[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1124097B1 - Système de Chauffage et de climatisation - Google Patents

Système de Chauffage et de climatisation Download PDF

Info

Publication number
EP1124097B1
EP1124097B1 EP01400348A EP01400348A EP1124097B1 EP 1124097 B1 EP1124097 B1 EP 1124097B1 EP 01400348 A EP01400348 A EP 01400348A EP 01400348 A EP01400348 A EP 01400348A EP 1124097 B1 EP1124097 B1 EP 1124097B1
Authority
EP
European Patent Office
Prior art keywords
air
heating
network
conditioning
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01400348A
Other languages
German (de)
English (en)
Other versions
EP1124097A1 (fr
Inventor
Michel Denis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Enterprises SAS
Original Assignee
Johnson Controls MC International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls MC International SA filed Critical Johnson Controls MC International SA
Publication of EP1124097A1 publication Critical patent/EP1124097A1/fr
Application granted granted Critical
Publication of EP1124097B1 publication Critical patent/EP1124097B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/027Condenser control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit

Definitions

  • the present invention relates to a heating and air conditioning system of a room, and an installation using such a system.
  • the invention relates to a system comprising a device for central heating network cooling, said network being used outside heating period, i.e. mainly in summer, for cooling condensers of air conditioners connected to said network.
  • At least one air conditioner is provided in a room to be cooled outside heating season, the water condenser of said air conditioner being connected to the central heating network.
  • the thermal load of the condenser is transmitted to the network of central heating, which must be kept at an acceptable temperature for a water cooling device.
  • Patent application FR-A- 2 776 053 proposes a water cooler allowing the heat transmitted to the central heating network to be removed and resulting from the condensation of one or more air conditioners.
  • said central heating network operates in winter to supply radiators and therefore at a starting temperature of the boiler central heating which can rise to 90 ° C for example, while in summer heating off, the flow temperature will be maintained by the cooler of water at for example 25 ° C.
  • the object of the invention is to overcome these various drawbacks of the prior art, by installing a reliable air conditioning and possibly heating system connected to the central heating network.
  • the temperature of the water leaving the device cooling in air conditioning mode is kept close to 25 ° C, to allow the proper functioning of air conditioning and heating devices.
  • the means for discharging the cooling device comprise a refrigerant discharge valve from the evaporator to the condenser, from so as to bypass the compressor.
  • the discharge means for each air conditioner of the air conditioning device include a refrigerant discharge valve from the condenser to the evaporator, so as to bypass the regulator.
  • the prohibition means comprise a three-way valve channels, in heating mode isolating the network cooling device, in air conditioning mode connecting the cooling device to the network and isolating the network boiler.
  • the system comprises a discharge valve at the level from which are discharged the water introduced under pressure into the network of heating, to avoid overpressure in the network.
  • the system comprises first means for breaking the thermal conduction between the air conditioning system and the heating and second means of breaking thermal conduction between the cooling device and the heating network.
  • the system comprises in heating mode a device frost protection of the evaporator of the cooling device, comprising electric heaters, or hot water injection means, controlled by as a function of a risk of freezing temperature close to 2 ° C.
  • a pH maintaining regulator intended for avoid acidification of the heating network caused by the introduction of condensation in the network.
  • the system further comprises means for electrically connecting the fan, compressor motor, means of prohibiting compressor operation in heating mode, possibly with means control, to an energy source such as the local electrical sector.
  • the system comprises a cooling element of ventilated self-cooling battery type, integrated into the cooling device and arranged in series with respect to the condenser, a tilting means allowing in air conditioning mode the battery supply when the temperature outside the room is lower than the water temperature of the network close to 25 ° C.
  • the system includes a three-way valve before arrival to the evaporator provided with a tilting means, allowing the circulation of fluid to the evaporator in normal situation, below the temperature normal of this fluid of the order of 45 ° C, and allowing the bypass of the evaporator for higher temperatures
  • the invention relates to an air conditioning installation and heating comprising at least one cooling and air conditioning as described above.
  • the method may include a step of replacing at least one device for external cooling and / or at least one air conditioning device which do not include discharge means as described above, by respectively at least one external cooling element and / or at minus an air conditioning device which include discharge means.
  • Figure 1 is shown an assembly A comprising an installation of traditional central heating.
  • This central heating installation includes a means of producing water hot, for example a boiler, a device for circulating hot water, integrated or not integrated into the production means, for example a pump 2, a network pipes 3 and heat user elements 4 such as for example radiator, convector, etc.
  • the assembly A in FIG. 1 is equipped with a device for air conditioning and heating 5, comprising at least one air conditioning and heating 5a can generate or use heat according to its operating mode.
  • Each air conditioning and heating appliance 5a includes a radiator 4 and an air conditioner 5b separate or not from the radiator 4.
  • Figure 1a shows them separately to understand the diagram of operation of the air conditioner 5b.
  • the other figures represent them in one block 5a so as not to load the figures.
  • the boiler 1, the pump 2, the network 3 and the devices 5a keep, by example in winter, their functions.
  • the heating network 3 comprises a water cooling device 6 of the central heating network 3.
  • the heating installation thus works traditionally.
  • the boiler 1 In the boiler room, the boiler 1 is in service, as well as the pump 2.
  • the valve 7 is part of hydraulic means for prohibiting operation cooling device 6 hereinafter designated cooler.
  • Means of thermal conduction break 10, such as a short section pipes made of heat conductive material, are provided to insulate the cooler 6.
  • a means injection 11 of hot water from the network 3 is planned.
  • This injection means 11 like for example a solenoid valve, is controlled according to a temperature representative of the risk of freezing of the evaporator 12.
  • the injection takes place intermittently until a correct temperature is obtained to freeze the cooler 6, such as + 2 ° C.
  • the protection against freezing of the evaporator can be obtained by other means such as for example electric markers.
  • a discharge means 13 from the refrigerant from the evaporator 12 to the condenser 14 is provided.
  • This discharge means 13 makes it possible to bypass, or "bypass" the compressor 16.
  • This discharge means 13, such as for example a controlled solenoid valve by a pressure increase detected at the low pressure switch pressure 15, allows a transition all the more rapid as the evaporator 12 has a reduced volume compared to the condenser 14.
  • This discharge means 13 has a preponderant role in the event of failure of the valve 7 which would allow total or partial opening of track 9 in mode heating and which would imply an undesired arrival of hot water under pressure at evaporator 12.
  • Boiler 1 is stopped, while pump 2 remains in operation.
  • the air conditioning and heating device 5 is in air conditioning mode, the air conditioners 5a heat the mains water 3.
  • the three-way valve 7, controlled for example by a contact placed on the summer position, is open on a track 9, allowing the circulation of water from network 3 in the cooler 6, and closed by a channel 8 thus isolating from the network 3 the boiler 1.
  • the three-way valve 7 is fitted with a safety device preventing the opening on track 9, if at least one boiler burner 1 is in operation.
  • the water heated by the passage of the air conditioning and heating device 5 circulates in the network 3 to the cooler 6 which keeps it at the temperature desired for the proper functioning of the device 5.
  • the refrigeration cycle of the cooler 6 includes compression or primary using a compressor 16, condensation at the condenser 14 ventilated according to high pressure 19, by fan 17, a drop in pressure using a pressure reducer 18 and evaporation at the primary level of the exchanger formed by the evaporator 12. Note that in the case of use a centrifugal fan, the cooler 6 can be connected to the outside by air ducts and be inside room A.
