[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1053552B1 - Verfahren zur herstellung einer magnetfolie - Google Patents

Verfahren zur herstellung einer magnetfolie Download PDF

Info

Publication number
EP1053552B1
EP1053552B1 EP99907508A EP99907508A EP1053552B1 EP 1053552 B1 EP1053552 B1 EP 1053552B1 EP 99907508 A EP99907508 A EP 99907508A EP 99907508 A EP99907508 A EP 99907508A EP 1053552 B1 EP1053552 B1 EP 1053552B1
Authority
EP
European Patent Office
Prior art keywords
film
hard
magnetic
magnetic powder
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99907508A
Other languages
English (en)
French (fr)
Other versions
EP1053552A1 (de
Inventor
Sergej Antochin
Wilhelm Fernengel
Matthias Katter
Werner Rodewald
Boris Wall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Lofo High Tech Film GmbH
Original Assignee
Vacuumschmelze GmbH and Co KG
Lofo High Tech Film GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG, Lofo High Tech Film GmbH filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP1053552A1 publication Critical patent/EP1053552A1/de
Application granted granted Critical
Publication of EP1053552B1 publication Critical patent/EP1053552B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/16Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates the magnetic material being applied in the form of particles, e.g. by serigraphy, to form thick magnetic films or precursors therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0027Thick magnetic films

