EP1158836B1 - Radiation arrangement and its use and the treatment process of upper surfaces - Google Patents
Radiation arrangement and its use and the treatment process of upper surfaces Download PDFInfo
- Publication number
- EP1158836B1 EP1158836B1 EP01108725A EP01108725A EP1158836B1 EP 1158836 B1 EP1158836 B1 EP 1158836B1 EP 01108725 A EP01108725 A EP 01108725A EP 01108725 A EP01108725 A EP 01108725A EP 1158836 B1 EP1158836 B1 EP 1158836B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- radiation
- arrangement according
- tube
- radiation arrangement
- radiator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000005855 radiation Effects 0.000 title claims description 84
- 238000000034 method Methods 0.000 title claims description 11
- 230000008569 process Effects 0.000 title description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 9
- 239000000049 pigment Substances 0.000 claims description 7
- 239000003973 paint Substances 0.000 claims description 5
- 238000000576 coating method Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 230000003595 spectral effect Effects 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000009826 distribution Methods 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000005253 cladding Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 238000002835 absorbance Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/40—Heating elements having the shape of rods or tubes
- H05B3/42—Heating elements having the shape of rods or tubes non-flexible
- H05B3/44—Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/0033—Heating devices using lamps
- H05B3/0038—Heating devices using lamps for industrial applications
- H05B3/0066—Heating devices using lamps for industrial applications for photocopying
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
- H05B3/145—Carbon only, e.g. carbon black, graphite
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B2203/00—Aspects relating to Ohmic resistive heating covered by group H05B3/00
- H05B2203/032—Heaters specially adapted for heating by radiation heating
Definitions
- the invention relates to a radiation arrangement with at least one infrared radiator and at least one further radiator with at least two interconnected elongated, permeable to light and IR radiation and sealed with respect to the ambient atmosphere, envelope tubes, of which at least a first envelope tube an incandescent filament which is electrically connected via sealed pipe ends and external contacts to an external power supply, as well as their use and a method for the treatment of surfaces.
- an electric heat radiator which has two mutually parallel helical heating coil, which are each arranged in a quartz glass tube, wherein the quartz glass tubes are in their length by a fusion connection with each other.
- the two filaments are connected in series.
- EP 0 428 835 A2 and corresponding US Pat. No. 5,091,632 also disclose infrared radiators with twin tube radiators.
- the invention has as its object to provide a thermal radiation arrangement to rapidly dry on surfaces applied coatings or imprints with pigments or paints in solvents and at the same time to let the solvents such as toluene or water evaporate quickly.
- the object is achieved according to the device in that at least a second sheath tube is provided, which has a radiator belt, which is also electrically connected via sealed ends and external contacts with or with another external power supply.
- the second cladding tube is likewise provided for emitting infrared radiation, in particular for emitting IR radiation in the middle IR range.
- a different temperature radiator instead of the radiator band can be used, which emits radiation in the central IR range.
- the arrangement has relatively high radiation components both in the visible spectral range and in the near infrared radiation range, in particular with a wavelength in the range of 780 nm to 1.4 ⁇ m, as well as in the central IR radiation range, in particular with a wavelength in the range from 2.5 ⁇ m to 5 ⁇ m.
- an elongated carbon band is used as the radiator band, wherein the carbon band is formed in a further preferred form as an elongated spiral. It emits radiation in a medium IR spectral range, while an incandescent filament emits short-wave IR radiation (near IR) and optionally also visible light.
- the radiation arrangement has a percentage of more IR radiation components than previous radiation sources with only one temperature in the specified wavelength ranges.
- a use of the object according to the invention is provided by using a twin-tube radiation arrangement with incandescent filament as the short-wave infrared radiator source and a tube provided with carbon ribbon as a radiator band as medium-wave IR radiator.
- the object is achieved in a method for the treatment of surfaces by IR irradiation, in particular of coated or printed surfaces on substrates or dissolved color pigments on a support for drying is irradiated, achieved in that the surface at least temporarily with an IR radiation with a high proportion in a first wavelength range of 780 nm to 1.2 microns and at least temporarily treated simultaneously with an IR irradiation with a high radiation component in a second wavelength range of 2.5 microns to 5 microns.
- the surface irradiation of the first wavelength range and the second wavelength range overlap at least temporarily, wherein the first IR radiation is emitted from a radiator with a filament and the second IR radiation from a radiator with a carbon band as the radiation source. It proves to be particularly advantageous that, when the first and second wavelength ranges are superimposed, a spectral radiation distribution is achieved with a relatively high radiation fraction in the wavelength range from 780 nm to 3.1 ⁇ m.
- a significant advantage is the fact that, depending on the embodiment, the individual radiation components of this radiation arrangement can be switched in an OR operation or operated in a common Heidelberg. This results in the operation of machines with changing processes, the advantage that no spot change must take place. Also, the user no longer needs different individual sources of radiation so that a reduction in spare parts inventory is achieved.
- the carbon emitter used can be used as a starting current limiter for the short-wave radiator (incandescent filament).
- UV radiation components can also be superimposed with the IR spectra. Again, separate and common modes can be combined.
- FIG. 1a schematically shows a perspective view of a twin tube emitter according to the invention.
- Figure 1b shows a front view of a twin tube radiator, but having a coiled carbon radiator.
- Figure 1c shows a frontal view of an arrangement which additionally has a tubular discharge lamp, so that in addition to infrared radiation and UV radiation can be generated.
- FIG. 2 shows in the diagram the relative intensity of a Planck spectral radiation distribution with KW / m 2 nomination with a short-wave infrared radiator (NIR / IR-A) at an operating temperature of 2600 ° C. and a carbon radiator at an operating temperature of approximately 950 ° C. , wherein the intensity is plotted against the wavelength lambda [ ⁇ m].
- NIR / IR-A short-wave infrared radiator
- FIG. 3 shows in the diagram the spectral absorption of the water for different layer thicknesses (2 ⁇ m, 10 ⁇ m), wherein the absorption in the range from 0 to 100 percent is plotted against the lambda wavelength in ⁇ m.
- Figure 4 shows in the diagram the efficiency of water drying for a layer of 10 microns thickness, wherein the temperature is plotted in Kelvin along the X-axis, while the efficiency along the Y-axis is entered.
- the radiation arrangement has a twin tube emitter 1, which contains two enveloping tubes 2, 3 made of infrared transparent and visible radiation, preferably quartz glass, at least approximately parallel to one another, the two tubes being formed by an intermediate web 4, which is likewise made of Quartz glass exists, mechanically firmly connected to each other.
- the first tube 2 has a shortwave infrared radiator provided with an incandescent filament 5, the high emission intensity of which lies in the wavelength range from 780 nm to approximately 1.2 ⁇ m (near IR / IR-A), as shown in the following FIG. 2 (curve II). evident.
- the definition of the wavelength range results from DIN standard 5030, part 2.
