[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1249307B1 - Toric tool for polishing an optic surface of an atoric lens and polishing method using said tool - Google Patents

Toric tool for polishing an optic surface of an atoric lens and polishing method using said tool Download PDF

Info

Publication number
EP1249307B1
EP1249307B1 EP02290853A EP02290853A EP1249307B1 EP 1249307 B1 EP1249307 B1 EP 1249307B1 EP 02290853 A EP02290853 A EP 02290853A EP 02290853 A EP02290853 A EP 02290853A EP 1249307 B1 EP1249307 B1 EP 1249307B1
Authority
EP
European Patent Office
Prior art keywords
polishing
tool
lens
value
buffer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02290853A
Other languages
German (de)
French (fr)
Other versions
EP1249307A2 (en
EP1249307A3 (en
Inventor
Joel Bernard
Christophe Jeannin
Joel Huguet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP1249307A2 publication Critical patent/EP1249307A2/en
Publication of EP1249307A3 publication Critical patent/EP1249307A3/en
Application granted granted Critical
Publication of EP1249307B1 publication Critical patent/EP1249307B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/16Bushings; Mountings

Definitions

  • the invention relates to a tool for polishing an optical surface according to the pre-balloon of claim 1, and to a method of polishing according to the preamble of claim 9 or A tool of this type is described in US 3,583,111.
  • a lens for example an ophthalmic lens, comprises two opposite optical surfaces, connected by a slice generally inscribed in a cylinder with a circular base.
  • a torus T of which only a portion is represented, is obtained by revolution of a circle of radius R2, about an axis A1 located in the plane of said circle.
  • the point of the circle furthest from the axis A1 describes a circle of radius R1.
  • the radii R1 and R2 are respectively called large radius and small radius of torus T.
  • R1 is strictly greater than R2.
  • the circles of radii R1 and R2 are respectively located in a plane P1 perpendicular to the axis A1, and in a plane P2 containing the axis A1, the plans P1 and P2 being intersecting in a straight line A2.
  • a cylinder of axis A2, and radius R3 (here strictly less than the radius R2), cuts the torus T into a curve C delimiting a surface S toric, which has two plane symmetries: one with respect to plane P1, the other relative to in the P2 plan.
  • intersection of the toric surface S with the plane P1 is an arc of a circle of radius R1, called large meridian M1 of the toric surface S, while the intersection of the toric surface S with the plane P2 is a circular arc of radius R2, called small meridian M2 of the toric surface S.
  • the great meridian M1 has a curvature C1 whose value is equal unlike the large radius R1, while the small meridian M2 presents a curvature C2 whose value is equal to the inverse of the small radius R2.
  • meridians M1 and M2 are sufficient to completely define the shape of the surface toric S, which is concave in the direction of the axis A1, and convex in a opposite direction.
  • a given surface is atoric if exists a toric surface whose deviation at any point with respect to said surface atoric is inferior, in absolute value, to a chosen value.
  • this value equal to 0.2 mm over a diameter of 80 mm, but may be slightly different without departing from the scope of the invention.
  • a polishing step After the roughing of such an atoric surface, obtained by machining, a polishing step, possibly preceded by a step of smoothing, aims at reduce the roughness of the surface already roughed.
  • Polishing is a delicate step because it involves reducing the roughness of the surface without deforming the latter.
  • Polishing of an optical surface with symmetry of revolution can be performed by means of a tool comprising a polishing surface having a shape complementary to that of the surface optical, the tool and / or lens being rotated about the axis of symmetry of the optical surface, so that the polishing surface rubs against the optical surface.
  • JP-09 396 666 where the tool is designed for a lens aspherical convexity, the curvature of a spherical surface for the substrate of base, the elastic member and the surface member, is identical to a surface spherical including the working surface of a lens having an aspherical surface, is an approximation.
  • the lens is rotated, and, simultaneously, the tool is driven so as to be pressed against the surface of job.
  • the tool will tend to deform the surface of the lens to give it at least locally its own shape, spherical, and thus proves difficult to apply with toric surfaces or atoric surfaces.
  • the object of the invention is to propose a polishing tool, as well as a method of polishing using this tool, which polish an atoric surface to the quickly and evenly, while respecting the constraints of precision mentioned above.
  • machining of lenses made of mineral glass requires removal of material more important than the machining of lenses made of glass organic and causes the appearance of subsurface micro-cracks that to disappear, require a longer polishing time, which leads to deformations and inaccuracies in the final shape of the surface of the lens.
  • the invention will therefore apply preferably to lenses made in organic glass, which does not have the aforementioned disadvantages of mineral glass.
  • the tool and the surface to be polished are moved relative to each other to the other following two movements in two perpendicular directions which each follow one of the meridians of the polishing surface.
  • the tool that has just been described is applied to the polishing of a surface atoric optics of a lens such as an ophthalmic lens, made of preferably organic glass according to claim 9.
  • the lens having a circular slice having a given diameter preferably has a circular section whose diameter is greater than the diameter of the slice of the lens.
  • the second correction ⁇ C2 is for its part for example between 0 and 0.8 m -1 , preferably between 0.1 m -1 and 0.64 m -1 , for example equal to 0.37 m -1 .
  • step a) the determination of the best torus is made from preferably by means of the so-called least squares mathematical method.
  • step a) the determination of the best torus is made for only part of the atoric surface of the lens, this part having a circular circumference, coaxial with the slice of The lens.
  • the implementation of the invention makes it possible to polish rapidly and effectively an atoric optical surface without deforming it. Buffer, compressible, ensures permanent contact between the polisher and the surface atoric lens.
  • FIG. 2 shows an ophthalmic lens 1 made of preferably organic glass and comprising two optical surfaces: a convex spherical surface 2 having an axis A of revolution, as well as a Concave surface 3, atoric, opposite convex surface 2, surfaces 2 and 3 being connected by a slice 4 inscribed in a cylinder of axis A and of diameter ⁇ 2 called diameter of the lens 1.
  • the diameter ⁇ 2 is between 60 mm and 80 mm.
  • the axis A of the lens meets the optical surface 3 at a point SL called top of the optical surface 3.
  • the optical surface 3, rough machining, has a roughness that is wish to decrease in order to give it an acceptable surface however, distort it.
  • the tool 5 is delimited radially by a cylindrical surface 15 of axis A 'and of diameter ⁇ O, called diameter of the tool 5.
  • the polisher 10 which has a thickness e P also uniform, comprises meanwhile a first surface 13 adhering to the second surface 12 of the pad 9, and a second surface 14 opposite the first 13, this polishing surface 14, called polishing surface, being able to polish the optical surface 3 by friction against it.
  • the buffer 9, whose thickness e T is for example between 4 mm and 6 mm, is made of a material whose deformation rate under a pressure of 0.04 MPa is greater than 5% .
  • the pad 9 may be made of an elastomeric material or preferably, polyurethane foam.
  • the polisher 10 whose thickness e P is for example between 0.5 mm and 1.1 mm, is in turn made of fabric, felt or, according to a preferred embodiment, polyurethane foam.
  • the polisher 10 is deformable so as to be able to conform to the shape of the optical surface 3 of the lens 1 thanks to the compressibility of the pad 9.
  • the buffer 9 and the polisher 10 are, for example, successively glued or overmolded on the support surface 8, so that the second surfaces 12 and 14 of the buffer 9 and the polisher 10 follow the shape of the support surface 8, to the thickness of the buffer 9 and the polisher 10 near.
  • the polishing surface 14 has two planar symmetries: one with respect to a plane P1 containing the axis A ', and the other by relative to a plane P2 also containing the axis A 'and perpendicular to the plane P1.
  • the polishing surface 14, toric has two main meridians M1 and M2, respectively defined by the intersection of the polishing surface 14 with the plane of symmetry P1, and with the plane of symmetry P2.
  • the main meridians M1 and M2, which are arcs of circle, are secants on the axis A 'at a point SO called the top of the polishing surface 14.
  • the choice of the tool 5, that is to say the choice of the polishing surface 14, is function of the shape of the optical surface 3.
  • the thicknesses e T and e P of the buffer 9 and the polisher 10 are uniform, it is understood that it is necessary, for the manufacture of the tool 5, to provide a support surface 8 of toric shape which corresponds to the thicknesses e T and e p P , on the polishing surface 14.
  • the support surface 8 also has two plane symmetries, one with respect to the plane P1, and the other with respect to the plane P2.
  • the support surface 8 has two main meridians MS1 and MS2, concentric respectively to meridians M1 and M2 of the surface of polishing, and defined by the intersection of the support surface 8 with, respectively, the plane P1 and the plane P2.
  • the meridian MS1 which is the great meridian of the support surface 8, has a curvature CS1
  • the meridian MS2, which is the small meridian of the support surface 8 has meanwhile a curvature CS2.
  • the best torus is an approximate toric surface of the optical surface 3, its determination being carried out for example by means of the method least-squares mathematical method, from a selection of values of geometric characteristics of the optical surface 3, chosen or measured on only part of the lens 1, this part having a circumference circular diameter ⁇ 1, coaxial with the slice 4 of the lens 1.
  • the diameter ⁇ 1, called the design diameter is chosen equal to or substantially equal to 60 mm.
  • the best torus has two plane symmetries: one with respect to one plane PL1, the other with respect to a plane PL2 perpendicular to plane PL1.
  • the best torus has two main meridians M * 1 and M * 2, defined by the intersection of the best torus with, respectively, the first and the second plane of symmetry PL1, PL2.
  • the main meridian M * 1, which presents a curvature C * 1, is the great meridian of the best torus
  • the meridian M * 2, which has a curvature C * 2 is the small meridian of the best torus, of so that the value of the curvature C * 1 is strictly less than the value of the curvature C * 2.
  • the reference torus is, for its part, the toric surface corresponding to the ophthalmic prescription for which the optical surface 3 is made.
  • the reference torus is a toric surface which, if it was substituted for the atoric surface 3 of the lens 1, providing a point chosen from this one the same prescription value as the atoric surface 3.
  • Said selected point is generally the point of preference of the prism, commonly referred to as PRP, well known to those skilled in the art.
  • the reference torus comprises two circular main meridians having respective curvatures C'1, C'2.
  • the value of the parameter a, expressed in m -1 is between 0 and 4, and preferably between 0.2 and 3.4.
  • the value of the parameter b, without unit, is between 0.01 and 0.3, and preferably between 0.05 and 0.25.
  • parameter c also without unit, is between -2 and -0.01, and preferably between -1.5 and -0.1.
  • the value of the parameter d, expressed in m -2 , with ⁇ 2 expressed in m, is between -100 and 0, and preferably between -60 and -2.
  • the value of the second correction ⁇ C2, also expressed in m -1 is for example between 0 and 0.8, and preferably between 0.1 and 0.64. According to one embodiment, the value of the second correction ⁇ C2 is equal to or substantially equal to 0.37 m -1 .
  • the diameter ⁇ 0 of the tool 5 is chosen greater than the diameter ⁇ 2 of the lens 1.
  • the value of the diameter ⁇ O of the tool 5 is for example chosen equal or substantially equal to 110 mm.
  • the tool 5 is used to polish the atoric optical surface 3.
  • the tool 5 Prior to its use, the tool 5 is arranged opposite and at distance from the optical surface 3 so that the axis A ', the plane of symmetry P1 and the plane of symmetry P2 of the tool 5 coincide respectively with the axis A of the lens 1, the plane of symmetry PL1, and the plane of symmetry PL2.
  • the tool 5 and the lens 1 are then brought closer to each other until that the polishing surface 14 comes into contact with the optical surface 3 of the lens 1, without the pad 9 being compressed.
  • the polishing surface 14 is in point contact with the optical surface 3, with their respective summits SO and SL in coincidence.
  • the tool 5 and the lens 1 are then moved relative to each other according to two distinct alternating rotary motions, which can be combined to obtain a scrambling effect ensuring a good polishing quality.
  • the first movement is a plane rotation in the plane P1 of the big M1 meridian of the polishing surface 14, rotation whose center is coincident with the center of curvature of this meridian M1.
  • the second movement is a plane rotation in the plane P2 of the small M2 meridian of the polishing surface 14, whose center of rotation coincides with the center of curvature of this meridian M2.
  • the maximum amplitude of this reciprocating motion is such that the edge 16 of the polisher 10 comes locally coincide with the slice 4 of the lens 1, the tool 5 being then, by compared to lens 1, in an extreme position represented by the dotted lines of Figure 10.
  • the atoric optical surface 3 is never discovered during polishing.
  • the choice of the diameter ⁇ O of the tool 5, greater than the diameter ⁇ 2 of the lens 1, allows a fast polishing.
  • Such a determination unit 18 can be integrated into a unit of numerical control 29 of a polishing installation 30 adapted to the polishing of ophthalmic lenses and suitable for the implementation of the method described above. Like the determining unit 18, the control unit 29 and the polishing installation 30 are not claimed as such in this patent, but their description is useful for the understanding of the invention.
  • This installation 30 further comprises a lens support 31 where the latter is momentarily restrained during polishing.
  • the installation 30 also comprises a tool holder 32 on which is mounted the tool 5, and means 33 to create a relative movement of the lens holder 31 and the tool holder 32, as described above, these means 33 being connected to the digital control unit 29.
  • the lens support 31 is fixed, only the tool holder 32 then being set in motion.
  • the support surface 8 is chosen spherical, while the thicknesses e T and e P of the buffer 9 and the polisher 10 are chosen non-uniform in order to obtain, during their superposition on the support surface. 8, a toric polishing surface 14 whose curvature values C1, C2 are in accordance with the calculated values.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

