[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1158836B1 - Radiation arrangement and its use and the treatment process of upper surfaces - Google Patents

Radiation arrangement and its use and the treatment process of upper surfaces Download PDF

Info

Publication number
EP1158836B1
EP1158836B1 EP01108725A EP01108725A EP1158836B1 EP 1158836 B1 EP1158836 B1 EP 1158836B1 EP 01108725 A EP01108725 A EP 01108725A EP 01108725 A EP01108725 A EP 01108725A EP 1158836 B1 EP1158836 B1 EP 1158836B1
Authority
EP
European Patent Office
Prior art keywords
radiation
arrangement according
tube
radiation arrangement
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01108725A
Other languages
German (de)
French (fr)
Other versions
EP1158836A3 (en
EP1158836A2 (en
Inventor
Walter Dieudonné
Joachim Scherzer
Siegfried Grob
Klaus Schmitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Priority to EP06025804A priority Critical patent/EP1775997A3/en
Publication of EP1158836A2 publication Critical patent/EP1158836A2/en
Publication of EP1158836A3 publication Critical patent/EP1158836A3/en
Application granted granted Critical
Publication of EP1158836B1 publication Critical patent/EP1158836B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/40Heating elements having the shape of rods or tubes
    • H05B3/42Heating elements having the shape of rods or tubes non-flexible
    • H05B3/44Heating elements having the shape of rods or tubes non-flexible heating conductor arranged within rods or tubes of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0033Heating devices using lamps
    • H05B3/0038Heating devices using lamps for industrial applications
    • H05B3/0066Heating devices using lamps for industrial applications for photocopying
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the invention relates to a radiation arrangement with at least one infrared radiator and at least one further radiator with at least two interconnected elongated, permeable to light and IR radiation and sealed with respect to the ambient atmosphere, envelope tubes, of which at least a first envelope tube an incandescent filament which is electrically connected via sealed pipe ends and external contacts to an external power supply, as well as their use and a method for the treatment of surfaces.
  • an electric heat radiator which has two mutually parallel helical heating coil, which are each arranged in a quartz glass tube, wherein the quartz glass tubes are in their length by a fusion connection with each other.
  • the two filaments are connected in series.
  • EP 0 428 835 A2 and corresponding US Pat. No. 5,091,632 also disclose infrared radiators with twin tube radiators.
  • the invention has as its object to provide a thermal radiation arrangement to rapidly dry on surfaces applied coatings or imprints with pigments or paints in solvents and at the same time to let the solvents such as toluene or water evaporate quickly.
  • the object is achieved according to the device in that at least a second sheath tube is provided, which has a radiator belt, which is also electrically connected via sealed ends and external contacts with or with another external power supply.
  • the second cladding tube is likewise provided for emitting infrared radiation, in particular for emitting IR radiation in the middle IR range.
  • a different temperature radiator instead of the radiator band can be used, which emits radiation in the central IR range.
  • the arrangement has relatively high radiation components both in the visible spectral range and in the near infrared radiation range, in particular with a wavelength in the range of 780 nm to 1.4 ⁇ m, as well as in the central IR radiation range, in particular with a wavelength in the range from 2.5 ⁇ m to 5 ⁇ m.
  • an elongated carbon band is used as the radiator band, wherein the carbon band is formed in a further preferred form as an elongated spiral. It emits radiation in a medium IR spectral range, while an incandescent filament emits short-wave IR radiation (near IR) and optionally also visible light.
  • the radiation arrangement has a percentage of more IR radiation components than previous radiation sources with only one temperature in the specified wavelength ranges.
  • a use of the object according to the invention is provided by using a twin-tube radiation arrangement with incandescent filament as the short-wave infrared radiator source and a tube provided with carbon ribbon as a radiator band as medium-wave IR radiator.
  • the object is achieved in a method for the treatment of surfaces by IR irradiation, in particular of coated or printed surfaces on substrates or dissolved color pigments on a support for drying is irradiated, achieved in that the surface at least temporarily with an IR radiation with a high proportion in a first wavelength range of 780 nm to 1.2 microns and at least temporarily treated simultaneously with an IR irradiation with a high radiation component in a second wavelength range of 2.5 microns to 5 microns.
  • the surface irradiation of the first wavelength range and the second wavelength range overlap at least temporarily, wherein the first IR radiation is emitted from a radiator with a filament and the second IR radiation from a radiator with a carbon band as the radiation source. It proves to be particularly advantageous that, when the first and second wavelength ranges are superimposed, a spectral radiation distribution is achieved with a relatively high radiation fraction in the wavelength range from 780 nm to 3.1 ⁇ m.
  • a significant advantage is the fact that, depending on the embodiment, the individual radiation components of this radiation arrangement can be switched in an OR operation or operated in a common Heidelberg. This results in the operation of machines with changing processes, the advantage that no spot change must take place. Also, the user no longer needs different individual sources of radiation so that a reduction in spare parts inventory is achieved.
  • the carbon emitter used can be used as a starting current limiter for the short-wave radiator (incandescent filament).
  • UV radiation components can also be superimposed with the IR spectra. Again, separate and common modes can be combined.
  • FIG. 1a schematically shows a perspective view of a twin tube emitter according to the invention.
  • Figure 1b shows a front view of a twin tube radiator, but having a coiled carbon radiator.
  • Figure 1c shows a frontal view of an arrangement which additionally has a tubular discharge lamp, so that in addition to infrared radiation and UV radiation can be generated.
  • FIG. 2 shows in the diagram the relative intensity of a Planck spectral radiation distribution with KW / m 2 nomination with a short-wave infrared radiator (NIR / IR-A) at an operating temperature of 2600 ° C. and a carbon radiator at an operating temperature of approximately 950 ° C. , wherein the intensity is plotted against the wavelength lambda [ ⁇ m].
  • NIR / IR-A short-wave infrared radiator
  • FIG. 3 shows in the diagram the spectral absorption of the water for different layer thicknesses (2 ⁇ m, 10 ⁇ m), wherein the absorption in the range from 0 to 100 percent is plotted against the lambda wavelength in ⁇ m.
  • Figure 4 shows in the diagram the efficiency of water drying for a layer of 10 microns thickness, wherein the temperature is plotted in Kelvin along the X-axis, while the efficiency along the Y-axis is entered.
  • the radiation arrangement has a twin tube emitter 1, which contains two enveloping tubes 2, 3 made of infrared transparent and visible radiation, preferably quartz glass, at least approximately parallel to one another, the two tubes being formed by an intermediate web 4, which is likewise made of Quartz glass exists, mechanically firmly connected to each other.
  • the first tube 2 has a shortwave infrared radiator provided with an incandescent filament 5, the high emission intensity of which lies in the wavelength range from 780 nm to approximately 1.2 ⁇ m (near IR / IR-A), as shown in the following FIG. 2 (curve II). evident.
  • the definition of the wavelength range results from DIN standard 5030, part 2.
  • a similar radiator is known for example from the aforementioned EP 0 428 835 or the corresponding US 5,091,632.
  • a short-wave infrared radiator is according to Figure 1a, the filament 5 of the sheath tube 2 via sheet-shaped current feedthroughs 6, 7 of molybdenum in the respective pinch region of the pipe ends 8 ', 9' of the tube 2, each with an external terminal contact 8, 9 electrically and mechanically connected which is for electrical connection to an external power supply.
  • the tube 3 has an infrared radiator with a carbon ribbon as the radiator band 10 which is provided with terminal contacts 11, 12 and sheet-shaped current feedthroughs 13, 14 of molybdenum in the respective pinch region of the tube ends 15, 16 for connection to the power supply ,
  • connection between the ends of the carbon strip 11 and the current feedthroughs 13, 14 preferably takes place via graphite paper, as is known, for example, from DE 44 19 285 C2 or the corresponding US Pat. No. 5,567,951.
  • graphite paper as is known, for example, from DE 44 19 285 C2 or the corresponding US Pat. No. 5,567,951.
  • FIG. 1b The frontal view of Figure 1b shows the two adjacent sheaths 2 and 3 of the twin tube radiator 1, which are connected to each other via a gutter 4 made of quartz glass.
  • emitter strip 10 ' according to FIG. 1b is wound prior to introduction into the carbon emitter, ie a helical spiral serves as emitter strip 10'.
  • the coiled radiator strip 10 ' has the particular advantage that a greater proportion of radiation in the wavelength range of 1.6 to 3.8 microns (near IR / IR-B to average IR / IR-C) according to curve 1 of Figure 2 are emitted can, as it results from the Stefan Boltzmann's law.
  • the definition of the wavelength range results from DIN standard 5030, part 2.
  • the cladding tubes 2 and 3 are - as already explained with reference to Figure 1a - mechanically connected to each other via a gutter 4.
  • the terminal contacts 8, 9, 17 '17 “and 18', 18" correspond in their function largely to the illustrated with reference to Figure 1 contacts 17, 18. Due to the separately led out terminal contacts a single control of the respective lamps is possible, so this example can be operated simultaneously or alternately in time.
  • the frontal view of a radiator combination shown in FIG. 1c has, in addition to the previously described twin arrangement, an additional radiator arrangement connected as a discharge lamp, wherein the quartz glass envelope tube 19 of quartz glass of the discharge lamp additionally connected via an intermediate web 4 '(quartz glass) enables the emission of UV radiation. Since the discharge lamp 20 is connected via the intermediate web 4 'to the twin-tube radiator arrangement 1', it is also possible here to speak of a triple-tube radiator arrangement. It is thus possible to treat color pigments by visible light and infrared radiation, and at the same time or alternately to treat photoinitiators by means of UV irradiation by discharge lamp 20.
  • the filling of the discharge lamp 20 is preferably made of mercury and possibly an admixture of metal halides, wherein the electrodes 21, 22 are preferably made of tungsten.
  • the additional cladding tube 19 of the discharge lamp 20, like the web 4 'or web 4, consists of quartz glass, so that optimal transparency for UV radiation is provided here.
  • the connection contacts 26, 27 of the discharge lamp 20 are also led out separately, so that the discharge lamp 20 can be ignited and operated independently of the other two infrared radiators.
  • the relative intensity maximum of a carbon emitter having a temperature of 950 ° C. (curve I) is in the range from 1.6 to 3.8 ⁇ m.
  • incandescent filament 5 (curve II)
  • carbon ribbon 10 or 10 'as emitters With a simultaneous operation of incandescent filament 5 (curve II) and carbon ribbon 10 or 10 'as emitters, a combination of both emitters produces a thermal radiation source which has a high total radiation fraction in the range from 780 nm to 3.5 ⁇ m according to curve III ( near IR to the beginning of middle IR).
  • curve III near IR to the beginning of middle IR
  • FIG. 3 shows the spectral absorption of the water on the basis of the diagram, with a first maximum spectral absorption, both for a larger layer thickness of, for example, 10 ⁇ m (curve I) and for a smaller layer thickness of 2 ⁇ m (curve II) of the applied layer with A1, A1 ', occurs in the wavelength range of about 3 microns, while a second lower maximum with absorbance of about 40 to 90 percent in a designated A2, A2' spectral range of about 6 microns. It can be seen that a layer thickness of only 2 microns has a lower degree of absorption in the absorption points A1 'and A2' of the curve II, each with 90 percent and 40 percent.