Definitions

  • the invention relates to a method for producing a hard magnetic film based on polymer, in particular for Use in electric motors or for sensor applications.
  • EP-A-0274034 consists of synthetic resin-bonded magnets made of a polymer and a hard magnetic powder known.
  • the powder used there is an Nd alloy and has a particle size of 80 ⁇ m and less.
  • the magnets can be made relatively thin, but are not foils.
  • the object of the present invention is therefore an economical Process for the production of a flexible hard magnetic To provide material of small thickness.
  • this object is achieved by a manufacturing process solved according to claim 1.
  • carrier-free hard magnetic foils made of a polymer matrix and a hard magnetic powder distributed therein manufacture.
  • trapped means here that the finished foils are not - as for example as Magnetic tapes or "floppy disks" known films - from one non-magnetic carrier and a magnetizable one or are built on both sides, but from one only continuously magnetic or magnetizable Layer.
  • the hard magnetic powder is useful an average particle size of less than 100 ⁇ m, preferably less than 20 ⁇ m.
  • the magnetic foils according to the invention are produced by that (i) a powder made of a hard magnetic material in a solution or dispersion of a polymer material dispersed in a volatile solvent, (ii) so dispersion obtained as a film of defined thickness on a rotating Casting belt cast, (iii) the solvent evaporates and (iv) peeling off the film thus formed from the casting belt becomes. Magnetization of the foil can occur after evaporation the solvent or at a later time (e.g. after assembly), due to the integration the magnetic particle into the polymer matrix is isotropic Magnetic sheet is obtained.
  • the orientation of the hard magnetic powder particles takes place in the process by an external magnetic field between the casting process and peeling off the film.
  • Orientation before solidification is particularly preferred of the cast film.
  • Particles made of an anisotropic material can form here align in the external magnetic field so that an anisotropic Magnetic sheet is obtained.
  • the magnetization and optionally alignment can preferably by means of a pulsed magnetic field become. This allows high field strengths with electromagnets can be achieved with low energy consumption. Especially easily orientable hard magnetic powder particles can also oriented in the air gap of a suitable permanent magnet yoke become.
  • a preferred volatile solvent for soluble polyvinylidene fluoride (Copolymer) is acetone.
  • the films according to the invention advantageously have a thickness of 50 to 2000 microns, preferably 100 to 500 microns.
  • the volume fraction of the hard magnetic powder in the invention Magnetic film can be adjusted as required. It is preferably at least 50%, particularly preferably at least 60%. It is possible to keep the polymer content as low to keep the polymer practically just the gaps one fills approximately dense packing of the powder particles.
  • the hard magnetic powder contained in the invention Foils preferably one or more rare earth alloy (s). However, it is also within the scope of the invention others hard magnetic materials such as Al-Ni-Co or Use Cr-Fe-Co alloys or ferrites.
  • Rare earth alloys which can be described by the general formulas SECo 5 , (SE) 2 (CO, Fe, Cu, Zr) 17 or (SE) 2 Fe 14 B, are particularly preferred.
  • SE means one or more elements from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium or a mixture of several of these elements.
  • the compositions Sm 2 (Co, Fe, Cu, Zr) 17 and (Pr, Nd, Dy) Fe 14 B are very particularly preferred. Alloys of these types are, for example, under the brands VACOMAX® and VACO-DYM® from Vacuumschmelze GmbH or available under the MAGNEQUENCH® brand from Magnequench Inc.
  • the polymer matrix can basically be made of any volatile Solvent-soluble or dispersible polymers. But it is also possible to use polymers that from low-viscosity monomers or oligomers to suitable ones Way are available in thin layers. In these cases can optionally be used during manufacture be dispensed with from solvents.
  • soluble thermoplastic materials used, in particular soluble polyvinylidene fluoride.
  • non-thermoplastic materials such as Use one-component polyurethane dispersions.
  • the hard magnetic powder particles can be random (isotropic) arranged or, if they have an inherent anisotropy, if necessary be aligned. Are preferred aligned parallel or perpendicular to the film surface.
  • the magnetic remanence of the magnetic foils according to the invention is determined by the type and packing density of the hard magnetic Powder particles determined and is preferably 0.2 to 0.8 Tesla.
  • the continuous casting belt is preferably made of matt Stainless steel.
  • a device for producing the magnetic film according to the invention is shown in Figure 1.
  • the real one Casting device comprises a temperature-controllable storage container 1 with stirring device for the casting solution or dispersion, a controllable feed pump 2, a filter device 3 for Separation of agglomerates and the caster 4.
  • the casting solution or dispersion is poured onto an endless casting belt 5, which revolves over rollers 6, 7 and of heating elements 8 indirectly is heated.
  • the casting belt is over one of the rollers, which are provided with a speed-controlled drive 16 is driven.
  • a cooling device 9 cools if necessary the magnetic film 11 before pulling it off the casting belt a removal device 10.
  • the magnetic film can possibly contain solvent residues before winding on a winding mandrel 13 of a drying undergo in a drying section 12, wherein the film is advantageously supported by a carrier web 14 becomes.
  • the carrier web can optionally also be used as a release film serve and wound up together with the magnetic sheet be (not shown).
  • An electromagnet is advantageous for magnetizing the film or permanent magnet yoke 17 attached at a short distance above the casting belt.
