EP0933833B1 - Waveguide radiator - Google Patents
Waveguide radiator Download PDFInfo
- Publication number
- EP0933833B1 EP0933833B1 EP99100867A EP99100867A EP0933833B1 EP 0933833 B1 EP0933833 B1 EP 0933833B1 EP 99100867 A EP99100867 A EP 99100867A EP 99100867 A EP99100867 A EP 99100867A EP 0933833 B1 EP0933833 B1 EP 0933833B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- waveguide
- waveguide radiator
- short
- radiator
- axial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 16
- 230000007704 transition Effects 0.000 claims description 7
- 239000004020 conductor Substances 0.000 claims description 3
- 230000007935 neutral effect Effects 0.000 claims 1
- 230000005855 radiation Effects 0.000 description 5
- 230000006978 adaptation Effects 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q13/00—Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
- H01Q13/06—Waveguide mouths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/08—Coupling devices of the waveguide type for linking dissimilar lines or devices
- H01P5/10—Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
- H01P5/103—Hollow-waveguide/coaxial-line transitions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
Definitions
- the innovation relates to a waveguide radiator consisting of a waveguide section with an aperture and a short-circuit wall and one coaxial feed and a transition from the coaxial feed to the waveguide radiator.
- Such a waveguide radiator has become known from DE 42 13 539 A1.
- This waveguide radiator has a straight waveguide section with a circular cross-section, one end of which is connected to a short-circuit plate is completed. The other end ends in a horn.
- An axially extending rod is arranged on the short-circuit plate, of a transition together with two orthogonal coupling pins from a coaxial lead to a waveguide.
- This type shows in addition to the coupling of the orthogonally fed waves the disadvantage that the feed takes up a significant amount of space has radial direction around the waveguide and that to form the radiation pattern a home heater is required.
- the particular advantage of the waveguide radiator is that the above-mentioned Disadvantages of the conventional designs are avoided and that the waveguide radiator in particular with a length of only a little more very little coupling than a quarter of the operating wavelength the orthogonal wave components and a broadband characteristic has and also an arrangement in a tightly packed Array allowed, the coupling by means of simple adaptation measures between neighboring radiators can be largely reduced can.
- FIG. 1 shows a waveguide radiator 1 which consists of a waveguide section 3 and a short circuit wall 2 and a circular Has aperture with the diameter of the waveguide section 3.
- the coaxial supply 4 opens under the short-circuit wall 2.
- the connection between the coaxial feed 4 and the waveguide section 3 takes place via an opening 5 in the short-circuit wall 2 through which a capacitive acting coaxial probe 6 is guided.
- This probe 6 is by means of Connection 7 connected to the center conductor 8 of the coaxial supply 4.
- the embodiment of the probe is detailed in DE 40 38 817 C1 described.
- the aperture end of the capacitive coaxial Probe 6 is on a shorting bar running parallel to the short circuit wall 2 10 attached.
- a further probe 9 Symmetrical to the main axis A of the waveguide radiator 1 is a further probe 9 with a similar outer shape, which is on the one hand firmly connected to the short-circuit wall 2 and the on the other hand is attached to the free end of the shorting bar 10.
- the probes 6 and 9 together with the shorting bar 10 form the Coupling system for a polarization direction of a fundamental wave in the waveguide radiator 1.
- 1 is in the waveguide radiator
- Another similar coupling system consisting of probes 12 and 13 and the shorting bar 11 orthogonal to the first coupling system 6, 9, 10 arranged.
- the feed from a separate coaxial feed is in not shown in the figures, but it corresponds to that already described Power for the first coupling system.
- the two shorting bars 10 and 11 cross each other in the area of the main axis A. led that no electrical contact is made. This can - how 1 - by means of a height offset of both shorting bars respectively.
- the length L o of the probes 6, 9, 12, 13 is approximately a quarter of the operating wavelength ⁇ .
- the shorting bars 10, 11 are in the state of idling due to the distance of ⁇ / 4 from the shorting wall 2.
- the length L o of the probes can optionally be changed, as can the diameter D of the probes and their distance S from one another. The transition designed as a balun is thus matched to the waveguide impedance.
