EP1096209B1 - Installation de pompage de chaleur, notamment à fonction frigorifique - Google Patents
Installation de pompage de chaleur, notamment à fonction frigorifique Download PDFInfo
- Publication number
- EP1096209B1 EP1096209B1 EP00402925A EP00402925A EP1096209B1 EP 1096209 B1 EP1096209 B1 EP 1096209B1 EP 00402925 A EP00402925 A EP 00402925A EP 00402925 A EP00402925 A EP 00402925A EP 1096209 B1 EP1096209 B1 EP 1096209B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat pumping
- zone
- water
- compression
- pumping installation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005086 pumping Methods 0.000 title claims description 31
- 238000005057 refrigeration Methods 0.000 title claims description 8
- 238000009434 installation Methods 0.000 claims abstract description 76
- 238000007906 compression Methods 0.000 claims abstract description 74
- 230000006835 compression Effects 0.000 claims abstract description 74
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 72
- 238000009833 condensation Methods 0.000 claims abstract description 36
- 230000005494 condensation Effects 0.000 claims abstract description 36
- 239000012530 fluid Substances 0.000 claims abstract description 18
- 238000009834 vaporization Methods 0.000 claims abstract description 15
- 230000008016 vaporization Effects 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 9
- 239000007788 liquid Substances 0.000 claims description 20
- 239000003507 refrigerant Substances 0.000 claims description 16
- 230000036961 partial effect Effects 0.000 claims description 15
- 238000001704 evaporation Methods 0.000 claims description 14
- 230000008020 evaporation Effects 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 9
- 238000010992 reflux Methods 0.000 claims description 7
- 230000003068 static effect Effects 0.000 claims description 6
- 239000007921 spray Substances 0.000 claims description 5
- 238000007789 sealing Methods 0.000 claims description 4
- 230000001360 synchronised effect Effects 0.000 claims description 4
- 238000011044 inertial separation Methods 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 3
- 239000007924 injection Substances 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000001154 acute effect Effects 0.000 claims description 2
- 239000000919 ceramic Substances 0.000 claims description 2
- 238000007872 degassing Methods 0.000 claims description 2
- 238000004064 recycling Methods 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000012808 vapor phase Substances 0.000 claims description 2
- 238000013019 agitation Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 238000012856 packing Methods 0.000 claims 1
- 230000001105 regulatory effect Effects 0.000 claims 1
- 238000012546 transfer Methods 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008520 organization Effects 0.000 description 3
- 238000004378 air conditioning Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000002826 coolant Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 241000254032 Acrididae Species 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005422 blasting Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000002513 implantation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005399 mechanical ventilation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B31/00—Compressor arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
- F04D17/122—Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/10—Compression machines, plants or systems with non-reversible cycle with multi-stage compression
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B29/00—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
- F25B29/003—Combined heating and refrigeration systems, e.g. operating alternately or simultaneously of the compression type system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
- F25B1/04—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
- F25B1/053—Compression machines, plants or systems with non-reversible cycle with compressor of rotary type of turbine type
Definitions
- the present invention relates to an installation heat pumping, in particular with refrigeration function, of the compression-expansion refrigerant cycle type, including a vaporization zone before compression and a condensation zone after the latter, in which the thermodynamic fluid used in said cycle as well as the fluid used in cycles coolant and coolant is water, exchanges thermal vaporization and respectively condensation between these last two cycles and said cycle refrigerant carried out directly, without the intermediary of exchange surfaces, and the cold produced by this installation usually being at a temperature greater than 0 ° C ("positive" cold) or at a temperature negative for ice production; it is of course however that the primary function of such installation could instead be the production of heat.
- thermodynamic fluids such as than those of the CFC family (chlorofluorocarbons) which have an unfavorable impact on the greenhouse effect, or HCFCs (hydrochlorofluorocarbons) or HFCs (hydrofluorocarbons) whose impact on the greenhouse effect is less but still not negligible.
- the object of the present invention is therefore, while retaining the advantages inherent in the use of water as a thermodynamic fluid, avoid disadvantages of prior techniques in a industrial scale heat pumping installation, especially for the primary purpose of producing cold but without excluding the production of heat.
- installation in accordance with present invention is characterized in that the refrigerant cycle implements dynamic compression with two compression sections separated, connected to each other by at least one zone heat exchange (desuperheating and / or economizer) and enclosed in a vapor containment hermetic and thermally insulated, and in that the wheels of these two sections are mounted directly on the opposite ends of the shaft of an electric motor joint variable speed seal arranged in said enclosure, between these sections.
- zone heat exchange desuperheating and / or economizer
- centrifugal which will be used in preference to so-called axial compression sections, will include, classic way, for each stage constituting them (in principle one or two), a moving wheel preceded by a converging suction and followed by a static diffuser smooth or finned.
- said electric motor will be a synchronous motor with permanent magnet rotor associated with a frequency converter that will vary the speed and therefore adapt the wheel rotation speed compressor at the treated steam flow rates, and operate at part load within the limits of aerodynamic stability of the compressor.
- the adoption of a such an engine will ensure minimum losses thermal at the rotor, which is important held bad thermal exchanges in an enclosure where In the case of cold production, there will be a very low vapor pressure.
- asynchronous motors with device for eliminating heat losses.