- a similar radiator is known for example from the aforementioned EP 0 428 835 or the corresponding US 5,091,632.
- a short-wave infrared radiator is according to Figure 1a, the filament 5 of the sheath tube 2 via sheet-shaped current feedthroughs 6, 7 of molybdenum in the respective pinch region of the pipe ends 8 ', 9' of the tube 2, each with an external terminal contact 8, 9 electrically and mechanically connected which is for electrical connection to an external power supply.
- the tube 3 has an infrared radiator with a carbon ribbon as the radiator band 10 which is provided with terminal contacts 11, 12 and sheet-shaped current feedthroughs 13, 14 of molybdenum in the respective pinch region of the tube ends 15, 16 for connection to the power supply ,
- connection between the ends of the carbon strip 11 and the current feedthroughs 13, 14 preferably takes place via graphite paper, as is known, for example, from DE 44 19 285 C2 or the corresponding US Pat. No. 5,567,951.
- graphite paper as is known, for example, from DE 44 19 285 C2 or the corresponding US Pat. No. 5,567,951.
- FIG. 1b The frontal view of Figure 1b shows the two adjacent sheaths 2 and 3 of the twin tube radiator 1, which are connected to each other via a gutter 4 made of quartz glass.
- emitter strip 10 ' according to FIG. 1b is wound prior to introduction into the carbon emitter, ie a helical spiral serves as emitter strip 10'.
- the coiled radiator strip 10 ' has the particular advantage that a greater proportion of radiation in the wavelength range of 1.6 to 3.8 microns (near IR / IR-B to average IR / IR-C) according to curve 1 of Figure 2 are emitted can, as it results from the Stefan Boltzmann's law.
- the definition of the wavelength range results from DIN standard 5030, part 2.
- the cladding tubes 2 and 3 are - as already explained with reference to Figure 1a - mechanically connected to each other via a gutter 4.
- the terminal contacts 8, 9, 17 '17 “and 18', 18" correspond in their function largely to the illustrated with reference to Figure 1 contacts 17, 18. Due to the separately led out terminal contacts a single control of the respective lamps is possible, so this example can be operated simultaneously or alternately in time.
- the frontal view of a radiator combination shown in FIG. 1c has, in addition to the previously described twin arrangement, an additional radiator arrangement connected as a discharge lamp, wherein the quartz glass envelope tube 19 of quartz glass of the discharge lamp additionally connected via an intermediate web 4 '(quartz glass) enables the emission of UV radiation. Since the discharge lamp 20 is connected via the intermediate web 4 'to the twin-tube radiator arrangement 1', it is also possible here to speak of a triple-tube radiator arrangement. It is thus possible to treat color pigments by visible light and infrared radiation, and at the same time or alternately to treat photoinitiators by means of UV irradiation by discharge lamp 20.
- the filling of the discharge lamp 20 is preferably made of mercury and possibly an admixture of metal halides, wherein the electrodes 21, 22 are preferably made of tungsten.
- the additional cladding tube 19 of the discharge lamp 20, like the web 4 'or web 4, consists of quartz glass, so that optimal transparency for UV radiation is provided here.
- the connection contacts 26, 27 of the discharge lamp 20 are also led out separately, so that the discharge lamp 20 can be ignited and operated independently of the other two infrared radiators.
- the relative intensity maximum of a carbon emitter having a temperature of 950 ° C. (curve I) is in the range from 1.6 to 3.8 ⁇ m.
- incandescent filament 5 (curve II)
- carbon ribbon 10 or 10 'as emitters With a simultaneous operation of incandescent filament 5 (curve II) and carbon ribbon 10 or 10 'as emitters, a combination of both emitters produces a thermal radiation source which has a high total radiation fraction in the range from 780 nm to 3.5 ⁇ m according to curve III ( near IR to the beginning of middle IR).
- curve III near IR to the beginning of middle IR
- FIG. 3 shows the spectral absorption of the water on the basis of the diagram, with a first maximum spectral absorption, both for a larger layer thickness of, for example, 10 ⁇ m (curve I) and for a smaller layer thickness of 2 ⁇ m (curve II) of the applied layer with A1, A1 ', occurs in the wavelength range of about 3 microns, while a second lower maximum with absorbance of about 40 to 90 percent in a designated A2, A2' spectral range of about 6 microns. It can be seen that a layer thickness of only 2 microns has a lower degree of absorption in the absorption points A1 'and A2' of the curve II, each with 90 percent and 40 percent.
Landscapes
- Resistance Heating (AREA)
- Drying Of Solid Materials (AREA)
- Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
- Radiation-Therapy Devices (AREA)
Description
Die Erfindung betrifft eine Strahlungsanordnung mit wenigstens einem Infrarotstrahler und wenigstens einem weiteren Strahler mit wenigstens zwei miteinander verbundenen langgestreckten, für Licht und IR-Strahlung durchlässigen und gegenüber der Umgebungs-Atmosphäre abgeschlossenen, Hüll-Rohren, von denen wenigstens ein erstes Hüll-Rohr eine Glühwendel aufweist, die über abgedichtete Rohrenden und äußere Kontakte mit einer äußeren Energieversorgung elektrisch verbunden ist, sowie deren Verwendung und ein Verfahren zur Behandlung von Oberflächen.The invention relates to a radiation arrangement with at least one infrared radiator and at least one further radiator with at least two interconnected elongated, permeable to light and IR radiation and sealed with respect to the ambient atmosphere, envelope tubes, of which at least a first envelope tube an incandescent filament which is electrically connected via sealed pipe ends and external contacts to an external power supply, as well as their use and a method for the treatment of surfaces.
Aus der GB-PS 15 44 551 ist ein elektrischer Wärmestrahler bekannt, der zwei zueinander parallel angeordnete spiralförmige Heizwendel aufweist, die jeweils in einer Quarzglasröhre angeordnet sind, wobei die Quarzglasrohre in ihrer Länge durch eine Schmelzverbindung miteinander sind. Die beiden Glühwendel sind in Serie geschaltet.From GB-
Auch wenn sich eine erhebliche Erhöhung der Intensität erreichen lässt, wird nur ein verhältnismäßig enger Spektralbereich der kurzwelligen Infrarotstrahlung ausgegeben, wobei es in der Regel schwierig ist, gleichzeitig Farben bzw. Pigmente und deren Lösung beispielsweise Wasser, nach einem Oberflächenauftrag, wie beispielsweise Aufdrucken auf einen Träger, rasch zu trocknen.Even if a considerable increase in intensity can be achieved, only a relatively narrow spectral range of short-wave infrared radiation is output, it being difficult at the same time colors or pigments and their solution, for example water, after a surface application, such as printing on a Carrier to dry quickly.