- the TEM wave that is propagatable in the coaxial feed 4 is converted into the basic wave type of the waveguide 3.
- the wave types H 01 and H 10 ⁇ are created in the square waveguide and orthogonal H 11 wave types in the round waveguide.
- the microwaves are emitted via the aperture of the waveguide radiator 1.
- the aperture level is at a distance 1 from the shorting bars 10, 11 arranged away.
- By varying the length 1 in Range 0 ⁇ 1 ⁇ ⁇ becomes the secondary radiation contribution of the coupling device with a suitable amplitude and phase the radiation contribution superimposed on the waveguide aperture.
- the waveguide radiator is distinguished due to a very compact design in the radial direction to the main beam axis A off. This makes a particularly close arrangement of several neighboring ones Coupling devices, such as those in a waveguide array needed, possible.
- the dimensions of such a waveguide array lie in the area of the dimensions of a planar patch array which the waveguide array is characterized by better electrical performance data and features better broadband characteristics.
Landscapes
- Waveguide Aerials (AREA)
Description
Die Neuerung betrifft einen Hohlleiterstrahler, bestehend aus einem Hohlleiterabschnitt mit einer Apertur und einer Kurzschlußwand sowie einer koaxialen Speisung und einem Übergang von der koaxialen Speisung auf den Hohlleiterstrahler.The innovation relates to a waveguide radiator consisting of a waveguide section with an aperture and a short-circuit wall and one coaxial feed and a transition from the coaxial feed to the waveguide radiator.
Ein derartiger Hohlleiterstrahler ist aus der DE 42 13 539 A1 bekannt geworden. Dieser Hohlleiterstrahler weist einen geraden Hohlleiterabschnitt mit kreisförmigem Querschnitt auf, dessen eines Ende mit einer Kurzschlußplatte abgeschlossen ist. Das andere Ende mündet in einen Hornstrahler. Auf der Kurzschlußplatte ist ein axial verlaufender Stab angeordnet, der zusammen mit zwei orthogonalen Koppelstiften einen Übergang von einer koaxialen Zuleitung auf einen Hohlleiter bildet. Diese Bauart weist neben der Verkopplung der orthogonal eingespeisten Wellen auch den Nachteil auf, daß die Einspeisung einen erheblichen Raumbedarf in radialer Richtung um den Hohlleiter hat und daß zur Formung des Strahlungsdiagrammes ein Homstrahler benötigt wird.Such a waveguide radiator has become known from DE 42 13 539 A1. This waveguide radiator has a straight waveguide section with a circular cross-section, one end of which is connected to a short-circuit plate is completed. The other end ends in a horn. An axially extending rod is arranged on the short-circuit plate, of a transition together with two orthogonal coupling pins from a coaxial lead to a waveguide. This type shows in addition to the coupling of the orthogonally fed waves the disadvantage that the feed takes up a significant amount of space has radial direction around the waveguide and that to form the radiation pattern a home heater is required.
Die DE 40 38 817 C1 beschreibt eine Kopplungsvorrichtung für zwei in übereinanderliegenden Ebenen verlaufenden Koaxialleitungssystemen. Dieser Übergang hat sich bewährt. Es ist jedoch kein Hinweis gegeben, wie diese Kopplungsvorrichtung in Verbindung mit einem Hohlleiterstrahler genutzt werden kann.DE 40 38 817 C1 describes a coupling device for two in coaxial line systems running one above the other. This transition has proven itself. However, there is no indication like this coupling device in connection with a waveguide radiator can be used.
Aus der Patentschrift US 3,680,138 ist ebenfalls ein Strahler für Arrayantennen bekannt geworden, der jedoch nur für die Abstrahlung linear polarisierter elektromagnetischer Strahlung geeignet ist. Es wird jedoch kein Hinweis darauf gegeben, auf welche Weise eine zirkular polarisierte Welle abgetrahlt und wie die Formung des Antennendiagramms optimiert werden könnte.From the patent US 3,680,138 is also a radiator for array antennas became known, but only for the radiation linearly polarized electromagnetic radiation is suitable. However, it won't Given the way in which a circularly polarized wave radiated and how the formation of the antenna pattern are optimized could.