A tool for polishing an optical surface of a lens includes a rigid support including a support surface, a first layer called the buffer made from an elastic material and covering at least part of the support surface, and a second layer called the polisher and covering at least part of the buffer. The buffer has a first surface adhering to the support surface and a second surface opposite the first surface. The polisher has a first surface adhering to the second surface of the buffer and a second surface called the polishing surface opposite the first surface and adapted to polish the optical surface of the lens by rubbing against it. The polishing surface is a toric surface and, to be able to polish an atoric optical surface, the buffer is adapted to be compressed elastically and the polisher is adapted to be deformed to espouse the atoric surface. Applications include polishing atoric optical surfaces.

Description

L'invention a trait à un outil de polissage d'une surface optique selon le préaumbule de la revendication 1, et à un procédé de polissage selon le préambule de la revendication 9 ou de la revendication 11. Un outil de ce type est décrit dans le document US 3 583 111.The invention relates to a tool for polishing an optical surface according to the pre-balloon of claim 1, and to a method of polishing according to the preamble of claim 9 or A tool of this type is described in US 3,583,111.

Une lentille, par exemple une lentille ophtalmique, comprend deux surfaces optiques opposées, reliées par une tranche généralement inscrite dans un cylindre à base circulaire.A lens, for example an ophthalmic lens, comprises two opposite optical surfaces, connected by a slice generally inscribed in a cylinder with a circular base.

L'on distingue à ce jour notamment quatre catégories de surfaces optiques distinctes, à savoir :

  • les surfaces sphériques, bien connues ;
  • les surfaces asphériques, dérivées des surfaces sphériques ;
  • les surfaces toriques ; et
  • les surfaces atoriques, dérivées des surfaces toriques.
At present, four distinct categories of optical surfaces are distinguished, namely:
  • spherical surfaces, well known;
  • aspheric surfaces, derived from spherical surfaces;
  • the toric surfaces; and
  • atoric surfaces, derived from the toric surfaces.

Afin de faciliter la compréhension de ce qui va suivre, on donne à présent un exemple de construction géométrique d'une surface torique, illustrée sur la figure 1.In order to facilitate the understanding of what will follow, we now give an example of geometric construction of a toric surface, illustrated on the figure 1.

Un tore T, dont seule une portion est représentée, est obtenu par révolution d'un cercle de rayon R2, autour d'un axe A1 situé dans le plan dudit cercle.A torus T, of which only a portion is represented, is obtained by revolution of a circle of radius R2, about an axis A1 located in the plane of said circle.

Le point du cercle le plus éloigné de l'axe A1 décrit un cercle de rayon R1. Les rayons R1 et R2 sont respectivement appelés grand rayon et petit rayon du tore T.The point of the circle furthest from the axis A1 describes a circle of radius R1. The radii R1 and R2 are respectively called large radius and small radius of torus T.

Dans cette représentation, R1 est strictement supérieur à R2.In this representation, R1 is strictly greater than R2.

Les cercles de rayons R1 et R2 sont situés respectivement dans un plan P1 perpendiculaire à l'axe A1, et dans un plan P2 contenant l'axe A1, les plans P1 et P2 étant sécants en une droite A2.The circles of radii R1 and R2 are respectively located in a plane P1 perpendicular to the axis A1, and in a plane P2 containing the axis A1, the plans P1 and P2 being intersecting in a straight line A2.

Un cylindre d'axe A2, et de rayon R3 (ici strictement inférieur au rayon R2), coupe le tore T en une courbe C délimitant une surface S torique, qui présente deux symétries planes : l'une par rapport au plan P1, l'autre par rapport au plan P2.A cylinder of axis A2, and radius R3 (here strictly less than the radius R2), cuts the torus T into a curve C delimiting a surface S toric, which has two plane symmetries: one with respect to plane P1, the other relative to in the P2 plan.

L'intersection de la surface torique S avec le plan P1 est un arc de cercle de rayon R1, appelé grand méridien M1 de la surface torique S, tandis que l'intersection de la surface torique S avec le plan P2 est un arc de cercle de rayon R2, appelé petit méridien M2 de la surface torique S. The intersection of the toric surface S with the plane P1 is an arc of a circle of radius R1, called large meridian M1 of the toric surface S, while the intersection of the toric surface S with the plane P2 is a circular arc of radius R2, called small meridian M2 of the toric surface S.

Le grand méridien M1 présente une courbure C1 dont la valeur est égale à l'inverse du grand rayon R1, tandis que le petit méridien M2 présente une courbure C2 dont la valeur est égale à l'inverse du petit rayon R2.The great meridian M1 has a curvature C1 whose value is equal unlike the large radius R1, while the small meridian M2 presents a curvature C2 whose value is equal to the inverse of the small radius R2.

L'on comprend que les courbures des méridiens M1 et M2, appelés méridiens principaux, suffisent à définir complètement la forme de la surface torique S, qui est concave en direction de l'axe A1, et convexe dans une direction opposée.It is understood that the curvatures of meridians M1 and M2, called meridians, are sufficient to completely define the shape of the surface toric S, which is concave in the direction of the axis A1, and convex in a opposite direction.

Lorsque la surface torique est portée par une lentille réalisée dans un matériau présentant un indice de réfraction n, on définit pour la surface S, à partir des courbures C1 et C2, deux puissances dioptriques D1 et D2 fournies par les relations suivantes : D1 = (n-1)C1 ; et D2 = (n-1)C2. When the toric surface is carried by a lens made of a material having a refractive index n, for the surface S, from the curvatures C1 and C2, are defined two dioptric powers D1 and D2 provided by the following relationships: D1 = (n-1) C1; and D2 = (n-1) C2.

Dans ce qui suit, on considère qu'une surface donnée est atorique s'il existe une surface torique dont l'écart en tout point par rapport à ladite surface atorique est inférieur, en valeur absolue, à une valeur choisie. Ici, l'on choisit arbitrairement cette valeur égale à 0,2 mm sur un diamètre de 80 mm, mais elle peut être légèrement différente sans sortir du cadre de l'invention.In what follows, we consider that a given surface is atoric if exists a toric surface whose deviation at any point with respect to said surface atoric is inferior, in absolute value, to a chosen value. Here, we choose arbitrarily this value equal to 0.2 mm over a diameter of 80 mm, but may be slightly different without departing from the scope of the invention.

Aujourd'hui, les surfaces optiques présentent des contraintes de précision extrêmes, d'une part en ce qui concerne leur forme, pour laquelle les tolérances sont de l'ordre du micromètre (1 micromètre = 10-6 mètre), d'autre part en ce qui concerne leur rugosité, pour laquelle les tolérances sont de l'ordre du nanomètre (1 nanomètre = 10-9 mètre).Today, the optical surfaces have extreme precision constraints, on the one hand as regards their shape, for which the tolerances are of the order of a micrometer (1 micrometer = 10 -6 meter), on the other hand as regards their roughness, for which the tolerances are of the order of one nanometer (1 nanometer = 10 -9 meters).

Après l'ébauchage d'une telle surface atorique, obtenu par usinage, une étape de polissage, précédée éventuellement d'une étape de doucissage, vise à diminuer la rugosité de la surface déjà ébauchée.After the roughing of such an atoric surface, obtained by machining, a polishing step, possibly preceded by a step of smoothing, aims at reduce the roughness of the surface already roughed.

Le polissage est une étape délicate, car il s'agit de diminuer la rugosité de la surface sans déformer cette dernière.Polishing is a delicate step because it involves reducing the roughness of the surface without deforming the latter.

Le polissage d'une surface optique à symétrie de révolution, telle qu'une surface sphérique, peut être effectué au moyen d'un outil comprenant une surface de polissage ayant une forme complémentaire de celle de la surface optique, l'outil et/ou la lentille étant entraíné(e)(s) en rotation autour de l'axe de symétrie de la surface optique, de sorte que la surface de polissage frotte contre la surface optique.Polishing of an optical surface with symmetry of revolution, such as spherical surface, can be performed by means of a tool comprising a polishing surface having a shape complementary to that of the surface optical, the tool and / or lens being rotated about the axis of symmetry of the optical surface, so that the polishing surface rubs against the optical surface.

Par contre, le polissage des autres types de surface optique pose plus de problèmes.On the other hand, the polishing of other types of optical surface is more problems.

L'on distingue deux catégories d'outils, aussi bien pour le doucissage que pour le polissage, à savoir, une première catégorie d'outils dont le diamètre est faible devant celui de la lentille ; et une deuxième catégorie d'outils dont le diamètre est voisin, éventuellement supérieur, à celui de la lentille. Ces deux catégories d'outils donnent lieu à des techniques de doucissage - respectivement, de polissage - totalement différentes.There are two categories of tools, both for for polishing, namely, a first category of tools whose diameter is weak in front of that of the lens; and a second category of tools whose diameter is nearby, possibly greater than that of the lens. These two categories of tools give rise to soft-grinding techniques - respectively, polishing - completely different.

Illustrant la première catégorie, on connaít du document japonais JP-09 396 666 ou du document US-3 583 111 un outil de doucissage, qui comprend :

  • un substrat de base ;
  • un membre élastique, adhérant à la surface du substrat ;
  • un membre de surface, adhérant à la surface du membre élastique.
Illustrating the first category, it is known from Japanese document JP-09 396 666 or from US-3 583 111 a smoother, which comprises:
  • a base substrate;
  • an elastic member adhering to the surface of the substrate;
  • a surface member adhering to the surface of the elastic member.