  • the entire pouring and drying device is advantageously surrounded by a housing 15, which reduces heat loss and in combination with a suction and filter device prevents the production rooms from being exposed to solvent vapors.
  • Gear pumps or peristaltic pumps, for example, can be used as feed pumps 2 become.
  • the pourer 4 can be used both as a pressure pourer, in which the casting solution is supplied by the feed pump 2 is fed directly to the casting gap with increased pressure, and also as an open one Scraper, which works only with hydrostatic pressure, be trained. In both In certain cases, the pressure or the filling level kept constant.
  • the film thickness is essentially the width of the The casting gap between the pourer 4 and the casting belt 5 is determined.
  • the heating devices 8 preferably supply the heat as radiant heat. to Support of the drying process and the removal of solvent vapors advantageously heated air supplied. It is also possible to use the heat, for example transferred to the casting belt via heated rollers or by direct passage of electricity or to be heated inductively. Finally, the cast film can also pass through Microwave energy can be heated.
  • the casting device can be equipped with one or more Means for cooling 9 may be provided. These can, for example, be cooled Drums or rollers, over which the casting belt 5 is guided, can be formed that the cooling takes place indirectly. On the other hand, there are also facilities for direct The film can be cooled, for example in the form of suitably arranged nozzles for inflation of cold air or other cooling media. Of course there is also a combination both measures possible.
  • the Removal device 10 suitably designed so that no excessive pull on the Foil is exerted, which leads to undesirable stretching or even tearing the slide could lead.
  • the removal device advantageously consists of a roller or a pair of rollers, which exerts a controlled tensile stress on the film and preferably is arranged so that a take-off angle of 15 ° to 45 ° results.
  • a cutting and stacking device can alternatively also be used be provided to deposit the film as a stack of sheets.
  • the total solids content of the casting solution thus obtained was 78.3% by mass, the volume fraction of the magnetic powder after drying was approx. 63%.
  • a film with a thickness of 120-140 ⁇ m was produced.
  • the film thus obtained had a density of 2.9-3.3 g / cm 3 .
  • films with a thickness of 220-230 ⁇ m and a thickness of 230-235 ⁇ m were further produced with densities of 3.6-3.7 g / cm 3 and 4.0-4.1 g / cm 3 , respectively ,
  • the films had a remanence of 0.2-0.29 T with a coercive field strength of 10.6 kOe.
  • the demagnetization curves of the exemplary films are shown in Figure 2.
  • the procedure was as described in Example 1, but an NdFeB magnet powder was used instead of the Sm 2 (Co, Cu, Fe, Zr) 17 magnet powder.
  • the magnetic film thus obtained had a thickness of 315 ⁇ m, a density of 4.11 g / cm 3 and a remanence of 0.35 T with a coercive field strength of 11.4 kOe.
  • the demagnetization curve of this film is shown in Figure 3.
  • Example 2 The procedure was as in Example 2, but an anisotropic NdFeB magnetic powder of the type MAGNEQUENCH® MQP-T was used and the film was exposed to a magnetic field of 2.4-2.9 kOe parallel to the surface after a drying time of 0.5 min, so that could align the powder particles in the not yet solidified film.
  • the finished anisotropic film had a thickness of 333 ⁇ m, a density of 4.0 g / cm 3 , a remanence of 0.505 T parallel to the surface and a coercive field strength of 11.5 kOe.
  • the demagnetization curve of this film is shown in Figure 4.
  • Example 2 Magnetic powder: VACOMAX® 240
  • the film was exposed after 0.5 minutes of drying time to align the anisotropic powder particles with pulsed external magnetic fields parallel to the surface.
  • the field strength was varied between 15 kOe (12 kA / cm) and 45 kOe (36 kA / cm).
  • the demagnetization curves of the anisotropic magnetic foils thus obtained are shown in Figure 5 together with that of a corresponding isotropic foil. It can be seen that the remanence increases parallel to the surface from 0.26 T for the isotropic film to 0.46 T after alignment at 45 kOe.
  • the corresponding values after alignment at 15 kOe, 20 kOe and 30 kOe are 0.37 T, 0.41 T and 0.43 T.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulding By Coating Moulds (AREA)
  • Hard Magnetic Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer hartmagnetischen Folie auf Polymerbasis, insbesondere zum Einsatz in Elektromotoren oder für Sensoranwendungen.
Aufgrund der fortschreitenden Miniaturisierung in der Elektronik werden in zunehmendem Maße auch besonders kleine oder flache Elektromotoren benötigt. Für diese Motoren, die üblicherweise hartmagnetische Komponenten im Stator oder auch im Rotor enthalten, werden naturgemäß auch besonders flache Magnetkomponenten gebraucht. Ebenso besteht ein wachsender Bedarf an besonders flachen Permanentmagneten für Miniatur-Relais und Sensoren, die nach magnetischen Prinzipien arbeiten (z. B. Drehzahl- oder Positionsgeber). Zudem sollten diese Magneten möglichst flexibel sein, um sich gegebenenfalls noch nach der Magnetisierung in die gewünschte Form bringen zu lassen und einen Bruch während der Verarbeitung oder im Betrieb auszuschließen.
Aus der EP-A-0274034 sind kunstharzgebundene Magnete bestehend aus einem Polymer und einem hartmagnetischen Pulver bekannt. Das dort verwendete Pulver ist eine Nd-Legierung und hat eine Partikelgröße von 80 µm und weniger. Die Magnete können relativ dünn ausgebildet werden, sind aber keine Folien.
Nach den für die Herstellung von Dauermagneten aus pulverformigen metallischen oder nichtmetallischen magnetischen Werkstoffen üblicherweise eingesetzten Formgebungsverfahren ist es jedoch schwierig bis unmöglich, flächige Gebilde mit einer geringen Dicke von beispielsweise 100 µm und hoher Energiedichte auf wirtschaftliche Weise herzustellen.
Aufgabe der vorliegenden Erfindung ist es daher, ein wirtschaftliches Verfahren zur Herstellung eines flexiblen hartmagnetischen Materials geringer Dicke bereitzustellen.