Weiterhin sind aus der EP 0 428 835 A2 bzw. der entsprechenden US 5,091,632 auch Infrarot-Strahler mit Zwillings-Rohr-Strahlern bekannt.Furthermore,
Weiterhin ist es aus der DE 198 39 457 A1 bekannt, einen Infrarotstrahler mit einem Carbonband als Heizelement einzusetzen; ein solches Carbonband ist insbesondere zur Abgabe von IR-Strahlung in einem mittleren Wellenlängenbereich von 1,5 bis 4,5 µm geeignet.Furthermore, it is known from DE 198 39 457 A1 to use an infrared radiator with a carbon ribbon as a heating element; Such a carbon ribbon is particularly suitable for emitting IR radiation in a mean wavelength range of 1.5 to 4.5 microns.
Die Erfindung stellt sich die Aufgabe, eine thermische Strahlungsanordnung zu schaffen, um auf Oberflächen aufgebrachte Beschichtungen oder Aufdrucke mit Pigmenten oder Farben in Lösungsmitteln rasch zu trocknen und gleichzeitig die Lösungsmittel, wie beispielsweise Toluol oder Wasser rasch verdunsten zu lassen.The invention has as its object to provide a thermal radiation arrangement to rapidly dry on surfaces applied coatings or imprints with pigments or paints in solvents and at the same time to let the solvents such as toluene or water evaporate quickly.
Die Aufgabe wird vorrichtungsgemäß dadurch gelöst, dass wenigstens ein zweites Hüll-Rohr vorgesehen ist, das ein Strahlerband aufweist, welches ebenfalls über abgedichtete Enden und äußere Kontakte mit der oder mit einer weiteren äußeren Energieversorgung elektrisch verbunden ist. Das zweite Hüllrohr ist ebenfalls zur Ausgabe von Infrarot-Strahlung, insbesondere zur Ausgabe von IR-Strahlung im mittleren IR-Bereich, vorgesehen. Dabei kann selbstverständlich auch ein andersgearteter Temperaturstrahler statt des Strahlerbandes eingesetzt werden, der Strahlung im mittleren IR-Bereich abgibt. Als vorteilhaft erweist es sich, daß die Anordnung sowohl im sichtbaren Spektralbereich sowie nahen Infrarotstrahlungsbereich, insbesondere mit einer Wellenlänge im Bereich von 780 nm bis 1,4 µm, als auch im mittleren IR-Strahlungsbereich verhältnismäßig hohe Strahlungsanteile aufweist, insbesondere mit einer Wellenlänge im Bereich von 2,5 µm bis 5 µm.The object is achieved according to the device in that at least a second sheath tube is provided, which has a radiator belt, which is also electrically connected via sealed ends and external contacts with or with another external power supply. The second cladding tube is likewise provided for emitting infrared radiation, in particular for emitting IR radiation in the middle IR range. Of course, a different temperature radiator instead of the radiator band can be used, which emits radiation in the central IR range. It proves to be advantageous that the arrangement has relatively high radiation components both in the visible spectral range and in the near infrared radiation range, in particular with a wavelength in the range of 780 nm to 1.4 μm, as well as in the central IR radiation range, in particular with a wavelength in the range from 2.5 μm to 5 μm.
In einer bevorzugten Ausgestaltung der Vorrichtung wird als Strahlerband ein langgestrecktes Carbonband eingesetzt, wobei das Carbonband in einer weiteren bevorzugten Form auch als langgestreckte Spirale ausgebildet ist. Es sendet Strahlung in einem mittleren IR-Spektralbereich aus, während ein Glühwendelstrahler kurzwellige IR-Strahlung (nahes IR) und ggf. auch sichtbares Licht ausgibt.In a preferred embodiment of the device, an elongated carbon band is used as the radiator band, wherein the carbon band is formed in a further preferred form as an elongated spiral. It emits radiation in a medium IR spectral range, while an incandescent filament emits short-wave IR radiation (near IR) and optionally also visible light.
Als besonders vorteilhaft erweist es sich, dass durch Kombination von Strahlenquellen mit verschiedenen Temperaturen (Δ λ max > 400 nm) in einer gemeinsamen Strahlungsanordnung die Effizienz von Prozessen zur Wärmebehandlung gegenüber üblichen kurzwelligen IR-Strahlenquellen gesteigert werden kann. Beispielsweise wird die Effizienz von Farbentrocknungsprozessen verbessert.It proves to be particularly advantageous that by combining radiation sources with different temperatures (Δλmax> 400 nm) in a common radiation arrangement, the efficiency of heat treatment processes can be increased over conventional short-wave IR radiation sources. For example, the efficiency of paint drying processes is improved.
Die Strahlungsanordnung besitzt durch ihre Überlagerung von verschiedenen Planck-Verteilungen prozentual mehr IR-Strahlungsanteile als bisherige Strahlenquellen mit nur einer Temperatur in den angegebenen Wellenlängenbereichen.By virtue of its superimposition of different Planck distributions, the radiation arrangement has a percentage of more IR radiation components than previous radiation sources with only one temperature in the specified wavelength ranges.
In einer weiteren vorteilhaften Ausgestaltung ist es möglich, neben thermischen Strahlenquellen wenigstens ein zusätzliches, für Licht und UV-Strahlung durchlässiges, langgestrecktes Rohr vorzusehen, welches eine elektrische Entladungsstrecke aufweist und eine zusätzliche UV-Strahlung im Wellenlängenbereich von 0,15 bis 380 nm ausgibt, die insbesondere zu Farbtrocknung geeignet ist.In a further advantageous embodiment, it is possible to provide at least one additional, permeable to light and UV radiation, elongated tube in addition to thermal radiation sources, which has an electrical discharge path and a emits additional UV radiation in the wavelength range of 0.15 to 380 nm, which is particularly suitable for color drying.
Bevorzugte Ausgestaltungen des Infrarot-Strahlers bzw. der Strahlungsanordnung sind in den Ansprüchen 1 bis 13 angegeben.Preferred embodiments of the infrared radiator or the radiation arrangement are specified in
Als besonders vorteilhaft erweist sich der gegenüber Einzelstrahlern verringerte Platzbedarf, wobei durch einen wahlweisen Betrieb der Strahlenquellen mit unterschiedlicher Wellenlänge für die jeweiligen Anwendungsgebiete optimale Strahlungs-Bedingungen eingestellt werden können.Particularly advantageous is the reduced space requirement compared to individual radiators, whereby optimal radiation conditions can be set by selectively operating the radiation sources with different wavelengths for the respective fields of application.
Eine verwendungsgemäße Lösung der Aufgabe ist durch Einsatz einer Zwillingsrohr-Strahlungsanordnung mit Glühwendel als kurzwelliger Infrarotstrahlerquelle und einer mit Carbonband als Strahlerband versehenen Röhre als mittelwelliger IR-Strahler vorgesehen.A use of the object according to the invention is provided by using a twin-tube radiation arrangement with incandescent filament as the short-wave infrared radiator source and a tube provided with carbon ribbon as a radiator band as medium-wave IR radiator.