Dans le document JP-09 396 666, où l'outil est conçu pour une lentille convexe asphérique, la courbure d'une surface sphérique pour le substrat de base, le membre élastique et le membre de surface, est identique à une surface sphérique dont la surface de travail d'une lentille ayant une surface asphérique, est une approximation.In JP-09 396 666, where the tool is designed for a lens aspherical convexity, the curvature of a spherical surface for the substrate of base, the elastic member and the surface member, is identical to a surface spherical including the working surface of a lens having an aspherical surface, is an approximation.

Lors du procédé de doucissage, la lentille est entraínée en rotation, et, simultanément, l'outil est entraíné de sorte à être appuyé contre la surface de travail.During the smoothing process, the lens is rotated, and, simultaneously, the tool is driven so as to be pressed against the surface of job.

L'outil étant de faibles dimensions par rapport à la lentille, il est nécessaire de prévoir une cinématique complexe afin que l'outil balaye la totalité de la surface de travail. Ce procédé s'avère long et complexe.Since the tool is small in relation to the lens, it is necessary to provide a complex kinematics so that the tool scans the entire work surface. This process is long and complex.

Par ailleurs, compte tenu de la rotation relative de l'outil et de la lentille, l'outil aura tendance à déformer la surface de la lentille pour lui donner au moins localement sa propre forme, sphérique, et s'avère donc difficilement applicable aux surfaces toriques ou aux surfaces atoriques.Moreover, given the relative rotation of the tool and the lens, the tool will tend to deform the surface of the lens to give it at least locally its own shape, spherical, and thus proves difficult to apply with toric surfaces or atoric surfaces.

L'invention vise à proposer un outil de polissage, ainsi qu'un procédé de polissage employant cet outil, qui permettent de polir une surface atorique à la fois rapidement et uniformément, tout en respectant les contraintes de précision mentionnées plus haut.The object of the invention is to propose a polishing tool, as well as a method of polishing using this tool, which polish an atoric surface to the quickly and evenly, while respecting the constraints of precision mentioned above.

L'usinage des lentilles réalisées en verre minéral requiert un enlèvement de matière plus important que l'usinage des lentilles réalisées en verre organique et provoque l'apparition de micro - craquelures subsurfaciques qui, pour disparaítre, nécessitent un temps de polissage plus long, ce qui entraíne des déformations et imprécisions dans la forme finale de la surface de la lentille.The machining of lenses made of mineral glass requires removal of material more important than the machining of lenses made of glass organic and causes the appearance of subsurface micro-cracks that to disappear, require a longer polishing time, which leads to deformations and inaccuracies in the final shape of the surface of the lens.

L'invention s'appliquera donc de préférence aux lentilles réalisées en verre organique, qui ne présente pas les inconvénients précités du verre minéral.The invention will therefore apply preferably to lenses made in organic glass, which does not have the aforementioned disadvantages of mineral glass.

Selon un premier aspect, l'invention propose un outil de polissage d'une surface optique d'une lentille selon la revendication 1 ledit outil comportant :

  • un support rigide comprenant une surface de support ;
  • une première couche, dite tampon, réalisée dans un matériau élastique, qui recouvre au moins en partie la surface de support, ce tampon comprenant :
    • une première surface adhérant à ladite surface de support ; et
    • une deuxième surface, opposée à ladite première surface ;
  • une deuxième couche, dite polissoir, recouvrant au moins en partie ledit tampon, ce polissoir comprenant :
    • une première surface adhérant à la deuxième surface du tampon ; et
    • une deuxième surface, dite de polissage, opposée à la première, et apte à polir la surface optique de la lentille par frottement contre celle-ci ;
ledit outil étant caractérisé en ce que ladite surface de polissage est de forme torique, cette surface comportant deux méridiens principaux circulaires présentant des courbures respectives C1, C2 telles que la valeur de la courbure C1 est strictement inférieure à la valeur de la courbure C2, et en ce que, afin d'être en mesure de polir une surface optique qui est atorique, le tampon est adapté à être comprimé élastiquement, tandis que le polissoir est adapté à être déformé pour épouser ladite surface atorique.According to a first aspect, the invention proposes a tool for polishing an optical surface of a lens according to claim 1, said tool comprising:
  • a rigid support comprising a support surface;
  • a first layer, said buffer, made of an elastic material, which covers at least part of the support surface, this buffer comprising:
    • a first surface adhering to said support surface; and
    • a second surface opposite said first surface;
  • a second layer, said polisher, at least partially covering said buffer, this polisher comprising:
    • a first surface adhering to the second surface of the pad; and
    • a second surface, referred to as a polishing surface, opposite the first surface, and capable of polishing the optical surface of the lens by friction against it;
said tool being characterized in that said polishing surface is of toric shape, said surface comprising two circular main meridians having respective curvatures C1, C2 such that the value of the curvature C1 is strictly less than the value of the curvature C2, and in that, in order to be able to polish an optical surface that is atoric, the pad is adapted to be elastically compressed, while the polisher is adapted to be deformed to conform to said atoric surface.

Lors du polissage, l'outil et la surface à polir sont déplacés l'un par rapport à l'autre suivant deux mouvements selon deux directions perpendiculaires qui suivent chacune l'un des méridiens de la surface de polissage.When polishing, the tool and the surface to be polished are moved relative to each other to the other following two movements in two perpendicular directions which each follow one of the meridians of the polishing surface.

Selon d'autres caractéristiques de l'outil :

  • le tampon présente, suivant la normale à sa deuxième surface, une épaisseur eT uniforme, et le polissoir présente, suivant la normale à sa surface de polissage, une épaisseur eP également uniforme ;
  • l'épaisseur eT du tampon est comprise entre 4 mm et 6 mm ;
  • l'épaisseur ep du polissoir est comprise entre 0,5 mm et 1,1 mm.
According to other characteristics of the tool:
  • the pad has, according to the normal at its second surface, a thickness e T uniform, and the polisher has, according to the normal to its polishing surface, a thickness e P also uniform;
  • the thickness e T of the buffer is between 4 mm and 6 mm;
  • the thickness e p of the polisher is between 0.5 mm and 1.1 mm.

Selon un mode préféré de réalisation, la surface de support de l'outil est de forme torique, et comporte deux méridiens principaux coplanaires avec les méridiens principaux de la surface de polissage, ces méridiens présentant des courbures respectives CS1, CS2 vérifiant les relations suivantes : 1 CS1 = 1 C1 - e T - e P 1 CS2 = 1 C2 - e T - e P According to a preferred embodiment, the support surface of the tool is of toric shape, and comprises two main meridians coplanar with the main meridians of the polishing surface, these meridians having respective curvatures CS1, CS2 satisfying the following relations: 1 CS 1 = 1 VS 1 - e T - e P 1 CS 2 = 1 VS 2 - e T - e P

Ces spécifications permettent de réaliser l'outil en fonction des courbures C1, C2 que l'on souhaite conférer à la surface de polissage, et des épaisseurs eT et eP du tampon et du polissoir.These specifications make it possible to produce the tool as a function of the curvatures C1, C2 that one wishes to impart to the polishing surface, and the thicknesses e T and e P of the buffer and the polisher.

Selon d'autres caractéristiques encore, concernant plus spécifiquement la réalisation du tampon :

  • le tampon est réalisé dans un matériau dont le taux de déformation sous une pression de 0,04 Mpa est supérieur à 5 %;
  • le tampon est réalisé dans un matériau élastomère ou en mousse de polyuréthanne.
Le polissoir peut, quant à lui, être réalisé en tissu, en feutre ou, selon un mode préféré de réalisation, en mousse de polyuréthanne.According to other characteristics, more specifically concerning the realization of the buffer:
  • the buffer is made of a material whose deformation rate under a pressure of 0.04 MPa is greater than 5%;
  • the pad is made of an elastomeric material or polyurethane foam.
The polisher can, for its part, be made of fabric, felt or, according to a preferred embodiment, polyurethane foam.

L'outil qui vient d'être décrit est appliqué au polissage d'une surface optique atorique d'une lentille telle qu'une lentille ophtalmique, réalisée de préférence en verre organique selon la revendication 9.The tool that has just been described is applied to the polishing of a surface atoric optics of a lens such as an ophthalmic lens, made of preferably organic glass according to claim 9.

La lentille comportant une tranche de forme circulaire présentant un diamètre donné, l'outil présente de préférence une section circulaire dont le diamètre est supérieur au diamètre de la tranche de la lentille. The lens having a circular slice having a given diameter, the tool preferably has a circular section whose diameter is greater than the diameter of the slice of the lens.

Selon un autre aspect, l'invention propose un procédé de polissage d'une surface optique atorique d'une lentille ophtalmique correspondant à une prescription donnée selon la revendication 11, ce procédé comprenant les étapes suivantes :

  • prise en compte de valeurs de caractéristiques géométriques de la surface optique de la lentille ;
  • utilisation d'un outil tel que décrit ci-dessus, lors de laquelle sont réalisés l'appui et le frottement relatifs de la surface de polissage du polissoir et de la surface optique de la lentille.
According to another aspect, the invention proposes a method of polishing an atoric optical surface of an ophthalmic lens corresponding to a given prescription according to claim 11, this method comprising the following steps:
  • taking into account values of geometrical characteristics of the optical surface of the lens;
  • use of a tool as described above, in which the relative support and friction of the polishing surface of the polisher and the optical surface of the lens are made.

Selon l'invention, ce procédé peut comprendre, préalablement à l'étape d'utilisation de l'outil, une étape de détermination de l'outil, cette étape comprenant elle-même les sous-étapes suivantes :

  • a) détermination d'une surface torique approchée de la surface optique de la lentille, cette surface torique, appelée meilleur tore, comprenant deux méridiens principaux circulaires présentant deux courbures respectives C*1, C*2 telles que la valeur de la courbure C*1 est strictement inférieure à la valeur de la courbure C*2 ;
  • b) détermination d'une surface torique correspondant à la prescription donnée, cette surface torique, appelée tore de référence, comprenant deux méridiens principaux circulaires présentant des courbures respectives C'1, C'2 telles que la valeur de la courbure C'1 est strictement inférieure à la valeur de la courbure C'2 ;
  • c) détermination des valeurs respectives des courbures C1, C2 de la surface de polissage, ces valeurs étant données par les relations suivantes : C1 = C*1 + ΔC1 ; et C2 = C*2 + ΔC2, où :
    • ΔC1, appelée première correction, est une fonction :
      • des courbures C*1, C*2 du meilleur tore ;
      • des courbures C'1, C'2 du tore de référence ; et
      • du diamètre de la tranche de la lentille ;
    • ΔC2, appelée deuxième correction, est de valeur constante.
  • According to the invention, this method may comprise, prior to the step of using the tool, a step of determining the tool, this step including itself the following substeps:
  • a) determining an approximate toric surface of the optical surface of the lens, this toric surface, called the best torus, comprising two circular main meridians having two respective curvatures C * 1, C * 2 such that the value of the curvature C * 1 is strictly less than the value of curvature C * 2;
  • b) determining a toric surface corresponding to the given prescription, this toric surface, called reference torus, comprising two circular main meridians having respective curvatures C'1, C'2 such that the value of the curvature C'1 is strictly less than the value of the curvature C'2;
  • c) determining the respective values of the curvatures C1, C2 of the polishing surface, these values being given by the following relationships: C1 = C * 1 + ΔC1; and C2 = C * 2 + ΔC2, or :
    • ΔC1, called the first correction, is a function:
      • curvatures C * 1, C * 2 of the best torus;
      • curvatures C'1, C'2 of the reference torus; and
      • the diameter of the slice of the lens;
    • ΔC2, called the second correction, is of constant value.
  • Dans l'étape c), la première correction ΔC1 est par exemple une fonction affine :

    • de la différence C*2 - C*1 des courbures C*2, C*1 du meilleur tore ; et/ou
    • de la différence C'2 - C' 1 des courbures C'2, C'1 du tore de référence.
    In step c), the first correction ΔC1 is for example an affine function:
    • of the difference C * 2 - C * 1 of the curvatures C * 2, C * 1 of the best torus; and or
    • of the difference C'2 - C '1 of the curvatures C'2, C'1 of the reference torus.

