ist .
Zusammenfassend ergibt sich ein Ventilansteuerverfahren, bei dem für jeden Motorzylinder die Abgasemission gemessen werden und bei dem mit dem Ziel auf optimierte Abgaswerte anschließend alternierend die Ansteuerspannung bzw. der An- Steuerstrom als Funktion des Motorkurbelwinkels für jedes Elektromagnetventil 7 variiert wird sowie der optimale Triggerpunkt T bestimmt wird. Die während des Verfahrens ermittelten optimale Schaltpunkte der Elektromagnetventile 7 werden somit für jeden Motorzylinder individuell erfaßt und als Funktion der Motordrehzahl als Parameterfeld im Datenspeicher des Motorsteuergeräts abgespeichert. Aufbauend auf diesem festgelegten Parameterfeld erfolgt somit eine zylinderselektive Ventilansteuerung, die im vorliegenden Beispiel letztlich zu gleichen Ventilhüben der Gaswechselventile 5 führt.
Die Ventilhübe der Elektromagnetventile 7 müssen aber nicht unbedingt gleich sein, sondern können zur Lösung der gestellten Aufgabe vielmehr bedarfsgerecht und damit wunschgerecht variiert werden. Nach diesem Ventilsteuerverfahren können auch die Toleranzen der Einspritzmenge durch zylinderselektive Ansteuerung der Einspritzventile 20 abgeglichen werden.
Die Erfindung ist nicht auf das konstruktive Ausführungsbeispiel nach Figur 1 beschränkt, sondern auch für alternative Ventiltriebkonstruktionen geeignet, die beispielsweise eine direkte elektromagnetische Betätigung der Gaswechselventile vorsehen und die entweder eine Saugrohr- oder Direkteinspritzung aufweisen. Bezugszeichenliste
1 Zylinderkopf
2 Nockenwelle
3 Stößelbaugruppe
4 Ansaugkanal
5 Gaswechselventil
6 Motorölpumpe
7 Elektromagnetventil
8 Zwischenspeicher 9-19 Operationsschritte 20 Einspritzventil

Claims

Patentansprüche
1. Verfahren zum Betrieb eines mehrzylindrigen Verbrennungsmotors, dessen Gaswechselventile entweder direkt elektromagnetisch oder mittels eines elektrohydrauli- schen, mehrere Elektromagnetventile aufweisenden Ventil¬ betätigungssystems hinsichtlich der Ventiloffnungscha- rakteristik variabel einstellbar sind, dadurch gekennzeichnet, dass die Elektromagnetventile (7) zwecks Abgleich aller Gaswechselventile (5) auf eine gewünschte Ventiloffnungscharakteristik im Betrieb des Verbrennungsmotors zylinderselektiv mittels variabler Ansteuerspannungen und/oder Ansteuerstrome (II, 12, 13) betrieben werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Abgleich aller Elektromagnetventile (7) in Abhängigkeit von den zylinderselektiven Abgasemissionen des Verbrennungsmotors erfolgt.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Abgleich der Ventiloffnungscharakteristik aller Gaswechselventile (5) vorzugsweise in einem Datenspeicher eines Motorsteuergerats erfolgt, und zwar durch nachfolgende Verfahrensschritte:
a) Initialisierung der Anzahl der Elektromagnetventile (7) und/oder Einspritzventile (20) aller Motorzylinder,
b) Initialisierung des Abgaswertes mit dem höchsten Emissionsgrad sowie Festlegung der Anzahl der Iterationsschritte und Iterationsschrittweite, c) Überprüfen, ob die vorgegebene Motordrehzahl, insbesondere die Motordrehzahl bei hohem Abgasgehalt, eingehalten ist, in der eine unzulässige, zylinderselektive Streuung der Abgaswerte zu erwarten ist, ansonsten ist Schritt c) zu wiederholen,
d) Einlesen des aktuell gültigen und stabilisierten Abgaswertes in den Datenspeicher,
e) Vergleichen des aktuellen Abgaswertes mit dem zuvor im Kennfeld des Datenspeichers abgelegten Abgaswertes,
f) Speicherung des aktuellen Abgaswertes im Datenspeicher, gegebenenfalls in Abhängigkeit von der Motordrehzahl, sofern der aktuelle Abgaswert besser ist als der ursprüngliche im Kennfeld des Datenspeichers abgelegte Abgaswert,
g) Iterationsschritte fortsetzen und Elektromagnetventile (7) verstellen,
h) Prüfen, ob weitere Iterationsschritte folgen sollen,
i) Prüfen, ob die Ansteuerparameter aller Elektromagnetventile (7) im Datenspeicher ermittelt wurden, falls nicht, nächstes Elektromagnetventil (7) auswählen und die Operation bei Schritt b) fortsetzen.
EP00992089A 2000-01-14 2000-12-23 Ventilabstimmung mit hilfe der abgaswerte und der lambdasonde für einen verbrennungsmotor Expired - Lifetime EP1250519B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10001196 2000-01-14
DE10001196 2000-01-14
DE10048263A DE10048263A1 (de) 2000-01-14 2000-09-29 Verfahren zum Betrieb eines Verbrennungsmotors
DE10048263 2000-09-29
PCT/EP2000/013254 WO2001051775A2 (de) 2000-01-14 2000-12-23 Ventilabstimmug mit hilfe der abgaswerte und der lambdasonde für einen verbren nungsmotor