Die Aufgabe wird bei einem Verfahren zur Behandlung von Oberflächen mittels IR-Bestrahlung, insbesondere von beschichteten oder bedruckten Oberflächen auf Substraten oder von gelösten Farbpigmenten auf einem Träger zwecks Trocknung bestrahlt wird, dadurch gelöst, dass die Oberfläche wenigstens zeitweise mit einer IR-Strahlung mit einem hohen Anteil in einem ersten Wellenlängenbereich von 780 nm bis 1,2 µm und wenigstens zeitweise gleichzeitig mit einer IR-Bestrahlung mit hohem Strahlungsanteil in einem zweiten Wellenlängenbereich von 2,5 µm bis 5 µm behandelt wird.The object is achieved in a method for the treatment of surfaces by IR irradiation, in particular of coated or printed surfaces on substrates or dissolved color pigments on a support for drying is irradiated, achieved in that the surface at least temporarily with an IR radiation with a high proportion in a first wavelength range of 780 nm to 1.2 microns and at least temporarily treated simultaneously with an IR irradiation with a high radiation component in a second wavelength range of 2.5 microns to 5 microns.
Vorteilhafte Ausgestaltungen des Verfahrens sind in den Ansprüchen 17 und 18 angegeben.Advantageous embodiments of the method are given in
In einer bevorzugten Ausgestaltung des Verfahrens überlappen sich die Oberflächenbestrahlung des ersten Wellenlängenbereichs und des zweiten Wellenlängenbereichs zumindest zeitweise, wobei die erste IR-Strahlung aus einem Strahler mit einer Glühwendel und die zweite IR-Strahlung aus einem Strahler mit einem Carbonband als Strahlenquelle abgestrahlt wird. Als besonders vorteilhaft erweist es sich, dass bei Überlagerung des ersten und des zweiten Wellenlängenbereichs eine spektrale Strahlungsverteilung bei einem relativ hohen Strahlungsanteil im Wellenlängenbereich von 780 nm bis 3,1 µm erzielt wird.In a preferred embodiment of the method, the surface irradiation of the first wavelength range and the second wavelength range overlap at least temporarily, wherein the first IR radiation is emitted from a radiator with a filament and the second IR radiation from a radiator with a carbon band as the radiation source. It proves to be particularly advantageous that, when the first and second wavelength ranges are superimposed, a spectral radiation distribution is achieved with a relatively high radiation fraction in the wavelength range from 780 nm to 3.1 μm.
Ein wesentlicher Vorteil ist darin zu sehen, dass je nach Ausführungsform die einzelnen Strahlungsanteile dieser Strahlungsanordnung in einer Oder-Verknüpfung eingeschaltet oder in einer gemeinsamen Schaltart betrieben werden können. Hieraus ergibt sich beim Betrieb von Maschinen mit wechselnden Prozessen der Vorteil, dass kein Strahlerwechsel mehr stattfinden muss. Auch benötigt der Anwender nicht mehr verschiedene einzelne Strahlerquellen, so dass eine Verringerung der Ersatzteilbevorratung erzielt wird.
Darüber hinaus kann der verwendete Carbonstrahler als Anlaufstrombegrenzer für den kurzwelligen Strahler (Glühwendel) verwendet werden.A significant advantage is the fact that, depending on the embodiment, the individual radiation components of this radiation arrangement can be switched in an OR operation or operated in a common Schaltart. This results in the operation of machines with changing processes, the advantage that no spot change must take place. Also, the user no longer needs different individual sources of radiation so that a reduction in spare parts inventory is achieved.
In addition, the carbon emitter used can be used as a starting current limiter for the short-wave radiator (incandescent filament).
In einer weiteren Ausführung können auch UV-Strahlungsanteile mit den IR-Spektren überlagert werden. Auch hier sind wiederum getrennte und gemeinsame Betriebsarten kombinierbar.In a further embodiment, UV radiation components can also be superimposed with the IR spectra. Again, separate and common modes can be combined.
Im folgenden ist der Gegenstand anhand der Figuren 1a, 1b,1c, 2, 3 und 4 näher erläutert. Figur 1a zeigt in einer perspektivischen Ansicht schematisch einen erfindungsgemäßen Zwillingsrohrstrahler.In the following, the object is explained in more detail with reference to the figures 1a, 1b, 1c, 2, 3 and 4. FIG. 1a schematically shows a perspective view of a twin tube emitter according to the invention.
Figur 1b zeigt in einer Frontansicht einen Zwillingsrohrstrahler, der jedoch einen gewendelten Carbonstrahler aufweist.Figure 1b shows a front view of a twin tube radiator, but having a coiled carbon radiator.
Figur 1c zeigt in einer Frontal-Ansicht eine Anordnung, die zusätzlich eine rohrförmige Entladungslampe aufweist, so dass neben Infrarotstrahlung auch UV-Strahlung erzeugt werden kann.Figure 1c shows a frontal view of an arrangement which additionally has a tubular discharge lamp, so that in addition to infrared radiation and UV radiation can be generated.
Figur 2 zeigt im Diagramm die relative Intensität einer spektralen Strahlungsverteilung nach Planck mit KW/m2-Nominierung mit einem kurzwelligen Infrarotstrahler (NIR/IR-A) bei einer Betriebstemperatur von 2600°C und einem Carbonstrahler bei einer Betriebstemperatur von ca. 950°C, wobei die Intensität über der Wellenlänge Lambda [µm] aufgetragen ist.FIG. 2 shows in the diagram the relative intensity of a Planck spectral radiation distribution with KW / m 2 nomination with a short-wave infrared radiator (NIR / IR-A) at an operating temperature of 2600 ° C. and a carbon radiator at an operating temperature of approximately 950 ° C. , wherein the intensity is plotted against the wavelength lambda [μm].
Figur 3 zeigt im Diagramm die spektrale Absorption des Wassers für verschiedene Schichtdicken (2 µm; 10 µm), wobei die Absorption im Bereich von 0 bis 100 Prozent über der Wellenlänge Lambda in µm aufgetragen ist.FIG. 3 shows in the diagram the spectral absorption of the water for different layer thicknesses (2 μm, 10 μm), wherein the absorption in the range from 0 to 100 percent is plotted against the lambda wavelength in μm.
Figur 4 zeigt im Diagramm die Effizienz der Wassertrocknung für eine Schicht von 10 µm Dicke, wobei die Temperatur in Kelvin entlang der X-Achse aufgetragen ist, während die Effizienz entlang der Y-Achse eingetragen ist.Figure 4 shows in the diagram the efficiency of water drying for a layer of 10 microns thickness, wherein the temperature is plotted in Kelvin along the X-axis, while the efficiency along the Y-axis is entered.