Erfindungsgemäß wird diese Aufgabe durch ein Herstellungsverfahren nach Patentanspruch 1 gelöst.
Es wurde gefunden, dass es durch Anwendung der Gießtechnik möglich ist, trägerfreie hartmagnetische Folien aus einer Polymermatrix und einem darin verteilten hartmagnetischen Pulver herzustellen. Der Begriff "trägerfrei" bedeutet hierbei, dass die fertigen Folien nicht- wie beispielsweise die als Magnetbänder oder "Floppy-Disks" bekannten Folien - aus einem nichtmagnetischen Träger und einer magnetisierbaren ein- oder beidseitigen Beschichtung aufgebaut sind, sondern aus einer einzigen durchgehend magnetischen bzw. magnetisierbaren Schicht bestehen. Das hartmagnetische Pulver hat dabei zweckmässig eine mittlere Teilchengröße von weniger als 100 µm, vorzugsweise eine solche von weniger als 20 µm.
Die erfindungsgemäßen Magnetfolien werden dadurch hergestellt, dass (i) ein Pulver aus einem hartmagnetischen Material in einer Lösung oder Dispersion eines Polymermaterials in einem flüchtigen Lösungsmittel dispergiert, (ii) die so erhaltene Dispersion als Film definierter Dicke auf ein umlaufendes Gießband gegossen, (iii) das Lösungsmittel verdampft und (iv) die so gebildete Folie vom Gießband abgezogen wird. Die Magnetisierung der Folie kann nach dem Verdampfen des Lösungsmittels oder zu einem späteren Zeitpunkt (z. B. nach der Konfektionierung) erfolgen, wobei wegen der Einbindung der Magnetpartikel in die Polymermatrix eine isotrope Magnetfolie erhalten wird.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Orientierung der hartmagnetischen Pulverteilchen durch ein externes Magnetfeld zwischen dem Giessvorgang und dem Abziehen der Folie.
Besonders bevorzugt ist eine Orientierung vor der Verfestigung des gegossenen Films.
Partikel aus einem anisotropen Material können sich hierbei im externen Magnetfeld ausrichten, so dass eine anisotrope Magnetfolie erhalten wird.
Die Magnetisierung und gegebenenfalls Ausrichtung können vorzugsweise mittels eines gepulsten Magnetfeldes vorgenommen werden. Hierdurch können mit Elektromagneten hohe Feldstärken bei geringem Energieverbrauch erreicht werden. Besonders leicht orientierbare hartmagnetische Pulverteilchen können auch im Luftspalt eines geeigneten Dauermagnetjoches orientiert werden.
Ein bevorzugtes flüchtiges Lösungsmittel für lösliches Polyvinylidenfluorid (-Copolymer) ist Aceton.
Die erfindungsgemäßen Folien haben vorteilhaft eine Dicke von 50 bis 2000 µm, vorzugsweise eine solche von 100 bis 500 µm.
Der Volumenanteil des hartmagnetischen Pulvers an der erfindungsgemäßen Magnetfolie kann je nach Bedarf eingestellt werden. Er beträgt vorzugsweise mindestens 50%, besonders bevorzugt mindestens 60%. Es ist möglich, den Polymeranteil so gering zu halten, dass das Polymer praktisch nur die Lücken einer annähernd dichten Packung der Pulverteilchen ausfüllt.
Als hartmagnetisches Pulver enthalten die erfindungsgemäßen Folien vorzugsweise eine oder mehrere Seltenerdlegierung(en). Es liegt jedoch ebenfalls im Rahmen der Erfindung, andere hartmagnetische Materialien wie beispielsweise Al-Ni-Co- oder Cr-Fe-Co-Legierungen oder Ferrite einzusetzen.
Besonders bevorzugt sind Seltenerdlegierungen, die sich durch die allgemeinen Formeln SECo5, (SE)2(CO,Fe,Cu,Zr)17 oder (SE)2Fe14B beschreiben lassen. Hierin bedeutet SE ein oder mehrere Elemente aus der Gruppe bestehend aus Yttrium, Lanthan, Cer, Praseodym, Neodym, Samarium, Europium, Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium und Lutetium oder ein Gemisch mehrerer dieser Elemente. Ganz besonders bevorzugt sind die Zusammensetzungen Sm2(Co,Fe,Cu,Zr)17 und (Pr,Nd,Dy)Fe14B. Legierungen dieser Typen sind beispielsweise unter den Marken VACOMAX® und VACO-DYM® von der Firma Vacuumschmelze GmbH bzw. unter der Marke MAGNEQUENCH® von der Firma Magnequench Inc. erhältlich.
Die Polymermatrix kann grundsätzlich aus jedem in flüchtigen Lösungsmitteln löslichen oder dispergierbaren Polymeren bestehen. Es ist aber auch möglich Polymere zu verwenden, die aus niedrigviskosen Monomeren oder Oligomeren auf geeignete Weise in dünnen Schichten erhältlich sind. In diesen Fällen kann gegebenenfalls bei der Herstellung auf die Verwendung von Lösungsmitteln verzichtet werden. Vorzugsweise werden lösliche thermoplastische Materialien eingesetzt, insbesondere lösliches Polyvinylidenfluorid. Es ist jedoch auch möglich, nicht-thermoplastische Materialien wie beispielsweise Einkomponenten-Polyurethandispersionen einzusetzen.
Die hartmagnetischen Pulverteilchen können regellos (isotrop) angeordnet oder, wenn sie eine inhärente Anisotropie aufweisen, gegebenenfalls ausgerichtet sein. Vorzugsweise sind sie parallel oder senkrecht zur Folienoberfläche ausgerichtet.
Die magnetische Remanenz der erfindungsgemässen Magnetfolien wird durch die Art und die Packungsdichte der hartmagnetischen Pulverteilchen bestimmt und beträgt vorzugsweise 0,2 bis 0,8 Tesla.
Das umlaufende Gießband besteht vorzugsweise aus mattiertem Edelstahl.
Eine Vorrichtung zur Herstellung der erfindungsgemäßen Magnetfolie ist in Abbildung 1 dargestellt. Die eigentliche Gießvorrichtung umfasst einen temperierbaren Vorratsbehälter 1 mit Rührvorrichtung für die Gießlösung bzw .-dispersion, eine regelbare Förderpumpe 2, eine Filtereinrichtung 3 zum Abtrennen von Agglomeraten und den Gießer 4. Die Gießlösung bzw. -dispersion wird auf ein endloses Gießband 5 gegossen, welches über Walzen 6, 7 umläuft und von Heizelementen 8 indirekt beheizt wird. Das Gießband wird über eine der Walzen, welche mit einem geschwindigkeitsgeregelten Antrieb 16 versehen ist, angetrieben. Eine Kühlvorrichtung 9 kühlt gegebenenfalls die Magnetfolie 11 vor dem Abziehen vom Gießband mittels einer Abnahmevorrichtung 10. Zur Entfernung von verbleibenden Lösungsmittelresten kann die Magnetfolie gegebenenfalls vor dem Aufwickeln auf einen Wickeldorn 13 einer Nachtrocknung in einer Trockenstrecke 12 unterzogen werden, wobei die Folie vorteilhaft von einer Trägerbahn 14 unterstützt wird. Die Trägerbahn kann gegebenenfalls auch als Trennfolie dienen und zusammen mit der Magnetfolie aufgewickelt werden (nicht abgebildet). Zur Magnetisierung der Folie ist vorteilhaft ein Elektromagnet oder Dauermagnetjoch 17 in geringem Abstand über dem Giessband angebracht. Die gesamte Giess- und Trockenvorrichtung ist vorteilhaft von einem Gehäuse 15 umgeben, welches Wärmeverluste verringert und in Kombination mit einer Absaug- und Filtervorrichtung die Belastung der Produktionsräume durch Lösungsmitteldämpfe verhindert. Als Förderpumpen 2 können beispielsweise Zahnradpumpen oder Schlauchpumpen eingesetzt werden.