    Selon un mode de réalisation, dans l'étape c), la valeur de la première correction ΔC1, exprimée en m-1, est donnée par la relation suivante : ΔC1 = a + b(C'2 - C'1) + c[(C'2 - C'1) - (C*2 - C*1)] + d.Φ2, où a, b, c, d, sont des paramètres de valeur constante et où Φ2 est le diamètre de la tranche de la lentille.According to one embodiment, in step c), the value of the first correction ΔC1, expressed in m -1 , is given by the following relation: ΔC1 = a + b (C'2 - C'1) + c [(C'2 - C'1) - (C * 2 - C * 1)] + d.Φ2, where a, b, c, d, are parameters of constant value and where Φ2 is the diameter of the slice of the lens.

    Les paramètres a, b, c, d sont par exemple définis comme suit.

    • la valeur du paramètre a est comprise entre 0 et 4 m-1, de préférence entre 0,2 m-1 et 3,4 m-1.
    • la valeur du paramètre b, sans unité, est comprise entre 0,01 et 0,3 , de préférence entre 0,05 et 0,25 .
    • la valeur du paramètre c, également sans unité, est comprise entre -2 et -0,01 , de préférence entre -1,5 et -0,1.
    • la valeur du paramètre d est comprise entre -100m-2 et 0, de préférence entre -60 m-2 et -2 m-2, le diamètre de la tranche de la lentille étant exprimé en m.
    The parameters a, b, c, d are for example defined as follows.
    • the value of the parameter a is between 0 and 4 m -1 , preferably between 0.2 m -1 and 3.4 m -1 .
    • the value of the parameter b, without unit, is between 0.01 and 0.3, preferably between 0.05 and 0.25.
    • the value of the parameter c, also without unit, is between -2 and -0.01, preferably between -1.5 and -0.1.
    • the value of the parameter d is between -100 m -2 and 0, preferably between -60 m -2 and -2 m -2 , the diameter of the edge of the lens being expressed in m.

    La deuxième correction ΔC2 est quant à elle comprise par exemple entre 0 et 0,8 m-1, de préférence entre 0,1 m-1 et 0,64 m-1, par exemple égale à 0,37 m-1.The second correction ΔC2 is for its part for example between 0 and 0.8 m -1 , preferably between 0.1 m -1 and 0.64 m -1 , for example equal to 0.37 m -1 .

    Dans l'étape a), la détermination du meilleur tore est réalisée de préférence au moyen de la méthode mathématique dite des moindres carrés.In step a), the determination of the best torus is made from preferably by means of the so-called least squares mathematical method.

    Selon un mode de réalisation, dans l'étape a), la détermination du meilleur tore est réalisée pour une partie seulement de la surface atorique de la lentille, cette partie présentant une circonférence circulaire, coaxiale avec la tranche de la lentille. According to one embodiment, in step a), the determination of the best torus is made for only part of the atoric surface of the lens, this part having a circular circumference, coaxial with the slice of The lens.

    La mise en oeuvre de l'invention permet de polir rapidement et efficacement une surface optique atorique sans la déformer. Le tampon, compressible, assure un contact permanent entre le polissoir et la surface atorique de la lentille.The implementation of the invention makes it possible to polish rapidly and effectively an atoric optical surface without deforming it. Buffer, compressible, ensures permanent contact between the polisher and the surface atoric lens.

    D'autres objets et avantages de l'invention apparaítront à la lumière de la description qui va suivre, faite en référence aux figures annexées, dans lesquelles :

    • la figure 1 est une vue en perspective d'une surface torique délimitée par une courbe qui est l'intersection d'un tore de révolution, dont seule une partie est représentée, et d'un cylindre dont l'axe est perpendiculaire à l'axe de révolution du tore, comme indiqué ci-dessus ;
    • la figure 2 est une vue en perspective montrant, d'une part, une lentille présentant une surface optique concave atorique et, d'autre part, un outil, représenté en vue éclatée, destiné au polissage de cette surface, cet outil présentant une surface de polissage torique ;
    • la figure 3 est un diagramme illustrant les différentes étapes d'un procédé de polissage selon l'invention, ce procédé comprenant une étape d'utilisation d'un outil tel que celui de la figure 2 ;
    • la figure 4 est un graphique sur lequel sont superposés, dans un plan de coupe, la surface atorique de la lentille, le grand méridien principal du tore de référence correspondant, et le grand méridien principal du meilleur tore correspondant ;
    • la figure 5 est une vue d'élévation en coupe partielle illustrant la lentille et l'outil de polissage, avant polissage, dans une position où ils sont coaxiaux, la coupe étant réalisée dans le plan du grand méridien principal de la surface de polissage de l'outil ;
    • la figure 6 est une vue d'élévation en coupe partielle selon la ligne VI - VI de la figure 5, le plan de coupe étant ici le plan du petit méridien principal de la surface de polissage de l'outil ;
    • la figure 7 est une vue d'élévation en coupe analogue à la figure 5, où l'outil et la lentille sont en contact pour qu'il soit procédé au polissage de la surface optique atorique de celle-ci ;
    • la figure 8 est une vue d'élévation en demi-coupe de la lentille et de l'outil, au cours du polissage de la surface atorique de cette dernière, l'outil étant dans une position décentrée où le bord de la surface de polissage coïncide localement avec le bord de la lentille ;
    • la figure 9 est une vue en plan de dessus illustrant la lentille et l'outil au cours du polissage de la surface atorique de la lentille ; l'outil est représenté en traits pleins dans une position centrée analogue à celle de la figure 7, et en traits mixtes dans une position décentrée analogue à celle de la figure 8, selon une direction suivant le grand méridien de la lentille ou de l'outil ;
    • la figure 10 est une vue analogue à la figure 9, où l'outil est ici représenté en traits mixtes dans une position décentrée analogue à celle de la figure 8, selon une direction suivant le petit méridien de la lentille ou de l'outil ;
    • la figure 11 est un schéma d'une installation mettant en oeuvre le procédé de polissage selon l'invention, sur lequel sont représentés la lentille disposée sur son support, l'outil inséré dans le porte-outil et situé à distance de la lentille, ainsi qu'une unité de commande numérique du porte-outil.
    Other objects and advantages of the invention will become apparent in the light of the description which follows, with reference to the appended figures, in which:
    • FIG. 1 is a perspective view of a toric surface delimited by a curve which is the intersection of a torus of revolution, of which only a portion is represented, and of a cylinder whose axis is perpendicular to the axis of revolution of the torus, as indicated above;
    • FIG. 2 is a perspective view showing, on the one hand, a lens having an atoric concave optical surface and, on the other hand, a tool, shown in exploded view, for polishing this surface, this tool having a surface toric polishing;
    • FIG. 3 is a diagram illustrating the various steps of a polishing method according to the invention, this method comprising a step of using a tool such as that of FIG. 2;
    • Figure 4 is a graph on which are superimposed, in a sectional plane, the atoric surface of the lens, the major major meridian of the corresponding reference torus, and the large main meridian of the best torus corresponding;
    • FIG. 5 is a partial section elevational view illustrating the lens and the polishing tool, before polishing, in a position where they are coaxial, the section being made in the plane of the major major meridian of the polishing surface of the tool;
    • Figure 6 is an elevation view in partial section along the line VI - VI of Figure 5, the cutting plane here being the plane of the small main meridian of the polishing surface of the tool;
    • Figure 7 is a sectional elevational view similar to Figure 5, wherein the tool and the lens are in contact for polishing the atoretical optical surface thereof;
    • FIG. 8 is a half-section elevational view of the lens and the tool during polishing of the atoric surface of the latter, the tool being in an off-center position where the edge of the polishing surface coincides locally with the edge of the lens;
    • Fig. 9 is a top plan view illustrating the lens and tool during polishing of the atoric surface of the lens; the tool is represented in solid lines in a centered position similar to that of Figure 7, and in phantom in an off-center position similar to that of Figure 8, in a direction along the major meridian of the lens or the tool;
    • Figure 10 is a view similar to Figure 9, where the tool is here shown in phantom in an off-center position similar to that of Figure 8, in a direction along the small meridian of the lens or tool;
    • FIG. 11 is a diagram of an installation implementing the polishing method according to the invention, on which are represented the lens disposed on its support, the tool inserted in the tool holder and situated at a distance from the lens, as well as a numerical control unit of the tool holder.

    Sur la figure 2 est représentée une lentille 1 ophtalmique réalisée de préférence en verre organique et comprenant deux surfaces optiques : une surface convexe sphérique 2 présentant un axe A de révolution, ainsi qu'une surface 3 concave, atorique, opposée à la surface convexe 2, les surfaces 2 et 3 étant reliées par une tranche 4 inscrite dans un cylindre d'axe A et de diamètre Φ2 appelé diamètre de la lentille 1. De manière classique, le diamètre Φ2 est compris entre 60 mm et 80 mm.FIG. 2 shows an ophthalmic lens 1 made of preferably organic glass and comprising two optical surfaces: a convex spherical surface 2 having an axis A of revolution, as well as a Concave surface 3, atoric, opposite convex surface 2, surfaces 2 and 3 being connected by a slice 4 inscribed in a cylinder of axis A and of diameter Φ2 called diameter of the lens 1. In a conventional manner, the diameter Φ2 is between 60 mm and 80 mm.

    L'axe A de la lentille rencontre la surface optique 3 en un point SL appelé sommet de la surface optique 3.The axis A of the lens meets the optical surface 3 at a point SL called top of the optical surface 3.

    La surface optique 3, brute d'usinage, présente une rugosité que l'on souhaite diminuer afin de lui conférer un état de surface acceptable, sans toutefois la déformer.The optical surface 3, rough machining, has a roughness that is wish to decrease in order to give it an acceptable surface however, distort it.

    A cet effet, on emploie un outil de polissage 5 représenté sur les figures 2, et 5 à 11, comprenant :

    • un support rigide 6 comportant un corps 7 de forme généralement cylindrique de révolution d'axe A', terminé à l'une de ses extrémités par une surface de support 8 de forme torique ;
    • une première couche 9 appelée tampon, qui recouvre au moins en partie la surface de support 8 ; et
    • une deuxième couche 10, appelée polissoir, qui recouvre au moins en partie le tampon 9.
    For this purpose, a polishing tool 5 shown in FIGS. 2 and 5 to 11, comprising:
    • a rigid support 6 comprising a body 7 of generally cylindrical shape of axis A 'revolution, terminated at one of its ends by a support surface 8 of toric shape;
    • a first layer 9 called buffer, which covers at least part of the support surface 8; and
    • a second layer 10, called a polisher, which covers at least part of the buffer 9.