Publications (2)

Publication Number Publication Date
EP1250519A2 true EP1250519A2 (de) 2002-10-23
EP1250519B1 EP1250519B1 (de) 2006-03-15

Family

ID=26003842

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00992089A Expired - Lifetime EP1250519B1 (de) 2000-01-14 2000-12-23 Ventilabstimmung mit hilfe der abgaswerte und der lambdasonde für einen verbrennungsmotor

Country Status (5)

Country Link
US (1) US6745122B2 (de)
EP (1) EP1250519B1 (de)
JP (1) JP2003519743A (de)
DE (1) DE50012416D1 (de)
WO (1) WO2001051775A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080546B2 (en) 2011-02-16 2015-07-14 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for cylinder equalization in a multi-cylinder internal combustion engine

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10046221A1 (de) * 2000-09-19 2002-10-02 Bayerische Motoren Werke Ag Verfahren und Vorrichtung zur Steuerung der zylinderselektiven Füllung bei Verbrennungsmotoren mit variablem Ventiltrieb
ITTO20010660A1 (it) * 2001-07-06 2003-01-06 Fiat Ricerche Motore diesel pluricilindrico con azionamento variabile delle valvole.
ITTO20020234A1 (it) * 2002-03-15 2003-09-15 Fiat Ricerche Motore pluricilindrico a combustione interna con dispositivo idraulico a controllo elettronico per l'azionamento variabile delle valvole e d
US7007644B2 (en) 2003-12-04 2006-03-07 Mack Trucks, Inc. System and method for preventing piston-valve collision on a non-freewheeling internal combustion engine
EP2067968B1 (de) * 2007-12-04 2011-05-11 C.R.F. Società Consortile per Azioni Mehrzylindermotor mit unabhängigen Zylindern
US20090308340A1 (en) * 2008-06-11 2009-12-17 Gm Global Technology Operations, Inc. Cam-Driven Hydraulic Lost-Motion Mechanisms for Overhead Cam and Overhead Valve Valvetrains
DE102008049181A1 (de) * 2008-09-26 2010-04-01 Schaeffler Kg Elektrohydraulische Ventilsteuerung
EP2204566B1 (de) * 2008-12-29 2011-06-29 Fiat Group Automobiles S.p.A. Adaptives Steuersystem des Luft-Kraftstoff-Verhältnisses einer Brennkraftmaschine mit einem variablen Ventilsteuerungssystem
DE102009042544A1 (de) 2009-09-22 2011-03-31 Schaeffler Technologies Gmbh & Co. Kg Elektrohydraulischer Ventiltrieb
US8469333B2 (en) * 2010-03-13 2013-06-25 Synapse Engineering, Inc. Counter-biased valve and actuator assembly
US8977478B2 (en) 2011-10-28 2015-03-10 Chrysler Group Llc Method of setting a control parameter for emissions robustness