Es ist Aufgabe der Erfindung einen Hohlleiterstrahler mit koaxialer Speisung zu entwickeln, der sowohl mit runden wie auch quadratischen Hohlleitern verwendbar ist, der keine über die Hohlleiterwand radial hinausragenden Bauteile aufweist und der trotz kurzer axialer Baulänge wenigstens gleich gute elektrische Leistungsdaten wie z.B. Patch- oder Schlitzstrahler aufweist.It is an object of the invention to provide a waveguide radiator with a coaxial feed to develop that with both round and square waveguides Can be used that does not protrude radially beyond the waveguide wall Has components and at least despite the short axial length equally good electrical performance data such as Patch or slot heater having.
Diese Aufgabe wird mit dem Gegenstand des Anspruchs 1 gelöst, vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.This object is achieved with the subject matter of claim 1, advantageous Refinements are specified in the subclaims.
Der besondere Vorteil des Hohlleiterstrahlers ist darin zu sehen, daß die o.g. Nachteile der konventionellen Bauformen vermieden werden und daß der Hohlleiterstrahler insbesondere bei einer Länge von nur wenig mehr als einem Viertel der Betriebswellenlänge eine nur sehr geringe Verkopplung der orthogonalen Wellenanteile und eine Breitbandcharakteristik aufweist und darüber hinaus eine Anordnung in einem dicht gepackten Array erlaubt, wobei mittels einfacher Anpassungsmaßnahmen die Verkopplung zwischen benachbarten Strahlern weitgehend reduziert werden können.The particular advantage of the waveguide radiator is that the above-mentioned Disadvantages of the conventional designs are avoided and that the waveguide radiator in particular with a length of only a little more very little coupling than a quarter of the operating wavelength the orthogonal wave components and a broadband characteristic has and also an arrangement in a tightly packed Array allowed, the coupling by means of simple adaptation measures between neighboring radiators can be largely reduced can.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:
- Fig. 1
- einen Schnitt durch einen Übergang von einem koaxialen Leiter auf einen Hohlleiterstrahler,
- Fig. 2
- eine Aufsicht entsprechend Fig. 1.
- Fig. 1
- a section through a transition from a coaxial conductor to a waveguide radiator,
- Fig. 2
- a supervision corresponding to Fig. 1st
In der Figur 1 ist ein Hohlleiterstrahler 1 dargestellt, der aus einem Hohlleiterabschnitt
3 und einer Kurzschlußwand 2 besteht und eine kreisförmige
Apertur mit dem Durchmesser des Hohlleiterabschnittes 3 aufweist.
Unter der Kurzschlußwand 2 mündet die koaxiale Speisung 4. Die Verbindung
zwischen der koaxialen Speisung 4 und dem Hohlleiterabschnitt 3
erfolgt über eine Öffnung 5 in der Kurzschlußwand 2, durch die eine kapazitiv
wirkende koaxiale Sonde 6 geführt ist. Diese Sonde 6 ist mittels des
Anschlusses 7 mit dem Mittelleiter 8 der koaxialen Speisung 4 verbunden.