    L'outil 5 est délimité radialement par une surface 15 cylindrique d'axe A' et de diamètre ΦO, appelé diamètre de l'outil 5.The tool 5 is delimited radially by a cylindrical surface 15 of axis A 'and of diameter ΦO, called diameter of the tool 5.

    Le tampon 9, qui présente en l'absence de contrainte une épaisseur eT uniforme, est réalisé dans un matériau compressible, élastique, et présente une première surface 11 adhérant à la surface de support 8, ainsi qu'une deuxième surface 12, opposée à cette première surface 11.The pad 9, which has, in the absence of stress, a uniform thickness e T , is made of a compressible, elastic material, and has a first surface 11 adhering to the support surface 8, and a second surface 12, opposite at this first surface 11.

    Le polissoir 10, qui présente une épaisseur eP également uniforme, comprend quant à lui une première surface 13 adhérant à la deuxième surface 12 du tampon 9, ainsi qu'une deuxième surface 14 opposée à la première 13, cette surface de polissage 14, appelée surface de polissage, étant apte à polir la surface optique 3 par frottement contre celle-ci.The polisher 10, which has a thickness e P also uniform, comprises meanwhile a first surface 13 adhering to the second surface 12 of the pad 9, and a second surface 14 opposite the first 13, this polishing surface 14, called polishing surface, being able to polish the optical surface 3 by friction against it.

    Selon un mode de réalisation, le tampon 9, dont l'épaisseur eT est par exemple comprise entre 4 mm et 6 mm, est réalisé dans un matériau dont le taux de déformation sous une pression de 0,04 Mpa est supérieur à 5 %.According to one embodiment, the buffer 9, whose thickness e T is for example between 4 mm and 6 mm, is made of a material whose deformation rate under a pressure of 0.04 MPa is greater than 5% .

    Le tampon 9 peut être réalisé dans un matériau élastomère ou, de préférence, en mousse de polyuréthanne.The pad 9 may be made of an elastomeric material or preferably, polyurethane foam.

    Le polissoir 10, dont l'épaisseur eP est par exemple comprise entre 0,5 mm et 1,1 mm, est quant à lui réalisé en tissu, en feutre ou, selon un mode de préféré de réalisation, en mousse de polyuréthanne.The polisher 10, whose thickness e P is for example between 0.5 mm and 1.1 mm, is in turn made of fabric, felt or, according to a preferred embodiment, polyurethane foam.

    Le polissoir 10 est déformable de sorte à pouvoir épouser la forme de la surface optique 3 de la lentille 1 à la faveur de la compressibilité du tampon 9.The polisher 10 is deformable so as to be able to conform to the shape of the optical surface 3 of the lens 1 thanks to the compressibility of the pad 9.

    Le tampon 9 et le polissoir 10 sont par exemple successivement collés ou surmoulés sur la surface de support 8, de sorte que les deuxièmes surfaces 12 et 14 du tampon 9 et du polissoir 10 épousent la forme de la surface de support 8, à l'épaisseur du tampon 9 et du polissoir 10 près.The buffer 9 and the polisher 10 are, for example, successively glued or overmolded on the support surface 8, so that the second surfaces 12 and 14 of the buffer 9 and the polisher 10 follow the shape of the support surface 8, to the thickness of the buffer 9 and the polisher 10 near.

    En l'absence de contrainte, la surface de polissage 14 présente deux symétries planes : l'une par rapport à un plan P1 contenant l'axe A', et l'autre par rapport à un plan P2 contenant également l'axe A' et perpendiculaire au plan P1.In the absence of stress, the polishing surface 14 has two planar symmetries: one with respect to a plane P1 containing the axis A ', and the other by relative to a plane P2 also containing the axis A 'and perpendicular to the plane P1.

    La surface de polissage 14, torique, présente deux méridiens principaux M1 et M2, définis respectivement par l'intersection de la surface de polissage 14 avec le plan de symétrie P1, et avec le plan de symétrie P2. The polishing surface 14, toric, has two main meridians M1 and M2, respectively defined by the intersection of the polishing surface 14 with the plane of symmetry P1, and with the plane of symmetry P2.

    Les méridiens principaux M1 et M2, qui sont des arcs de cercle, sont sécants sur l'axe A' en un point SO appelé sommet de la surface de polissage 14.The main meridians M1 and M2, which are arcs of circle, are secants on the axis A 'at a point SO called the top of the polishing surface 14.

    L'on suppose arbitrairement que le méridien M1, qui présente une courbure C1, est le grand méridien de la surface de polissage 14, tandis le méridien M2, qui présente quant à lui une courbure C2, est son petit méridien, de sorte que la valeur de la courbure C1 est strictement inférieure à la valeur de la courbure C2.It is arbitrarily assumed that the meridian M1, which has a C1 curvature, is the great meridian of the polishing surface 14, while the meridian M2, which has a curvature C2, is its small meridian, so that the value of the curvature C1 is strictly less than the value of C2 curvature.

    Le choix de l'outil 5, c'est-à-dire le choix de la surface de polissage 14, est fonction de la forme de la surface optique 3.The choice of the tool 5, that is to say the choice of the polishing surface 14, is function of the shape of the optical surface 3.

    L'on comprend que la détermination des courbures C1, C2 des méridiens principaux M1, M2 de la surface de polissage 14 suffit pour définir complètement cette dernière, et donc pour déterminer l'outil 5.It is understood that the determination of the curvatures C1, C2 of the meridians main M1, M2 of the polishing surface 14 is sufficient to define completely the latter, and therefore to determine the tool 5.

    Les épaisseurs eT et eP du tampon 9 et du polissoir 10 étant choisies uniformes, on comprend qu'il est nécessaire, pour la fabrication de l'outil 5, de réaliser une surface de support 8 de forme torique qui corresponde, aux épaisseurs eT et eP près, à la surface de polissage 14.Since the thicknesses e T and e P of the buffer 9 and the polisher 10 are uniform, it is understood that it is necessary, for the manufacture of the tool 5, to provide a support surface 8 of toric shape which corresponds to the thicknesses e T and e p P , on the polishing surface 14.

    Ainsi, la surface de support 8 présente également deux symétries planes, l'une par rapport au plan P1, et l'autre par rapport au plan P2.Thus, the support surface 8 also has two plane symmetries, one with respect to the plane P1, and the other with respect to the plane P2.

    La surface de support 8 présente deux méridiens principaux MS1 et MS2, concentriques respectivement aux méridiens M1 et M2 de la surface de polissage, et définis par l'intersection de la surface de support 8 avec, respectivement, le plan P1 et le plan P2.The support surface 8 has two main meridians MS1 and MS2, concentric respectively to meridians M1 and M2 of the surface of polishing, and defined by the intersection of the support surface 8 with, respectively, the plane P1 and the plane P2.

    Le méridien MS1, qui est le grand méridien de la surface de support 8, présente une courbure CS1, tandis que le méridien MS2, qui est le petit méridien de la surface de support 8, présente quant à lui une courbure CS2.The meridian MS1, which is the great meridian of the support surface 8, has a curvature CS1, while the meridian MS2, which is the small meridian of the support surface 8, has meanwhile a curvature CS2.

    Il ressort de ce qui précède que les courbures CS1 et CS2 de la surface de support 8 vérifient respectivement les relations suivantes : 1 CS1 = 1 C1 - e T - e P 1 CS2 = 1 C2 - e T - e P It follows from the foregoing that the curvatures CS1 and CS2 of the support surface 8 respectively verify the following relations: 1 CS 1 = 1 VS 1 - e T - e P 1 CS 2 = 1 VS 2 - e T - e P

    Les courbures C1, C2 étant prédéterminées, les épaisseurs eT et eP du tampon 9 et du polissoir 10 étant choisies, les relations ci-dessus permettent la réalisation de l'outil 5.The curvatures C1, C2 being predetermined, the thicknesses e T and e P of the buffer 9 and the polisher 10 being chosen, the above relations allow the realization of the tool 5.

    L'on décrit à présent la manière dont sont déterminées ces courbures C1, C2.The manner in which these curvatures C1 are determined, is now described. C2.

    A des fins de calcul, l'on définit préalablement deux surfaces toriques, l'une appelée meilleur tore, l'autre appelée tore de référence, qui dépendent respectivement directement et indirectement de la surface optique 3 de la lentille 1.For calculation purposes, two toric surfaces are defined beforehand, the one called the best torus, the other called reference torus, which depend on respectively directly and indirectly from the optical surface 3 of the lens 1.

    Il est précisé que ces deux surfaces, qui interviennent dans la détermination des courbures C1 et C2 de la surface de polissage, sont de nature théorique.It is specified that these two surfaces, which intervene in the determination of the curvatures C1 and C2 of the polishing surface, are of nature theoretical.

    Le meilleur tore est une surface torique approchée de la surface optique 3, sa détermination étant réalisée par exemple au moyen de la méthode mathématique dite des moindres carrés, à partir d'une sélection de valeurs de caractéristiques géométriques de la surface optique 3, choisies ou mesurées sur une partie seulement de la lentille 1, cette partie présentant une circonférence circulaire de diamètre Φ1, coaxiale avec la tranche 4 de la lentille 1. Le diamètre Φ1, appelé diamètre de calcul, est choisi égal ou sensiblement égal à 60 mm.The best torus is an approximate toric surface of the optical surface 3, its determination being carried out for example by means of the method least-squares mathematical method, from a selection of values of geometric characteristics of the optical surface 3, chosen or measured on only part of the lens 1, this part having a circumference circular diameter Φ1, coaxial with the slice 4 of the lens 1. The diameter Φ1, called the design diameter, is chosen equal to or substantially equal to 60 mm.

    Le meilleur tore présente deux symétries planes : l'une par rapport à un plan PL1, l'autre par rapport à un plan PL2 perpendiculaire au plan PL1.The best torus has two plane symmetries: one with respect to one plane PL1, the other with respect to a plane PL2 perpendicular to plane PL1.

    Le meilleur tore présente deux méridiens principaux M*1 et M*2, définis par l'intersection du meilleur tore avec, respectivement, le premier et le deuxième plans de symétrie PL1, PL2.The best torus has two main meridians M * 1 and M * 2, defined by the intersection of the best torus with, respectively, the first and the second plane of symmetry PL1, PL2.

    L'on suppose arbitrairement que le méridien principal M*1, qui présente une courbure C*1, est le grand méridien du meilleur tore, tandis que le méridien M*2, qui présente une courbure C*2, est le petit méridien du meilleur tore, de sorte que la valeur de la courbure C*1 est strictement inférieure à la valeur de la courbure C*2.It is arbitrarily assumed that the main meridian M * 1, which presents a curvature C * 1, is the great meridian of the best torus, while the meridian M * 2, which has a curvature C * 2, is the small meridian of the best torus, of so that the value of the curvature C * 1 is strictly less than the value of the curvature C * 2.

    Le tore de référence est, quant à lui, la surface torique correspondant à la prescription ophtalmique pour laquelle la surface optique 3 est réalisée. The reference torus is, for its part, the toric surface corresponding to the ophthalmic prescription for which the optical surface 3 is made.