Gemäß Figur 1a weist die Strahlungsanordnung einen Zwillingsrohrstrahler 1 auf, der zwei zueinander wenigstens annähernd parallel angeordnete Hüll-Rohre 2, 3 aus für Infrarotstrahlung und sichtbare Strahlung transparentem Werkstoff, vorzugsweise Quarzglas, enthält, wobei die beiden Rohre durch einen Zwischensteg 4, der ebenfalls aus Quarzglas besteht, mechanisch fest miteinander verbunden sind. Das erste Rohr 2 weist einen mit einer Glühwendel 5 versehenen kurzwelligen Infrarotstrahler auf, dessen hohe Abstrahlungsintensität im Wellenlängenbereich von 780 nm bis ca. 1,2 µm (nahes IR/IR-A) liegt, wie aus der nachfolgenden Figur 2 (Kurve II) hervorgeht. Die Definition des Wellenlängenbereiches ergibt sich aus der DIN-Norm 5030, Teil 2.According to FIG. 1 a, the radiation arrangement has a
Ein ähnlicher Strahler ist beispielsweise aus der eingangs genannten EP 0 428 835 bzw. der entsprechenden US 5,091,632 bekannt. Bei einem solchen kurzwelligen Infrarotstrahler ist gemäß Figur 1a die Glühwendel 5 des Hüll-Rohres 2 über blattförmige Stromdurchführungen 6, 7 aus Molybdän im jeweiligen Quetschbereich der Rohrenden 8', 9' des Rohres 2 mit jeweils einem äußeren Anschlusskontakt 8, 9 elektrisch und mechanisch verbunden, der zur elektrischen Verbindung mit einer äußeren Energieversorgung dient. Das Rohr 3 weist dagegen einen Infrarotstrahler mit einem Carbonband als Strahlerband 10 auf, welches über Anschlusskontakte 11, 12 und blattförmige Stromdurchführungen 13, 14 aus Molybdän im jeweiligen Quetschbereich der Rohrenden 15, 16 mit äußeren Anschlusskontakten 17, 18 zwecks Anschluss an die Energieversorgung versehen ist.A similar radiator is known for example from the
Die Verbindung zwischen den Enden des Carbonbandes 11 und den Stromdurchführungen 13, 14 erfolgt vorzugsweise über Graphitpapier, wie es beispielsweise aus der DE 44 19 285 C2 bzw. der entsprechenden US 5,567,951 bekannt ist. Auf diese Weise soll die in Längsrichtung ausgeprägte elektrische Leitfähigkeit des Carbonbandes beim Kontaktieren zur Stromdurchführung ausgeglichen werden. Darüber hinaus wird auch eine Verbesserung der Kühlung erzielt.The connection between the ends of the
Die Frontalansicht gemäß Figur 1b zeigt die beiden nebeneinander liegenden Hüllrohre 2 und 3 des Zwillingsrohrstrahlers 1, welche über einen Zwischensteg 4 aus Quarzglas miteinander verbunden sind. Im Gegensatz zu Figur 1a in der ein langgestrecktes flaches Strahlerband 10 dargestellt ist, wird Strahlerband 10' gemäß Figur 1b vor dem Einbringen in den Carbonstrahler gewendelt, d.h. dass eine spiralförmige Wendel als Strahlerband 10' dient. Das gewendelte Strahlerband 10' hat insbesondere den Vorteil, dass ein größerer Strahlungsanteil im Wellenlängen-Bereich von 1,6 bis 3,8 µm (nahes IR/IR-B bis mittleres IR/IR-C) gemäß Kurve 1 der Figur 2 abgestrahlt werden kann, wie es sich aus dem Stefan-Boltzmannschen Gesetz ergibt. Die Definition des Wellenlängenbereiches ergibt sich aus der DIN-Norm 5030, 2. Teil.The frontal view of Figure 1b shows the two
Die Hüllrohre 2 und 3 sind - wie bereits anhand Figur 1a erläutert - über einen Zwischensteg 4 mechanisch miteinander verbunden. Die Anschlusskontakte 8, 9, 17' 17" und 18', 18" entsprechen in ihrer Funktion weitgehend den anhand Figur 1 erläuterten Kontakten 17, 18. Aufgrund der jeweils getrennt herausgeführten Anschlusskontakte ist eine einzelne Ansteuerung der jeweiligen Lampen möglich, so dass diese beispielsweise gleichzeitig oder auch zeitlich alternierend betrieben werden können.The
Die in Figur 1c dargestellte Frontalansicht einer Strahlerkombination weist neben der zuvor beschriebenen Zwillingsanordnung eine zusätzliche als Entladungslampe geschaltete Strahleranordnung auf, wobei das zusätzlich über einen Zwischensteg 4' (Quarzglas) verbundene Hüllrohr 19 aus Quarzglas der Entladungslampe die Abgabe von UV-Strahlung ermöglicht. Da die Entladungslampe 20 über Zwischensteg 4' mit der Zwillingsrohrstrahleranordnung 1' verbunden ist, kann hier auch von einer Drillingsrohrstrahleranordnung gesprochen werden. Es ist somit möglich, durch sichtbares Licht und Infrarotstrahlung Farbpigmente zu behandeln, und gleichzeitig bzw. alternierend Fotoinitiatoren mittels UV-Bestrahlung durch Entladungslampe 20 zu behandeln. Die Füllung der Entladungslampe 20 besteht vorzugsweise aus Quecksilber und ggf. einer Beimengung von Metallhalogeniden, wobei die Elektroden 21, 22 vorzugsweise aus Wolfram bestehen. Die Energieversorgung von Entladungslampe 20 erfolgt über Stromdurchführungen, 23, 24, die vorzugsweise als Molybdänfolien ausgebildet sind. Das zusätzliche Hüllrohr 19 der Entladungslampe 20 besteht ebenso wie Steg 4' bzw. Steg 4 aus Quarzglas, so dass hier eine optimale Transparenz für UV-Strahlung gegeben ist. Die Anschlusskontakte 26, 27 der Entladungslampe 20 sind ebenfalls separat herausgeführt, so dass die Entladungslampe 20 unabhängig von den anderen beiden Infrarotstrahlern gezündet und betrieben werden kann.The frontal view of a radiator combination shown in FIG. 1c has, in addition to the previously described twin arrangement, an additional radiator arrangement connected as a discharge lamp, wherein the quartz
So ist es möglich, eine kompakte universell einsetzbare Strahleranordnung zu schaffen, die einerseits raumsparend gelagert und bevorratet, andererseits in einer Vielzahl unterschiedlicher Funktionen eingesetzt werden kann.Thus, it is possible to provide a compact universally applicable radiator arrangement, which on the one hand stored and stored space-saving, on the other hand can be used in a variety of different functions.