  • the temperature of the water leaving the secondary of the evaporator 12 must be maintained at a level allowing the proper functioning of the air conditioning and heating 5 while not causing cooling or reheating at the level of the heat user elements 4 which have remained in place network 3.
  • the air conditioners 5a of the air conditioning and heating device 5 can be equipped with means allowing the introduction of their condensation water in the heating network 3, a device allowing the treatment of these water is incorporated into the cooler 6. Since the liquids are not compressible, condensed water introduced under pressure into the heating network 3 are rejected at a discharge valve 19 integrated at the level of the secondary water circulation circuit of the chiller 6.
  • This discharge valve 19 whose control is for example pressostatic avoids overpressures in network 3.
  • a regulator 20 of pH maintenance can be incorporated into the cooler 6.
  • an alarm signals a possible failure of the pH maintaining regulator 20 or the need to recharge as a basic element when the level is reached.
  • the device 6 includes control means 21 and electrical connection means 22 of the condenser fan 17 14, of a compressor motor 16, and here connection means 21 to an energy source S.
  • This source S is here the electrical sector of room A.
  • the device 6 further comprises in its control means, a safety arrangement 23.
  • This arrangement 23 prohibits the operation of the water cooling 6 using means causing the imperative shutdown of the compressor 16, if the three-way valve 7 is open on track 8 and / or if at at least one burner of the boiler 1 is in operation.
  • FIG. 3 shows a second embodiment concerning the connection of the cooler 6 to the central heating network 3.
  • the device used allows the operation of a fully dedicated pump 24 adapted to the operation in air conditioning mode and allows automatic switching of a two lanes 25 summer / winter.
  • the two-way valve 25, provided with a tilting means summer / winter can be manual or automatic, such as for example thermostatic as a function of the temperature of the water circulating in the network 3, is closed, which causes the pump 24 to be taken out of service.
  • This isolation of the cooler 6 from the network 3 is carried out for a water temperature at a value for example greater than 35 ° C, which is indicative of the operation of boiler 1, the network being maintained at 25 ° C in air conditioning mode.
  • the means of production 1 is in service, as well as pump 2 allowing normal operation of the heating in winter.
  • means for breaking thermal conduction 10 are provided, a means injection 11 overcomes a possible risk of freezing of the evaporator 12, while a discharge means 13 makes it possible to mitigate the consequences of a possible hot water supply to the evaporator 12.
  • Operation in air conditioning mode is then strictly identical to that described in Figure 2 and incorporates in particular if necessary holding means pressure 19 ′ and means 20 for maintaining pH.
  • An arrangement of safety 23 prohibits the opening of the valve 25, and causes the imperative stop of the compressor 16 regardless of the level 3 water temperature, if at least a burner of the boiler 1 is in operation.
  • FIG. 4 represents an embodiment cooperating with the installation of the Figure 2 with a ventilated cooling element integrated into the mechanical cooling and arranged in series with respect thereto.
  • the three-way valve 7 is open on a channel 8 and allows an operation identical to that described in FIG. 2.
  • the three-way valve 7 In air conditioning mode, the three-way valve 7 is open on a track 9 and allows the circulation of fluid from network 3 to a three-way valve 26.
  • This three-way valve 26 provided with a tilting means as by thermostatic example depending on the outside temperature, allows the supply or “bypass” of an air-cooling coil 32.
  • the water from the network 3 being maintained at for example 25 ° C. in air conditioning mode, the valve three ways 26 is open on a way 27 allowing the supply of a cooling coil 32 for outside temperatures below par example 25 ° C.
  • the mains water 3 is completely cooled or partially at the cooling coil 32, ventilated by the fan 17, depending on the water outlet temperature thereof.
  • the compressor 16 equipped with a control device which can be for example thermostatic as a function of the water outlet temperature of the battery 32, between a service or not.
  • a control device which can be for example thermostatic as a function of the water outlet temperature of the battery 32, between a service or not.
  • the fan 17 is controlled according to the high pressure to be maintained at level of the condenser 14, and no longer as a function of the outlet temperature of water from the battery 32, the latter having only a pre-cooling role.
  • valve three lanes 26 is open on one lane 28 and closed on one lane 27 allowing the bypass of the cooling coil 32 which is left in operation at these outdoor temperature levels would cause the fluid to heat up.
  • maintaining the temperature of the fluid in network 3 is provided exclusively by the compressor 16 which controls the fan 17 in as a function of the condensing temperature.
  • operation in air conditioning mode is completely identical to that presented in the description in Figure 2.
  • This valve three-way 29 is provided with a tilting means such as for example a upstream thermostatic bubble allowing to open on track 31, if the temperature of the fluid becomes for example greater than 45 ° C.
  • the three-way valve 29 is open on a track 30 allowing the passage of the fluid in the evaporator 12.
  • the device represented by the three-way valve 29 has the same purpose that the relief valve 13 and can be operated jointly or independently from it.
  • the three-way valve 29 can in particular be used in the same way for level of Figures 2 and 3.
  • FIG. 5 represents an embodiment cooperating with the installation of FIG. 3 with a ventilated cooling element integrated into the mechanical cooling device and arranged in series with respect thereto. In heating mode, the operation is identical to that described in Figure 3.
  • the cooling system 6 can be replaced by an exchanger 49 connected to the heating network by a 3-way valve 7 in the same mode as on the Figure 2.
  • a 3-way mixing valve 50 makes it possible to maintain the heating network at 25 ° C by distributing its input flow over the outputs 51 and 52.
  • a discharge valve 19 and a PH regulator 20 are planned.
  • FIG. 9 shows another embodiment relating to the connection of the exchanger 49 to the heating network.
  • the device used allows the same so that in Figure 3, operate a fully dedicated pump 24 and suitable for operation in air conditioning mode and to obtain tilting automatic 2-way valve 25 summer / winter.
  • the output of the radiator 4 is directed to a channel 33, while a channel 34 of a three-way valve 35 is closed.
  • a position of the valve 35 allows the outlet of the element 4 to return to the network 3, via line 36, the air conditioner 5b not being in service.
  • Means 37 for breaking thermal conduction make it possible to isolate a condenser 38 in the air conditioner 5b, of the hot water network 3.
  • This condenser 38 comprises a primary 39 and a secondary 40 connected to the network 3.
  • the thermal conduction breaking means 37 can here be very simple such as a short section of piping made of non-conductive material heat, because in this operating mode, water does not circulate in the condenser 38.
  • the heating system has traditionally operated. In the boiler room, the boiler 1 is in service as well as pump 2.
  • the three-way valve 7 is open on track 8 and closed on track 9 insulating thus from the hot water network the cooler 6 of the network water 3, which is not not in operation.
  • boiler 1 In operation in air conditioning mode, boiler 1 is stopped.
  • the air conditioner 5b is in use.
  • An evaporator 41 in the air conditioner 5b cools the ambient air in room A, conveyed by a fan 42.
  • the refrigeration cycle is traditional with an increase in pressure at primary using a compressor 43, primary condensing 39 of the exchanger formed by the condenser 38, a drop in pressure using a regulator such as a capillary 44 and again evaporation in the evaporator 41.
  • the water circulating in the secondary 40 of the condenser 38 is conveyed by the network 3 central heating.
  • This water, coming as in heating mode, from the outlet of the radiator 4 is directed by the three-way valve 35 closed on track 33 and open on track 34, to condenser 38.
  • the water leaving the air conditioner 5b borrows the pipe 36 towards the outside cooler 6, through the three-way valve 7, the way 8 of which is closed and track 9 is open, pump 2 being in service.
  • the cooling of the ambient air on passing over the evaporator 41 causes the condensation and the water thus collected by a collector 45 must be evacuated. This can be done in a conventional gravity fashion, by flow in small flexible or rigid pipes easy to install on the plinth. These waters of condensation can be evacuated by their introduction under pressure into the heating network 3 via a pump 46 and a non-return valve 47.
  • a "by-pass" system can be implemented to avoid the consequences due to the arrival of pressurized hot water to the condensers 38 of the air conditioners 5a.
  • a discharge valve 48 of the fluid from the condenser 38 to the evaporator 41 is provided for each air conditioner 5b, bypassing the regulator 44.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Chair Legs, Seat Parts, And Backrests (AREA)