Landscapes

  • Resistance Heating (AREA)
  • Drying Of Solid Materials (AREA)
  • Supply, Installation And Extraction Of Printed Sheets Or Plates (AREA)
  • Radiation-Therapy Devices (AREA)

Description

Die Erfindung betrifft eine Strahlungsanordnung mit wenigstens einem Infrarotstrahler und wenigstens einem weiteren Strahler mit wenigstens zwei miteinander verbundenen langgestreckten, für Licht und IR-Strahlung durchlässigen und gegenüber der Umgebungs-Atmosphäre abgeschlossenen, Hüll-Rohren, von denen wenigstens ein erstes Hüll-Rohr eine Glühwendel aufweist, die über abgedichtete Rohrenden und äußere Kontakte mit einer äußeren Energieversorgung elektrisch verbunden ist, sowie deren Verwendung und ein Verfahren zur Behandlung von Oberflächen.The invention relates to a radiation arrangement with at least one infrared radiator and at least one further radiator with at least two interconnected elongated, permeable to light and IR radiation and sealed with respect to the ambient atmosphere, envelope tubes, of which at least a first envelope tube an incandescent filament which is electrically connected via sealed pipe ends and external contacts to an external power supply, as well as their use and a method for the treatment of surfaces.

Aus der GB-PS 15 44 551 ist ein elektrischer Wärmestrahler bekannt, der zwei zueinander parallel angeordnete spiralförmige Heizwendel aufweist, die jeweils in einer Quarzglasröhre angeordnet sind, wobei die Quarzglasrohre in ihrer Länge durch eine Schmelzverbindung miteinander sind. Die beiden Glühwendel sind in Serie geschaltet.From GB-PS 15 44 551 an electric heat radiator is known, which has two mutually parallel helical heating coil, which are each arranged in a quartz glass tube, wherein the quartz glass tubes are in their length by a fusion connection with each other. The two filaments are connected in series.

Auch wenn sich eine erhebliche Erhöhung der Intensität erreichen lässt, wird nur ein verhältnismäßig enger Spektralbereich der kurzwelligen Infrarotstrahlung ausgegeben, wobei es in der Regel schwierig ist, gleichzeitig Farben bzw. Pigmente und deren Lösung beispielsweise Wasser, nach einem Oberflächenauftrag, wie beispielsweise Aufdrucken auf einen Träger, rasch zu trocknen.Even if a considerable increase in intensity can be achieved, only a relatively narrow spectral range of short-wave infrared radiation is output, it being difficult at the same time colors or pigments and their solution, for example water, after a surface application, such as printing on a Carrier to dry quickly.

Weiterhin sind aus der EP 0 428 835 A2 bzw. der entsprechenden US 5,091,632 auch Infrarot-Strahler mit Zwillings-Rohr-Strahlern bekannt.Furthermore, EP 0 428 835 A2 and corresponding US Pat. No. 5,091,632 also disclose infrared radiators with twin tube radiators.

Weiterhin ist es aus der DE 198 39 457 A1 bekannt, einen Infrarotstrahler mit einem Carbonband als Heizelement einzusetzen; ein solches Carbonband ist insbesondere zur Abgabe von IR-Strahlung in einem mittleren Wellenlängenbereich von 1,5 bis 4,5 µm geeignet.Furthermore, it is known from DE 198 39 457 A1 to use an infrared radiator with a carbon ribbon as a heating element; Such a carbon ribbon is particularly suitable for emitting IR radiation in a mean wavelength range of 1.5 to 4.5 microns.