Wie anhand des in Figur 2 gezeigten Diagramms erkennbar ist, liegt das relative Intensitätsmaximum eines Carbonstrahlers mit einer Temperatur von 950°C (Kurve I) im Bereich von 1,6 bis 3,8 µm. Bei einem gleichzeitigen Betrieb von Glühwendel 5 (Kurve II) und Carbonband 10 bzw. 10' als Strahler entsteht durch Kombination beider Strahler eine thermische Strahlungsquelle, die einen hohen Gesamt-Strahlungsanteil im Bereich von 780 nm bis 3,5 µm gemäß Kurve III aufweist (nahes IR bis zum Anfang von mittlerem IR). Eine solche Kombination steigert die Effizienz von Prozessen, bei denen sowohl Farbpigmente getrocknet werden müssen, als auch zugehörige Lösungsmittel wie beispielsweise Toluol oder Wasser, die aus Farben, bzw. Lacken durch Verdunstung entfernt werden sollen. Es sind somit durch den erfindungsgemäßen Doppelstrahler kurze Reaktionszeiten und hohe Leistungsdichten der kurzwelligen Infrarotstrahlenquellen zu erzielen.
Bei einer Erhöhung der Temperatur des Carbonbandes 10 bzw. 10' auf 1200°C lässt sich eine ähnliche spektrale Strahlungsverteilung der Intensität erzielen, wie sie bereits anhand Figur 2 dargestellt worden ist.As can be seen from the diagram shown in FIG. 2, the relative intensity maximum of a carbon emitter having a temperature of 950 ° C. (curve I) is in the range from 1.6 to 3.8 μm. With a simultaneous operation of incandescent filament 5 (curve II) and
With an increase in the temperature of the
In Figur 3 ist anhand des Diagramms die spektrale Absorption des Wassers erkennbar, wobei sowohl für eine größere Schichtdicke von beispielsweise 10 µm (Kurve I) als auch für eine geringere Schichtdicke von 2 µm (Kurve II) der aufgebrachten Schicht eine erste maximale Spektralabsorption, die mit A1, A1' bezeichnet ist, im Wellenlängen-Bereich von ca. 3 um auftritt, während ein zweites geringeres Maximum mit Absorptionsgrad von ca. 40 bis 90 Prozent in einem mit A2, A2' bezeichneten Spektralbereich von ca. 6 µm liegt. Dabei ist erkennbar, dass eine Schichtdicke von nur 2 µm einen niedrigeren Absorptionsgrad in den Absorptionspunkten A1' bzw. A2' der Kurve II mit jeweils 90 Prozent bzw. 40 Prozent aufweist.FIG. 3 shows the spectral absorption of the water on the basis of the diagram, with a first maximum spectral absorption, both for a larger layer thickness of, for example, 10 μm (curve I) and for a smaller layer thickness of 2 μm (curve II) of the applied layer with A1, A1 ', occurs in the wavelength range of about 3 microns, while a second lower maximum with absorbance of about 40 to 90 percent in a designated A2, A2' spectral range of about 6 microns. It can be seen that a layer thickness of only 2 microns has a lower degree of absorption in the absorption points A1 'and A2' of the curve II, each with 90 percent and 40 percent.
Anhand der Figur 3 ist erkennbar, dass sich das Maximum der für die Verdunstung von Wasser oder anderen Lösungsmitteln erforderlichen Bestrahlung eher im mittleren Infrarotbereich (IR-C/MIR gemäß DIN 5030, 2. Teil) liegt, während eine Trocknung der Farbpigmente gemäß Figur 2 bereits im kurzwelligen Bereich von 780 nm bis ca. 1,2 µm erfolgreich durchgeführt wird (NIR/IR-A gemäß DIN 5030, 2. Teil).It can be seen from FIG. 3 that the maximum of the radiation required for the evaporation of water or other solvents is more in the mid-infrared range (IR-C / MIR according to DIN 5030, Part 2), whereas drying of the color pigments according to FIG already successfully carried out in the short-wave range from 780 nm to about 1.2 μm (NIR / IR-A according to DIN 5030, 2nd part).
Gemäß Figur 4 steht die Effizienz der Wassertrocknung für eine Schicht von 10 µm Dicke in einem funktionellen Zusammenhang mit der Temperatur; bei einer Temperatur im Bereich von 1500 bis 1200 K liegt die Effizienz im Bereich von 30 bis 40 Prozent, während sie im Bereich von 3000 K und darüber unter 10 Prozent abfällt. Es ist somit erkennbar, dass eine optimale Effizienz der Wassertrocknung im Bereich von 1000 bis 1500 K zu erzielen ist.According to Figure 4, the efficiency of water drying for a layer of 10 microns thickness in a functional relationship with the temperature; at a temperature in the range of 1500 to 1200 K, the efficiency is in the range of 30 to 40 percent, while falling in the range of 3000 K and above below 10 percent. It can thus be seen that optimum water drying efficiency in the range of 1000 to 1500 K can be achieved.
Anhand der Figuren 2 bis 4 ist somit erkennbar, dass aufgrund der gleichzeitigen Einwirkung der kurzwelligen Infrarotstrahlung mittels Glühwendel im Zusammenwirken mit der mittelwelligen Infrarotstrahlung mittels Carbonband sehr unterschiedliche Anforderungen an Trocknung und Verdunstung von aufgebrachten Schichten bzw. Aufdrucken erfüllt werden, so dass durch diese Art der Kombination ein Synergieeffekt auftritt.On the basis of the figures 2 to 4 is thus seen that due to the simultaneous action of the short-wave infrared radiation by incandescent in cooperation with the medium-wave infrared radiation by carbon tape very different requirements for drying and evaporation of applied layers or imprints are met, so that by this type of Combination a synergy effect occurs.
Claims (18)
- Radiation arrangement with an infrared radiator and a further radiator with at least two elongated envelope tubes (2), permeable to light and IR radiation, joined together and closed off from the ambient atmosphere, of which at least a first envelope tube has an incandescent coil (5), which is electrically connected via sealed tube ends (8', 9') and outer contacts (8, 9) to an external power supply, characterised in that a second envelope tube (3) is provided, which has a radiating strip (10, 10'), which is also electrically connected via sealed ends (15, 16), and outer contacts (17, 18) to the external power supply.
- Radiation arrangement according to claim 1, characterised in that an elongated carbon strip is used as the radiating strip (10).
- Radiation arrangement according to claim 1 or 2, characterised in that the radiating strip (10') is configured as an elongated coil.
- Radiation arrangement according to any one of claims 1 to 3, characterised in that at least one additional elongated envelope tube (19) permeable to light and UV radiation, is joined to both envelope tubes (2, 3), the additional tube (19) having an electrical discharge gap.
- Radiation arrangement according to claim 4, characterised in that the additional tube (19) having the discharge gap has opposing electrodes (21, 22), which can be connected in each case to an external power supply via sealed tube ends with a current lead-through and terminal contacts (26, 27).
- Radiation arrangement according to claim 4, characterised in that electromagnetic energy is injected into the tube interior to excite the discharge in the additional tube (19).
- Radiation arrangement according to claim 6, characterised in that the electromagnetic energy is injected via electrodes located outside the tube interior.
- Radiation arrangement according to any one of claims 4 to 7, characterised in that electrodes for the operation of the discharge gap are connected to a power supply via external contacts.