Der Giesser 4 kann sowohl als Druckgiesser, bei dem die Giesslösung durch die Förderpumpe 2 mit erhöhtem Druck direkt dem Giessspalt zugeführt wird, als auch als offener Abstreifgiesser, der allein mit hydrostatischem Druck arbeitet, ausgebildet sein. In beiden Fällen wird durch entsprechende Regelung der Pumpenleistung vorteilhaft der Druck bzw. die Füllhöhe konstant gehalten. Die Foliendicke wird im wesentlichen von der Weite des Giessspaltes zwischen Giesser 4 und Giessband 5 bestimmt.
Die Heizeinrichtungen 8 führen die Wärme vorzugsweise als Strahlungswärme zu. Zur Unterstützung des Trocknungsprozesses und zur Abfuhr der Lösungsmitteldämpfe wird vorteilhaft erwärmte Luft zugeführt. Weiterhin ist es möglich, die Wärme beispielsweise über beheizte Walzen auf das Giessband zu übertragen oder dieses durch direkten Stromdurchgang oder induktiv zu erwärmen. Schliesslich kann auch der gegossene Film durch Mikrowellenenergie erwärmt werden.
Zur Erhöhung der Festigkeit der Magnetfolie vor der Abnahme vom Giessband wird diese vorteilhaft gekühlt. Zu diesem Zweck kann die Giessvorrichtung mit einer oder mehreren Einrichtungen zur Kühlung 9 versehen sein. Diese können beispielsweise als kühlbare Trommeln oder Walzen, über welcher das Giessband 5 geführt wird, ausgebildet sein, so dass die Kühlung indirekt erfolgt. Andererseits sind auch Einrichtungen zur direkten Kühlung der Folie möglich, beispielsweise in Form geeignet angeordneter Düsen zum Aufblasen von Kaltluft oder anderen Kühlmedien. Selbstverständlich ist auch eine Kombination beider Massnahmen möglich.
Da die erfindungsgemässe Magnetfolie eine relativ geringe Zugfestigkeit aufweist, ist die Abnahmevorrichtung 10 zweckmässig so ausgebildet, dass kein übermässiger Zug auf die Folie ausgeübt wird, welcher zu einer unerwünschten Verstreckung oder gar zum Reissen der Folie führen könnte. Vorteilhaft besteht die Abnahmevorrichtung aus einer Walze oder einem Walzenpaar, das eine kontrollierte Zugspannung auf die Folie ausübt und vorzugsweise so angeordnet ist, dass sich ein Abnahmewinkel von 15° bis 45° ergibt. Anstelle der Aufwickelvorrichtung 13 kann alternativ auch eine Schneide- und Stapelvorrichtung vorgesehen werden, um die Folie als Bogenstapel abzulegen.
Die folgenden Beispiele verdeutlichen die Herstellung und die Eigenschaften der erfindungsgemässen Magnetfolie.
Beispiel 1
In Aceton wurden 8,7 Teile lösliches Polyvinylidenfluorid-Copolymer (SOLEF® 21508/1001, Hersteller: Solvay Kunststoffe), 1,4 Teile Netzmittel (Disperbyk® 180, Hersteller: Byk Chemie) und 89,9 Teile Sm2(Co,Cu,Fe,Zr)17-Magnetpulver (VACOMAX® 240, Hersteller: Vacuumschmelze GmbH) gelöst bzw. dispergiert. Das Magnetpulver war in einer Strahlmühle unter Stickstoff gemahlen und zur Entfernung von Überkorn durch ein 80 µm-Sieb gesiebt worden. Gemäss Siebanalyse entfielen 60 Massen-% auf Teilchen <25 µm und 1,8 Massen-% auf Teilchen >40 µm. Die mittlere Teilchengrösse wurde zu 10 µm bestimmt. Der gesamte Feststoffanteil der so erhaltenen Giesslösung betrug 78,3 Massen-%, der Volumenanteil des Magnetpulvers nach dem Trocknen ca. 63%. Mit der vorstehend beschriebenen Giessvorrichtung wurde eine Folie von 120-140 µm Dicke hergestellt. Die so erhaltene Folie hatte eine Dichte von 2,9-3,3 g/cm3. Durch Variation der Giessspaltbreite und des Magnetpulvergehalts wurden weiterhin Folien von 220-230 µm Dicke und 230-235 µm Dicke mit Dichten von 3,6-3,7 g/cm3 bzw. 4,0-4,1 g/cm3 hergestellt. Die Folien besassen eine Remanenz von 0,2-0,29 T bei Koerzitivfeldstärken von 10,6 kOe. Die Entmagnetisierungskurven der beispielgemässen Folien sind in Abbildung 2 dargestellt.
Beispiel 2
Es wurde verfahren wie in Beispiel 1 beschrieben, jedoch wurde anstelle des Sm2(Co,Cu,Fe,Zr)17-Magnetpulvers ein NdFeB-Magnetpulver eingesetzt. Die so erhaltene Magnetfolie hatte eine Dicke von 315 µm, eine Dichte von 4,11 g/cm3 und eine Remanenz von 0,35 T bei einer Koerzitivfeldstärke von 11,4 kOe. Die Entmagnetisierungskurve dieser Folie ist in Abbildung 3 dargestellt.
Beispiel 3
Es wurde wie in Beispiel 2 verfahren, jedoch wurde ein anisotropes NdFeB-Magnetpulver des Typs MAGNEQUENCH® MQP-T verwendet und die Folie nach 0,5 min Trocknungszeit einem Magnetfeld von 2,4-2,9 kOe parallel zur Oberfläche ausgesetzt, so dass sich die Pulverteilchen in der noch nicht verfestigten Folie ausrichten konnte. Die fertige anisotrope Folie hatte eine Dicke von 333 µm, eine Dichte von 4,0 g/cm3, eine Remanenz von 0,505 T parallel zur Oberfläche und eine Koerzitivfeldstärke von 11,5 kOe. Die Entmagnetisierungskurve dieser Folie ist in Abbildung 4 dargestellt.
Beispiel 4
Es wurde analog zu Beispiel 1 verfahren (Magnetpulver: VACOMAX® 240), jedoch wurde die Folie nach 0,5 min Trocknungszeit zur Ausrichtung der anisotropen Pulverteilchen gepulsten externen Magnetfeldern parallel zur Oberfläche ausgesetzt. Die Feldstärke wurde zwischen 15 kOe (12 kA/cm) und 45 kOe (36 kA/cm) variiert. Die Entmagnetisierungskurven der so erhaltenen anisotropen Magnetfolien sind zusammen mit derjenigen einer entsprechenden isotropen Folie in Abbildung 5 dargestellt. Es zeigt sich, dass die Remanenz parallel zur Oberfläche von 0,26 T bei der isotropen Folie bis auf 0,46 T nach einer Ausrichtung bei 45 kOe steigt. Die entsprechenden Werte nach Ausrichtung bei 15 kOe, 20 kOe und 30 kOe betragen 0,37 T, 0,41 T und 0,43 T. Durch die Ausrichtung der Pulverteilchen mit Magnetfeldpulsen parallel zur Folienoberfläche wird der Orientierungsgrad fo von 0,5 bei der isotropen Magnetfolie bis auf 0,95 verbessert. Die Koerzitivfeldstärke nimmt aufgrund der verbesserten Orientierung von 11,5 kOe bei der isotropen Magnetfolie auf ca. 9 kOe bei den anisotropen Magnetfolien ab.