- the shaft bearings of said electric motor can be of any type appropriate to their function, for example of the type with ceramic ball bearings, or still fluid or smooth, water type with device anticavitation, or even oil with device sealing, or magnetic type, as soon as any contamination of the refrigerant by means of lubrication is made impossible.
- the shaft bearings of said motor are arranged on the latter side, the compressor wheels being the type cantilevered on the ends of said shaft, but the reverse arrangement is also possible: wheels compressor placed between the motor and the bearings, without overhang.
- both compression sections are arranged in opposition to on both sides of the electric drive motor common, with their respective entrances (aspirations) directed towards the ends of the containment (unlike the prior art mentioned first plus top), vaporization and desuperheating zones being thus formed between these ends of the enclosure and, respectively, the entrance to the first and the entrance to the second compression section.
- This provision compensates for axial reactions due to the wheels, contributes to obtaining very compact, particularly in length, and facilitates connection of external water circuits.
- both compression sections are associated with a third compression section arranged in the enclosure of confinement - or communication with it - and consisting of a booster, which is arranged upstream or downstream of the compressor or between its two sections.
- this booster will be driven by a hydraulic turbine working with water, particular borrowed from the internal circuit, at the level of the vaporization or condensation but it could be also driven by a steam expansion turbine or by an independent electric motor, possibly at a speed different from that of the compressor, even be shut down if conditions return normal climatic conditions.
- said booster or compression sections consist of one or more compression wheels including a flange rotor rotating fitted with flat radial fins and possibly associated with static blasting fluid pre-rotation.
- condensation zone is located at the end of the containment which is on the suction inlet side of the second section of compression, or that this condensation zone is located between the desuperheating zone and this entry suction of the second compression section.
- Figure 1a we have shown a variant according to which is implemented two compression sections 1 ' and 2 'connected in parallel, with a common input 3' and driven by a common 6 'motor, to obtain higher cooling capacities. These sections can be followed by a compression section, this the latter can also consist of two sections in parallel and / or a booster.
- Figure 2 also schematically represents a installation which includes a third section of compression (or booster) 7 driven by a motor independent electric 8, including suction inlet 9 communicates with the output of the second section of compression 2 and whose discharge 10 communicates with a condensation zone; the implementation of this booster in the installation will be better seen in figure 13, in which we used the same references as on the Figure 3, to designate the common areas.
- a third section of compression (or booster) 7 driven by a motor independent electric 8
- suction inlet 9 communicates with the output of the second section of compression 2 and whose discharge 10 communicates with a condensation zone
- the movable wheels 11 and 12 of these two compression sections 1 and 2 are wedged in overhang on the opposite ends of the shaft 18 of the common electric motor 6 above, which is of the type synchronous and watertight, and the rotor of which is advantageously with permanent magnets.
- the bearings of the shaft 18 being lubricated without oil, as will be described below, the maintenance is facilitated, and the risk of pollution of the refrigerant.
- the enclosure 13 in order to simplify the maintenance operations which may involve different trades (refrigeration engineers, mechanics, thermodynamicians, electricians), is made up of three separate modules connected one to the next by flanges 19 and 20, the assembly of which is ensured by known means (bolts, "grasshoppers” etc). These three modules include a flash-evaporation module 21 containing a vaporization zone 22, a compression module 23 containing the two compression sections 1 and 2, and a condensing module 24 containing an area to desuperheating 25 and possibly economiser, and the condensation zone 26.
- the vaporization zone 22 is established under the form of a flash evaporator in which internal energy fluid remains constant (isenthalpic expansion), the decrease of that of the liquid being exactly compensated by increasing that of the vaporized liquid.
- the chilled water back to the facility by a line 27, which has been heated, for example up to about 12 ° C, by its passage in the circuit of use U that the installation aims to cool is injected as droplets into the zone 22 by a spray boom 28 and vaporizes instantly because of the very low absolute pressure, which can be of the order of 10 mbar, prevailing in this zone 22.
- the energy required to vaporization of the liquid comes from the liquid itself, according to an adiabatic process.
- the water thus cooled to a temperature which can be of the order of 7 ° C., is recovered at the bottom of the enclosure and is evacuated by a chilled water pipe referenced in 29.
- the heat exchanges in this refrigerant cycle are direct (exchanges by contact and not through surfaces), and there is very little irreversibility; we have removed the "pinch" present in the installations at tubular or plate heat exchangers, which allows to obtain a higher practical performance coefficient to 7 for evaporation and condensation temperatures 7 and 30 ° C respectively.
- the absence of surfaces of exchange for the evaporator and the condenser present plus the advantage of requiring no clearance longitudinal for stubbing or cleaning surfaces, hence a decrease in the space that must be reserved for installation.
- the presence of water droplets in the vapor thus created is beneficial because it promotes desuperheating steam during the next phase of compression, resulting in a lower volume flow, allowing to reduce the passage sections, therefore the size of installation and cost.
- the density is higher, which makes it possible to obtain a rate of more compression and helps increase the overall coefficient of performance.
- the liquid / vapor separator or demister 25, 15 placed at the suction inlet 3, 4 of each section of compression can be, as detailed in Figure 4, followed or replaced by a fixed converging horn 30 special on the wall of which water can flow and whose the trailing edge ends in a water collector circular or gutter 31, provided with an outlet lower water outlet 32 and ensuring effective inertial separation between water and steam.