Description

La présente invention concerne un système de chauffage et de climatisation d'un local, et une installation utilisant un tel système.
Plus précisément, l'invention concerne un système comprenant un dispositif de refroidissement de réseau de chauffage central, ledit réseau étant utilisé hors période de chauffe, c'est à dire principalement en été, pour le refroidissement de condenseurs de climatiseurs raccordés sur ledit réseau.
Ces systèmes sont notamment destinés au chauffage et à la climatisation de locaux d'habitation à titre résidentiel, public, ou professionnel.
A cet effet, il est prévu au moins un climatiseur dans un local à refroidir hors saison de chauffe, le condenseur à eau dudit climatiseur étant raccordé sur le réseau du chauffage central.
De cette façon, la charge thermique du condenseur est transmise au réseau de chauffage central, qui doit être maintenu à une température acceptable pour un dispositif de refroidissement d'eau.
La demande de brevet FR-A- 2 776 053, propose un refroidisseur d'eau permettant d'évacuer la chaleur transmise au réseau du chauffage central et issue de la condensation d'un ou plusieurs climatiseurs.
De tels moyens de refroidissement ne donnent toutefois pas entière satisfaction dans le cadre du refroidissement d'un réseau de chauffage central.
En effet, les conditions de fonctionnement d'un réseau de chauffage central telles que décrites dans cette demande FR-A- 2 776 053, posent des problèmes de compatibilité avec les produits du marché.
En effet, ledit réseau de chauffage central fonctionne en hiver pour alimenter des radiateurs et donc à une température de départ de la chaudière du chauffage central pouvant monter à par exemple 90°C, alors qu'en été chauffage à l'arrêt, la température de départ sera maintenue par le refroidisseur d'eau à par exemple 25°C.
Or, les dispositifs de refroidissement habituel ne sont pas bien adaptés lorsque de façon non souhaitée, de l'eau chaude par exemple à 80°, s'introduit dans le dispositif de refroidissement, car cela génère des pressions côté réfrigérant de l'ordre de 36 bars.
Un tel dispositif de refroidissement comprend typiquement :
  • un premier circuit de circulation de frigorigène primaire, et un deuxième circuit de circulation d'eau secondaire destiné à être relié au réseau de chauffage central ;
  • un compresseur au primaire ;
  • un condenseur au primaire et un ventilateur de condenseur ;
  • un évaporateur à eau formant échangeur, d'échange entre primaire et secondaire.
De même, dans des dispositifs de climatisation tels que décrit dans la demande FR-A- 2 776 053, une arrivée d'eau chaude non souhaitée au niveau d'un condenseur formant échangeur du climatiseur, peut endommager ce dispositif de climatisation. Et l'on peut rencontrer des problèmes liés au gel du dispositif de refroidissement hors période de chauffe, ce dispositif de refroidissement étant placé à l'extérieur du local, ainsi que des problèmes d'altération de canalisations dûs à un excès d'acidité.
L'invention a pour objet de pallier ces différents inconvénients de l'art antérieur, en posant un système fiable de climatisation et éventuellement de chauffage raccordé au réseau de chauffage central.
A cet effet, l'invention à pour objet, selon un premier aspect un système de chauffage et de climatisation d'un local, le système comportant :
  • à l'intérieur du local à refroidir hors période de chauffe, un dispositif de climatisation et de chauffage comportant au moins un climatiseur, chaque climatiseur comprenant notamment un condenseur à eau formant échangeur, un détendeur, un évaporateur et un ventilateur d'évaporateur, un compresseur ;
  • un dispositif de refroidissement de l'eau circulant dans les condenseurs du dispositif de climatisation, comprenant notamment un évaporateur formant échangeur, un compresseur, un condenseur et un ventilateur de condenseur, un détendeur ;
  • un réseau de chauffage central fonctionnant essentiellement en période de chauffe pour alimenter des éléments de chauffage du dispositif de climatisation et de chauffage à l'aide d'une chaudière, le réseau étant utilisé pour la circulation d'eau entre les condenseurs du dispositif de climatisation et le dispositif de refroidissement en période de refroidissement ;
  • des moyens de raccordement du dispositif de refroidissement et du dispositif de climatisation au réseau de chauffage central, comprenant des moyens d'interdiction en situation normale en mode chauffage de l'arrivée d'eau chaude à l'évaporateur du dispositif de refroidissement et au condenseur du dispositif de climatisation ;
  • au moins l'un dudit dispositif de refroidissement et dudit dispositif de climatisation comprenant des moyens de décharge, se mettant en service en mode chauffage lorsque l'échangeur dudit dispositif, respectivement l'évaporateur pour le dispositif de refroidissement et au moins un condenseur pour le dispositif de climatisation et de chauffage, reçoit du réseau de façon non souhaitée une eau chaude générant une forte pression, notamment en cas de défaillance des moyens d'interdiction d'arrivée de l'eau du réseau à l'échangeur dudit dispositif.
Selon une réalisation, la température de l'eau en sortie du dispositif de refroidissement en mode climatisation est maintenue voisine de 25°C, pour permettre le bon fonctionnement des dispositifs de climatisation et de chauffage.
Les moyens de décharge du dispositif de refroidissement comprennent une vanne de décharge du fluide frigorigène de l'évaporateur vers le condenseur, de manière à contourner le compresseur.
Les moyens de décharge pour chaque climatiseur du dispositif de climatisation, comprennent une vanne de décharge du fluide frigorigène du condenseur vers l'évaporateur, de manière à contourner le détendeur.
Selon une réalisation, les moyens d'interdiction comprennent une vanne trois voies, en mode chauffage isolant le dispositif de refroidissement du réseau, en mode climatisation reliant le dispositif de refroidissement au réseau et isolant la chaudière du réseau.
Selon une réalisation, le système comprend une vanne de décharge au niveau de laquelle sont rejetées les eaux introduites sous pression dans le réseau de chauffage, afin d'éviter une surpression dans le réseau.
Selon une réalisation, le système comprend des premiers moyens de rupture de conduction thermique entre le dispositif de climatisation et le réseau de chauffage et des seconds moyens de rupture de conduction thermique entre le dispositif de refroidissement et le réseau de chauffage.
Selon une réalisation, le système comprend en mode chauffage un dispositif hors gel de l'évaporateur du dispositif de refroidissement, comportant des traceurs électriques, ou des moyens d'injection d'eau chaude, commandés en fonction d'une température de risque de gel voisine de 2°C.
Selon une réalisation, comprend un régulateur de maintien de pH destiné à éviter l'acidification du réseau de chauffage provoquée par l'introduction des eaux de condensation dans le réseau.
Le système comprend en outre des moyens de branchement électrique du ventilateur, d'un moteur de compresseur, de moyens d'interdiction de fonctionnement du compresseur en mode chauffage, éventuellement de moyens de commande, à une source d'énergie telle que le secteur électrique du local.
Selon une réalisation, le système comprend une vanne deux voies munie d'un moyen de basculement automatique été/hiver déclenchée en fonction de la température de l'eau du réseau, permettant l'exploitation d'une pompe dédiée au seul mode climatisation :
  • la vanne deux voies étant fermée en mode chauffage, le dispositif de refroidissement étant alors isolé du réseau, à partir d'une température de l'eau révélatrice du fonctionnement de la chaudière, par exemple 35°C lorsque le réseau est maintenu à 25°C en mode climatisation ;