Claims (15)

  1. Verfahren zur Herstellung einer hartmagnetischen Folie bestehend aus aus einer Polymermatrix und einem darin verteilten hartmagnetischen Pulver mit einer mittleren Teilchengröße von weniger als 100 µm, vorzugsweise weniger als 20 µm, dadurch gekennzeichnet, dass es mindestens die Schritte (i) Herstellung einer Dispersion eines hartmagnetischen Pulvers mit einer mittleren Teilchengröße von weniger als 100 µm in einer Lösung oder Dispersion eines Polymermaterials in einem flüchtigen Lösungsmittel, (ii) Giessen der Dispersion des hartmagnetischen Pulvers als Film definierter Dicke auf ein umlaufendes Gießband, (iii) Verdampfen des Lösungsmittels und (iv) Abziehen der so gebildeten Folie vom Gießband umfasst.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zwischen dem Gießvorgang (ii) und dem Abziehen der Folie (iv) die Partikel des hartmagnetischen Pulvers durch ein externes Magnetfeld magnetisiert und orientiert werden.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Magnetisierung und Orientierung erfolgt, bevor sich der gegossene Film verfestigt hat.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das externe Magnetfeld gepulst wird.
  5. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass das externe Magnetfeld durch ein Dauermagnetjoch erzeugt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als hartmagnetisches Pulver eine Seltenerdlegierung eingesetzt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass als Seltenerdlegierung eine Legierung der allgemeinen Formel SECo5, (SE)2(Co,Fe,Cu,Zr)17 oder (SE)2Fe14B, worin SE für eines oder mehrere der Elemente Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb oder Lu steht, eingesetzt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Polymermaterial lösliches Polyvinylidenfluorid eingesetzt wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als flüchtiges Lösungsmittel Aceton eingesetzt wird.
  10. Verfahren nach einem der vorherigen Ansprüche, gekennzeichnet durch eine Dicke der Folie von 50 bis 2000 µm,
  11. Verfahren nach Anspruch 10, gekennzeichnet durch eine Dicke der Folie von 100 bis 500 µm.
  12. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass der Volumenanteil des hartmagnetischen Pulvers wenigstens 50% beträgt.
  13. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die hartmagnetischen Pulverteilchen parallel oder senkrecht zur Folienoberfläche ausgerichtet sind.
  14. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Folie eine magnetische Remanenz von 0,2 bis 0,8 T besitzt.
  15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die mittlere Teilchengröße kleiner 20 µm ist.
EP99907508A 1998-02-09 1999-02-05 Verfahren zur herstellung einer magnetfolie Expired - Lifetime EP1053552B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH31398 1998-02-09
CH31398 1998-02-09
PCT/EP1999/000779 WO1999040592A1 (de) 1998-02-09 1999-02-05 Magnetfolie und verfahren zu deren herstellung