- a fixed converging horn 30 special on the wall of which water can flow and whose the trailing edge ends in a water collector circular or gutter 31, provided with an outlet lower water outlet 32 and ensuring effective inertial separation between water and steam.
- these blades are advantageously encircled, in their axial portion, by a hoop, referenced 33 in the perspective view of FIG. 5.
- This hoop which also has an antivibration effect, can thus channel the aspirated water until it leaves the area axial.
- the partial developed section view of the figure 6 also shows the possibility of conferring on the fins 34 of the rotor blades at an acute angle to in the plane of the rear flange 35, which favors water entrainment in the direction of rotation. he would also be possible to give these fins 34 a slight concavity, with the same effect (Figure 7).
- Figure 8 shows a variant of simplified compressor usable if we wish to lower the cost price or reduce the rotating masses for booster 8 or for compression wheels, variant which in addition will eliminate the fret 33 mentioned above: the compressor has a rotor with rotating flange 37 provided with radial flat fins 38 and possibly associated with static blades 36 of fluid pre-rotation.
- the vapor compressed in the first section 1 of the compressor is directed to the second section 2 by the traffic conduits 5 already mentioned and referenced also in Figure 3.
- These conduits may include section outlet a smooth or finned radial diffuser 39, 39a and / or axial 40, 40a with fins (case of the part high of the drawing), intended to raise the vapor pressure by decreasing its speed. It may be necessary to provide an additional injection of water into the diffuser, downstream of the wheel in order to desuperheat the steam.
- the vapor coming from the conduits 5 suffers from desuperheating in the desuperheating zone intermediate 25 mentioned above, located in this example near the end 17 of the enclosure of containment 13, this to avoid reaching excessive temperatures at the compressor outlet.
- This desuperheating can be ensured by "flash-relaxation" of the water flow from the condenser and returned to the evaporator, which constitutes an economizer ensuring a partial cooling of this water. Indeed, water having a very high latent heat, the vaporization a small volume of liquid is sufficient to desuperheat the steam.
- the vapor from the second section of compression 2 at a temperature close to condensation under the corresponding pressure then passes into the area of condensation 26 by other static conduits 41.
- the condensation is carried out by mixing, exchange thermal occurring between the vapor phase from compressor and liquid droplets dispersed by a spray boom 42 supplied by a pipe 43 return of cooled water (at around 25 ° C) from the air cooler (A), being an air cooler classic coil and mechanical ventilation, preventing any contact between water and outside air, this for avoid biological or chemical contamination as well than the presence of dissolved gases in the water.
- the water heated by condensation of steam is collected at the bottom of the enclosure and returns to the air cooler by a pipe 44 ( Figure 3).
- the main resistance to condensation phenomenon is not related to convection in vapor but rather in conduction in the liquid, what it may be suitable for ensure a residence time of the liquid in the condenser as long as possible, increasing the areas of contact and with mixing with the steam circulating at counter current, created by a lining of the condenser such as Raschig rings.
- a filling was shown schematically at 45 in Figure 9 and is surmounted by a distributor 46 supplied with water cooled by the ramp 42, a grid 47 being provided at the base of the lining for its retention inside a rack 48.
- a pump vacuum which is carried out at the pressure of condensation.
- the pump When the installation starts, the enclosure 13 being filled with pressurized air, the pump must exhaust this air to bring the absolute internal pressure to a value close to 40 mbar.
- a "reflux” condenser at the exit from the condensation zone 26.
- a condenser "reflux” shown in Figure 10, could be consisting of a column 50 at the base of which the steam residual from condensing zone 26 east injected through baffles 51, the incondensables saturated with moisture being discharged through its end upper 52 to the vacuum pump 49.
- This column can successively include two zones against the current: on the one hand an area 53 in which part of the steam condenses thanks to a surface exchanger coil 54 in which the refrigeration supply is ensured by the return of water from the air cooler before spraying in the ramp 42 of the condenser, on the other hand a zone 55 in which another part of the vapor is condenses thanks to a surface exchanger 56 with tubes and water circulation baffles, the refrigeration contribution being here ensured by a low flow of chilled water 57 from of the vaporization zone 22.
- the "reflux" condenser might only include one or the other of the two parts described above, or two types of swapped exchange surfaces.
- FIG. 12a shows the thermodynamic diagram of the installation I.
- Q F represents the heat taken from the cold source, namely the user circuit U; W represents the work received in installation I, and Q C the heat transferred to the hot source, namely the air cooler A (see also figure 12b), the relation which links these values being
- the enthalpy diagram of FIG. 12b represents a conventional operation of the installation I.
- the water is vaporized at a temperature T E of approximately 7 ° C in the evaporation zone 22, then compressed in the first compression section 1 , desuperheated to a temperature T D of approximately 18 ° C, compressed in the second compression section 2 to reach a temperature T C of approximately 30 ° C, and condensed in the condensation zone 26.
- the water from condensation is pumped by a pump P 1 to the air cooler A at 44, and returns to a temperature of about 25 ° C, at 43 (heat transfer cycle).
- the water is cooled by vaporization, between approximately 12 and 7 ° C, and is pumped into the user circuit U by a pump P 2 .
- the installation could also have the primary function heat production, in which case the pressure at the interior of the enclosure could be greater than the atmospheric pressure to reach temperatures condensation above 100 ° C.