    Plus précisément, le tore de référence est une surface torique qui, si elle était substituée à la surface atorique 3 de la lentille 1, fournirant en un point choisi de celle-ci la même valeur de prescription que la surface atorique 3.More specifically, the reference torus is a toric surface which, if it was substituted for the atoric surface 3 of the lens 1, providing a point chosen from this one the same prescription value as the atoric surface 3.

    Ledit point choisi est généralement le point de préférence du prisme, couramment dénommé PRP, bien connu de l'homme du métier.Said selected point is generally the point of preference of the prism, commonly referred to as PRP, well known to those skilled in the art.

    Le tore de référence comprend deux méridiens principaux circulaires présentant des courbures respectives C'1, C'2.The reference torus comprises two circular main meridians having respective curvatures C'1, C'2.

    L'on suppose que le méridien principal de courbure C'1, noté M'1, est le grand méridien du tore de référence, tandis que le méridien principal de courbure C'2 est le petit méridien du tore de référence, de sorte que la valeur de la courbure C'1 est strictement inférieure à la valeur de la courbure C'2.It is assumed that the principal meridian of curvature C'1, denoted M'1, is the large meridian of the reference torus, while the main meridian of curvature C'2 is the small meridian of the reference torus, so that the value of the curvature C'1 is strictly less than the value of the curvature C'2.

    Les grands méridiens M*1, M'1 du meilleur tore et du tore de référence sont représentés sur la figure 4, superposés à la surface optique atorique 3 de la lentille 1, dans le plan PL1.The great meridians M * 1, M'1 of the best torus and reference torus are shown in FIG. 4 superimposed on the atoric optical surface 3 of the lens 1, in plane PL1.

    Le meilleur tore et le tore de référence ayant été déterminés, notamment par leurs courbures respectives C*1, C*2, C'1, C'2, les valeurs des courbures C1 et C2 sont déterminées en étant calculées respectivement par les relations suivantes : C1 = C*1 + Δ C1 ; et C2 = C*2 + Δ C2, où :

    • Δ C1, appelée première correction, est une fonction :
      • des courbures C*1, C*2 du meilleur tore ;
      • des courbures C'1, C'2 du tore de référence ;
      • du diamètre Φ2 de la tranche 4 de la lentille 1 ;
    • Δ C2, appelée deuxième correction, est de valeur constante.
    The best torus and reference torus having been determined, in particular by their respective curvatures C * 1, C * 2, C'1, C'2, the values of curvatures C1 and C2 are determined by being respectively calculated by the following relations : C1 = C * 1 + Δ C1; and C2 = C * 2 + Δ C2, or :
    • Δ C1, called the first correction, is a function:
      • curvatures C * 1, C * 2 of the best torus;
      • curvatures C'1, C'2 of the reference torus;
      • diameter Φ2 of the slice 4 of the lens 1;
    • Δ C2, called the second correction, is of constant value.

    Plus particulièrement, la première correction Δ C1 est par exemple une fonction affine :

    • de la différence C*2 - C*1 des courbures C*2, C*1 du meilleur tore ; et/ou
    • de la différence C'2 - C'1 des courbures C'2, C'1 du tore de référence.
    More particularly, the first correction Δ C1 is for example an affine function:
    • of the difference C * 2 - C * 1 of the curvatures C * 2, C * 1 of the best torus; and or
    • of the difference C'2 - C'1 of curvatures C'2, C'1 of the reference torus.

    Selon un mode de réalisation, la valeur de la première correction Δ C1, exprimé en m-1, est donnée par la relation suivante : ΔC1 = a + b(C'2 - C'1) + c[(C'2 - C'1) - (C*2 - C*1)] + d.Φ2, où a, b, c, d, sont des paramètres de valeur constante, choisis comme suit.According to one embodiment, the value of the first correction Δ C1, expressed in m -1 , is given by the following relation: ΔC1 = a + b (C'2 - C'1) + c [(C'2 - C'1) - (C * 2 - C * 1)] + d.Φ2, where a, b, c, d, are constant value parameters, chosen as follows.

    La valeur du paramètre a, exprimé en m-1, est comprise entre 0 et 4 , et de préférence entre 0,2 et 3,4 .The value of the parameter a, expressed in m -1 , is between 0 and 4, and preferably between 0.2 and 3.4.

    La valeur du paramètre b, sans unité, est comprise entre 0,01 et 0,3 , et de préférence entre 0,05 et 0,25 .The value of the parameter b, without unit, is between 0.01 and 0.3, and preferably between 0.05 and 0.25.

    La valeur du paramètre c, également sans unité, est comprise entre -2 et -0,01, et de préférence entre -1,5 et -0,1 .The value of parameter c, also without unit, is between -2 and -0.01, and preferably between -1.5 and -0.1.

    La valeur du paramètre d, exprimé en m-2, avec Φ2 exprimé en m, est comprise entre -100 et 0, et de préférence entre -60 et -2 .The value of the parameter d, expressed in m -2 , with Φ2 expressed in m, is between -100 and 0, and preferably between -60 and -2.

    La valeur de la deuxième correction ΔC2, également exprimée en m-1, est par exemple comprise entre 0 et 0,8 , et de préférence entre 0,1 et 0,64 . Selon un mode de réalisation, la valeur de la deuxième correction ΔC2 est égale ou sensiblement égale à 0,37 m-1.The value of the second correction ΔC2, also expressed in m -1 , is for example between 0 and 0.8, and preferably between 0.1 and 0.64. According to one embodiment, the value of the second correction ΔC2 is equal to or substantially equal to 0.37 m -1 .

    Par ailleurs, le diamètre ΦO de l'outil 5 est choisi supérieur au diamètre Φ2 de la lentille 1. La valeur du diamètre ΦO de l'outil 5 est par exemple choisi égale ou sensiblement égale à 110 mm.Moreover, the diameter Φ 0 of the tool 5 is chosen greater than the diameter Φ2 of the lens 1. The value of the diameter ΦO of the tool 5 is for example chosen equal or substantially equal to 110 mm.

    Après avoir été déterminé de la manière qui vient d'être décrite, l'outil 5 est utilisé pour procéder au polissage de la surface optique atorique 3.After being determined in the manner just described, the tool 5 is used to polish the atoric optical surface 3.

    Lors de l'utilisation de l'outil 5, sont réalisés l'appui et le frottement relatifs de la surface de polissage 14 et de la surface optique 3.When using the tool 5, the relative support and friction is achieved of the polishing surface 14 and the optical surface 3.

    Préalablement à son utilisation, l'outil 5 est disposé en regard et à distance de la surface optique 3 de sorte que l'axe A', le plan de symétrie P1 et le plan de symétrie P2 de l'outil 5 coïncident respectivement avec l'axe A de la lentille 1, le plan de symétrie PL1, et le plan de symétrie PL2.Prior to its use, the tool 5 is arranged opposite and at distance from the optical surface 3 so that the axis A ', the plane of symmetry P1 and the plane of symmetry P2 of the tool 5 coincide respectively with the axis A of the lens 1, the plane of symmetry PL1, and the plane of symmetry PL2.

    L'outil 5 et la lentille 1 sont ensuite rapprochés l'un de l'autre jusqu'à ce que la surface de polissage 14 entre en contact avec la surface optique 3 de la lentille 1, sans que soit comprimé le tampon 9.The tool 5 and the lens 1 are then brought closer to each other until that the polishing surface 14 comes into contact with the optical surface 3 of the lens 1, without the pad 9 being compressed.

    Dans cette position, illustrée en traits interrompus sur la figure 7, la surface de polissage 14 est en contact ponctuel avec la surface optique 3, avec leurs sommets respectifs SO et SL en coïncidence. In this position, shown in broken lines in FIG. 7, the polishing surface 14 is in point contact with the optical surface 3, with their respective summits SO and SL in coincidence.

    L'outil 5 et la lentille 1 sont alors pressés l'un contre l'autre, le tampon 9 étant comprimé, jusqu'à ce que la surface de polissage 14 soit totalement en contact avec la surface optique 3. Cette position est représentée en traits pleins sur la figure 7.The tool 5 and the lens 1 are then pressed against each other, the buffer 9 being compressed, until the polishing surface 14 is completely contact with the optical surface 3. This position is shown in solid lines in Figure 7.

    L'outil 5 et la lentille 1 sont alors déplacés l'un par rapport à l'autre selon deux mouvements rotatifs alternatifs distincts, qui peuvent être combinés pour obtenir un effet de brouillage assurant une bonne qualité de polissage.The tool 5 and the lens 1 are then moved relative to each other according to two distinct alternating rotary motions, which can be combined to obtain a scrambling effect ensuring a good polishing quality.

    Le premier mouvement est une rotation plane dans le plan P1 du grand méridien M1 de la surface de polissage 14, rotation dont le centre est confondu avec le centre de courbure de ce méridien M1.The first movement is a plane rotation in the plane P1 of the big M1 meridian of the polishing surface 14, rotation whose center is coincident with the center of curvature of this meridian M1.

    L'amplitude de ce mouvement alternatif, figuré par les flèches F1 et -F1 de la figure 9, est telle que le bord 16 du polissoir 10 vienne localement coïncider avec la tranche 4 de la lentille 1, l'outil 5 étant alors, par rapport à la lentille 1, dans une position extrême figurée par les traits mixtes de la figure 9.The amplitude of this reciprocating movement, represented by arrows F1 and -F1 of FIG. 9 is such that the edge 16 of the polisher 10 comes locally coincide with the slice 4 of the lens 1, the tool 5 being then, with respect to the lens 1, in an extreme position represented by the mixed lines of Figure 9.

    Le deuxième mouvement est une rotation plane dans le plan P2 du petit méridien M2 de la surface de polissage 14, rotation dont le centre est confondu avec le centre de courbure de ce méridien M2.The second movement is a plane rotation in the plane P2 of the small M2 meridian of the polishing surface 14, whose center of rotation coincides with the center of curvature of this meridian M2.

    L'amplitude maximum de ce mouvement alternatif, figuré par les flèches F2 et -F2 de la figure 10, est telle que le bord 16 du polissoir 10 vienne localement coïncider avec la tranche 4 de la lentille 1, l'outil 5 étant alors, par rapport à la lentille 1, dans une position extrême figurée par les traits mixtes de la figure 10.The maximum amplitude of this reciprocating motion, represented by the arrows F2 and -F2 of Figure 10, is such that the edge 16 of the polisher 10 comes locally coincide with the slice 4 of the lens 1, the tool 5 being then, by compared to lens 1, in an extreme position represented by the dotted lines of Figure 10.

    On pourrait prévoir que cette amplitude est inférieure, de sorte que la lentille 1 ne déborde pas de l'outil 5.It could be expected that this amplitude is lower, so that the lens 1 does not overflow the tool 5.

    De la sorte, la surface optique atorique 3 n'est jamais découverte au cours du polissage. Le choix du diamètre ΦO de l'outil 5, supérieur au diamètre Φ2 de la lentille 1, permet de réaliser un polissage rapide.In this way, the atoric optical surface 3 is never discovered during polishing. The choice of the diameter ΦO of the tool 5, greater than the diameter Φ2 of the lens 1, allows a fast polishing.