  • la vanne deux voies étant ouverte en mode climatisation, entraínant la mise en service de la pompe, le dispositif de refroidissement étant relié au réseau, un agencement de sécurité interdisant l'ouverture de la vanne et provoquant l'arrêt impératif du compresseur quelle que soit la température d'eau du réseau 3 si la chaudière est en fonctionnement.
Selon une réalisation, le système comporte un élément de refroidissement de type batterie autoréfrigérante ventilée, intégré au dispositif de refroidissement et disposé en série par rapport au condenseur, un moyen de basculement permettant en mode climatisation l'alimentation de la batterie lorsque la température à l'extérieur du local est inférieure à la température de l'eau du réseau voisine de 25°C.
Selon une réalisation, le système comporte une vanne trois voies avant l'arrivée à l'évaporateur munie d'un moyen de basculement, autorisant la circulation de fluide vers l'évaporateur en situation normale, en dessous de la température normale de ce fluide de l'ordre de 45°C, et permettant le contournement de l'évaporateur pour des températures supérieures
Selon un second aspect, l'invention a pour objet une installation de climatisation et de chauffage comprenant au moins un système de refroidissement et de climatisation tel que décrit précédemment.
Selon un troisième aspect, l'invention a pour objet un procédé d'installation d'un système de chauffage et climatisation tel que décrit précédemment, comportant au moins les étapes prévoyant de:
  • installer à l'intérieur du local le dispositif de climatisation ;
  • installer à l'extérieur du local le dispositif de refroidissement de l'eau du dispositif de climatisation intérieur ;
  • installer à l'intérieur et/ou l'extérieur du local des moyens hydrauliques tels que vanne trois voies aptes à permettre la circulation dans le dispositif de refroidissement ou à l'interdire dans un mode climatisation ;
  • raccorder le dispositif de refroidissement et dispositif de climatisation par un réseau de circulation d'eau de chauffage central, éventuellement existant dans le local, apte à alimenter par ailleurs au moins un élément de chauffage, de sorte que ce réseau permette, en mode climatisation lorsque la chaudière est à l'arrêt, la circulation d'eau entre les condenseurs du dispositif de climatisation et le dispositif de refroidissement, et en mode chauffage un fonctionnement d'alimentation de l'élément de chauffage.
L'on installe à l'intérieur d'un local à refroidir plusieurs dispositifs de climatisation, et à l'extérieur du local au moins un dispositif de refroidissement commun à au moins deux dispositifs de climatisation intérieurs.
Pour une installation dans un local préalablement pourvu d'un chauffage central, le procédé peut comporter une étape de substitution d'au moins un dispositif de de refroidissement extérieur et/ou d'au moins un dispositif de climatisation qui ne comprennent pas de moyens de décharge tels que décrits précédemment, par respectivement au moins un élément de refroidissement extérieur et/ou au moins un dispositif de climatisation qui comprennent des moyens de décharge.
D'autres objets et avantages de l'invention apparaítront au cours de la description faite en référence aux figures annexées dans lesquelles :
  • la figure 1 est une vue schématique de principe d'une installation de chauffage central traditionnelle ;
  • la figure 1a est une vue schématique illustrant le principe de fonctionnement d'une installation comprenant, raccordé au réseau de chauffage central, un dispositif de climatisation et de chauffage selon l'invention comprenant des radiateurs et des climatiseurs, séparés dans la variante représentée.
  • la figure 2 est une vue schématique, selon un mode de réalisation d'un système de climatisation et chauffage selon l'invention coopérant avec l'installation de la figure 1 et mettant en situation un dispositif de refroidissement d'eau ou refroidisseur, muni d'un ensemble de dispositifs permettant son exploitation fiable sur une installation de chauffage central ;
  • la figure 3 représente un autre mode de réalisation de l'invention, une installation avec une pompe et un dispositif d'exploitation automatique dédié au fonctionnement du refroidisseur ;
  • la figure 4 représente un autre mode de réalisation de l'invention, l'installation de la figure 2 comprenant en outre un élément de refroidissement ventilé intégré au dispositif de refroidissement mécanique et disposé en série par rapport à celui-ci ;
  • la figure 5 représente selon un autre mode de réalisation de l'invention, l'installation de la figure 3 avec un élément de refroidissement ventilé intégré aux dispositifs de refroidissement mécanique et disposé en série par rapport à celui-ci ;
  • la figure 6 représente selon un autre mode de réalisation de l'invention, l'instalation de la figure 2 avec un élément de refroidissement ventilé intégré au dispositif de refroidissement mécanique et disposé en parallèle par rapport à celui-ci ;
  • la figure 7 représente selon un autre mode de réalisation de l'invention, l'installation de la figure 3 avec un élément de refroidissement ventilé intégré au dispositif de refroidissement mécanique et disposé en parallèle par rapport à celui-ci.
  • Les figures 8 et 9 représentent deux autres modes de réalisation de l'invention.
Sur la figure 1 est représenté un ensemble A comprenant une installation de chauffage central traditionnelle.
Cette installation de chauffage central comporte un moyen de production d'eau chaude, par exemple une chaudière, un dispositif de circulation d'eau chaude, intégrée ou non au moyen de production, par exemple une pompe 2, un réseau de tuyauteries 3 et des éléments utilisateurs de chaleur 4 comme par exemple radiateur, convecteur, etc.
Sur la figure 2, l'ensemble A de la figure 1 est équipé d'un dispositif de climatisation et de chauffage 5, comprenant au moins un appareil de climatisation et chauffage 5a pouvant générer ou utiliser de la chaleur selon son mode de fonctionnement.
Chaque appareil 5a de climatisation et de chauffage comprend un radiateur 4 et un climatiseur 5b séparé ou non du radiateur 4.
La figure 1 a les représente séparés pour bien comprendre le schéma de fonctionnement du climatiseur 5b. Les autres figures les représentent d'un bloc 5a pour ne pas charger les figures.
La chaudière 1, la pompe 2, le réseau 3 et les appareils 5a conservent, par exemple en hiver, leurs fonctions.
Le réseau de chauffage 3 comprend un dispositif de refroidissement d'eau 6 du réseau de chauffage central 3.
On décrit maintenant le fonctionnement de l'installation en mode chauffage. Une vanne trois voies 7, munie d'un moyen de basculement été/hiver, comme par exemple un contact placé sur la position hiver, est ouverte sur une voie 8, et fermée sur une voie 9 isolant ainsi du réseau d'eau chaude le dispositif de refroidissement 6 de l'eau du réseau 3, qui n'est pas en fonctionnement.
L'installation de chauffage fonctionne ainsi traditionnellement.
Dans la chaufferie, la chaudière 1 est en service, ainsi que la pompe 2.
Ainsi, malgré les équipements nécessaires à la climatisation en été, le fonctionnement du chauffage en hiver, est strictement identique à ce qu'il était précédemment sans ces équipements.
La vanne 7 fait partie de moyens hydrauliques d'interdiction du fonctionnement du dispositif de refroidissement 6 désigné par la suite refroidisseur. Des moyens de rupture de conduction thermique 10, comme par exemple un court tronçon de tuyauteries en matériau conducteur de chaleur, sont prévus pour isoler le refroidisseur 6.
Pour éviter le risque de gel de l'évaporateur 12 du refroidisseur 6, un moyen d'injection 11 d'eau chaude du réseau 3 est prévu. Ce moyen d'injection 11 comme par exemple une électrovanne, est commandé en fonction d'une température représentative du risque de gel de l'évaporateur 12.