Die Erfindung stellt sich die Aufgabe, eine thermische Strahlungsanordnung zu schaffen, um auf Oberflächen aufgebrachte Beschichtungen oder Aufdrucke mit Pigmenten oder Farben in Lösungsmitteln rasch zu trocknen und gleichzeitig die Lösungsmittel, wie beispielsweise Toluol oder Wasser rasch verdunsten zu lassen.The invention has as its object to provide a thermal radiation arrangement to rapidly dry on surfaces applied coatings or imprints with pigments or paints in solvents and at the same time to let the solvents such as toluene or water evaporate quickly.

Die Aufgabe wird vorrichtungsgemäß dadurch gelöst, dass wenigstens ein zweites Hüll-Rohr vorgesehen ist, das ein Strahlerband aufweist, welches ebenfalls über abgedichtete Enden und äußere Kontakte mit der oder mit einer weiteren äußeren Energieversorgung elektrisch verbunden ist. Das zweite Hüllrohr ist ebenfalls zur Ausgabe von Infrarot-Strahlung, insbesondere zur Ausgabe von IR-Strahlung im mittleren IR-Bereich, vorgesehen. Dabei kann selbstverständlich auch ein andersgearteter Temperaturstrahler statt des Strahlerbandes eingesetzt werden, der Strahlung im mittleren IR-Bereich abgibt. Als vorteilhaft erweist es sich, daß die Anordnung sowohl im sichtbaren Spektralbereich sowie nahen Infrarotstrahlungsbereich, insbesondere mit einer Wellenlänge im Bereich von 780 nm bis 1,4 µm, als auch im mittleren IR-Strahlungsbereich verhältnismäßig hohe Strahlungsanteile aufweist, insbesondere mit einer Wellenlänge im Bereich von 2,5 µm bis 5 µm.The object is achieved according to the device in that at least a second sheath tube is provided, which has a radiator belt, which is also electrically connected via sealed ends and external contacts with or with another external power supply. The second cladding tube is likewise provided for emitting infrared radiation, in particular for emitting IR radiation in the middle IR range. Of course, a different temperature radiator instead of the radiator band can be used, which emits radiation in the central IR range. It proves to be advantageous that the arrangement has relatively high radiation components both in the visible spectral range and in the near infrared radiation range, in particular with a wavelength in the range of 780 nm to 1.4 μm, as well as in the central IR radiation range, in particular with a wavelength in the range from 2.5 μm to 5 μm.

In einer bevorzugten Ausgestaltung der Vorrichtung wird als Strahlerband ein langgestrecktes Carbonband eingesetzt, wobei das Carbonband in einer weiteren bevorzugten Form auch als langgestreckte Spirale ausgebildet ist. Es sendet Strahlung in einem mittleren IR-Spektralbereich aus, während ein Glühwendelstrahler kurzwellige IR-Strahlung (nahes IR) und ggf. auch sichtbares Licht ausgibt.In a preferred embodiment of the device, an elongated carbon band is used as the radiator band, wherein the carbon band is formed in a further preferred form as an elongated spiral. It emits radiation in a medium IR spectral range, while an incandescent filament emits short-wave IR radiation (near IR) and optionally also visible light.

Als besonders vorteilhaft erweist es sich, dass durch Kombination von Strahlenquellen mit verschiedenen Temperaturen (Δ λ max > 400 nm) in einer gemeinsamen Strahlungsanordnung die Effizienz von Prozessen zur Wärmebehandlung gegenüber üblichen kurzwelligen IR-Strahlenquellen gesteigert werden kann. Beispielsweise wird die Effizienz von Farbentrocknungsprozessen verbessert.It proves to be particularly advantageous that by combining radiation sources with different temperatures (Δλmax> 400 nm) in a common radiation arrangement, the efficiency of heat treatment processes can be increased over conventional short-wave IR radiation sources. For example, the efficiency of paint drying processes is improved.

Die Strahlungsanordnung besitzt durch ihre Überlagerung von verschiedenen Planck-Verteilungen prozentual mehr IR-Strahlungsanteile als bisherige Strahlenquellen mit nur einer Temperatur in den angegebenen Wellenlängenbereichen.By virtue of its superimposition of different Planck distributions, the radiation arrangement has a percentage of more IR radiation components than previous radiation sources with only one temperature in the specified wavelength ranges.

In einer weiteren vorteilhaften Ausgestaltung ist es möglich, neben thermischen Strahlenquellen wenigstens ein zusätzliches, für Licht und UV-Strahlung durchlässiges, langgestrecktes Rohr vorzusehen, welches eine elektrische Entladungsstrecke aufweist und eine zusätzliche UV-Strahlung im Wellenlängenbereich von 0,15 bis 380 nm ausgibt, die insbesondere zu Farbtrocknung geeignet ist.In a further advantageous embodiment, it is possible to provide at least one additional, permeable to light and UV radiation, elongated tube in addition to thermal radiation sources, which has an electrical discharge path and a emits additional UV radiation in the wavelength range of 0.15 to 380 nm, which is particularly suitable for color drying.

Bevorzugte Ausgestaltungen des Infrarot-Strahlers bzw. der Strahlungsanordnung sind in den Ansprüchen 1 bis 13 angegeben.Preferred embodiments of the infrared radiator or the radiation arrangement are specified in claims 1 to 13.

Als besonders vorteilhaft erweist sich der gegenüber Einzelstrahlern verringerte Platzbedarf, wobei durch einen wahlweisen Betrieb der Strahlenquellen mit unterschiedlicher Wellenlänge für die jeweiligen Anwendungsgebiete optimale Strahlungs-Bedingungen eingestellt werden können.Particularly advantageous is the reduced space requirement compared to individual radiators, whereby optimal radiation conditions can be set by selectively operating the radiation sources with different wavelengths for the respective fields of application.

Eine verwendungsgemäße Lösung der Aufgabe ist durch Einsatz einer Zwillingsrohr-Strahlungsanordnung mit Glühwendel als kurzwelliger Infrarotstrahlerquelle und einer mit Carbonband als Strahlerband versehenen Röhre als mittelwelliger IR-Strahler vorgesehen.A use of the object according to the invention is provided by using a twin-tube radiation arrangement with incandescent filament as the short-wave infrared radiator source and a tube provided with carbon ribbon as a radiator band as medium-wave IR radiator.

Die Aufgabe wird bei einem Verfahren zur Behandlung von Oberflächen mittels IR-Bestrahlung, insbesondere von beschichteten oder bedruckten Oberflächen auf Substraten oder von gelösten Farbpigmenten auf einem Träger zwecks Trocknung bestrahlt wird, dadurch gelöst, dass die Oberfläche wenigstens zeitweise mit einer IR-Strahlung mit einem hohen Anteil in einem ersten Wellenlängenbereich von 780 nm bis 1,2 µm und wenigstens zeitweise gleichzeitig mit einer IR-Bestrahlung mit hohem Strahlungsanteil in einem zweiten Wellenlängenbereich von 2,5 µm bis 5 µm behandelt wird.The object is achieved in a method for the treatment of surfaces by IR irradiation, in particular of coated or printed surfaces on substrates or dissolved color pigments on a support for drying is irradiated, achieved in that the surface at least temporarily with an IR radiation with a high proportion in a first wavelength range of 780 nm to 1.2 microns and at least temporarily treated simultaneously with an IR irradiation with a high radiation component in a second wavelength range of 2.5 microns to 5 microns.