    Ce polissage peut être réalisé par le procédé illustré par le diagramme de la figure 3, qui comprend les étapes suivantes :

  • A - prise en compte de valeurs de caractéristiques géométriques de la surface optique 3 ;
  • B - détermination, à partir de ces valeurs et de la prescription à laquelle correspond la surface optique 3, de l'outil 5 adapté au polissage de la surface optique 3, cette étape comprenant elle-même les sous-étapes suivantes :
  • a) détermination du meilleur tore, tel que précédemment décrit ;
  • b) détermination du tore de référence, tel que précédemment décrit ;
  • c) détermination des valeurs des courbures C1, C2, tel que précédemment décrit.
  • C - utilisation, telle que précédemment décrite, de l'outil déterminé à l'étape B.
  • This polishing can be carried out by the method illustrated by the diagram of FIG. 3, which comprises the following steps:
  • A - taking into account values of geometrical characteristics of the optical surface 3;
  • B - determination, from these values and the prescription to which the optical surface 3 corresponds, of the tool 5 adapted to polishing the optical surface 3, this step itself comprising the following substeps:
  • a) determination of the best torus, as previously described;
  • b) determination of the reference torus, as previously described;
  • c) determination of the values of the curvatures C1, C2, as previously described.
  • C - use, as previously described, of the tool determined in step B.
  • Le procédé qui vient d'être décrit peut être mis en oeuvre de manière automatique au moyen d'une unité de détermination 18, non revendiquée en tant que telle dans le présent brevet, mais dont la description est utile à la compréhension de l'invention, laquelle unité comprend :

    • un calculateur 19 comprenant :
      • des moyens de calcul des courbures C*1, C*2 du meilleur tore en fonction des valeurs de caractéristiques géométriques de la surface optique 3 de la lentille 1 ;
      • des moyens de calcul des courbures C'1, C'2 du tore de référence en fonction de la prescription ;
      • des moyens de calcul des valeurs C1, C2 des courbures de la surface de polissage 14, en fonction des valeurs des courbures C*1, C*2, C'1, C'2, et du diamètre Φ2 ;
    • un dispositif d'entrée 20 relié au calculateur 19, et comprenant des moyens de saisie 21 de valeurs de caractéristiques de la surface optique 3 ;
    • une mémoire 22 reliée au calculateur 19, et comprenant :
      • une première zone mémoire 23 d'enregistrement de valeurs de caractéristiques géométriques de la surface optique 3 ;
      • une deuxième zone mémoire 24 d'enregistrement des valeurs des courbures C*1, C*2 du meilleur tore ;
      • une troisième zone mémoire 25 d'enregistrement des valeurs des courbures C'1, C'2 du tore de référence ;
      • une quatrième zone mémoire 26 d'enregistrement des valeurs des courbures C1, C2 de la surface de support 8 ;
    • un dispositif de sortie 27 relié au calculateur 19, et comprenant des moyens de visualisation 28, au moins des valeurs saisies.
    The method which has just been described can be implemented automatically by means of a determination unit 18, not claimed as such in the present patent, but whose description is useful for understanding the invention. , which unit comprises:
    • a calculator 19 comprising:
      • means for calculating the curvatures C * 1, C * 2 of the best torus as a function of the geometric characteristic values of the optical surface 3 of the lens 1;
      • means for calculating the curvatures C'1, C'2 of the reference torus according to the prescription;
      • means for calculating the values C1, C2 of the curvatures of the polishing surface 14, as a function of the curvature values C * 1, C * 2, C'1, C'2, and of the diameter Φ2;
    • an input device 20 connected to the computer 19, and comprising input means 21 of characteristic values of the optical surface 3;
    • a memory 22 connected to the computer 19, and comprising:
      • a first memory zone 23 for recording geometric characteristic values of the optical surface 3;
      • a second memory zone 24 for recording the curvature values C * 1, C * 2 of the best torus;
      • a third memory zone 25 for recording the values of the curvatures C'1, C'2 of the reference torus;
      • a fourth memory zone 26 for recording the values of the curvatures C1, C2 of the support surface 8;
    • an output device 27 connected to the computer 19, and comprising display means 28, at least the values entered.

    Une telle unité de détermination 18 peut être intégrée à une unité de commande numérique 29 d'une installation de polissage 30 adaptée au polissage de lentilles ophtalmiques et convenant à la mise en oeuvre du procédé décrit ci-dessus. De même que l'unité de détermination 18, l'unité de commande 29 et l'installation de polissage 30 ne sont pas revendiquées en tant que telles dans le présent brevet, mais leur description est utile à la compréhension de l'invention.Such a determination unit 18 can be integrated into a unit of numerical control 29 of a polishing installation 30 adapted to the polishing of ophthalmic lenses and suitable for the implementation of the method described above. Like the determining unit 18, the control unit 29 and the polishing installation 30 are not claimed as such in this patent, but their description is useful for the understanding of the invention.

    Cette installation 30 comprend en outre un support 31 de lentille où celle-ci est momentanément assujettie pendant son polissage.This installation 30 further comprises a lens support 31 where the latter is momentarily restrained during polishing.

    L'installation 30 comprend également un porte-outil 32 sur lequel est monté l'outil 5, ainsi que des moyens 33 pour créer un mouvement relatif du support de lentille 31 et du porte-outil 32, tel que décrit plus haut, ces moyens 33 étant reliés à l'unité de commande numérique 29.The installation 30 also comprises a tool holder 32 on which is mounted the tool 5, and means 33 to create a relative movement of the lens holder 31 and the tool holder 32, as described above, these means 33 being connected to the digital control unit 29.

    Selon le mode de réalisation illustré sur la figure 11, le support de lentille 31 est fixe, seul le porte-outil 32 étant alors mis en mouvement.According to the embodiment illustrated in FIG. 11, the lens support 31 is fixed, only the tool holder 32 then being set in motion.

    Selon une variante de réalisation, la surface de support 8 est choisie sphérique, tandis que les épaisseurs eT et eP du tampon 9 et du polissoir 10 sont choisies non uniformes en vue d'obtenir, lors de leur superposition sur la surface de support 8, une surface de polissage 14 torique dont les valeurs des courbures C1, C2 soient conformes aux valeurs calculées.According to an alternative embodiment, the support surface 8 is chosen spherical, while the thicknesses e T and e P of the buffer 9 and the polisher 10 are chosen non-uniform in order to obtain, during their superposition on the support surface. 8, a toric polishing surface 14 whose curvature values C1, C2 are in accordance with the calculated values.

    Bien que la description ait été faite en référence à une surface optique atorique concave pour la lentille, on comprend que l'invention peut, sans sortir de son cadre, s'appliquer au polissage d'une surface atorique convexe. L'outil de polissage sera alors choisi concave, les courbures de sa surface de polissage étant déterminées de la manière décrite précédemment.Although the description was made with reference to an optical surface concave atoric for the lens, it is understood that the invention can, without leaving the its frame, apply to the polishing of a convex atoric surface. The tool polishing will then be chosen concave, the curvatures of its polishing surface being determined in the manner previously described.

    Claims (28)

    1. A tool for polishing an optical surface (3) of a lens (1), said tool (5) including:
      a rigid support (6) including a support surface (8),
      a first layer (9) called the buffer, made from an elastic material, and covering at least part of the support surface (8), this buffer (9) and including:
      a first surface (11) adhering to said support surface (8), and
      a second surface (12) opposite said first surface (11),
      a second layer (10) called the polisher, covering at least part of said buffer (9), this polisher (10) including:
      a first surface (13) adhering to the second surface (12) of the buffer (9), and
      a second surface (14) called the polishing surface opposite the first surface (13) and adapted to polish the optical surface (3) of the lens (1) by rubbing against it,
         said tool (5) being characterized in that said polishing surface (14) is a toric surface, this surface (14) having two circular main meridians (M1, M2) with respective curvatures C1, C2 such that the curvature C1 is much less than the curvature C2, and in that, to be able to polish an atoric optical surface (3), the buffer (9) is adapted to be compressed elastically and the polisher (10) is adapted to be deformed to espouse said atoric surface (3).
    2. A tool according to claim 1 characterized in that said buffer (9) has a uniform thickness (eT) normal (nT) to its second surface (12) and in that the polisher (14) has a uniform thickness (eP) normal (nP) to its polishing surface (14).
    3. A tool according to claim 2 characterized in that the thickness (eT) of the buffer (9) is from 4 mm to 6 mm.
    4. A tool according to either claim 2 or claim 3 characterized in that the thickness (eP) of the polisher (10) is from 0.5 mm to 1.1 mm.
    5. A tool according to any of claims 2 to 4
      characterized in that said support surface (8) is a toric surface and has two main meridians (MS1, MS2) coplanar with the main meridians (M1, M2) of the polishing surface (14), these meridians (MS1, MS2) having respective curvatures CS1, CS2 satisfying the following equations: 1 CS1 = 1 C1 - eT - eP 1 CS2 = 1 C2 - eT - eP    where eT is the thickness of the buffer (9) and eP is the thickness of the polisher (10).
    6. A polishing tool according to any of claims 1 to 5 characterized in that said buffer (9) is made of a material which is deformed by more than 5% by a pressure of 0.04 MPa.
    7. A tool according to any of claims 1 to 6
      characterized in that said buffer (9) is made of polyurethane foam.
    8. A tool according to any of claims 1 to 7 characterized in that said polisher (10) is made of polyurethane foam.
    9. An application of a tool according to any of claims 1 to 8 to polishing an atoric optical surface (3).
    10. An application according to claim 9
      characterized in that, the lens (1) having a circular edge surface (4) having a given diameter (Φ2), the tool (5) has a circular section whose diameter (Φ0) is greater than the diameter (Φ2) of the lens (1).
    11. A method of polishing an optical surface (3) of an ophthalmic lens (1) corresponding to a given prescription, characterized in that said optical surface (3) is atoric, said method including the following steps:
      taking into account characteristic geometrical values of the optical surface (3) of the lens (1), and
      using a tool (5) according to any of claims 1 to 8, during use of which tool the polishing surface (14) of the polisher (10) and the optical surface (3) of the lens (1) are in relative bearing and rubbing interengagement.
    12. A polishing method according to claim 11 characterized in that, the lens (1) having a circular edge surface (4) having a given diameter (Φ2), it includes, prior to the step of using the tool (5), a step of determining the tool (5), this step comprising the following sub-steps:
      a) determining a toric surface close to the optical surface (3) of the lens (1), this toric surface, called the best torus, comprising two circular main meridians having two respective curvatures C*1, C*2 such that the curvature C*1 is much less than the curvature C*2,
      b) determining a toric surface corresponding to the given prescription, this toric surface, called the reference torus, comprising two circular main meridians having respective curvatures C'1, C'2 such that the curvature C'1 is much less than the curvature C'2,
      c) determining respective values of the curvatures C1, C2 of the polishing surface (14), these values being given by the following equations: C1 = C*1 + ΔC1, and C2 = C*2 + ΔC2,
      in which:
      ΔC1, called the first correction, is a function of:
      the curvatures C*1, C*2 of the best torus,
      the curvatures C'1, C'2 of the reference torus, and
      the diameter (Φ2) of the edge surface (4) of the lens (1), and
      ΔC2, called the second correction, is constant.
    13. A polishing method according to claim 12 characterized in that, in step c), the first correction ΔC1 is an affine function of the difference C*2 - C*1 between the curvatures C*2, C*1 of the best torus.
    14. A polishing method according to either claim 12 or claim 13 characterized in that, in step c), the first correction ΔC1 is an affine function of the difference C'2 - C'1 between the curvatures C'2, C'1 of the reference torus.
    15. A polishing method according to any of claims 12 to 14 characterized in that, in step c), the value of the first correction ΔC1 is given by the following equation: ΔC1 = a + b(C'2 - C'1) + c[(C'2 - C'1) - (C*2 - C*1)] + d.Φ2,    where a, b, c, d are parameters of constant value and where Φ2 is the diameter of the edge surface (4) of the lens (1).
    16. A polishing method according to claim 15 characterized in that the value of the parameter a is from 0 to 4 m-1.
    17. A polishing method according to claim 16 characterized in that the value of the parameter a is from 0.2 m-1 to 3.4 m-1.
    18. A polishing method according to any of claims 15 to 17 characterized in that the value of the parameter b is from 0.01 to 0.3.
    19. A polishing method according to claim 18
      characterized in that the value of the parameter b is from 0.05 to 0.25.
    20. A polishing method according to any of claims 15 to 19 characterized in that the value of the parameter c is from -2 to -0.01.
    21. A polishing method according to claim 20 characterized in that the value of the parameter c is from -1.5 to -0.1.
    22. A polishing method according to any of claims 15 to 21 characterized in that the value of the parameter d is from -100 m-2 to 0.
    23. A polishing method according to claim 22 characterized in that the value of the parameter d is from -60 m-2 to -2 m-2.
    24. A polishing method according to any of claims 15 to 23 characterized in that the value of the second correction ΔC2 is from 0 to 0.8 m-1.
    25. A polishing method according to claim 24 characterized in that the value of the second correction ΔC2 is from 0.1 m-1 to 0.64 m-1.
    26. A polishing method according to claim 25 characterized in that the value of the second correction ΔC2 is equal to 0.37 m-1.
    27. A polishing method according to any of claims 12 to 26 characterized in that, in step a), the determination of the best torus is carried out by the mathematical method known as the least squares method.
    28. A polishing method according to any of claims 12 to 27 characterized in that, in step a), the determination of the best torus is carried out for only a portion of the atoric surface (3) of the lens (1), this portion having a circular circumference of diameter Φ1 coaxial with the edge surface (4) of the lens (1).
    EP02290853A 2001-04-10 2002-04-05 Toric tool for polishing an optic surface of an atoric lens and polishing method using said tool Expired - Lifetime EP1249307B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0104872 2001-04-10
    FR0104872A FR2823143B1 (en) 2001-04-10 2001-04-10 TORIC TOOL FOR POLISHING AN OPTICAL SURFACE OF A LENS, AND METHOD FOR POLISHING AN ATORIC SURFACE USING SUCH A TOOL

