[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0921541B1 - Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker - Google Patents

Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker Download PDF

Info

Publication number
EP0921541B1
EP0921541B1 EP98402804A EP98402804A EP0921541B1 EP 0921541 B1 EP0921541 B1 EP 0921541B1 EP 98402804 A EP98402804 A EP 98402804A EP 98402804 A EP98402804 A EP 98402804A EP 0921541 B1 EP0921541 B1 EP 0921541B1
Authority
EP
European Patent Office
Prior art keywords
alloy
magnetic
heat treatment
core
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98402804A
Other languages
German (de)
French (fr)
Other versions
EP0921541A1 (en
Inventor
Georges Couderchon
Philippe Verin
Christian Caquard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mecagis SNC
Original Assignee
Mecagis SNC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mecagis SNC filed Critical Mecagis SNC
Publication of EP0921541A1 publication Critical patent/EP0921541A1/en
Application granted granted Critical
Publication of EP0921541B1 publication Critical patent/EP0921541B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer

Definitions

  • the present invention relates to a magnetic core of magnetic alloy soft nanocrystalline usable in particular for the manufacture of a circuit breaker Class A differential.
  • Class A RCDs are self-contained RCDs sensitive not only to sinusoidal fault currents, but also to pulsed fault currents.
  • These differential circuit breakers comprise a magnetic core of soft magnetic alloy having a maximum magnetic permeability of impedance ⁇ z at 50 Hertz high and a Br / Bm ratio of the residual induction to the induction at saturation of less than 0.2, and a good temperature stability of magnetic properties in the operating temperature range from - 25 ° C to + 100 ° C.
  • the maximum magnetic permeability of impedance ⁇ z must be high, because the higher it is, the more it is possible to reduce the dimensions of the magnetic core and therefore to miniaturize the residual current device; ; the Br / Bm ratio must remain low to preserve the sensitivity of the circuit breaker to pulsed currents.
  • the sensitivity of the circuit breaker to pulsed fault currents is all the better as the magnitudes ⁇ B stat and ⁇ B dyn are higher; ⁇ B stat and ⁇ B dyn being the amplitudes of variation of the magnetic induction generated by a half-wave rectified alternating excitation field in the first case and full wave in the second.
  • Magnetic cores for class A residual current devices can be manufactured using a soft magnetic alloy of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element selected from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon which is wound to form a torus, then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure, and, finally, subjected to a heat treatment under magnetic field parallel to the axis of the core applied continuously throughout the heat treatment, the heat treatment taking place at around 400 ° C.
  • the magnetic cores thus obtained have a satisfactory temperature stability and a Br / Bm ratio of less than 0.2. However, they do not make it possible to obtain a magnetic permeability of ⁇ z impedance measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) at 25 ° C greater than 170,000 nor values of ⁇ B stat and ⁇ B dyn greater than 0.19 Tesla for an excitation field with a maximum amplitude of 10 mA / cm, which limits the possibilities of miniaturization.
  • DE 4,019,636 describes a process for improving the magnetic properties of amorphous ferromagnetic materials consisting in subjecting them continuously to an alternating magnetic field whose frequency is between 50 and 50 kHz, in sinusoidal form, at right angles or triangular and the current density between 10 and 500 A / cm 2 .
  • the aim of the present invention is to remedy this drawback in The aim of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a class A differential circuit breaker having both magnetic permeability impedance ⁇ z measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) greater than 200,000 and values of ⁇ B stat and ⁇ B dyn greater than 0.2 Tesla for a field of maximum amplitude excitation of 10 mA / cm.
  • the invention relates to a process for the manufacture of a core magnetic nanocrystalline soft magnetic alloy with a chemical composition contains more than 60 atom% of iron, from 10 to 20 atom% of silicon, from 0.1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least minus one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well only impurities resulting from processing; the sum of the silicon and boron being less than 30 atom%; the nanocrystalline alloy being obtained by a heat treatment for crystallization of the alloy in an amorphous state.
  • a thermal treatment is carried out on the magnetic core magnetic parallel to the axis of the core at a temperature between 250 ° C and 450 ° C, the magnetic field being applied in the form of slots.
  • the heat treatment under magnetic field parallel to the axis of the core is carried out at a temperature between 300 ° C and 400 ° C.