Publications (2)

Publication Number Publication Date
EP1053552A1 EP1053552A1 (de) 2000-11-22
EP1053552B1 true EP1053552B1 (de) 2003-02-05

Family

ID=4184166

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99907508A Expired - Lifetime EP1053552B1 (de) 1998-02-09 1999-02-05 Verfahren zur herstellung einer magnetfolie

Country Status (5)

Country Link
US (1) US6464894B1 (de)
EP (1) EP1053552B1 (de)
JP (1) JP2002503027A (de)
DE (1) DE59904223D1 (de)
WO (1) WO1999040592A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773765B1 (en) * 1999-11-04 2004-08-10 The Research Foundation Of State University Of New York Thermally sprayed, flexible magnet with an induced anisotropy
AU2002232415A1 (en) * 2000-11-26 2002-06-03 Magnetnotes, Ltd. Magnetic substrates, composition and method for making the same
US7338573B2 (en) * 2000-11-26 2008-03-04 Magnetnotes, Ltd. Magnetic substrates with high magnetic loading
US7501921B2 (en) * 2005-05-13 2009-03-10 Magnetnotes, Ltd. Temperature controlled magnetic roller
US7854878B2 (en) * 2007-01-23 2010-12-21 International Business Machines Corporation Method for forming and aligning chemically mediated dispersion of magnetic nanoparticles in a polymer
DE102008024780A1 (de) * 2008-05-23 2009-11-26 Osram Gesellschaft mit beschränkter Haftung Drahtlos speisbares Leuchtmittel
WO2012031462A1 (zh) * 2010-09-10 2012-03-15 广州新莱福磁电有限公司 一种添加再生塑料的可挠性塑胶磁性膜片材料
AU2011320814A1 (en) 2010-10-27 2013-05-02 Intercontinental Great Brands Llc Magnetically closable product accommodating package
WO2013082685A1 (pt) * 2011-12-05 2013-06-13 Universidade Federal De Pernambuco Material orgânico magnético
US9028951B2 (en) 2013-09-10 2015-05-12 Magnetnotes, Ltd. Magnetic receptive printable media

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3070841A (en) * 1960-12-07 1963-01-01 Goodrich Co B F Method and apparatus for making magnetically anisotropic elongated magnets
US3467598A (en) * 1967-01-16 1969-09-16 Goodrich Co B F Processing aids in preparation of sbr flexible magnets
US3764539A (en) * 1970-10-14 1973-10-09 Community Building Ass Of Wash Flexible ferrite permanent magnet and methods for its manufacture
JPS5085897A (de) 1973-12-03 1975-07-10
US4200457A (en) * 1979-01-22 1980-04-29 Cape Arthur T Ferrous base alloy for hard facing
DE3006736A1 (de) * 1979-02-23 1980-09-04 Inoue Japax Res Verfahren und vorrichtung zur herstellung eines elastomeren magnetischen gegenstandes
US4983232A (en) 1987-01-06 1991-01-08 Hitachi Metals, Ltd. Anisotropic magnetic powder and magnet thereof and method of producing same
US4881988A (en) * 1987-11-16 1989-11-21 Rjf International Corporation Novel flexible magnet for use in small dc motors
JPH01313903A (ja) * 1988-06-14 1989-12-19 Kubota Ltd 希土類系樹脂磁石用コンパウンドおよび樹脂磁石
DE4228520C2 (de) 1992-08-27 2000-10-26 Vacuumschmelze Gmbh Verfahren zur Herstellung von dünnwandigen kunststoffgebundenen Dauermagnetformteilen, wie zum Beispiel Schalenmagneten
US5607768A (en) * 1995-05-15 1997-03-04 General Motors Corporation Lubricous polymer-encapsulated ferromagnetic particles and method of making
TW338167B (en) * 1995-10-18 1998-08-11 Seiko Epson Corp Rare-earth adhesive magnet and rare-earth adhesive magnet components