L'injection a lieu par intermittence jusqu'à l'obtention d'une température correcte de mise hors gel du refroidisseur 6, comme par exemple +2°C.
Pour éviter le risque d'une injection d'eau chaude, trop importante au niveau de l'évaporateur 12, les sections du moyen d'injection 11 et de sa tuyauterie sont très faibles. Ainsi, en cas de défaillance du moyen d'injection 11 permettant un débit continu sans contrôle, on évite les conséquences liées au réchauffement de l'évaporateur 12.
Selon d'autres réalisations, la protection contre le gel de l'évaporateur peut être obtenue par d'autres moyens comme par exemple des traceurs électriques.
Les pressions susceptibles d'être atteintes en cas d'irrigation de l'évaporateur 12 avec de l'eau chaude étant très importantes, comme par exemple 36 bars avec de l'eau à 80°C et du fluide frigorigène R22, un moyen de décharge 13 du fluide frigorigène de l'évaporateur 12, vers le condenseur 14 est prévu. Ce moyen de décharge 13 permet de contourner, ou "by-passer" le compresseur 16.
Ce moyen de décharge 13, comme par exemple une électrovanne commandée par une augmentation de pression décelée au niveau du pressostat basse pression 15, permet une transition d'autant plus rapide que l'évaporateur 12 présente un volume réduit par rapport au condenseur 14.
Ce moyen de décharge 13 a un rôle prépondérant en cas de défaillance de la vanne 7 qui autoriserait une ouverture totale ou partielle de la voie 9 en mode chauffage et qui impliquerait une arrivée non souhaitée d'eau chaude sous pression à l'évaporateur 12.
On décrit maintenant le fonctionnement de l'installation en mode de climatisation. La chaudière 1 est à l'arrêt, tandis que la pompe 2 reste en fonctionnement.
Le dispositif de climatisation et chauffage 5 est en mode climatisation, les climatiseurs 5a réchauffent l'eau du réseau 3.
La vanne trois voies 7, commandée par exemple par un contact placé sur la position été, est ouverte sur une voie 9, permettant la circulation d'eau du réseau 3 dans le refroidisseur 6, et fermée par une voie 8 isolant ainsi du réseau 3 la chaudière 1.
La vanne trois voies 7 est équipe d'un dispositif de sécurité interdisant l'ouverture sur la voie 9, si au moins un brûleur de chaudière 1 est en fonctionnement.
L'eau réchauffée au passage du dispositif de climatisation et chauffage 5 circule dans le réseau 3 jusqu'au refroidisseur 6 qui la maintient à la température souhaitée pour le bon fonctionnement du dispositif 5.
Le cycle frigorifique du refroidisseur 6 comprend une compression ou primaire à l'aide d'un compresseur 16, une condensation au niveau du condenseur 14 ventilé en fonction de la haute pression 19, par le ventilateur 17, une baisse de pression à l'aide d'un détendeur 18 et une évaporation au niveau du primaire de l'échangeur formé par l'évaporateur 12. A noter que dans le cas de l'utilisation d'un ventilateur centrifuge, le refroidisseur 6 pourra être relié à l'extérieur par des gaines d'air et se trouver à l'intérieur du local A.
La température de l'eau en sortie du secondaire de l'évaporateur 12 devra être maintenue à un niveau permettant le bon fonctionnement du dispositif de climatisation et chauffage 5 tout en ne provoquant ni rafraíchissement, ni réchauffage au niveau des éléments utilisateurs de chaleur 4 restés en place au réseau 3.
Ce résultat est atteint avec une eau à par exemple 25°C, ou variable et commandée par la température ambiante du bâtiment.
Les climatiseurs 5a du dispositif de climatisation et chauffage 5 pouvant être équipés de moyens permettant l'introduction de leurs eaux de condensation dans le réseau de chauffage 3, un dispositif permettant le traitement de ces eaux est incorporé au refroidisseur 6. Les liquides n'étant pas compressibles, les eaux de condensation introduites sous pression dans le réseau de chauffage 3 sont rejetées au niveau d'une vanne de décharge 19 intégrée au niveau du circuit de circulation d'eau secondaire du refroidisseur 6.
Cette vanne de décharge 19 dont la commande est par exemple pressostatique permet d'éviter les surpressions dans le réseau 3. Dans le même type de réalisation, l'introduction des eaux de condensation dans le réseau de chauffage 3 pouvant entraíner une variation notable de son pH, un régulateur 20 de maintien de pH peut être incorporé au refroidisseur 6.
Afin d'éviter tout risque d'acidification du réseau, une alarme signale une éventuelle défaillance du régulateur 20 de maintien de pH ou la nécessité de le recharger en élément basique lorsque le niveau est atteint.
D'une manière générale, le dispositif 6 comporte des moyens de commande 21 et des moyens de branchement 22 électrique du ventilateur 17 de condenseur 14, d'un moteur de compresseur 16, et ici des moyens de raccordement 21 à une source S d'énergie. Cette source S est ici le secteur électrique du local A.
Le dispositif 6 comporte en outre dans ses moyens de commande, un agencement de sécurité 23. Cet agencement 23 interdit le fonctionnement du refroidissement d'eau 6 à l'aide de moyens provoquant l'arrêt impératif du compresseur 16, si la vanne trois voies 7 est ouverte sur la voie 8 et/ou si au moins un brûleur de la chaudière 1 est en fonctionnement.
La figure 3 présente un deuxième mode de réalisation concernant la liaison du refroidisseur 6 au réseau de chauffage central 3. Le dispositif utilisé permet l'exploitation d'une pompe 24 totalement dédiée et adaptée au fonctionnement en mode climatisation et permet un basculement automatique d'une vanne de deux voies 25 été/hiver.
En mode chauffage, la vanne deux voies 25, munie d'un moyen de basculement été/hiver pouvant être manuel ou automatique, comme par exemple thermostatique en fonction de la température de l'eau circulant dans le réseau 3, est fermée, ce qui entraíne la mise hors service de la pompe 24.
Cet isolement du refroidisseur 6 par rapport au réseau 3 est effectuée pour une température d'eau à une valeur par exemple supérieure à 35°C, ce qui est révélateur du fonctionnement de la chaudière 1, le réseau étant maintenu à 25°C en mode climatisation. Dans la chaufferie, le moyen de production 1 est en service, ainsi que la pompe 2 permettant un fonctionnement normal du chauffage en hiver. De la même manière que décrit dans la figure 2, des moyens de rupture de conduction thermique 10 sont prévus, un moyen d'injection 11 permet de pallier un éventuel risque de gel de l'évaporateur 12, tandis qu'un moyen de décharge 13 permet de pallier les conséquences d'une éventuelle arrivée d'eau chaude au niveau de l'évaporateur 12.
En mode de climatisation la vanne deux voies 25 est ouverte ce qui entraíne la mise en service de la pompe 24. La chaudière 1 et la pompe 2 sont à l'arrêt et le dispositif de climatisation et chauffage 5 est en mode climatisation.
Le fonctionnement en mode climatisation est alors strictement identique à celui décrit dans la figure 2 et intègre notamment si besoin des moyens de maintien de pression 19' et des moyens 20 de maintien de pH. Un agencement de sécurité 23 interdit l'ouverture de la vanne 25, et provoque l'arrêt impératif du compresseur 16 quelle que soit la température d'eau du niveau 3, si au moins un brûleur de la chaudière 1 est en fonctionnement.
La figure 4 représente un mode de réalisation coopérant avec l'installation de la figure 2 avec un élément de refroidissement ventilé intégré au dispositif de refroidissement mécanique et disposé en série par rapport à celui-ci.
En mode chauffage, la vanne trois voies 7 est ouverte sur une voie 8 et permet un fonctionnement identique à celui décrit dans la figure 2.