- FIG. 14 shows a possible water bearing structure for shaft 18 of electric motor 6.
- This bearing referenced in 59, comprises an inlet for pressurized liquid 60, which undergoes by dynamic effect partial relaxation in the interval 61 between the bore of the bearing and the surface of the shaft 18, before undergoing additional relaxation and partial vaporization at its exit from this interval, in 62. Steam and residual liquid are then directed in a plenum 63 by a deflector 64.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Central Heating Systems (AREA)
- Compressor (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Description
- la figure 1, est une vue schématique montrant une organisation générale possible de l'installation, supposée ne comporter que deux sections de compression, la figure la montrant une variante à deux sections de compression en parallèle;
- la figure 2 est une vue schématique montrant une organisation générale de l'installation lorsqu'elle est pourvue d'un troisième étage de compression ou booster;
- la figure 3 est une vue en coupe axiale plus détaillée d'une installation semblable à celle de la figure 1;
- la figure 4 est une vue en coupe axiale partielle montrant la séparation liquide/vapeur dans un convergent d'aspiration placé à l'entrée de chaque section de compression et associé à une gouttière de séparation inertielle;
- la figure 5 est une vue en perspective d'une roue semi-ouverte et frettée de section de compression;
- les figures 6 et 7 sont des vues en coupe partielle développée de deux variantes possibles d'un aubage de rotor du compresseur;
- la figure 8 est une vue en coupe partielle développée d'un rotor de compresseur simplifié comprenant un flasque tournant pourvu d'ailettes plates radiales et associé à des aubages statiques de mise en prérotation du fluide;
- la figure 9 représente schématiquement une zone de condensation à garnissage;
- la figure 10 représente un condenseur de "reflux" disposé à la sortie de la zone de condensation;
- la figure 11 est une vue schématique de l'ensemble de l'installation;
- la figure 12a est un schéma thermodynamique de l'installation;
- la figure 12b est un exemple de diagramme enthalpique P=f(H) d'une installation conforme à l'invention;
- la figure 13 est une vue schématique partielle de l'installation, montrant l'implantation d'un booster aval; et
- la figure 14 montre un palier à eau pour l'arbre du moteur.
Claims (28)
- Installation de pompage de chaleur, notamment à fonction frigorifique, du type à cycle frigorigène de compression-détente, comprenant une zone de vaporisation avant compression et une zone de condensation après cette dernière, dans laquelle le fluide thermodynamique utilisé dans ledit cycle ainsi que le fluide utilisé dans les cycles frigoporteur et caloporteur est de l'eau, les échanges thermiques de vaporisation et respectivement de condensation entre ces deux derniers cycles et ledit cycle frigorigène s'effectuant directement, sans l'intermédiaire de surfaces d'échange, et le froid produit par cette installation étant habituellement à une température supérieure à 0°C (froid "positif") ou à une température négative (production de glace), caractérisée en ce que le cycle frigorigène met en oeuvre une compression dynamique à deux sections de compression séparées (1, 2) reliées l'une à l'autre par au moins une zone d'échange thermique (25) à désurchauffe et/ou à économiseur, et encloses dans une enceinte (13) de confinement de la vapeur hermétique et thermiquement isolée, et en ce que les roues (11, 12) de ces deux sections sont montées directement sur les extrémités opposées de l'arbre (18) d'un moteur électrique étanche (6) commun à vitesse variable disposé dans ladite enceinte (13) entre ces sections (1, 2)
- Installation de pompage de chaleur selon la revendication 1, caractérisée en ce que ledit moteur électrique à vitesse variable (6) est un moteur synchrone à rotor à aimants permanents associé à un variateur de fréquence.
- Installation de pompage de chaleur selon la revendication 1 ou 2, caractérisée en ce que les paliers d'arbre dudit moteur (6) sont du type à roulements à billes en céramique.
- Installation de pompage de chaleur selon la revendication 1 ou 2, caractérisée en ce que les paliers d'arbre (18) dudit moteur sont du type fluide ou lisse, à eau (59) avec dispositif anticavitation, ou à huile avec dispositif d'étanchéité, ou encore du type magnétique
- Installation de pompage de chaleur selon l'une. quelconque des revendications précédentes, caractérisée en ce que les paliers d'arbre (18) dudit moteur (6) sont disposés du côté de ce dernier, les roues (11, 12) du compresseur étant de la sorte en porte-à-faux sur les extrémités dudit arbre (18).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que les deux sections de compression (1, 2) sont disposées en opposition de part et d'autre du moteur d'entraínement électrique commun (6), avec leurs entrées respectives (3, 4) dirigées vers les extrémités (16, 17) de l'enceinte de confinement (13), des zones de vaporisation (22) et de désurchauffe (25) étant ainsi ménagées entre ces extrémités de l'enceinte (13) et, respectivement, l'entrée (3) de la première (1) et l'entrée (4) de la seconde (2) section de compression.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que les deux sections de compression (1, 2) sont associées à une troisième section de compression (7) disposée dans l'enceinte de confinement (13) ou mise en communication avec elle et constituée par un booster, lequel est disposé en amont ou en aval du compresseur, ou encore entre ses deux sections (1, 2).