  • This process applies more particularly to soft magnetic alloys nanocrystalline whose chemical composition contains from 10 to 17 atom% of silicon, from 0.5 to 1.5 atom% of copper, from 5 to 14 atom% of boron and from 2 to 4% at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  • the thermal relaxation treatment consists of maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.
  • the magnetic core obtained by the process according to the invention can be used advantageously for the manufacture of a differential circuit breaker with its own current class A.
  • the sum of the silicon and boron contents should preferably remain less than 30 at% and, better still, remain less than 25 at%.
  • the crystallization annealing consists of maintaining at a temperature higher than the start of crystallization temperature and lower than the temperature from the onset of secondary phases which deteriorate the properties magnetic.
  • the crystallization annealing temperature is understood between 500 ° C and 600 ° C, but it can be optimized for each ribbon, by example, by determining by tests the temperature which leads to permeability maximum magnetic. The crystallization annealing temperature can then be chosen equal to this temperature.
  • the heat treatment carried out under magnetic field is carried out at a temperature between 250 ° C and 450 ° C, and preferably between 300 ° C and 400 ° C.
  • the magnetic field is applied in the form of a succession of slots.
  • a slot corresponds to a period during which the applied magnetic field is maximum, followed by a period during which it is zero or very weak (less than 10% of the magnetic field reached during treatment).
  • the magnetic field applied for a period can be continuous or alternating, in the latter case, the intensity of the magnetic field is peak intensity (maximum intensity reached at each alternation).
  • the intensity of magnetic field can be constant during the entire period of application of the field (rectangular slots) or variable. All slots can be from same intensity or on the contrary of variable intensity from one niche to another.
  • the heat treatment can end at the end of the field application period magnetic of the last slot; the main thing is that the treatment involves at least two periods during which the applied magnetic field separated by a period during which the magnetic field is not applied.
  • the the inventors have in fact found that by doing so, the temperature stability magnetic properties of the magnetic core were very noticeably improved.
  • a magnetic core is obtained, the magnetic permeability of impedance ⁇ z measured at 50 Hertz in a magnetic field of maximum excitation of 10 mA / cm (peak value) at 25 ° C is greater than 200,000, and whose magnetic permeability varies by less than 25% over the temperature range between - 25 ° C and + 100 ° C.
  • the Br / Bm ratio of the residual induction to the saturation induction is less than 0.2
  • ⁇ B stat and ⁇ B dyn are both greater than 0.2 Tesla, the ⁇ B stat / ⁇ B dyn ratio being close to 1.
  • Such a magnetic core can be used in a class A differential circuit breaker. Due to its magnetic properties, at equal sensitivity of the circuit breaker, the section of the core can be reduced significantly compared to the section of a core magnetic according to the prior art.
  • the other series, B was subjected to a heat treatment of 1 hour at 350 under magnetic field parallel to the axis of the core applied in the form of slots of 5 min under magnetic field separated by periods 15 min without magnetic field.
  • the magnitudes ⁇ z , ⁇ B stat and ⁇ B dyn were measured at 25 ° C for an alternating magnetic excitation field at 50 Hertz with a maximum amplitude of 10 mA / cm; the Br / Bm ratio was also measured.
  • the results were as follows: series ⁇ (10 mA / cm ° ⁇ B stat (T) ⁇ B dyn (T) ⁇ B stat / ⁇ B dyn Br / Bm To compare. 153,000 0.172 0.169 1,017 0.05 B invention 230,000 0,240 0.234 1.025 0.1

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

Production of a nanocrystalline soft magnetic iron-silicon-boron alloy magnetic core involves crystallization heat treatment of the amorphous alloy at 250-450 degrees C in a transverse magnetic field of rectangular waveform. Production of a magnetic core of nanocrystalline soft magnetic alloy, of composition more than 60 at.% Fe, 10-20 at.% Si, 0.1-2 at.% Cu, 5-20 at.% B and 0.1-10 at.% of one or more of Ti, Nb, Zr, Hf, V, Ta, Cr, Mo, W and Mn, the sum of Si + B being less than 30 at.%, involves crystallization heat treatment of the amorphous alloy at 250-450 degrees C in a transverse magnetic field of rectangular waveform. An Independent claim is also included for a magnetic core produced by the above process and exhibiting, for a 50 Hz alternating excitation magnetic field of 10 mA/cm maximum amplitude at 25 degrees C, an impedance magnetic permeability ( mu z) of greater than 200000, a remnant induction/saturation induction (Br/Bm) ratio of less than 0.2 and DELTA Bstat and DELTA Bdyn values of greater than 0.2 T.