En mode climatisation, la vanne trois voies 7 est ouverte sur une voie 9 et permet la circulation du fluide du réseau 3 jusqu'à une vanne trois voies 26. Cette vanne trois voies 26 munie d'un moyen de basculement comme par exemple thermostatique en fonction de la température extérieure, permet l'alimentation ou le « by-pass » d'une batterie aéroréfrigérante 32. L'eau du réseau 3 étant maintenue à par exemple 25°C en mode climatisation, la vanne trois voies 26 est ouverte sur une voie 27 permettant l'alimentation d'une batterie aéroréfrigérante 32 pour des températures extérieures inférieures à par exemple 25°C.
Durant cette alimentation, l'eau du réseau 3 est refroidie totalement ou partiellement au niveau de la batterie aéroréfrigérante 32, ventilée par le ventilateur 17, en fonction de la température de sortie d'eau de celle-ci.
Par suite, le compresseur 16 équipé d'un dispositif de commande pouvant être par exemple thermostatique en fonction de la température de sortie d'eau de la batterie 32, entre un service ou non. A noter que lors de la mise en service, le ventilateur 17 se trouve piloté en fonction de la haute pression à maintenir au niveau du condenseur 14, et non plus en fonction de la température de sortie d'eau de la batterie 32, cette dernière n'ayant plus qu'un rôle de pré-refroidissement.
Pour des températures extérieures supérieures à par exemple 25°C, la vanne trois voies 26 est ouverte sur une voie 28 et fermée sur une voie 27 permettant le by-pass de la batterie aérorefrigérante 32 qui laissée en fonction à ces niveaux de température extérieure entraínerait un réchauffement du fluide.
Dan ce cas de figure, le maintien de température du fluide du réseau 3 est assuré exclusivement par le compresseur 16 qui pilote le ventilateur 17 en fonction de la température de condensation. Par la suite, le fonctionnement en mode climatisation est totalement identique à celui présenté dans le descriptif de la figure 2. A noter dans ce mode de réalisation la présente d'une vanne trois voies 29 permettant de subir sans dommage une éventuelle introduction d'eau chaude au niveau du refroidissement 6 pouvant être due à une ouverture ou fuite de la voie 29 de la vanne trois voies 7 en mode chauffage. Cette vanne trois voies 29 est munie d'un moyen de basculement comme par exemple une bulle thermostatique amont permettant de s'ouvrir sur la voie 31, si la température du fluide devient par exemple supérieure à 45°C.
Ainsi, l'ouverture de la voie 31 permettant le by-pass de l'évaporateur 12, aucune augmentation de pression trop importante au niveau du circuit frigorifique du refroidisseur 6 n'est provoquée, une température d'eau de 45°C correspondant par exemple à 17 bars au R22.
En fonctionnement normal, la température du fluide étant inférieure à 45°C, la vanne trois voies 29 est ouverte sur une voie 30 permettant le passage du fluide dans l'évaporateur 12.
Le dispositif représenté par la vanne trois voies 29 présente la même finalité que la vanne de décharge 13 et peut être exploité conjointement ou indépendamment par rapport à celle-ci.
La vanne trois voies 29 peut notamment être utilisée de la même manière au niveau des figures 2 et 3.
La figure 5 représente un mode de réalisation coopérant avec l'installation de la figure 3 avec un élément de refroidissement ventilé intégré au dispositif de refroidissement mécanique et disposé en série par rapport à celui-ci.
En mode chauffage, le fonctionnement est identique à celui décrit dans la figure 3.
En mode climatisation, le fonctionnement est identique à celui décrit dans la figure 3 en ce qui concerne l'exploitation de l'évaporateur 12. L'exploitation de la batterie aéroréfrigérante 32 permettant un refroidissement total ou partiel du fluide du réseau 3 en coopération avec l'évaporateur 12 est conforme au descriptif de la figure 4. De même en ce qui concerne la vanne trois voies 29 de by-pass de l'échangeur 12.
Selon la figure 8 qui représente le cas où une source froide est disponible, le système de refroidissement 6 peut être remplacé par un échangeur 49 relié au réseau de chauffage par une vanne 3 voies 7 selon la même mode que sur la figure 2. Une vanne 3 voies de mélange 50 permet d'obtenir le maintien du réseau de chauffage à 25°C en répartissant son débit d'entrée sur les sorties 51 et 52. De la même manière, une vanne de décharge 19 et un régulateur de PH 20 sont prévus.
La figure 9 représente un autre mode de réalisation concernant la liaison de l'échangeur 49 au réseau de chauffage. Le dispositif utilisé permet de la même manière que sur la figure 3, d'exploiter une pompe 24 totalement dédiée et adaptée au fonctionnement en mode climatisation et d'obtenir le basculement automatique d'une vanne 2 voies 25 été/hiver.
On a décrit le fonctionnement du refroidisseur 6. On décrit maintenant celui des climatiseurs 5a et du système de by-pass qui peut être intégré.
En fonctionnement en mode chauffage, la sortie du radiateur 4 est dirigée vers une voie 33, tandis qu'une voie 34 d'une vanne trois voies 35 est fermée.
Une position de la vanne 35 permet que la sortie de l'élément 4 retourne au réseau 3, par la canalisation 36, le climatiseur 5b n'étant pas en service.
Des moyens 37 de rupture de conduction thermique permettent d'isoler un condenseur 38 dans le climatiseur 5b, du réseau 3 d'eau chaude.
Ce condenseur 38 comporte un primaire 39 et un secondaire 40 relié au réseau 3.
Les moyens de rupture de conduction thermique 37 peuvent ici être très simples comme par exemple un court tronçon de tuyauterie en matériau peu conducteur de la chaleur, car dans ce mode de fonctionnement, l'eau ne circule pas dans le condenseur 38.
L'installation de chauffage fonctionne traditionnellement. Dans la chaufferie, la chaudière 1 est en service ainsi que la pompe 2.
La vanne trois voies 7 est ouverte sur la voie 8 et fermée sur la voie 9 isolant ainsi du réseau d'eau chaude le refroidisseur 6 de l'eau du réseau 3, qui n'est pas en fonctionnement.
En fonctionnement en mode climatisation, la chaudière 1 est à l'arrêt. Le climatiseur 5b est en service.
Un évaporateur 41 dans le climatiseur 5b refroidit l'air ambiant du local A, véhiculé par un ventilateur 42.
Le cycle frigorifique est traditionnel avec une augmentation de pression au primaire à l'aide d'un compresseur 43, condensation au primaire 39 de l'échangeur formé par le condenseur 38, une baisse de pression à l'aide d'un détendeur tel qu'un capillaire 44 et à nouveau évaporation dans l'évaporateur 41.
L'eau circulant au secondaire 40 du condenseur 38 est véhiculée par le réseau 3 de chauffage central.
Cette eau, provenant comme en mode chauffage, de la sortie du radiateur 4 est dirigée par la vanne trois voies 35 fermée sur la voie 33 et ouverte sur la voie 34, vers le condenseur 38.
L'eau en sortie du climatiseur 5b emprunte la canalisation 36 vers le refroidisseur extérieur 6, à travers la vanne trois voies 7, dont la voie 8 est fermée et la voie 9 est ouverte, la pompe 2 étant en service.
L'eau se réchauffant au passage dans le condenseur 38, le refroidisseur 6 permet de maintenir l'eau du réseau 3 à la température souhaitée pour les condenseurs 38.
Le refroidissement de l'air ambiant au passage sur l'évaporateur 41 provoque de la condensation et l'eau ainsi recueillie par un collecteur 45 doit être évacuée. Cela peut être réalisé de façon gravitaire classique, par écoulement dans des petites tuyauteries souples ou rigides faciles à poser en plinthe. Ces eaux de condensation peuvent être évacuées par leur introduction sous pression dans le réseau de chauffage 3 par l'intermédiaire d'une pompe 46 et d'un clapet anti-retour 47.
Un système de "by-pass" peut être réalisé pour éviter les conséquences dues à l'arrivée d'eau chaude sous pression aux condenseurs 38 des climatiseurs 5a.
Une vanne de décharge 48 du fluide du condenseur 38 vers l'évaporateur 41 est prévue pour chaque climatiseur 5b, en contournant le détendeur 44.