Also Published As

Publication number Publication date
JP2002503027A (ja) 2002-01-29
US6464894B1 (en) 2002-10-15
EP1053552A1 (de) 2000-11-22
DE59904223D1 (de) 2003-03-13
WO1999040592A1 (de) 1999-08-12

Similar Documents

Publication Publication Date Title
DE3883038T2 (de) Verfahren zur Herstellung eines anisotropen seltene Erden-Eisen-Bor-Verbundmagneten mit Hilfe von bandähnlichen Spänen aus einer seltene Erden-Eisen-Bor-Legierung.
DE68916184T2 (de) Magnetische Stoffe, enthaltend Seltenerdelemente, Eisen, Stickstoff und Wasserstoff.
DE10131638B4 (de) Verfahren zur Herstellung eines Seltenerdmetallmagneten und Pulverpressvorrichtung
DE102015105764B4 (de) Permanentmagnet und motor
DE3686043T2 (de) Dauermagnetherstellung aus einer seltenerd-uebergangsmetall-bor-legierung sehr niedriger koerzivitaet.
EP1053552B1 (de) Verfahren zur herstellung einer magnetfolie
DE69707185T2 (de) Gusslegierung für die Herstellung von Dauermagneten mit seltenen Erden und Verfahren zur Herstellung dieser Legierung und dieser Dauermagneten
DE112012004288T5 (de) R-T-B-basiertes Legierungsband, R-T-B-basierter gesinterter Magnet und Verfahren zu deren Herstellung
DE60206031T2 (de) Verfahren zur herstellung von seltenerdlegierungs sinterformteilen
DE10114939B4 (de) Pulverpressvorrichtung und Verfahren zur Herstellung eines magnetischen Seltenerdmetall-Legierungspulverpresslings
DE60036766T2 (de) Verfahren zur Herstellung eines auf Seltenerd-Metall basierten Dauermagneten mit einer korrosionswiderstandsfähigen Schicht
DE1944432A1 (de) Permanentmagnet
DE3780588T2 (de) Verfahren zur herstellung eines gesinterten anisotropen seltenerd-eisen-bor-magneten mit hilfe von bandaehnlichen spaenen aus einer seltenerd-eisen-bor-legierung.
DE69007720T2 (de) Magnetmaterial, welches seltenes Erdelement, Eisen, Stickstoff, Wasserstoff und Sauerstoff enthält.
DE10392157B4 (de) Verfahren zum Pressen eines Seltenerdmetall-Legierungspulvers und Verfahren zur Herstellung eines Sinterkörpers aus einer Seltenerdmetall-Legierung
DE10310572B4 (de) Permanentmagnet, Verfahren zu seiner Herstellung, Rotor und Motor
DE69429326T2 (de) Verfahren zum Granulieren von Pulver
DE102015104639A1 (de) R-T-B-basierter Permanentmagnet
DE102014103210B4 (de) Herstellen von nd-fe-b-magneten unter verwendung von heisspressen mit verringertem dysprosium oder terbium
DE60031914T2 (de) Magnetpulver und isotroper Verbundmagnet
DE60217667T2 (de) Verfahren zur herstellung von pulvergranulat des typs r-fe-b-legierung und verfahren zur herstellung eines gesinterten presslings aus der r-fe-b-legierung
DE60122047T2 (de) Herstellungsverfahren für magnetische Materialien, pulverförmige magnetische Materialien und Verbundmagnet
DE10297293B4 (de) Pressvorrichtung und Verfahren zur Herstellung eines Magneten sowie Motor mit einem nach dem Verfahren hergestellten Magneten
DE60122260T2 (de) Grosser Austauschfeder-Magnet, hiermit ausgestattetes Gerät und zugehöriges Herstellungsverfahren
DE69008922T2 (de) Verfahren zum Verpacken von permanentmagnetischem Pulver.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000819

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IE LI

17Q First examination report despatched

Effective date: 20011002

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD FOR THE PRODUCTION OF A MAGNETIC FILM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE FR GB IE LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LONZA AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030205

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59904223

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040225

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050216

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20050223

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050324

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060205

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228