Vorteilhafte Ausgestaltungen des Verfahrens sind in den Ansprüchen 17 und 18 angegeben.Advantageous embodiments of the method are given in claims 17 and 18.

In einer bevorzugten Ausgestaltung des Verfahrens überlappen sich die Oberflächenbestrahlung des ersten Wellenlängenbereichs und des zweiten Wellenlängenbereichs zumindest zeitweise, wobei die erste IR-Strahlung aus einem Strahler mit einer Glühwendel und die zweite IR-Strahlung aus einem Strahler mit einem Carbonband als Strahlenquelle abgestrahlt wird. Als besonders vorteilhaft erweist es sich, dass bei Überlagerung des ersten und des zweiten Wellenlängenbereichs eine spektrale Strahlungsverteilung bei einem relativ hohen Strahlungsanteil im Wellenlängenbereich von 780 nm bis 3,1 µm erzielt wird.In a preferred embodiment of the method, the surface irradiation of the first wavelength range and the second wavelength range overlap at least temporarily, wherein the first IR radiation is emitted from a radiator with a filament and the second IR radiation from a radiator with a carbon band as the radiation source. It proves to be particularly advantageous that, when the first and second wavelength ranges are superimposed, a spectral radiation distribution is achieved with a relatively high radiation fraction in the wavelength range from 780 nm to 3.1 μm.

Ein wesentlicher Vorteil ist darin zu sehen, dass je nach Ausführungsform die einzelnen Strahlungsanteile dieser Strahlungsanordnung in einer Oder-Verknüpfung eingeschaltet oder in einer gemeinsamen Schaltart betrieben werden können. Hieraus ergibt sich beim Betrieb von Maschinen mit wechselnden Prozessen der Vorteil, dass kein Strahlerwechsel mehr stattfinden muss. Auch benötigt der Anwender nicht mehr verschiedene einzelne Strahlerquellen, so dass eine Verringerung der Ersatzteilbevorratung erzielt wird.
Darüber hinaus kann der verwendete Carbonstrahler als Anlaufstrombegrenzer für den kurzwelligen Strahler (Glühwendel) verwendet werden.
A significant advantage is the fact that, depending on the embodiment, the individual radiation components of this radiation arrangement can be switched in an OR operation or operated in a common Schaltart. This results in the operation of machines with changing processes, the advantage that no spot change must take place. Also, the user no longer needs different individual sources of radiation so that a reduction in spare parts inventory is achieved.
In addition, the carbon emitter used can be used as a starting current limiter for the short-wave radiator (incandescent filament).

In einer weiteren Ausführung können auch UV-Strahlungsanteile mit den IR-Spektren überlagert werden. Auch hier sind wiederum getrennte und gemeinsame Betriebsarten kombinierbar.In a further embodiment, UV radiation components can also be superimposed with the IR spectra. Again, separate and common modes can be combined.

Im folgenden ist der Gegenstand anhand der Figuren 1a, 1b,1c, 2, 3 und 4 näher erläutert. Figur 1a zeigt in einer perspektivischen Ansicht schematisch einen erfindungsgemäßen Zwillingsrohrstrahler.In the following, the object is explained in more detail with reference to the figures 1a, 1b, 1c, 2, 3 and 4. FIG. 1a schematically shows a perspective view of a twin tube emitter according to the invention.

Figur 1b zeigt in einer Frontansicht einen Zwillingsrohrstrahler, der jedoch einen gewendelten Carbonstrahler aufweist.Figure 1b shows a front view of a twin tube radiator, but having a coiled carbon radiator.

Figur 1c zeigt in einer Frontal-Ansicht eine Anordnung, die zusätzlich eine rohrförmige Entladungslampe aufweist, so dass neben Infrarotstrahlung auch UV-Strahlung erzeugt werden kann.Figure 1c shows a frontal view of an arrangement which additionally has a tubular discharge lamp, so that in addition to infrared radiation and UV radiation can be generated.

Figur 2 zeigt im Diagramm die relative Intensität einer spektralen Strahlungsverteilung nach Planck mit KW/m2-Nominierung mit einem kurzwelligen Infrarotstrahler (NIR/IR-A) bei einer Betriebstemperatur von 2600°C und einem Carbonstrahler bei einer Betriebstemperatur von ca. 950°C, wobei die Intensität über der Wellenlänge Lambda [µm] aufgetragen ist.FIG. 2 shows in the diagram the relative intensity of a Planck spectral radiation distribution with KW / m 2 nomination with a short-wave infrared radiator (NIR / IR-A) at an operating temperature of 2600 ° C. and a carbon radiator at an operating temperature of approximately 950 ° C. , wherein the intensity is plotted against the wavelength lambda [μm].

Figur 3 zeigt im Diagramm die spektrale Absorption des Wassers für verschiedene Schichtdicken (2 µm; 10 µm), wobei die Absorption im Bereich von 0 bis 100 Prozent über der Wellenlänge Lambda in µm aufgetragen ist.FIG. 3 shows in the diagram the spectral absorption of the water for different layer thicknesses (2 μm, 10 μm), wherein the absorption in the range from 0 to 100 percent is plotted against the lambda wavelength in μm.

Figur 4 zeigt im Diagramm die Effizienz der Wassertrocknung für eine Schicht von 10 µm Dicke, wobei die Temperatur in Kelvin entlang der X-Achse aufgetragen ist, während die Effizienz entlang der Y-Achse eingetragen ist.Figure 4 shows in the diagram the efficiency of water drying for a layer of 10 microns thickness, wherein the temperature is plotted in Kelvin along the X-axis, while the efficiency along the Y-axis is entered.

Gemäß Figur 1a weist die Strahlungsanordnung einen Zwillingsrohrstrahler 1 auf, der zwei zueinander wenigstens annähernd parallel angeordnete Hüll-Rohre 2, 3 aus für Infrarotstrahlung und sichtbare Strahlung transparentem Werkstoff, vorzugsweise Quarzglas, enthält, wobei die beiden Rohre durch einen Zwischensteg 4, der ebenfalls aus Quarzglas besteht, mechanisch fest miteinander verbunden sind. Das erste Rohr 2 weist einen mit einer Glühwendel 5 versehenen kurzwelligen Infrarotstrahler auf, dessen hohe Abstrahlungsintensität im Wellenlängenbereich von 780 nm bis ca. 1,2 µm (nahes IR/IR-A) liegt, wie aus der nachfolgenden Figur 2 (Kurve II) hervorgeht. Die Definition des Wellenlängenbereiches ergibt sich aus der DIN-Norm 5030, Teil 2.According to FIG. 1 a, the radiation arrangement has a twin tube emitter 1, which contains two enveloping tubes 2, 3 made of infrared transparent and visible radiation, preferably quartz glass, at least approximately parallel to one another, the two tubes being formed by an intermediate web 4, which is likewise made of Quartz glass exists, mechanically firmly connected to each other. The first tube 2 has a shortwave infrared radiator provided with an incandescent filament 5, the high emission intensity of which lies in the wavelength range from 780 nm to approximately 1.2 μm (near IR / IR-A), as shown in the following FIG. 2 (curve II). evident. The definition of the wavelength range results from DIN standard 5030, part 2.