Claims (16)

  1. Système de chauffage et de climatisation d'un local, le système comportant :
    à l'intérieur du local (A) à refroidir hors période de chauffe, un dispositif de climatisation et de chauffage (5) comportant au moins un climatiseur (5b), chaque climatiseur comprenant notamment un condenseur (38) à eau formant échangeur, un détendeur (44), un évaporateur (41) et un ventilateur d'évaporateur (42), un compresseur (43) ;
    un dispositif de refroidissement (6) de l'eau circulant dans les condenseurs (38) du dispositif de climatisation, comprenant notamment un évaporateur 12 formant échangeur, un compresseur 16, un condenseur 14 et un ventilateur 17 de condenseur, un détendeur 18 ;
    un réseau de chauffage central fonctionnant essentiellement en période de chauffe pour alimenter les éléments de chauffage (4) du dispositif de climatisation et de chauffage (5) à l'aide d'au moins une chaudière (1), le réseau (3) étant utilisé pour la circulation d'eau entre les condenseurs (38) du dispositif de climatisation (5) et le dispositif de refroidissement en période de refroidissement ;
    des moyens de raccordement du dispositif de refroidissement et du dispositif de climatisation au réseau de chauffage central, comprenant des moyens d'interdiction (7, 35, 25) en situation normale en mode chauffage de l'arrivée d'eau chaude à l'évaporateur (12) du dispositif de refroidissement (6) et au condenseur (38) du dispositif de climatisation ;
    caractérisé en ce qu'au moins l'un dudit dispositif de refroidissement (6) et dudit dispositif de climatisation (5) comprend des moyens de décharge (13, 48), se mettant en service en mode chauffage lorsque l'échangeur (12, 38) dudit dispositif, respectivement l'évaporateur (12) pour le dispositif de refroidissement (6) et au moins un condenseur (38) pour le dispositif de climatisation et de chauffage (5), reçoit du réseau (3) de façon non souhaitée une eau chaude générant une forte pression, notamment en cas de défaillance des moyens d'interdiction (7, 35, 25) d'arrivée de l'eau du réseau à l'échangeur dudit dispositif.
  2. Système selon la revendication 1, caractérisé en ce que la température de l'eau en sortie du dispositif de refroidissement (6) en mode climatisation est maintenue voisine de 25°C, pour permettre le bon fonctionnement du dispositif de climatisation et de chauffage (5).
  3. Système selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que les moyens de décharge du dispositif de refroidissement (6) comprennent une vanne de décharge (13) du fluide frigorigène de l'évaporateur (12) vers le condenseur (14), de manière à contourner le compresseur (16).
  4. Système selon l'une quelconque des revendications 1 à 3, caractérisé en ce les moyens de décharge pour chaque climatiseur (5b) du dispositif de climatisation (5) , comprennent un vanne de décharge (48) du fluide frigorigène du condenseur (38) vers l'évaporateur (41), de manière à contourner le détendeur (44).
  5. Système selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les moyens d'interdiction comprennent une vanne trois voies (7), en mode chauffage isolant le dispositif de refroidissement (6) du réseau (3), en mode climatisation reliant le dispositif de refroidissement (6) au réseau (3) et isolant la chaudière (1) du réseau (3).
  6. Système selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une vanne de décharge (19) au niveau de laquelle sont rejetées les eaux introduites sous pression dans le réseau de chauffage (3), afin d'éviter une surpression dans le réseau 3.
  7. Système selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il comprend des premiers moyens de rupture de conduction thermique (10) entre le dispositif de climatisation et le réseau de chauffage (3) et des seconds moyens de rupture de conduction thermique (37) entre le dispositif de refroidissement (6) et le réseau de chauffage (3).
  8. Système selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend en mode chauffage un dispositif hors gel (11) de l'évaporateur (12) du dispositif de refroidissement (6), comportant des traceurs électriques, ou des moyens d'injection (11) d'eau chaude, commandés en fonction d'une température de risque de gel voisine de 2°C.
  9. Système selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il comprend un régulateur de maintien (20) de pH destiné à éviter l'acidification du réseau (3) de chauffage provoquée par la circulation des eaux de condensation dans le réseau.
  10. Système selon l'une quelconque des revendications 1 à 9, caractérisé en ce qu'il comprend des moyens de branchement (22) électrique du ventilateur (17), d'un moteur de compresseur (16), de moyens d'interdiction (23) de fonctionnement du compresseur (16) en mode chauffage, éventuellement de moyens de commande (21), à une source d'énergie (S) telle que le secteur électrique du local (A).
  11. Système selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend une vanne deux voies (25) munie d'un moyen de basculement automatique été/hiver déclenchée en fonction de la température de l'eau du réseau (3), permettant l'exploitation d'une pompe (24) dédiée au seul mode climatisation :
    la vanne deux voies (25) étant fermée en mode chauffage, le dispositif de refroidissement (6) étant alors isolé du réseau (3), à partir d'une température de l'eau révélatrice du fonctionnement de la chaudière, par exemple 35°C lorsque le réseau 3 est maintenu à 25°C en mode climatisation;
    la vanne deux voies étant ouverte en mode climatisation, entraínant la mise en service de la pompe (24), le dispositif de refroidissement (6) étant relié au réseau (3), un agencement de sécurité (23) interdisant l'ouverture de la vanne (25) et provoquant l'arrêt impératif du compresseur (16) quelle que soit la température d'eau du réseau (3) si la chaudière est en fonctionnement.
  12. Système selon l'une quelconque des revendications 1 à 11, caractérisé en ce qu'il comporte un élément de refroidissement de type batterie autoréfrigérante (32) ventilée, intégré au dispositif de refroidissement (6) et disposé en série par rapport au condenseur (14), un moyen de basculement
    (26) permettant en mode climatisation l'alimentation de la batterie (32) lorsque la température à l'extérieur du local est inférieure à la température de l'eau du réseau voisine de 25°C.
  13. Système selon la revendication 12, caractérisé en ce qu'il comporte une vanne trois voies (29) avant l'arrivée à l'évaporateur (12) munie d'un moyen de basculement, autorisant la circulation de fluide vers l'évaporateur en situation normale, en dessous de la température normale de ce fluide de l'ordre de 45°C, et permettant le contoumement de l'évaporateur (12) pour des températures supérieures.
  14. Installation de climatisation et de chauffage caractérisée en ce qu'elle comprend au moins un système de refroidissement et de climatisation selon l'une quelconque des revendications précédentes.
  15. Procédé d'installation d'un système (31) de chauffage et climatisation selon l'une quelconque des revendications 1 à 14 caractérisé en ce qu'il comporte au moins les étapes prévoyant de :
    installer à l'intérieur du local (A) le dispositif de climatisation (5) ;
    installer à l'extérieur du local (A) le dispositif de refroidissement (6) de l'eau du dispositif de climatisation (5) intérieur ;
    installer à l'intérieur et/ou l'extérieur du local des moyens hydrauliques tels que vanne trois voies (7) aptes à permettre la circulation dans le dispositif de refroidissement (6) ou à l'interdire dans un mode climatisation ;
    raccorder le dispositif de refroidissement et dispositif de climatisation (6) par un réseau de circulation d'eau de chauffage central (3), éventuellement existant dans le local (A), apte à alimenter par ailleurs au moins un élément (4) de chauffage, de sorte que ce réseau (3) permette, en mode climatisation lorsque la chaudière (1) est à l'arrêt, la circulation d'eau entre les condenseurs (38) du dispositif de climatisation (5) et le dispositif de refroidissement (6), et en mode chauffage un fonctionnement d'alimentation des éléments de chauffage (4).
  16. Procédé selon la revendication 15, caractérisé en ce que l'on installe à l'intérieur d'un local (A) à refroidir plusieurs dispositifs de climatisation, et à l'extérieur du local (A) au moins un dispositif de refroidissement commun à au moins deux dispositifs de climatisation (11) intérieurs.
EP01400348A 2000-02-11 2001-02-09 Système de Chauffage et de climatisation Expired - Lifetime EP1124097B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0001746 2000-02-11
FR0001746A FR2805031B1 (fr) 2000-02-11 2000-02-11 Systeme de chauffage et de climatisation