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635812B2 (ja) * 1988-10-31 1994-05-11 いすゞ自動車株式会社 電磁力駆動バルブ制御装置
JPH0621530B2 (ja) * 1988-12-29 1994-03-23 いすゞ自動車株式会社 バルブ駆動装置
JPH03164537A (ja) * 1989-11-21 1991-07-16 Mitsubishi Electric Corp 内燃機関のバルブタイミング制御装置
US5377654A (en) * 1992-11-12 1995-01-03 Ford Motor Company System using time resolved air/fuel sensor to equalize cylinder to cylinder air/fuel ratios with variable valve control
US5419301A (en) 1994-04-14 1995-05-30 Ford Motor Company Adaptive control of camless valvetrain
DE19534878B4 (de) 1995-09-20 2007-05-03 Fev Motorentechnik Gmbh Verfahren zur automatischen Kalibrierung eines Winkelmarkengebers an der Kurbelwelle einer Kolbenbrennkraftmaschine
JP3075177B2 (ja) * 1996-05-22 2000-08-07 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
JP3347950B2 (ja) * 1996-08-28 2002-11-20 株式会社ユニシアジェックス 排気バルブのタイミング制御装置
JPH10205314A (ja) 1996-12-13 1998-08-04 Fev Motorentechnik Gmbh & Co Kg ガス交換弁の電磁弁駆動部を制御する方法
JP3400752B2 (ja) * 1999-09-06 2003-04-28 三菱電機株式会社 内燃機関用制御装置
JP3873663B2 (ja) * 2001-05-31 2007-01-24 日産自動車株式会社 可変バルブタイミング装置の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0151775A2 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080546B2 (en) 2011-02-16 2015-07-14 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Method for cylinder equalization in a multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
EP1250519B1 (de) 2006-03-15
JP2003519743A (ja) 2003-06-24
US6745122B2 (en) 2004-06-01
US20030000488A1 (en) 2003-01-02
WO2001051775A2 (de) 2001-07-19
WO2001051775A3 (de) 2002-04-11
DE50012416D1 (de) 2006-05-11

Similar Documents

Publication Publication Date Title
DE60319140T2 (de) Motorbremsverfahren und -einrichtung
DE69515705T2 (de) Kompressionsverringerungsmotorbremsen mit elektronisch gesteuerten multispulen hydraulikventilen
DE69916555T2 (de) Steuerungsanrichtung der Ansaugluftmenge für eine Brennkraftmaschine mit variabler Ventilsteuerung
EP1157205B1 (de) Anordnung und verfahren zur regelung eines steuerventils für ein diesel-einspritzsystem
DE69529352T2 (de) Treiberschaltung
DE60121796T2 (de) Vorrichtung zum betätigen der ventile und steuerungsverfahren dafür
DE102008002901A1 (de) Steuerung für ein elektromagnetisch betätigtes Ventil
EP1250519A2 (de) Ventilabstimmung mit hilfe der abgaswerte und der lambdasonde für einen verbrennungsmotor
DE69817765T2 (de) Betriebsverfahren eines elektronischen kraftstoffeinspritzventils
DE112015004236B4 (de) Steuerungsvorrichtung für eine Hochdruckpumpe
DE102017101123B4 (de) Hochdruckpumpen-Steuereinheit
DE19951537B4 (de) Ventil-Antriebsvorrichtung für eine Brennkraftmaschine
EP1134364B1 (de) Verfahren zum Betrieb eines elektromagnetischen Aktors
WO2011069836A1 (de) Brennkraftmaschine mit elektrohydraulischer ventilsteuerung und verfahren zum betrieb der brennkraftmaschine
DE102009028650B4 (de) Verfahren zum Betreiben eines Kraftstoff-Einspritzventils einer Brennkraftmaschine
DE19882042B4 (de) Kontrollvorrichtung und Kontrollverfahren für eine nockengetriebene, elektronisch gesteuerte Pumpe-Düse-Einspritzeinheit
DE102008006530A1 (de) Steuerungssystem und Arbeitsverfahren für ein Steuerungssystem
WO1996005415A1 (de) Motorbremsvorrichtung für einen nutzfahrzeugmotor
DE60031353T2 (de) System und Methode für die Steuerung des Zündzeitpunktes einer Brennkraftmaschine mit variabler Einlassventilsteuerung
DE10131742B4 (de) Anordnung und Verfahren zur Regelung des Ausgangsdrehmoments eines Zylinders einer Brennkraftmaschine
DE60121516T2 (de) Ventilzeitsteuervorricting für eine nockenfreie Brennkraftmaschine
DE10048263A1 (de) Verfahren zum Betrieb eines Verbrennungsmotors
DE60125867T2 (de) Vorrichtung und Verfahren zur Ventilsteuerung
WO2006017870A2 (de) Verfahren zum betrieb einer brennkraftmaschine
EP1881186B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit mehreren Zylindern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17P Request for examination filed

Effective date: 20021011

RBV Designated contracting states (corrected)

Designated state(s): DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REF Corresponds to:

Ref document number: 50012416

Country of ref document: DE

Date of ref document: 20060511

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121231

Year of fee payment: 13

Ref country code: FR

Payment date: 20130117

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R231

Ref document number: 50012416

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20130808

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231