Die Ausführungsform der Sonde ist in der DE 40 38 817 C1 ausführlich
beschrieben. Das aperturseitige Ende der kapazitiv wirkenden koaxialen
Sonde 6 ist an einem parallel zur Kurzschlußwand 2 verlaufenden Kurzschlußbügel
10 befestigt. Symmetrisch zur Hauptachse A des Hohlleiterstrahlers
1 ist eine weitere Sonde 9 mit gleichartiger Außenform angeordnet,
die einerseits mit der Kurzschlußwand 2 fest verbunden ist und die
andererseits am freien Ende des Kurzschlußbügels 10 befestigt ist.FIG. 1 shows a waveguide radiator 1 which consists of a
Die Sonden 6 und 9 bilden zusammen mit dem Kurzschlußbügel 10 das
Koppelsystem für eine Polarisationsrichtung einer Grundwelle im Hohlleiterstrahler
1. Wie aus Fig. 2 zu ersehen, ist im Hohlleiterstrahler 1 ein
weiteres gleichartiges Koppelsystem, bestehend aus den Sonden 12 und 13
und dem Kurzschlußbügel 11 orthogonal zum ersten Koppelsystem 6, 9,
10 angeordnet. Die Speisung aus einer eigenen koaxialen Speisung ist in
den Figuren nicht dargestellt, sie entspricht jedoch der bereits beschriebenen
Speisung für das erste Koppelsystem. Die beiden Kurzschlußbügel 10
und 11 sind im Bereich der Hauptachse A sich kreuzend so übereinander
geführt, daß kein elektrischer Kontakt zustande kommt. Dies kann - wie
aus Fig. 1 ersichtlich - mittels eines Höhenversatzes beider Kurzschlußbügel
erfolgen.The
Die Länge Lo der Sonden 6, 9, 12, 13 beträgt etwa ein Viertel der Betriebswellenlänge
λ. Somit befinden sich die Kurzschlußbügel 10, 11 aufgrund
des Abstandes von λ/4 von der Kurzschlußwand 2 im Zustand des Leerlaufes.
Die Länge Lo der Sonden ist ggf. veränderbar, ebenso wie die Durchmesser
D der Sonden und deren Abstand S zueinander. Damit wird der als
Symmetrierglied ausgelegte Übergang an die Hohlleiterimpedanz angepaßt.The length L o of the
Mit Hilfe der Übergänge wird die in der koaxialen Speisung 4 ausbreitungsfähige
TEM-Welle in den Grundwellentyp des Hohlleiters 3 umgewandelt.
Im quadratischen Hohlleiter entstehen die Wellentypen H01 bzw.
H10□ und im runden Hohlleiter orthogonale H11-Wellentypen.With the help of the transitions, the TEM wave that is propagatable in the
Die Abstrahlung der Mikrowellen erfolgt über die Apertur des Hohlleiterstrahlers
1. Die Aperturebene ist hierbei in einem Abstand 1 von den Kurzschlußbügeln
10, 11 entfernt angeordnet. Durch Variation der Länge 1 im
Bereich 0 ≤ 1 ≤ λ wird der sekundäre Strahlungsbeitrag der Einkoppelvorrichtung
mit geeigneter Amplitude und Phase dem Strahlungsbeitrag
der Hohlleiterapertur überlagert. Damit lassen sich Degradationen des
Strahlungsdiagrammes durch Verkoppelungseffekte im Array-Betrieb
mehrere gleichartiger Hohlleiterstrahler 1 (= mutual coupling) kompensieren.
Dies ist ein entscheidender Vorteil der vorgeschlagenen Einkoppelvorrichtung,
der bei bekannten Strahlerelementen wie Patch- oder Schlitzstrahlern
nicht gegeben ist.The microwaves are emitted via the aperture of the waveguide radiator
1. The aperture level is at a distance 1 from the
Wie man aus Fig. 2 gut erkennen kann, zeichnet sich der Hohlleiterstrahler durch eine sehr kompakte Bauweise in radialer Richtung zur Hauptstrahlachse A aus. Dadurch ist eine besonders enge Anordnung mehrerer benachbarter Koppelvorrichtungen, wie sie etwa in einem Hohlleiter-Array benötigt wird, möglich. Die Abmessungen eines solchen Hohlleiter-Arrays liegen im Bereich der Abmessungen eines planaren Patch-Arrays, gegenüber dem sich das Hohlleiter-Array durch bessere elektrische Leistungsdaten und eine bessere Breitbandcharakteristik auszeichnet.As can be seen clearly from FIG. 2, the waveguide radiator is distinguished due to a very compact design in the radial direction to the main beam axis A off. This makes a particularly close arrangement of several neighboring ones Coupling devices, such as those in a waveguide array needed, possible. The dimensions of such a waveguide array lie in the area of the dimensions of a planar patch array which the waveguide array is characterized by better electrical performance data and features better broadband characteristics.