- Installation de pompage de chaleur selon la revendication 7, caractérisée en ce que ledit booster (7) est entraíné par une turbine hydraulique fonctionnant avec de l'eau empruntée au circuit interne, au niveau de la vaporisation (22) ou de la condensation (26).
- Installation de pompage de chaleur selon la revendication 7, caractérisée en ce que ledit booster (7) est entraíné par une turbine de détente de vapeur.
- Installation de pompage de chaleur selon la revendication 7, caractérisée en ce que ledit booster (7) est entraíné par un moteur électrique indépendant (8).
- Installation de pompage de chaleur selon l'une quelconque des revendications 7 à 10, caractérisée en ce que ledit booster (7) ou les sections de compression sont constitués d'une ou plusieurs roues de compression comprenant un rotor à flasque tournant (37) pourvu d'ailettes plates radiales (38) et éventuellement associé à des aubages statiques (36) de mise en prérotation du fluide.
- Installation de pompage de chaleur selon l'une quelconque des revendications 7 à 11, caractérisée en ce que ladite zone de condensation (26) est située à proximité de l'extrémité (17) de ladite enceinte de confinement (13) qui est proche de l'entrée (4) de la seconde section de compression (2).
- Installation de pompage de chaleur selon l'une quelconque des revendications 1 à 6, caractérisée en ce que ladite zone de condensation (26) est située entre la zone à désurchauffe (25) et l'entrée (4) de la seconde section de compression (2).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est constituée de trois modules distincts reliés l'un au suivant par des moyens de fixation démontables (19, 20), à savoir un module d'évaporation-flash (21) contenant une zone de vaporisation (22), un module de compression (23) contenant les sections de compression, et un module de condensation (24) contenant une zone de désurchauffe (25) et la zone de condensation (26).
- Installation de. pompage de chaleur selon-l'une quelconque des revendications précédentes, caractérisée en ce que la zone de vaporisation (22) est établie sous la forme d'un évaporateur-flash, l'eau glacée (27) de retour à l'installation étant injectée sous forme de gouttelettes dans ladite zone (22) par une rampe de pulvérisation (28).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un séparateur liquide/vapeur ou dévésiculeur (14, 15) est placé à l'entrée d'aspiration de chaque section de compression (1, 2).
- Installation de pompage de chaleur selon l'une quelconque des revendications 1 à 16, caractérisée en ce qu'à l'entrée d'aspiration de chaque section de compression (1, 2) est prévu un pavillon de convergent spécial (30) sur la paroi duquel l'eau peut s'écouler et dont le bord de fuite aboutit dans un collecteur d'eau circulaire (31) de séparation inertielle pourvu d'une sortie d'évacuation d'eau inférieure (32).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que les aubages des roues (11, 12) de compresseur sont cerclés, dans leur portion axiale, d'une frette (33) propre à canaliser l'eau aspirée jusqu'à ce qu'elle quitte la zone axiale.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que les ailettes (34) des aubages de rotor (11, 12) présentent un angle aigu par rapport au plan du flasque arrière (35) de ce rotor ou une légère concavité, ce qui favorise l'entraínement de l'eau dans le sens de la rotation.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que la vapeur comprimée dans une section de compression est dirigée vers la section suivante par des conduits de circulation (5, 41) qui peuvent comporter en sortie de section de compression un diffuseur radial lisse ou à ailettes (39, 39a) et/ou axial à ailettes (40, 40a) avec, le cas échéant, une injection additionnelle d'eau en aval de cette section.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que la désurchauffe intermédiaire entre les sections de compression est associée à une "détente-flash" du débit d'eau issu du condenseur (26) et retournée par une tuyauterie (58) à la zone de vaporisation (22), ce qui constitue un économiseur assurant un refroidissement partiel de cette eau.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que la condensation est effectuée par mélange, l'échange thermique se produisant entre la phase vapeur issue du compresseur (1, 2) et des gouttelettes liquides dispersées par une rampe (42) de pulvérisation alimentée par une conduite (43) de retour de l'eau refroidie d'un aéroréfrigérant.
- Installation de pompage de chaleur selon la revendication 22, caractérisée en ce que pour assurer un temps de séjour du liquide dans la zone de condensation (26) le plus long possible, cette zone comporte un garnissage (45) tel que des anneaux Raschig augmentant les surfaces de contact et créant un brassage avec la vapeur circulant à contre-courant.
- Installation de pompage de chaleur selon la revendication 22 ou 23, caractérisée en ce qu'elle comporte un condenseur de "reflux".
- Installation de pompage de chaleur selon la revendication 24, caractérisée en ce que ledit condenseur de "reflux" est constitué d'une colonne (50) qui comprend successivement, d'une part une zone à contre-courant (53) dans laquelle une partie de la vapeur se condense grâce à un échangeur de surface (54) dans lequel l'apport frigorifique est assuré par le retour d'eau de l'aéroréfrigérant avant sa pulvérisation dans la rampe (42) du condenseur, d'autre part une zone à contre-courant (55) dans laquelle une autre partie de la vapeur se condense grâce à un échangeur à surface (56), l'apport frigorifique étant ici assuré par un faible débit d'eau glacée (57) provenant de la zone de vaporisation (22).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que, pour son fonctionnement à charge partielle, elle comprend un circuit de recyclage thermique d'un certain débit de liquide de la zone de condensation (26) vers la zone de vaporisation (22).