Ein ähnlicher Strahler ist beispielsweise aus der eingangs genannten EP 0 428 835 bzw. der entsprechenden US 5,091,632 bekannt. Bei einem solchen kurzwelligen Infrarotstrahler ist gemäß Figur 1a die Glühwendel 5 des Hüll-Rohres 2 über blattförmige Stromdurchführungen 6, 7 aus Molybdän im jeweiligen Quetschbereich der Rohrenden 8', 9' des Rohres 2 mit jeweils einem äußeren Anschlusskontakt 8, 9 elektrisch und mechanisch verbunden, der zur elektrischen Verbindung mit einer äußeren Energieversorgung dient. Das Rohr 3 weist dagegen einen Infrarotstrahler mit einem Carbonband als Strahlerband 10 auf, welches über Anschlusskontakte 11, 12 und blattförmige Stromdurchführungen 13, 14 aus Molybdän im jeweiligen Quetschbereich der Rohrenden 15, 16 mit äußeren Anschlusskontakten 17, 18 zwecks Anschluss an die Energieversorgung versehen ist.A similar radiator is known for example from the aforementioned EP 0 428 835 or the corresponding US 5,091,632. In such a short-wave infrared radiator is according to Figure 1a, the filament 5 of the sheath tube 2 via sheet-shaped current feedthroughs 6, 7 of molybdenum in the respective pinch region of the pipe ends 8 ', 9' of the tube 2, each with an external terminal contact 8, 9 electrically and mechanically connected which is for electrical connection to an external power supply. On the other hand, the tube 3 has an infrared radiator with a carbon ribbon as the radiator band 10 which is provided with terminal contacts 11, 12 and sheet-shaped current feedthroughs 13, 14 of molybdenum in the respective pinch region of the tube ends 15, 16 for connection to the power supply ,

Die Verbindung zwischen den Enden des Carbonbandes 11 und den Stromdurchführungen 13, 14 erfolgt vorzugsweise über Graphitpapier, wie es beispielsweise aus der DE 44 19 285 C2 bzw. der entsprechenden US 5,567,951 bekannt ist. Auf diese Weise soll die in Längsrichtung ausgeprägte elektrische Leitfähigkeit des Carbonbandes beim Kontaktieren zur Stromdurchführung ausgeglichen werden. Darüber hinaus wird auch eine Verbesserung der Kühlung erzielt.The connection between the ends of the carbon strip 11 and the current feedthroughs 13, 14 preferably takes place via graphite paper, as is known, for example, from DE 44 19 285 C2 or the corresponding US Pat. No. 5,567,951. In this way, the pronounced in the longitudinal direction of the electrical conductivity of the carbon ribbon to be compensated when contacting the current implementation. In addition, an improvement of the cooling is achieved.

Die Frontalansicht gemäß Figur 1b zeigt die beiden nebeneinander liegenden Hüllrohre 2 und 3 des Zwillingsrohrstrahlers 1, welche über einen Zwischensteg 4 aus Quarzglas miteinander verbunden sind. Im Gegensatz zu Figur 1a in der ein langgestrecktes flaches Strahlerband 10 dargestellt ist, wird Strahlerband 10' gemäß Figur 1b vor dem Einbringen in den Carbonstrahler gewendelt, d.h. dass eine spiralförmige Wendel als Strahlerband 10' dient. Das gewendelte Strahlerband 10' hat insbesondere den Vorteil, dass ein größerer Strahlungsanteil im Wellenlängen-Bereich von 1,6 bis 3,8 µm (nahes IR/IR-B bis mittleres IR/IR-C) gemäß Kurve 1 der Figur 2 abgestrahlt werden kann, wie es sich aus dem Stefan-Boltzmannschen Gesetz ergibt. Die Definition des Wellenlängenbereiches ergibt sich aus der DIN-Norm 5030, 2. Teil.The frontal view of Figure 1b shows the two adjacent sheaths 2 and 3 of the twin tube radiator 1, which are connected to each other via a gutter 4 made of quartz glass. In contrast to FIG. 1a, in which an elongated flat emitter strip 10 is shown, emitter strip 10 'according to FIG. 1b is wound prior to introduction into the carbon emitter, ie a helical spiral serves as emitter strip 10'. The coiled radiator strip 10 'has the particular advantage that a greater proportion of radiation in the wavelength range of 1.6 to 3.8 microns (near IR / IR-B to average IR / IR-C) according to curve 1 of Figure 2 are emitted can, as it results from the Stefan Boltzmann's law. The definition of the wavelength range results from DIN standard 5030, part 2.

Die Hüllrohre 2 und 3 sind - wie bereits anhand Figur 1a erläutert - über einen Zwischensteg 4 mechanisch miteinander verbunden. Die Anschlusskontakte 8, 9, 17' 17" und 18', 18" entsprechen in ihrer Funktion weitgehend den anhand Figur 1 erläuterten Kontakten 17, 18. Aufgrund der jeweils getrennt herausgeführten Anschlusskontakte ist eine einzelne Ansteuerung der jeweiligen Lampen möglich, so dass diese beispielsweise gleichzeitig oder auch zeitlich alternierend betrieben werden können.The cladding tubes 2 and 3 are - as already explained with reference to Figure 1a - mechanically connected to each other via a gutter 4. The terminal contacts 8, 9, 17 '17 "and 18', 18" correspond in their function largely to the illustrated with reference to Figure 1 contacts 17, 18. Due to the separately led out terminal contacts a single control of the respective lamps is possible, so this example can be operated simultaneously or alternately in time.

Die in Figur 1c dargestellte Frontalansicht einer Strahlerkombination weist neben der zuvor beschriebenen Zwillingsanordnung eine zusätzliche als Entladungslampe geschaltete Strahleranordnung auf, wobei das zusätzlich über einen Zwischensteg 4' (Quarzglas) verbundene Hüllrohr 19 aus Quarzglas der Entladungslampe die Abgabe von UV-Strahlung ermöglicht. Da die Entladungslampe 20 über Zwischensteg 4' mit der Zwillingsrohrstrahleranordnung 1' verbunden ist, kann hier auch von einer Drillingsrohrstrahleranordnung gesprochen werden. Es ist somit möglich, durch sichtbares Licht und Infrarotstrahlung Farbpigmente zu behandeln, und gleichzeitig bzw. alternierend Fotoinitiatoren mittels UV-Bestrahlung durch Entladungslampe 20 zu behandeln. Die Füllung der Entladungslampe 20 besteht vorzugsweise aus Quecksilber und ggf. einer Beimengung von Metallhalogeniden, wobei die Elektroden 21, 22 vorzugsweise aus Wolfram bestehen. Die Energieversorgung von Entladungslampe 20 erfolgt über Stromdurchführungen, 23, 24, die vorzugsweise als Molybdänfolien ausgebildet sind. Das zusätzliche Hüllrohr 19 der Entladungslampe 20 besteht ebenso wie Steg 4' bzw. Steg 4 aus Quarzglas, so dass hier eine optimale Transparenz für UV-Strahlung gegeben ist. Die Anschlusskontakte 26, 27 der Entladungslampe 20 sind ebenfalls separat herausgeführt, so dass die Entladungslampe 20 unabhängig von den anderen beiden Infrarotstrahlern gezündet und betrieben werden kann.The frontal view of a radiator combination shown in FIG. 1c has, in addition to the previously described twin arrangement, an additional radiator arrangement connected as a discharge lamp, wherein the quartz glass envelope tube 19 of quartz glass of the discharge lamp additionally connected via an intermediate web 4 '(quartz glass) enables the emission of UV radiation. Since the discharge lamp 20 is connected via the intermediate web 4 'to the twin-tube radiator arrangement 1', it is also possible here to speak of a triple-tube radiator arrangement. It is thus possible to treat color pigments by visible light and infrared radiation, and at the same time or alternately to treat photoinitiators by means of UV irradiation by discharge lamp 20. The filling of the discharge lamp 20 is preferably made of mercury and possibly an admixture of metal halides, wherein the electrodes 21, 22 are preferably made of tungsten. The power supply of discharge lamp 20 via current feedthroughs, 23, 24, which are preferably formed as molybdenum foils. The additional cladding tube 19 of the discharge lamp 20, like the web 4 'or web 4, consists of quartz glass, so that optimal transparency for UV radiation is provided here. The connection contacts 26, 27 of the discharge lamp 20 are also led out separately, so that the discharge lamp 20 can be ignited and operated independently of the other two infrared radiators.