Claims (3)
- A waveguide radiator, comprising a waveguide portion with an aperture and a short-circuit wall and also a co-axial feeder and a transition from the co-axial feeder to the waveguide radiator, characterised by the following features:a) the waveguide portion (3) of the waveguide radiator (1) has a length L = Lo + 1 (with Lo = ¼ λ; 0 ≤ 1 ≤ λ; λ = operating wavelength);b) the co-axial feeder (4) is fed via an eccentrically arranged opening (5) in the short-circuit wall (2) by means of a capacitively acting co-axial probe (6) comprising a pin and a sleeve contactlessly surrounding part of the pin, a terminal (7) being connected to the neutral conductor (8) of the co-axial feeder;c) a further probe (9) of like external form is conductively fixed to the short-circuit wall (2) and symmetrically arranged relative to the main axis (A) of the waveguide radiator (1) and, on the aperture side, the end of the further probe (9) is connected to the end of the capacitively acting co-axial probe (6) by means of a shorting bar (10).
- A waveguide radiator according to claim 1, characterised in that the probes (6, 9) have a length of approximately one quarter of the operating wavelength.
- A waveguide radiator according to claim 1 or 2, characterised in that, orthogonally to the first coupling device comprising the two probes (6, 9) and the shorting bar (10), a further, like coupling device (11, 12, 13) is arranged on the short-circuit wall (2), the shorting bars (10, 11) being contactlessly guided over one another in the region of the main axis (A) of the waveguide radiator (1).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19803565 | 1998-01-30 | ||
DE19803565 | 1998-01-30 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0933833A1 EP0933833A1 (en) | 1999-08-04 |
EP0933833B1 true EP0933833B1 (en) | 2003-11-19 |
Family
ID=7856114
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99100867A Expired - Lifetime EP0933833B1 (en) | 1998-01-30 | 1999-01-19 | Waveguide radiator |
Country Status (5)
Country | Link |
---|---|
US (1) | US6154183A (en) |
EP (1) | EP0933833B1 (en) |
CA (1) | CA2260394A1 (en) |
DE (1) | DE29818848U1 (en) |
ES (1) | ES2207037T3 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU174536U1 (en) * | 2017-03-30 | 2017-10-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Waveguide emitter |
RU202634U1 (en) * | 2020-03-23 | 2021-03-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Low profile terahertz dielectric antenna |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6603438B2 (en) | 2001-02-22 | 2003-08-05 | Ems Technologies Canada Ltd. | High power broadband feed |
US7194528B1 (en) | 2001-05-18 | 2007-03-20 | Current Grid, Llc | Method and apparatus for processing inbound data within a powerline based communication system |
US9019036B2 (en) * | 2010-05-10 | 2015-04-28 | Raytheon Company | Multiple E-probe waveguide power combiner/divider |
JP5692242B2 (en) | 2011-01-25 | 2015-04-01 | 日本電気株式会社 | Coaxial waveguide converter and ridge waveguide |
US10553940B1 (en) | 2018-08-30 | 2020-02-04 | Viasat, Inc. | Antenna array with independently rotated radiating elements |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3603987A (en) * | 1969-11-06 | 1971-09-07 | Itt | Polarization diversity radiator for phased arrays |
US3680138A (en) * | 1970-09-21 | 1972-07-25 | Us Army | Cross-mode reflector for the front element of an array antenna |
US4051447A (en) * | 1976-07-23 | 1977-09-27 | Rca Corporation | Radio frequency coupler |
US4097869A (en) * | 1977-03-14 | 1978-06-27 | Stanford Research Institute | Orthogonal-port, biconical-horn, direction-finder antenna |
DE3129425A1 (en) * | 1981-07-25 | 1983-02-10 | Richard Hirschmann Radiotechnisches Werk, 7300 Esslingen | MICROWAVE ANTENNA FOR CIRCULAR POLARISATION |
DE3150236A1 (en) * | 1981-12-18 | 1983-06-30 | Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt | Arrangement for the connection of radiating arrays to a junction network |
DE4038817C1 (en) * | 1990-12-05 | 1992-05-07 | Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De | |
JP3101930B2 (en) * | 1991-04-26 | 2000-10-23 | マスプロ電工株式会社 | Coaxial waveguide converter |
US5304999A (en) * | 1991-11-20 | 1994-04-19 | Electromagnetic Sciences, Inc. | Polarization agility in an RF radiator module for use in a phased array |