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle est réglée pour produire un excès de froid pendant la nuit et le stocker sous forme d'eau glacée ou de glace, ce froid étant alors récupéré dans la journée.
- Installation de pompage de chaleur selon l'une quelconque des revendications précédentes, caractérisée en ce que l'arbre (18) du moteur électrique (6) est porté par des paliers à eau (59) comportant une arrivée de liquide sous pression (60), lequel peut ainsi subir par effet dynamique une détente partielle dans un intervalle (61) entre un alésage du palier et la surface de l'arbre (18), avant de subir une détente complémentaire et une vaporisation partielle à sa sortie (62) de cet intervalle, la vapeur et le liquide résiduel étant alors dirigés dans une chambre de tranquillisation (63) par un déflecteur (64).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9913272 | 1999-10-25 | ||
FR9913272A FR2800159B1 (fr) | 1999-10-25 | 1999-10-25 | Installation de pompage de chaleur, notamment a fonction frigorifique |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1096209A1 EP1096209A1 (fr) | 2001-05-02 |
EP1096209B1 true EP1096209B1 (fr) | 2004-07-28 |
Family
ID=9551295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP00402925A Expired - Lifetime EP1096209B1 (fr) | 1999-10-25 | 2000-10-23 | Installation de pompage de chaleur, notamment à fonction frigorifique |
Country Status (10)
Country | Link |
---|---|
US (1) | US6397621B1 (fr) |
EP (1) | EP1096209B1 (fr) |
JP (1) | JP2001165514A (fr) |
AT (1) | ATE272197T1 (fr) |
CA (1) | CA2323941A1 (fr) |
DE (1) | DE60012450T2 (fr) |
ES (1) | ES2225051T3 (fr) |
FR (1) | FR2800159B1 (fr) |
IL (1) | IL139125A (fr) |
TW (1) | TW534971B (fr) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2408614A (en) * | 2003-11-27 | 2005-06-01 | Sharp Kk | Remote access system |
JP4573263B2 (ja) * | 2004-07-27 | 2010-11-04 | 三建設備工業株式会社 | 水蒸気圧縮冷凍機による冷暖房システム |
JP4535372B2 (ja) * | 2004-07-29 | 2010-09-01 | 株式会社島津製作所 | 真空冷却用食材収納システム |
US7866179B2 (en) * | 2005-02-23 | 2011-01-11 | I.D.E. Technologies Ltd. | Compact heat pump using water as refrigerant |
JP5151014B2 (ja) | 2005-06-30 | 2013-02-27 | 株式会社日立製作所 | ヒートポンプ装置及びヒートポンプの運転方法 |
JP2007198693A (ja) * | 2006-01-27 | 2007-08-09 | Mayekawa Mfg Co Ltd | カスケード型ヒートポンプシステム |
JP4923618B2 (ja) * | 2006-02-27 | 2012-04-25 | 株式会社日立製作所 | ヒートポンプシステム,ヒートポンプシステムの潤滑水温度調整方法,ヒートポンプシステムの運転方法 |
JP5216759B2 (ja) * | 2006-04-04 | 2013-06-19 | エフィシャント・エナジー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | ヒートポンプ |
EP2343489B1 (fr) * | 2006-04-04 | 2018-05-09 | Efficient Energy GmbH | Pompe à chaleur |
DE102006056798B4 (de) * | 2006-12-01 | 2008-10-23 | Efficient Energy Gmbh | Wärmepumpe mit einem Kühlmodus |
JP2008145000A (ja) * | 2006-12-07 | 2008-06-26 | Sasakura Engineering Co Ltd | 蒸発式空調装置 |
DE102007005930A1 (de) * | 2007-02-06 | 2008-08-07 | Efficient Energy Gmbh | Wärmepuppe, Kleinkraftwerk und Verfahren zum Pumpen von Wärme |
KR101413659B1 (ko) * | 2007-12-06 | 2014-07-01 | 삼성전자주식회사 | 실시간 핵산 증폭 데이터로부터 시료 중의 표적 핵산의초기 농도를 결정하는 방법 |
DE102008016627A1 (de) * | 2008-04-01 | 2009-10-08 | Efficient Energy Gmbh | Verflüssiger für eine Wärmepumpe, Wärmepumpe und Verfahren zum Herstellen eines Verflüssigers |
DE102008016664A1 (de) * | 2008-04-01 | 2009-10-29 | Efficient Energy Gmbh | Vertikal angeordnete Wärmepumpe und Verfahren zum Herstellen der vertikal angeordneten Wärmepumpe |
TW201346019A (zh) * | 2008-04-18 | 2013-11-16 | Saint Gobain Abrasives Inc | 製造經塗佈研磨產物或經黏結研磨產物之方法 |
JP5575379B2 (ja) * | 2008-07-25 | 2014-08-20 | 東京電力株式会社 | 圧縮機及び冷凍機 |
GB2469015B (en) | 2009-01-30 | 2011-09-28 | Compair Uk Ltd | Improvements in multi-stage centrifugal compressors |
WO2011017783A2 (fr) * | 2009-08-11 | 2011-02-17 | Atlas Copco Airpower, Naamloze Vennootschap | Compresseur centrifuge multi-étagé haute pression |
BE1019254A3 (nl) * | 2009-08-11 | 2012-05-08 | Atlas Copco Airpower Nv | Hogedruk meertraps-centrifugaalcompressor. |
JP5491818B2 (ja) * | 2009-10-01 | 2014-05-14 | 川崎重工業株式会社 | ターボ冷凍機 |
JP5554054B2 (ja) * | 2009-12-02 | 2014-07-23 | 川崎重工業株式会社 | ターボ冷凍機 |
US9261298B2 (en) | 2010-07-23 | 2016-02-16 | Carrier Corporation | Ejector cycle refrigerant separator |
US9523364B2 (en) | 2010-11-30 | 2016-12-20 | Carrier Corporation | Ejector cycle with dual heat absorption heat exchangers |
WO2012131770A1 (fr) * | 2011-03-30 | 2012-10-04 | 川崎重工業株式会社 | Refroidisseur centrifuge |