    Publications (3)

    Publication Number Publication Date
    EP1249307A2 EP1249307A2 (en) 2002-10-16
    EP1249307A3 EP1249307A3 (en) 2002-12-04
    EP1249307B1 true EP1249307B1 (en) 2005-02-02

    Family

    ID=8862162

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02290853A Expired - Lifetime EP1249307B1 (en) 2001-04-10 2002-04-05 Toric tool for polishing an optic surface of an atoric lens and polishing method using said tool

    Country Status (6)

    Country Link
    US (1) US6814650B2 (en)
    EP (1) EP1249307B1 (en)
    AT (1) ATE288339T1 (en)
    DE (1) DE60202804T2 (en)
    ES (1) ES2236455T3 (en)
    FR (1) FR2823143B1 (en)

    Families Citing this family (14)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004003131A1 (en) 2004-01-15 2005-08-11 Carl Zeiss Apparatus and method for polishing an optical surface, optical component, and method of manufacturing a polishing tool
    JP4823065B2 (en) * 2004-06-30 2011-11-24 Hoya株式会社 Manufacturing method of spectacle lens
    ES2249990B1 (en) * 2004-08-03 2007-08-01 Indo Internacional S.A. TOOL AND PROCEDURE FOR POLISHING OPTICAL SURFACES.
    DE102005010583A1 (en) * 2005-03-04 2006-09-07 Satisloh Gmbh Polishing disc for a tool for fine machining of optically effective surfaces on in particular spectacle lenses
    EP2031435B1 (en) * 2007-12-28 2019-02-27 Essilor International Method for determining a contour data set of spectacle frame rim
    EP2143527B1 (en) * 2008-07-08 2011-01-12 Indo Internacional, S.A. Tool for polishing conventional and free-form optical surfaces
    CN102990491A (en) * 2012-11-29 2013-03-27 江苏宜达光电科技有限公司 Grinding jig of spherical glass
    CN103481155A (en) * 2013-08-23 2014-01-01 中国航天科工集团第三研究院第八三五八研究所 Numerical control machining method of Si aspherical lens
    DE102014206424A1 (en) 2014-04-03 2015-10-08 Carl Zeiss Vision International Gmbh Polishing tool and device and method for shape-error-optimized polishing processing of spectacle lens surfaces and mold shells for eyeglass lens manufacturing
    DE102016006741A1 (en) * 2016-06-06 2017-12-07 Schneider Gmbh & Co. Kg Tool, apparatus and method for polishing lenses
    EP3272458B1 (en) * 2016-07-21 2019-03-27 Delamare Sovra A method for manufacturing in series optical grade polishing tools
    EP3272456B1 (en) * 2016-07-21 2019-03-13 Delamare Sovra A method for manufacturing in series optical grade polishing tools
    PT3272457T (en) * 2016-07-21 2019-06-27 Delamare Sovra A method for manufacturing in series optical grade polishing tools
    EP3800008A1 (en) 2019-10-02 2021-04-07 Optikron GmbH Device and method for grinding and / or polishing planar surfaces of workpieces

    Family Cites Families (13)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3583111A (en) * 1966-08-22 1971-06-08 David Volk Lens grinding apparatus
    US4002439A (en) * 1973-01-10 1977-01-11 David Volk Method of forming an ophthalmic lens for presbyopia and aphakia
    US4010583A (en) * 1974-05-28 1977-03-08 Engelhard Minerals & Chemicals Corporation Fixed-super-abrasive tool and method of manufacture thereof
    US4580882A (en) * 1983-04-21 1986-04-08 Benjamin Nuchman Continuously variable contact lens
    US4574527A (en) * 1984-10-05 1986-03-11 Craxton Robert S Toric lens generating
    JPS61214965A (en) * 1985-03-19 1986-09-24 Canon Inc Elastic polishing tool
    US4733502A (en) * 1986-09-04 1988-03-29 Ferro Corporation Method for grinding and polishing lenses on same machine
    US5000761A (en) * 1988-10-26 1991-03-19 Ferro Corporation Gel producing pad and improved method for surfacing and polishing lenses
    JPH0379260A (en) * 1989-08-18 1991-04-04 Olympus Optical Co Ltd Polishing tool for free curved face
    JPH09239666A (en) * 1996-03-06 1997-09-16 Nikon Corp Smoothing tool
    US6012965A (en) * 1997-10-07 2000-01-11 Micro Optics Design Corp. Manufacturing ophthalmic lenses using lens structure cognition and spatial positioning system
    US6074281A (en) * 1998-11-30 2000-06-13 Dac Vision, Inc. Fining and polishing machine and method for ophthalmic lenses
    US6527632B1 (en) * 1999-12-01 2003-03-04 Gerber Coburn Optical, Inc. Lap having a layer conformable to curvatures of optical surfaces on lenses and a method for finishing optical surfaces

    Also Published As

    Publication number Publication date
    DE60202804T2 (en) 2006-03-30
    FR2823143B1 (en) 2003-07-04
    EP1249307A2 (en) 2002-10-16
    US6814650B2 (en) 2004-11-09
    FR2823143A1 (en) 2002-10-11
    EP1249307A3 (en) 2002-12-04
    ATE288339T1 (en) 2005-02-15
    ES2236455T3 (en) 2005-07-16
    US20030017783A1 (en) 2003-01-23
    DE60202804D1 (en) 2005-03-10

    Similar Documents

    Publication Publication Date Title
    EP1249307B1 (en) Toric tool for polishing an optic surface of an atoric lens and polishing method using said tool
    EP0003695B1 (en) Mold assembly for molding a flexible contact lens
    EP2015896B1 (en) Method for trimming a lens by cutting said lens
    CA2373148C (en) Method for making an ophthalmic lens surface, installation therefor and resulting ophthalmic lens
    EP0184490A2 (en) Aspherical multifocal contact lens
    CA2550120C (en) Pneumatic blocking support for an optical lens
    FR2836409A1 (en) PROCEDURE FOR LAYING A GRIPPING BLOCK ON A SEMI-FINISHED OPHTHALM LENS BLOCK
    EP2210703B1 (en) Eyeglass lens processing apparatus
    FR2945358A1 (en) PRODUCT COMPRISING A FLEXIBLE OPHTHALMIC LENS AND METHOD OF MOUNTING SUCH SOFT OPHTHALMIC LENS ON GLASS OF GLASSES
    EP0286469A1 (en) Tool automatically shaped to the surface of an ophtalmic lens
    EP1352708B1 (en) Method and apparatus for polishing an eyeglass lens comprising non-contacting measurement
    FR2638246A1 (en) OPHTHALMIC LENS OF POSITIVE POWER AND LARGE DIAMETER
    FR2723790A1 (en) GLASS OF GLASSES WITH PROGRESSIVE POWER AND MOLD FOR PRODUCING THE SAME
    FR2677569A1 (en) METHOD AND APPARATUS FOR FORMING A CAVITY IN A RIGID MASSIVE BODY.
    EP1352709B1 (en) Method of chamfering an eyeglass lens comprising a contactless measuring step
    EP2409181B1 (en) Method for cutting a patch to be applied onto a curved substrate
    EP1353143B1 (en) Lens measuring device
    FR2815427A1 (en) UNIFOCAL GLASS GLASS WITH ASTIGMATIC POWER
    EP2024135B1 (en) Device and method of trimming a lens including verification of the adequacy of a lock adapter of said lens with a characteristic of this lens or its desired shape
    FR2805901A1 (en) Ophthalmic lenses are coated to give a good surface finish using a resin of specified coating thickness
    EP0995547B1 (en) Method for determining the groove to be made on a lens
    FR2887168A1 (en) Ophthalmic lens trimming method for spectacles, involves completing edging of lens` edge by using edge finishing grinding wheel with beveling gorge and by finishing machining of bevel, and edging edge by rough grinding machining of bevel
    EP1066919B1 (en) Finishing tool for optical surface, especially for optical lens
    EP0340091A1 (en) Monofocal ophthalmic lens with index gradient and without geometrical power
    EP1525947A1 (en) Method for finish-polishing

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17P Request for examination filed

    Effective date: 20030117

    17Q First examination report despatched

    Effective date: 20030321

    AKX Designation fees paid

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050202

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050202

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60202804

    Country of ref document: DE

    Date of ref document: 20050310

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050405

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050405

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050330

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050502

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050502

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050502

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2236455

    Country of ref document: ES

    Kind code of ref document: T3

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    BERE Be: lapsed

    Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQU

    Effective date: 20050430

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051230

    26N No opposition filed

    Effective date: 20051103

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20051230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060430

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQU

    Effective date: 20050430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050702

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20150427

    Year of fee payment: 14

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20170427

    Year of fee payment: 16

    Ref country code: GB

    Payment date: 20170427

    Year of fee payment: 16

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160406

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60202804

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20181204

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20180405

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20181101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20180405

    P01 Opt-out of the competence of the unified patent court (upc) registered

    Effective date: 20230525