- Radiation arrangement according to any one of claims 1 to 8, characterised in that the external contacts are electrically connected individually in each case to terminals of a joint power supply.
- Radiation arrangement according to any one of claims 1 to 9, characterised in that at least one of the tubes has a reflective coating.
- Radiation arrangement according to any one of claims 1 to 10, characterised in that the direction of the emission of radiation from the tubes (2, 3) is oriented at least approximately parallel.
- Radiation arrangement according to any one of claims 1 to 11, characterised in that the direction of the emission of radiation is oriented toward a field to be irradiated jointly.
- Radiation arrangement according to any one of claims 1 to 12, characterised in that at least two radiators can be electrically connected in series.
- Use of the radiation arrangement according to any one of claims 1 to 13, wherein the envelope tube provided with the incandescent coil (5) is used as the IR radiation source in the near IR range and the envelope tube provided with the radiating strip (10, 10') is used as the IR radiation source in the near radiation range (IR-B) and medium IR range.
- Use of the radiation arrangement according to any one of claims 4 to 13, wherein an additional envelope tube provided with a discharge space is used as the UV radiation source.
- Method for the treatment of surfaces by means of IR radiation generated by a radiation arrangement according to any one of claims 1 to 13, in particular of coated surfaces on substrates or of dissolved paint pigments on a carrier for the purpose of drying, wherein the surface is irradiated from at least one infrared source for a predetermined time period, characterised in that the surface is treated at least intermittently with IR radiation in a first wavelength range of 780 nm to 1.4 µm and at least intermittently with an IR irradiation in a second wavelength range of 2.5 µm to 5 µm.
- Method according to claim 16, characterised in that the irradiation of the first and second wavelength range at least intermittently overlaps.
- Method according to claim 16 or 17, characterised in that the radiation of the first wavelength range is emitted from an IR radiator with an incandescent coil as the radiation source and the IR radiation of the second wavelength range is emitted from an IR radiator with a carbon strip as the radiation source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06025804A EP1775997A3 (en) | 2000-05-22 | 2001-04-06 | Radiation assembly and its use and it method for treating upper surfaces |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10024963 | 2000-05-22 | ||
DE10024963A DE10024963A1 (en) | 2000-05-22 | 2000-05-22 | Radiation arrangement and its use and method for treating surfaces |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06025804A Division EP1775997A3 (en) | 2000-05-22 | 2001-04-06 | Radiation assembly and its use and it method for treating upper surfaces |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1158836A2 EP1158836A2 (en) | 2001-11-28 |
EP1158836A3 EP1158836A3 (en) | 2002-05-02 |
EP1158836B1 true EP1158836B1 (en) | 2007-01-24 |
Family
ID=7642891
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06025804A Withdrawn EP1775997A3 (en) | 2000-05-22 | 2001-04-06 | Radiation assembly and its use and it method for treating upper surfaces |
EP01108725A Expired - Lifetime EP1158836B1 (en) | 2000-05-22 | 2001-04-06 | Radiation arrangement and its use and the treatment process of upper surfaces |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06025804A Withdrawn EP1775997A3 (en) | 2000-05-22 | 2001-04-06 | Radiation assembly and its use and it method for treating upper surfaces |
Country Status (4)
Country | Link |
---|---|
US (2) | US6421503B2 (en) |
EP (2) | EP1775997A3 (en) |
JP (1) | JP3650741B2 (en) |
DE (2) | DE10024963A1 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19912544B4 (en) * | 1999-03-19 | 2007-01-18 | Heraeus Noblelight Gmbh | Infrared radiator and method for heating a material to be treated |
EP1485213A2 (en) * | 2002-03-06 | 2004-12-15 | Solaronics Technologies | Method for photopolymerzation of a polymerisable coating, installation therefor and product comprising the coating obtained |
DE10211249B4 (en) * | 2002-03-13 | 2004-06-17 | Heraeus Noblelight Gmbh | Use of a shiny precious metal preparation |
FR2847759A1 (en) * | 2002-11-27 | 2004-05-28 | Koninkl Philips Electronics Nv | Heating system for industrial use in drying or plastic forming, uses reflector housing two infrared sources that operate in different regions of the infrared spectrum to allow control of type of heat delivered |
DE102006004574A1 (en) * | 2005-06-06 | 2006-12-07 | Advanced Photonics Technologies Ag | Apparatus and method for color or paint coating a winding sheet |
KR101306725B1 (en) | 2007-03-08 | 2013-09-10 | 엘지전자 주식회사 | Heating device |
US8859938B2 (en) * | 2009-01-26 | 2014-10-14 | Nissan North America, Inc. | Vehicle cabin heating system |
US20100193510A1 (en) * | 2009-02-02 | 2010-08-05 | Danilychev Vladimir A | Wireless radiative system |
DE102013104577B3 (en) * | 2013-05-03 | 2014-07-24 | Heraeus Noblelight Gmbh | Apparatus for drying and sintering metal-containing ink on a substrate |
JP6464159B2 (en) * | 2013-06-26 | 2019-02-06 | ネステク ソシエテ アノニム | Volume heating device for beverage or food preparation machine |
US10468242B2 (en) * | 2013-09-05 | 2019-11-05 | Applied Materials, Inc. | Lamp cross-section for reduced coil heating |
DE102014104851B4 (en) * | 2014-04-04 | 2017-03-30 | Heraeus Noblelight Gmbh | Device for sterilization by means of ultraviolet radiation |
DE102015113766B4 (en) * | 2015-08-19 | 2019-07-04 | Heraeus Noblelight Gmbh | Radiator module and use of the radiator module |
KR101837891B1 (en) * | 2017-02-22 | 2018-03-13 | 이우주 | liquid circulation type double pipe lamp |
US11370213B2 (en) | 2020-10-23 | 2022-06-28 | Darcy Wallace | Apparatus and method for removing paint from a surface |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA733615A (en) * | 1966-05-03 | Horstmann Georg | Electrical infrared radiator | |
US2346234A (en) * | 1942-09-15 | 1944-04-11 | Lester A Reynolds | Manicuring device |
US3260139A (en) * | 1963-08-07 | 1966-07-12 | Sanborn Frank Eugene | Self-clearing drill |
JPS4637181Y1 (en) * | 1968-05-18 | 1971-12-22 | ||
DE1807660B2 (en) * | 1968-11-07 | 1972-01-27 | Holzer Patent Ag, Zug (Schweiz) | STEPPING DRIVE |
US3627989A (en) * | 1969-12-11 | 1971-12-14 | Thermal Quarr Schmelze Gmbh | Infrared surface heater |
US4091441A (en) * | 1976-06-28 | 1978-05-23 | John Ott Laboratories, Inc. | Full-spectrum luminaire |