JP2012007882A (ja) * | 2011-08-01 | 2012-01-12 | Efficient Energy Gmbh | ヒートポンプ |
DE102011053173A1 (de) * | 2011-08-31 | 2013-02-28 | Thyssenkrupp Uhde Gmbh | Verfahren und Anlage zur Wärmeübertragung |
JP5395136B2 (ja) * | 2011-09-02 | 2014-01-22 | ダイキン工業株式会社 | 室外機 |
CN103206378B (zh) * | 2012-01-11 | 2015-10-07 | 复盛股份有限公司 | 多段式热泵压缩机 |
JP6150140B2 (ja) | 2012-10-10 | 2017-06-21 | パナソニックIpマネジメント株式会社 | 熱交換装置及びヒートポンプ装置 |
TWI551836B (zh) * | 2013-04-03 | 2016-10-01 | 友達光電股份有限公司 | 流量平衡控制方法 |
MY165266A (en) * | 2013-04-18 | 2018-03-15 | Pak Chuen Chang | A pressurised water based cooling system |
DE102013216457A1 (de) * | 2013-08-20 | 2015-02-26 | Efficient Energy Gmbh | Thermodynamisches gerät und verfahren zum herstellen eines thermodynamischen geräts |
WO2015089362A1 (fr) * | 2013-12-12 | 2015-06-18 | Johnson Controls Technology Company | Pompe à chaleur centrifuge entraînée par turbine à vapeur |
FR3016207B1 (fr) * | 2014-01-08 | 2016-01-22 | Electricite De France | Pompe a chaleur produisant du froid |
DE102015204466A1 (de) * | 2015-03-12 | 2016-09-15 | Siemens Aktiengesellschaft | Anordnung mit zwei Verdichtern, Verfahren zum Nachrüsten |
DK178705B1 (en) * | 2015-07-07 | 2016-11-28 | Silversnow Aps | A heat pump system using water as the thermal fluid |
JP2018145969A (ja) | 2017-03-06 | 2018-09-20 | パナソニックIpマネジメント株式会社 | ターボ圧縮機 |
JP7038300B2 (ja) * | 2017-07-27 | 2022-03-18 | パナソニックIpマネジメント株式会社 | 冷凍サイクル装置 |
CN109442776B (zh) * | 2018-11-30 | 2023-12-12 | 中国科学院广州能源研究所 | 一种水制冷剂空调设备 |
CN112112824B (zh) * | 2019-06-21 | 2022-10-11 | 上海海立电器有限公司 | 泵压机、制冷循环系统及其控制方法 |
US20230151824A1 (en) * | 2021-11-12 | 2023-05-18 | Carrier Corporation | Multistage compressor with swirl-reducing ribs |
CN118375634B (zh) * | 2024-06-26 | 2024-09-03 | 浙江欧拉动力科技有限公司 | 一种离心式压缩机的内置式级间流道装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2352247A1 (fr) * | 1976-05-18 | 1977-12-16 | Cem Comp Electro Mec | Procede et dispositif pour echanger de la chaleur entre des fluides |
US4420373A (en) | 1978-05-30 | 1983-12-13 | Dan Egosi | Energy conversion method and system |
US4282070A (en) * | 1978-05-30 | 1981-08-04 | Dan Egosi | Energy conversion method with water recovery |
US4323109A (en) * | 1979-08-27 | 1982-04-06 | General Electric Company | Open cycle heat pump system and process for transferring heat |
US4522035A (en) | 1981-01-23 | 1985-06-11 | Techmark Corporation | Method and apparatus for recovering waste energy |
US4437316A (en) | 1981-01-23 | 1984-03-20 | Technology Marketing Inc. | Method and apparatus for recovering waste energy |
US4454720A (en) * | 1982-03-22 | 1984-06-19 | Mechanical Technology Incorporated | Heat pump |
JPS60147067A (ja) | 1984-01-10 | 1985-08-02 | 協和醗酵工業株式会社 | ヒ−トポンプ |
EP0239680B1 (fr) * | 1986-03-25 | 1990-12-12 | Mitsui Engineering and Shipbuilding Co, Ltd. | Pompe à chaleur |
DE4237664A1 (de) * | 1992-11-07 | 1994-05-11 | Asea Brown Boveri | Verfahren zum Betrieb eines Turboverdichters |
-
1999
- 1999-10-25 FR FR9913272A patent/FR2800159B1/fr not_active Expired - Fee Related
-
2000
- 2000-10-18 IL IL13912500A patent/IL139125A/xx not_active IP Right Cessation
- 2000-10-19 CA CA002323941A patent/CA2323941A1/fr not_active Abandoned
- 2000-10-19 US US09/691,870 patent/US6397621B1/en not_active Expired - Fee Related
- 2000-10-23 DE DE60012450T patent/DE60012450T2/de not_active Expired - Fee Related
- 2000-10-23 ES ES00402925T patent/ES2225051T3/es not_active Expired - Lifetime
- 2000-10-23 TW TW089122223A patent/TW534971B/zh not_active IP Right Cessation
- 2000-10-23 EP EP00402925A patent/EP1096209B1/fr not_active Expired - Lifetime
- 2000-10-23 AT AT00402925T patent/ATE272197T1/de not_active IP Right Cessation
- 2000-10-25 JP JP2000325204A patent/JP2001165514A/ja active Pending
Also Published As
Publication number | Publication date |
---|---|
ATE272197T1 (de) | 2004-08-15 |
ES2225051T3 (es) | 2005-03-16 |
CA2323941A1 (fr) | 2001-04-25 |
DE60012450D1 (de) | 2004-09-02 |
IL139125A (en) | 2003-12-10 |
EP1096209A1 (fr) | 2001-05-02 |
FR2800159A1 (fr) | 2001-04-27 |
DE60012450T2 (de) | 2005-08-04 |
IL139125A0 (en) | 2001-11-25 |
JP2001165514A (ja) | 2001-06-22 |
US6397621B1 (en) | 2002-06-04 |
TW534971B (en) | 2003-06-01 |
FR2800159B1 (fr) | 2001-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1096209B1 (fr) | Installation de pompage de chaleur, notamment à fonction frigorifique | |
US10337746B2 (en) | Heat pump | |