So ist es möglich, eine kompakte universell einsetzbare Strahleranordnung zu schaffen, die einerseits raumsparend gelagert und bevorratet, andererseits in einer Vielzahl unterschiedlicher Funktionen eingesetzt werden kann.Thus, it is possible to provide a compact universally applicable radiator arrangement, which on the one hand stored and stored space-saving, on the other hand can be used in a variety of different functions.

Wie anhand des in Figur 2 gezeigten Diagramms erkennbar ist, liegt das relative Intensitätsmaximum eines Carbonstrahlers mit einer Temperatur von 950°C (Kurve I) im Bereich von 1,6 bis 3,8 µm. Bei einem gleichzeitigen Betrieb von Glühwendel 5 (Kurve II) und Carbonband 10 bzw. 10' als Strahler entsteht durch Kombination beider Strahler eine thermische Strahlungsquelle, die einen hohen Gesamt-Strahlungsanteil im Bereich von 780 nm bis 3,5 µm gemäß Kurve III aufweist (nahes IR bis zum Anfang von mittlerem IR). Eine solche Kombination steigert die Effizienz von Prozessen, bei denen sowohl Farbpigmente getrocknet werden müssen, als auch zugehörige Lösungsmittel wie beispielsweise Toluol oder Wasser, die aus Farben, bzw. Lacken durch Verdunstung entfernt werden sollen. Es sind somit durch den erfindungsgemäßen Doppelstrahler kurze Reaktionszeiten und hohe Leistungsdichten der kurzwelligen Infrarotstrahlenquellen zu erzielen.
Bei einer Erhöhung der Temperatur des Carbonbandes 10 bzw. 10' auf 1200°C lässt sich eine ähnliche spektrale Strahlungsverteilung der Intensität erzielen, wie sie bereits anhand Figur 2 dargestellt worden ist.
As can be seen from the diagram shown in FIG. 2, the relative intensity maximum of a carbon emitter having a temperature of 950 ° C. (curve I) is in the range from 1.6 to 3.8 μm. With a simultaneous operation of incandescent filament 5 (curve II) and carbon ribbon 10 or 10 'as emitters, a combination of both emitters produces a thermal radiation source which has a high total radiation fraction in the range from 780 nm to 3.5 μm according to curve III ( near IR to the beginning of middle IR). Such a combination increases the efficiency of processes where both color pigments must be dried and associated solvents such as toluene or water, which should be removed from paints, or paints by evaporation. Thus, short reaction times and high power densities of the short-wave infrared radiation sources can be achieved by the double radiator according to the invention.
With an increase in the temperature of the carbon ribbon 10 or 10 'to 1200 ° C., a similar spectral radiation distribution of the intensity can be achieved, as has already been illustrated with reference to FIG.

In Figur 3 ist anhand des Diagramms die spektrale Absorption des Wassers erkennbar, wobei sowohl für eine größere Schichtdicke von beispielsweise 10 µm (Kurve I) als auch für eine geringere Schichtdicke von 2 µm (Kurve II) der aufgebrachten Schicht eine erste maximale Spektralabsorption, die mit A1, A1' bezeichnet ist, im Wellenlängen-Bereich von ca. 3 um auftritt, während ein zweites geringeres Maximum mit Absorptionsgrad von ca. 40 bis 90 Prozent in einem mit A2, A2' bezeichneten Spektralbereich von ca. 6 µm liegt. Dabei ist erkennbar, dass eine Schichtdicke von nur 2 µm einen niedrigeren Absorptionsgrad in den Absorptionspunkten A1' bzw. A2' der Kurve II mit jeweils 90 Prozent bzw. 40 Prozent aufweist.FIG. 3 shows the spectral absorption of the water on the basis of the diagram, with a first maximum spectral absorption, both for a larger layer thickness of, for example, 10 μm (curve I) and for a smaller layer thickness of 2 μm (curve II) of the applied layer with A1, A1 ', occurs in the wavelength range of about 3 microns, while a second lower maximum with absorbance of about 40 to 90 percent in a designated A2, A2' spectral range of about 6 microns. It can be seen that a layer thickness of only 2 microns has a lower degree of absorption in the absorption points A1 'and A2' of the curve II, each with 90 percent and 40 percent.

Anhand der Figur 3 ist erkennbar, dass sich das Maximum der für die Verdunstung von Wasser oder anderen Lösungsmitteln erforderlichen Bestrahlung eher im mittleren Infrarotbereich (IR-C/MIR gemäß DIN 5030, 2. Teil) liegt, während eine Trocknung der Farbpigmente gemäß Figur 2 bereits im kurzwelligen Bereich von 780 nm bis ca. 1,2 µm erfolgreich durchgeführt wird (NIR/IR-A gemäß DIN 5030, 2. Teil).It can be seen from FIG. 3 that the maximum of the radiation required for the evaporation of water or other solvents is more in the mid-infrared range (IR-C / MIR according to DIN 5030, Part 2), whereas drying of the color pigments according to FIG already successfully carried out in the short-wave range from 780 nm to about 1.2 μm (NIR / IR-A according to DIN 5030, 2nd part).

Gemäß Figur 4 steht die Effizienz der Wassertrocknung für eine Schicht von 10 µm Dicke in einem funktionellen Zusammenhang mit der Temperatur; bei einer Temperatur im Bereich von 1500 bis 1200 K liegt die Effizienz im Bereich von 30 bis 40 Prozent, während sie im Bereich von 3000 K und darüber unter 10 Prozent abfällt. Es ist somit erkennbar, dass eine optimale Effizienz der Wassertrocknung im Bereich von 1000 bis 1500 K zu erzielen ist.According to Figure 4, the efficiency of water drying for a layer of 10 microns thickness in a functional relationship with the temperature; at a temperature in the range of 1500 to 1200 K, the efficiency is in the range of 30 to 40 percent, while falling in the range of 3000 K and above below 10 percent. It can thus be seen that optimum water drying efficiency in the range of 1000 to 1500 K can be achieved.