GB1544551A (en) * | 1978-01-10 | 1979-04-19 | Electricity Council | Electric radiant heaters |
US4469102A (en) * | 1980-12-24 | 1984-09-04 | Fish Errol R | Suntanning booth |
SE8200685L (en) * | 1982-02-05 | 1983-08-06 | Electrolux Ab | WITH INFRARED RADIATION WORKING HOUSE OVEN |
JPS60245933A (en) * | 1984-05-21 | 1985-12-05 | Hideo Abe | Electric oven |
FI80099C (en) * | 1986-10-31 | 1990-04-10 | Imatran Voima Oy | FOERFARANDE OCH ANORDNING FOER TORKNING AV ROERLIGT BANMATERIAL. |
JPH02118329A (en) * | 1988-10-28 | 1990-05-02 | Matsushita Seiko Co Ltd | Radiation heater |
JPH02152187A (en) * | 1988-12-02 | 1990-06-12 | Ushio Inc | Heating cooker |
DE8913683U1 (en) | 1989-11-20 | 1990-01-11 | Heraeus Quarzschmelze Gmbh, 6450 Hanau | Infrared heaters |
EP0486035B1 (en) * | 1990-11-16 | 1995-02-01 | Setsuo Tate | Drying method and devices for coated layer |
JPH0536469A (en) * | 1991-07-31 | 1993-02-12 | Toshiba Lighting & Technol Corp | Infrared heater |
US5175437A (en) * | 1991-12-12 | 1992-12-29 | Alexander Waluszko | Ultraviolet light apparatus |
US5387801A (en) * | 1993-06-10 | 1995-02-07 | Uvp, Inc. | Multiple wavelength light source |
JPH07230795A (en) * | 1994-02-16 | 1995-08-29 | Toshiba Lighting & Technol Corp | Heat generating tungsten halogen lamp, heating device and image forming device |
JP3007266B2 (en) * | 1994-04-28 | 2000-02-07 | ウシオ電機株式会社 | Heater lamp device for liquid heating |
JP2669358B2 (en) * | 1994-10-03 | 1997-10-27 | 日本電気株式会社 | Method of heating semiconductor device |
DE4438870B4 (en) * | 1994-11-03 | 2004-11-11 | Heraeus Noblelight Gmbh | Infrared emitter with an elongated resistance body as the radiation source |
DE4438871A1 (en) * | 1994-11-03 | 1996-05-09 | Heraeus Noblelight Gmbh | Infra red radiator |
DE19613502C2 (en) | 1996-04-04 | 1998-07-09 | Heraeus Noblelight Gmbh | Durable excimer emitter and process for its manufacture |
US5930914A (en) * | 1996-04-18 | 1999-08-03 | Infrarodteknik Ab | Method and device for drying a moving web material |
DE19822829A1 (en) | 1998-05-20 | 1999-11-25 | Heraeus Noblelight Gmbh | Short-wave infrared panel heater |
DE19839457A1 (en) * | 1998-08-29 | 2000-03-09 | Heraeus Noblelight Gmbh | Spiral heating element, method and device for producing the same and infrared radiator produced using a spiral heating element |
-
2000
- 2000-05-22 DE DE10024963A patent/DE10024963A1/en not_active Withdrawn
-
2001
- 2001-04-06 EP EP06025804A patent/EP1775997A3/en not_active Withdrawn
- 2001-04-06 EP EP01108725A patent/EP1158836B1/en not_active Expired - Lifetime
- 2001-04-06 DE DE50111926T patent/DE50111926D1/en not_active Expired - Lifetime
- 2001-05-17 US US09/859,788 patent/US6421503B2/en not_active Expired - Lifetime
- 2001-05-22 JP JP2001152669A patent/JP3650741B2/en not_active Expired - Fee Related
-
2002
- 2002-02-12 US US10/074,316 patent/US6577816B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2002110326A (en) | 2002-04-12 |
US6577816B2 (en) | 2003-06-10 |
EP1158836A3 (en) | 2002-05-02 |
JP3650741B2 (en) | 2005-05-25 |
DE10024963A1 (en) | 2001-12-13 |
US6421503B2 (en) | 2002-07-16 |
EP1775997A2 (en) | 2007-04-18 |
EP1158836A2 (en) | 2001-11-28 |
EP1775997A3 (en) | 2012-02-29 |
US20020094197A1 (en) | 2002-07-18 |
DE50111926D1 (en) | 2007-03-15 |
US20010046379A1 (en) | 2001-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1158836B1 (en) | Radiation arrangement and its use and the treatment process of upper surfaces | |
DE4425683C2 (en) | Electron generating device of an X-ray tube with a cathode and with an electrode system for accelerating the electrons emanating from the cathode | |
DE69625763T2 (en) | Discharge lamp with a dielectric barrier | |
DE4438870B4 (en) | Infrared emitter with an elongated resistance body as the radiation source | |
WO2007093525A1 (en) | High-pressure discharge lamp | |
DE2726946A1 (en) | ELECTRIC LIGHT BULB | |
EP3436271B1 (en) | Printing press having an infrared dryer unit | |
EP1206794A1 (en) | Light source and method for producing a light source | |
DE69805456T2 (en) | Application device for hot melt adhesive and glue stick for this device | |
EP0428835A2 (en) | Infrared radiator | |
DE2646577B2 (en) | Ignition device for a flash lamp operated with direct current | |
DE10204691C1 (en) | Mercury-free, high-intensity, high pressure gas discharge lamp for vehicle headlights, has infra-red reflecting coating on lower wall to promote vaporization | |
DE3428181A1 (en) | BULB | |
DE2502649A1 (en) | IMPROVED ELECTRODE STRUCTURE FOR HIGH CURRENT, LOW PRESSURE DISCHARGE DEVICES | |
DE3712049C2 (en) | ||
DE2131887A1 (en) | Gas discharge tubes | |
DE69921726T2 (en) | High pressure discharge lamp | |
DE4438871A1 (en) | Infra red radiator | |
DE102004036827B4 (en) | microwave heating | |
DE102007031628B4 (en) | UV radiation source | |
DE4304142C2 (en) | X-ray tube cathode | |
WO2022013137A1 (en) | Medium-wave infrared emitter and method for producing same | |
DE2734130A1 (en) | GAS DISCHARGE LAMP | |
DE3225327C2 (en) | ||
DE1589284C3 (en) | Method for producing an electric high-pressure discharge lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010411 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR Kind code of ref document: A2 Designated state(s): CH DE FR GB IT LI NL |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: CH DE FR GB IT LI NL |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: KIRKER & CIE SA Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 50111926 Country of ref document: DE Date of ref document: 20070315 Kind code of ref document: P |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20070412 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20071025 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50111926 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE Ref country code: DE Ref legal event code: R082 Ref document number: 50111926 Country of ref document: DE Representative=s name: EULER, MATTHIAS, DR., DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20180418 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20180419 Year of fee payment: 18 Ref country code: DE Payment date: 20180420 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20180423 Year of fee payment: 18 Ref country code: FR Payment date: 20180420 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20180418 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50111926 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 50111926 Country of ref document: DE Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20190501 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190406 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190501 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190406 |