DE19629593A1 (en) * | 1996-07-23 | 1998-01-29 | Endress Hauser Gmbh Co | Arrangement for generating and transmitting microwaves, especially for a level measuring device |
-
1998
- 1998-10-22 DE DE29818848U patent/DE29818848U1/en not_active Expired - Lifetime
-
1999
- 1999-01-19 ES ES99100867T patent/ES2207037T3/en not_active Expired - Lifetime
- 1999-01-19 EP EP99100867A patent/EP0933833B1/en not_active Expired - Lifetime
- 1999-01-29 CA CA002260394A patent/CA2260394A1/en not_active Abandoned
- 1999-02-01 US US09/240,854 patent/US6154183A/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU174536U1 (en) * | 2017-03-30 | 2017-10-19 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Waveguide emitter |
RU202634U1 (en) * | 2020-03-23 | 2021-03-01 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Сибирский государственный университет геосистем и технологий" (СГУГиТ) | Low profile terahertz dielectric antenna |
Also Published As
Publication number | Publication date |
---|---|
ES2207037T3 (en) | 2004-05-16 |
EP0933833A1 (en) | 1999-08-04 |
DE29818848U1 (en) | 1999-01-07 |
US6154183A (en) | 2000-11-28 |
CA2260394A1 (en) | 1999-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2830156B1 (en) | Waveguide radiator, group antenna radiator and synthetic aperture radar radiator | |
DE60034042T2 (en) | FRAME ANTENNA WITH FOUR RESONANCE FREQUENCIES | |
DE112013001764B4 (en) | Antenna field device with slotted waveguide | |
DE69121352T2 (en) | Device for feeding a radiation element for two orthogonal polarizations | |
DE60009874T2 (en) | V-slot antenna for circular polarization | |
DE69420807T2 (en) | Circularly polarized micro cell antenna | |
DE69512831T2 (en) | antenna | |
DE69604583T2 (en) | PRINTED MULTI-BAND MONOPOLAR ANTENNA | |
DE69521728T2 (en) | Scanning antenna with fixed dipole in the rotating cup-shaped reflector | |
DE60102574T2 (en) | Printed dipole antenna with dual spirals | |
EP1695417B1 (en) | Antenna comprising at least one dipole or a dipole-like radiator arrangement | |
DE102015011426A1 (en) | Dual polarized antenna | |
DE69735807T2 (en) | WENDELANTENNE WITH CURVED SEGMENTS | |
DE2316842C3 (en) | Multi-frequency antenna for three frequency bands | |
EP3533110B1 (en) | Dual-polarized horn radiator | |
DE102006057144B4 (en) | Waveguide radiators | |
EP0933833B1 (en) | Waveguide radiator | |
DE10359605A1 (en) | Broadband antenna, in particular omnidirectional antenna | |
DE69420886T2 (en) | Antenna structure | |
EP2105991B1 (en) | Dielectric horn antenna | |
DE69015460T2 (en) | Nested arrangement of horns. | |
DE3027497A1 (en) | POLARIZING SWITCH WITH FINE HORN | |
DE69108155T2 (en) | Directional network with neighboring radiator elements for radio transmission system and unit with such a directional network. | |
EP0285879B1 (en) | Broad-band polarizing junction | |
DE29822671U1 (en) | Waveguide radiator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): ES FR GB IT NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
AKX | Designation fees paid |
Free format text: ES FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19990918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: 8566 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ASTRIUM GMBH |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: EADS ASTRIUM GMBH |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): ES FR GB IT NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20031119 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20031216 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2207037 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20040820 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20060112 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20060113 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20060130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060131 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070120 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070119 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070119 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20070120 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070120 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060120 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070119 |