Anhand der Figuren 2 bis 4 ist somit erkennbar, dass aufgrund der gleichzeitigen Einwirkung der kurzwelligen Infrarotstrahlung mittels Glühwendel im Zusammenwirken mit der mittelwelligen Infrarotstrahlung mittels Carbonband sehr unterschiedliche Anforderungen an Trocknung und Verdunstung von aufgebrachten Schichten bzw. Aufdrucken erfüllt werden, so dass durch diese Art der Kombination ein Synergieeffekt auftritt.On the basis of the figures 2 to 4 is thus seen that due to the simultaneous action of the short-wave infrared radiation by incandescent in cooperation with the medium-wave infrared radiation by carbon tape very different requirements for drying and evaporation of applied layers or imprints are met, so that by this type of Combination a synergy effect occurs.

Claims (18)

  1. Radiation arrangement with an infrared radiator and a further radiator with at least two elongated envelope tubes (2), permeable to light and IR radiation, joined together and closed off from the ambient atmosphere, of which at least a first envelope tube has an incandescent coil (5), which is electrically connected via sealed tube ends (8', 9') and outer contacts (8, 9) to an external power supply, characterised in that a second envelope tube (3) is provided, which has a radiating strip (10, 10'), which is also electrically connected via sealed ends (15, 16), and outer contacts (17, 18) to the external power supply.
  2. Radiation arrangement according to claim 1, characterised in that an elongated carbon strip is used as the radiating strip (10).
  3. Radiation arrangement according to claim 1 or 2, characterised in that the radiating strip (10') is configured as an elongated coil.
  4. Radiation arrangement according to any one of claims 1 to 3, characterised in that at least one additional elongated envelope tube (19) permeable to light and UV radiation, is joined to both envelope tubes (2, 3), the additional tube (19) having an electrical discharge gap.
  5. Radiation arrangement according to claim 4, characterised in that the additional tube (19) having the discharge gap has opposing electrodes (21, 22), which can be connected in each case to an external power supply via sealed tube ends with a current lead-through and terminal contacts (26, 27).
  6. Radiation arrangement according to claim 4, characterised in that electromagnetic energy is injected into the tube interior to excite the discharge in the additional tube (19).
  7. Radiation arrangement according to claim 6, characterised in that the electromagnetic energy is injected via electrodes located outside the tube interior.
  8. Radiation arrangement according to any one of claims 4 to 7, characterised in that electrodes for the operation of the discharge gap are connected to a power supply via external contacts.
  9. Radiation arrangement according to any one of claims 1 to 8, characterised in that the external contacts are electrically connected individually in each case to terminals of a joint power supply.
  10. Radiation arrangement according to any one of claims 1 to 9, characterised in that at least one of the tubes has a reflective coating.
  11. Radiation arrangement according to any one of claims 1 to 10, characterised in that the direction of the emission of radiation from the tubes (2, 3) is oriented at least approximately parallel.
  12. Radiation arrangement according to any one of claims 1 to 11, characterised in that the direction of the emission of radiation is oriented toward a field to be irradiated jointly.
  13. Radiation arrangement according to any one of claims 1 to 12, characterised in that at least two radiators can be electrically connected in series.
  14. Use of the radiation arrangement according to any one of claims 1 to 13, wherein the envelope tube provided with the incandescent coil (5) is used as the IR radiation source in the near IR range and the envelope tube provided with the radiating strip (10, 10') is used as the IR radiation source in the near radiation range (IR-B) and medium IR range.
  15. Use of the radiation arrangement according to any one of claims 4 to 13, wherein an additional envelope tube provided with a discharge space is used as the UV radiation source.
  16. Method for the treatment of surfaces by means of IR radiation generated by a radiation arrangement according to any one of claims 1 to 13, in particular of coated surfaces on substrates or of dissolved paint pigments on a carrier for the purpose of drying, wherein the surface is irradiated from at least one infrared source for a predetermined time period, characterised in that the surface is treated at least intermittently with IR radiation in a first wavelength range of 780 nm to 1.4 µm and at least intermittently with an IR irradiation in a second wavelength range of 2.5 µm to 5 µm.
  17. Method according to claim 16, characterised in that the irradiation of the first and second wavelength range at least intermittently overlaps.
  18. Method according to claim 16 or 17, characterised in that the radiation of the first wavelength range is emitted from an IR radiator with an incandescent coil as the radiation source and the IR radiation of the second wavelength range is emitted from an IR radiator with a carbon strip as the radiation source.
EP01108725A 2000-05-22 2001-04-06 Radiation arrangement and its use and the treatment process of upper surfaces Expired - Lifetime EP1158836B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06025804A EP1775997A3 (en) 2000-05-22 2001-04-06 Radiation assembly and its use and it method for treating upper surfaces

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10024963 2000-05-22
DE10024963A DE10024963A1 (en) 2000-05-22 2000-05-22 Radiation arrangement and its use and method for treating surfaces

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP06025804A Division EP1775997A3 (en) 2000-05-22 2001-04-06 Radiation assembly and its use and it method for treating upper surfaces

Publications (3)

Publication Number Publication Date
EP1158836A2 EP1158836A2 (en) 2001-11-28
EP1158836A3 EP1158836A3 (en) 2002-05-02
EP1158836B1 true EP1158836B1 (en) 2007-01-24

Family

ID=7642891

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06025804A Withdrawn EP1775997A3 (en) 2000-05-22 2001-04-06 Radiation assembly and its use and it method for treating upper surfaces
EP01108725A Expired - Lifetime EP1158836B1 (en) 2000-05-22 2001-04-06 Radiation arrangement and its use and the treatment process of upper surfaces

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06025804A Withdrawn EP1775997A3 (en) 2000-05-22 2001-04-06 Radiation assembly and its use and it method for treating upper surfaces

Country Status (4)

Country Link
US (2) US6421503B2 (en)
EP (2) EP1775997A3 (en)
JP (1) JP3650741B2 (en)
DE (2) DE10024963A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912544B4 (en) * 1999-03-19 2007-01-18 Heraeus Noblelight Gmbh Infrared radiator and method for heating a material to be treated
EP1485213A2 (en) * 2002-03-06 2004-12-15 Solaronics Technologies Method for photopolymerzation of a polymerisable coating, installation therefor and product comprising the coating obtained
DE10211249B4 (en) * 2002-03-13 2004-06-17 Heraeus Noblelight Gmbh Use of a shiny precious metal preparation
FR2847759A1 (en) * 2002-11-27 2004-05-28 Koninkl Philips Electronics Nv Heating system for industrial use in drying or plastic forming, uses reflector housing two infrared sources that operate in different regions of the infrared spectrum to allow control of type of heat delivered
DE102006004574A1 (en) * 2005-06-06 2006-12-07 Advanced Photonics Technologies Ag Apparatus and method for color or paint coating a winding sheet
KR101306725B1 (en) 2007-03-08 2013-09-10 엘지전자 주식회사 Heating device
US8859938B2 (en) * 2009-01-26 2014-10-14 Nissan North America, Inc. Vehicle cabin heating system
US20100193510A1 (en) * 2009-02-02 2010-08-05 Danilychev Vladimir A Wireless radiative system
DE102013104577B3 (en) * 2013-05-03 2014-07-24 Heraeus Noblelight Gmbh Apparatus for drying and sintering metal-containing ink on a substrate
JP6464159B2 (en) * 2013-06-26 2019-02-06 ネステク ソシエテ アノニム Volume heating device for beverage or food preparation machine
US10468242B2 (en) * 2013-09-05 2019-11-05 Applied Materials, Inc. Lamp cross-section for reduced coil heating
DE102014104851B4 (en) * 2014-04-04 2017-03-30 Heraeus Noblelight Gmbh Device for sterilization by means of ultraviolet radiation
DE102015113766B4 (en) * 2015-08-19 2019-07-04 Heraeus Noblelight Gmbh Radiator module and use of the radiator module
KR101837891B1 (en) * 2017-02-22 2018-03-13 이우주 liquid circulation type double pipe lamp
US11370213B2 (en) 2020-10-23 2022-06-28 Darcy Wallace Apparatus and method for removing paint from a surface