Publications (2)

Publication Number Publication Date
EP1124097A1 EP1124097A1 (fr) 2001-08-16
EP1124097B1 true EP1124097B1 (fr) 2004-04-14

Family

ID=8846929

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01400348A Expired - Lifetime EP1124097B1 (fr) 2000-02-11 2001-02-09 Système de Chauffage et de climatisation

Country Status (5)

Country Link
EP (1) EP1124097B1 (fr)
AT (1) ATE264484T1 (fr)
DE (1) DE60102726T2 (fr)
ES (1) ES2219484T3 (fr)
FR (1) FR2805031B1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1485588B (zh) * 2003-07-29 2010-10-06 孟凡正 双效多工况自除霜式热泵空调及其自动除霜方法
CN101782263B (zh) * 2010-03-10 2012-06-27 广东吉荣空调有限公司 多工况节能控制的双金属复合箱体结构的组合式恒温恒湿空调机
JP6371688B2 (ja) * 2014-11-21 2018-08-08 ヤンマー株式会社 ヒートポンプ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3161029A (en) * 1962-10-04 1964-12-15 Carrier Corp Refrigeration systems operable at low condenser pressures
US3529433A (en) * 1969-03-17 1970-09-22 Chrysler Corp Refrigeration apparatus with means to increase liquid refrigerant pressure
DE2748277A1 (de) * 1977-10-27 1979-05-03 Siemens Ag Kaeltemaschine
US5937658A (en) * 1998-02-24 1999-08-17 Scotsman Group Apparatus and method for head pressure control valve disabling for an icemaker
FR2776053B1 (fr) * 1998-03-10 2000-06-16 Francois Lego Procede d'installation d'un systeme de chauffage et climatisation utilisant un reseau de chauffage central, dispositif, et systeme de chauffage et climatisation

Also Published As

Publication number Publication date
ES2219484T3 (es) 2004-12-01
FR2805031B1 (fr) 2002-05-17
FR2805031A1 (fr) 2001-08-17
DE60102726T2 (de) 2005-03-31
EP1124097A1 (fr) 2001-08-16
ATE264484T1 (de) 2004-04-15
DE60102726D1 (de) 2004-05-19

Similar Documents

Publication Publication Date Title
US5758514A (en) Geothermal heat pump system
US8037931B2 (en) Hybrid water heating system
RU2479796C1 (ru) Кондиционер
EP0670462B1 (fr) Ensemble de distribution et/ou collection de froid et/ou de chaud
EP2312227B1 (fr) Installation de ventilation mécanique contrôlée de type double flux thermodynamique réversible avec production d'eau chaude sanitaire
FR2995979A1 (fr) Installation de chauffe-eau sanitaire a fonction de chauffage
EP3225922B1 (fr) Systeme de rafraichissement, climatisation ou chauffage
EP1124097B1 (fr) Système de Chauffage et de climatisation
FR2507295A1 (fr) Systeme de degivrage par gravite
EP0942238B1 (fr) Système de chauffage et climatisation utilisant un réseau de chauffage central
FR2816697A1 (fr) Systeme reversible de recuperation d'energie calorifique par prelevement et transfert de calories d'un milieu dans au moins un autre milieu d'un lieu quelconque
EP1450109A1 (fr) Installation solaire combinée comportant des moyens de gestion des surchauffes et procédé de contrôle de l'installation
FR2508147A1 (fr) Dispositif de chauffage avec production d'eau chaude sanitaire fonctionnant en recuperation sur un circuit de pompe a chaleur ou de production de froid
JP3050114B2 (ja) 蓄氷型冷水装置の制御方法
EP3480526B1 (fr) Installation de chauffage et/ou de production d'eau chaude sanitaire dans un bâtiment
EP2527750B1 (fr) Chaudière thermodynamique
EP1136760B1 (fr) Installation de chauffage et de climatisation avec caisson à façade rayonnante
FR3063132B1 (fr) Systeme de gestion thermique d'air et de production d'eau chaude sanitaire pour un local
WO2012150359A2 (fr) Installation thermique
FR2913755A1 (fr) Dispositif de ventilation pour echangeur thermique
FR2947895A3 (fr) Installation de chauffage et/ou de fourniture d'eau chaude sanitaire
EP1980794B1 (fr) Aérotherme à gaz et à climatiseur réversible
FR2825143A1 (fr) Systeme monobloc et installation de production alternative ou simultanee d'eau chaude ou d'eau glacee par transfert thermique
FR2461203A1 (fr) Dispositif de regulation d'une pompe a chaleur
FR3046667A1 (fr) Installation perfectionnee de chauffage et de refroidissement, notamment d'un local, et procedes de pilotage et de mise en place de ladite installation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20010809

AKX Designation fees paid

Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: JOHNSON CONTROLS-MC INTERNATIONAL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040414

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60102726

Country of ref document: DE

Date of ref document: 20040519

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RIEDERER HASLER & PARTNER PATENTANWAELTE AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040809

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2219484

Country of ref document: ES

Kind code of ref document: T3

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040914

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120319

Year of fee payment: 12

Ref country code: MC

Payment date: 20120228

Year of fee payment: 12

Ref country code: FR

Payment date: 20120224

Year of fee payment: 12

Ref country code: CH

Payment date: 20120214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120215

Year of fee payment: 12

Ref country code: BE

Payment date: 20120214

Year of fee payment: 12

Ref country code: IT

Payment date: 20120213

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130228

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120307

Year of fee payment: 12

BERE Be: lapsed

Owner name: *JOHNSON CONTROLS-MC INTERNATIONAL

Effective date: 20130228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130209

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60102726

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60102726

Country of ref document: DE

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20120229