JP5274483B2 (ja) | ヒートポンプ、小規模発電装置、及び熱を移動させる方法 | |
US8484991B2 (en) | Heat pump comprising a cooling mode | |
CH627233A5 (fr) | ||
FR2533270A1 (fr) | Procede et dispositif pour la regeneration rapide de pompes cryogeniques autonomes | |
FR2833044A1 (fr) | Reacteur thermodynamique eolien | |
EP4010645A1 (fr) | Membrane semi-perméable avec des pores résultant d'une substance volatile | |
EP3596414B1 (fr) | Installation de liquéfaction de gaz naturel disposée en surface d'une étendue d'eau, et procédé de refroidissement associé | |
CA3069841A1 (fr) | Installation frigorifique | |
FR2519383A1 (fr) | Compresseur centrifuge avec injection de liquide | |
FR3033632B1 (fr) | Dispositif thermodynamique de transfert de chaleur par compression de vapeur (mono ou multi-etage) et changements de phase, reversible a haut rendement. | |
FR2557921A1 (fr) | Dispositif de recuperation de chaleur perdue utilisant un detendeur a vis a injection d'huile. | |
FR3061709A1 (fr) | Dispositif permettant la production d'un melange de cristaux de glace et d'eau douce. | |
BE1013535A3 (fr) | Dispositif de refroidissement combinant l'utilisation d'une boucle diphasique et d'un systeme de refrigeration a absorption, notamment applicable pour le reffroidissement de l'air d'admission d'un moteur a combustion interne. | |
EP0244435B1 (fr) | Dispositif generateur d'energies multiples a cycle thermique integre | |
CH632317A5 (fr) | Machine aero-hydraulique reversible et utilisation de cette machine. | |
BE1001583A6 (fr) | Turbine actionnee - en circuit hermetiquement ferme-par les reactions d'un fluide soumis a des cycles successifs de gazeification, d'expansion et de condensation. | |
FR2692343A1 (fr) | Système frigorifique à compression bi-étagée. | |
FR2514877A1 (fr) | Dispositif de distillation notamment pour machine de nettoyage chimique | |
FR3059355B1 (fr) | Installation de production d'energie electrique, d'energie mecanique et/ou de froid | |
WO2023247218A1 (fr) | Systeme et procede de compression de dioxyde de carbone avec compression polyphasique et pompe supercritique | |
FR3138168A1 (fr) | Centrale Hydro-solaire-vapeur-électrique | |
RU2033550C1 (ru) | Двухконтурный турбореактивный двигатель | |
FR3075258A1 (fr) | Ensemble de turbopompe electrifiee pour un circuit ferme, en particulier de type a cycle de rankine, comportant un refroidissement integre |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 20010914 |
|
AKX | Designation fees paid |
Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20040728 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60012450 Country of ref document: DE Date of ref document: 20040902 Kind code of ref document: P |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20040920 Year of fee payment: 5 Ref country code: LU Payment date: 20040920 Year of fee payment: 5 Ref country code: SE Payment date: 20040920 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20040923 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040924 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041028 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: BRAUN & PARTNER PATENT-, MARKEN-, RECHTSANWAELTE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041031 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20041208 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2225051 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
BERE | Be: lapsed |
Owner name: *ELECTRICITE DE FRANCE Effective date: 20041031 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20050429 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051031 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20061009 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20061010 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20061016 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20061031 Year of fee payment: 7 Ref country code: IT Payment date: 20061031 Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CJ |
|
BERE | Be: lapsed |
Owner name: *ELECTRICITE DE FRANCE Effective date: 20041031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20071023 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071023 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20071024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071031 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071024 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071023 |