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA733615A (en) * 1966-05-03 Horstmann Georg Electrical infrared radiator
US2346234A (en) * 1942-09-15 1944-04-11 Lester A Reynolds Manicuring device
US3260139A (en) * 1963-08-07 1966-07-12 Sanborn Frank Eugene Self-clearing drill
JPS4637181Y1 (en) * 1968-05-18 1971-12-22
DE1807660B2 (en) * 1968-11-07 1972-01-27 Holzer Patent Ag, Zug (Schweiz) STEPPING DRIVE
US3627989A (en) * 1969-12-11 1971-12-14 Thermal Quarr Schmelze Gmbh Infrared surface heater
US4091441A (en) * 1976-06-28 1978-05-23 John Ott Laboratories, Inc. Full-spectrum luminaire
GB1544551A (en) * 1978-01-10 1979-04-19 Electricity Council Electric radiant heaters
US4469102A (en) * 1980-12-24 1984-09-04 Fish Errol R Suntanning booth
SE8200685L (en) * 1982-02-05 1983-08-06 Electrolux Ab WITH INFRARED RADIATION WORKING HOUSE OVEN
JPS60245933A (en) * 1984-05-21 1985-12-05 Hideo Abe Electric oven
FI80099C (en) * 1986-10-31 1990-04-10 Imatran Voima Oy FOERFARANDE OCH ANORDNING FOER TORKNING AV ROERLIGT BANMATERIAL.
JPH02118329A (en) * 1988-10-28 1990-05-02 Matsushita Seiko Co Ltd Radiation heater
JPH02152187A (en) * 1988-12-02 1990-06-12 Ushio Inc Heating cooker
DE8913683U1 (en) 1989-11-20 1990-01-11 Heraeus Quarzschmelze Gmbh, 6450 Hanau Infrared heaters
EP0486035B1 (en) * 1990-11-16 1995-02-01 Setsuo Tate Drying method and devices for coated layer
JPH0536469A (en) * 1991-07-31 1993-02-12 Toshiba Lighting & Technol Corp Infrared heater
US5175437A (en) * 1991-12-12 1992-12-29 Alexander Waluszko Ultraviolet light apparatus
US5387801A (en) * 1993-06-10 1995-02-07 Uvp, Inc. Multiple wavelength light source
JPH07230795A (en) * 1994-02-16 1995-08-29 Toshiba Lighting & Technol Corp Heat generating tungsten halogen lamp, heating device and image forming device
JP3007266B2 (en) * 1994-04-28 2000-02-07 ウシオ電機株式会社 Heater lamp device for liquid heating
JP2669358B2 (en) * 1994-10-03 1997-10-27 日本電気株式会社 Method of heating semiconductor device
DE4438870B4 (en) * 1994-11-03 2004-11-11 Heraeus Noblelight Gmbh Infrared emitter with an elongated resistance body as the radiation source
DE4438871A1 (en) * 1994-11-03 1996-05-09 Heraeus Noblelight Gmbh Infra red radiator
DE19613502C2 (en) 1996-04-04 1998-07-09 Heraeus Noblelight Gmbh Durable excimer emitter and process for its manufacture
US5930914A (en) * 1996-04-18 1999-08-03 Infrarodteknik Ab Method and device for drying a moving web material
DE19822829A1 (en) 1998-05-20 1999-11-25 Heraeus Noblelight Gmbh Short-wave infrared panel heater
DE19839457A1 (en) * 1998-08-29 2000-03-09 Heraeus Noblelight Gmbh Spiral heating element, method and device for producing the same and infrared radiator produced using a spiral heating element

Also Published As

Publication number Publication date
JP2002110326A (en) 2002-04-12
US6577816B2 (en) 2003-06-10
EP1158836A3 (en) 2002-05-02
JP3650741B2 (en) 2005-05-25
DE10024963A1 (en) 2001-12-13
US6421503B2 (en) 2002-07-16
EP1775997A2 (en) 2007-04-18
EP1158836A2 (en) 2001-11-28
EP1775997A3 (en) 2012-02-29
US20020094197A1 (en) 2002-07-18
DE50111926D1 (en) 2007-03-15
US20010046379A1 (en) 2001-11-29

Similar Documents

Publication Publication Date Title
EP1158836B1 (en) Radiation arrangement and its use and the treatment process of upper surfaces
DE4425683C2 (en) Electron generating device of an X-ray tube with a cathode and with an electrode system for accelerating the electrons emanating from the cathode
DE69625763T2 (en) Discharge lamp with a dielectric barrier
DE4438870B4 (en) Infrared emitter with an elongated resistance body as the radiation source
WO2007093525A1 (en) High-pressure discharge lamp
DE2726946A1 (en) ELECTRIC LIGHT BULB
EP3436271B1 (en) Printing press having an infrared dryer unit
EP1206794A1 (en) Light source and method for producing a light source
DE69805456T2 (en) Application device for hot melt adhesive and glue stick for this device
EP0428835A2 (en) Infrared radiator
DE2646577B2 (en) Ignition device for a flash lamp operated with direct current
DE10204691C1 (en) Mercury-free, high-intensity, high pressure gas discharge lamp for vehicle headlights, has infra-red reflecting coating on lower wall to promote vaporization
DE3428181A1 (en) BULB
DE2502649A1 (en) IMPROVED ELECTRODE STRUCTURE FOR HIGH CURRENT, LOW PRESSURE DISCHARGE DEVICES
DE3712049C2 (en)
DE2131887A1 (en) Gas discharge tubes
DE69921726T2 (en) High pressure discharge lamp
DE4438871A1 (en) Infra red radiator
DE102004036827B4 (en) microwave heating
DE102007031628B4 (en) UV radiation source
DE4304142C2 (en) X-ray tube cathode
WO2022013137A1 (en) Medium-wave infrared emitter and method for producing same
DE2734130A1 (en) GAS DISCHARGE LAMP
DE3225327C2 (en)
DE1589284C3 (en) Method for producing an electric high-pressure discharge lamp

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AKX Designation fees paid

Free format text: CH DE FR GB IT LI NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE SA

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50111926

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070412

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111926

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111926

Country of ref document: DE

Representative=s name: EULER, MATTHIAS, DR., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180418

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180419

Year of fee payment: 18

Ref country code: DE

Payment date: 20180420

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180423

Year of fee payment: 18

Ref country code: FR

Payment date: 20180420

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180418

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50111926

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50111926

Country of ref document: DE

Representative=s name: BRAND, NORMEN, DIPL.-CHEM. UNIV. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20190501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190406