Description

La présente invention concerne un noyau magnétique en alliage magnétique doux nanocristallin utilisable notamment pour la fabrication d'un disjoncteur différentiel de la classe A.The present invention relates to a magnetic core of magnetic alloy soft nanocrystalline usable in particular for the manufacture of a circuit breaker Class A differential.

Les disjoncteurs différentiels de la classe A sont des disjoncteurs différentiels à propre courant sensible non seulement aux courants de défaut sinusoïdaux, mais également aux courants de défauts pulsés. Ces disjoncteurs différentiels comportent un noyau magnétique en alliage magnétique doux ayant une perméabilité magnétique maximale d'impédance µz à 50 Hertz élevée et un rapport Br/Bm de l'induction rémanente à l'induction à saturation inférieure à 0,2, et une bonne stabilité en température des propriétés magnétiques dans la plage de température de fonctionnement qui s'étend de - 25 °C à + 100 °C. La perméabilité magnétique maximale d'impédance µz doit être élevée, car, plus elle est élevé, plus il est possible de réduire les dimensions du noyau magnétique et donc de miniaturiser le disjoncteur différentiel ; ; le rapport Br/Bm doit rester faible pour préserver la sensibilité du disjoncteur aux courants pulsés. De plus, la sensibilité du disjoncteur aux courants de défaut pulsés est d'autant meilleur que les grandeurs ΔBstat et ΔBdyn sont plus élevés ; ΔBstat et ΔBdyn étant les amplitudes de variation de l'induction magnétique engendrées par un champ d'excitation alternatif redressé demi-onde dans le premier cas et pleine onde dans le second.Class A RCDs are self-contained RCDs sensitive not only to sinusoidal fault currents, but also to pulsed fault currents. These differential circuit breakers comprise a magnetic core of soft magnetic alloy having a maximum magnetic permeability of impedance μ z at 50 Hertz high and a Br / Bm ratio of the residual induction to the induction at saturation of less than 0.2, and a good temperature stability of magnetic properties in the operating temperature range from - 25 ° C to + 100 ° C. The maximum magnetic permeability of impedance µ z must be high, because the higher it is, the more it is possible to reduce the dimensions of the magnetic core and therefore to miniaturize the residual current device; ; the Br / Bm ratio must remain low to preserve the sensitivity of the circuit breaker to pulsed currents. In addition, the sensitivity of the circuit breaker to pulsed fault currents is all the better as the magnitudes ΔB stat and ΔB dyn are higher; ΔB stat and ΔB dyn being the amplitudes of variation of the magnetic induction generated by a half-wave rectified alternating excitation field in the first case and full wave in the second.

On peut fabriquer des noyaux magnétiques pour disjoncteurs différentiels de la classe A en utilisant un alliage magnétique doux du type comprenant plus de 60 atomes % de fer, du cuivre, du silicium, du bore et un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse. Ces noyaux magnétiques sont obtenus en coulant l'alliage sous forme d'un ruban amorphequi est enroulé pour former un tore, puis soumis à un traitement thermique de cristallisation destiné à conférer à l'alliage une structure nanocristalline, et, enfin, soumis à un traitement thermique sous champ magnétique parallèle à l'axe du noyau appliqué de façon continue tout au long du traitement thermique, le traitement thermique se faisant vers 400 °C. Les noyaux magnétiques ainsi obtenus ont une stabilité en température satisfaisante et un rapport Br/Bm inférieur à 0,2. Mais ils ne permettent pas d'obtenir une perméabilité magnétique d'impédance µz mesurée à 50 Hz dans un champ d'excitation maximale de 10 mA/cm (valeur de crête) à 25 °C supérieure à 170 000 ni des valeurs de ΔBstat et ΔBdyn supérieures à 0,19 Tesla pour un champ d'excitation d'amplitude maximale de 10 mA/cm, ce qui limite les possibilités de miniaturisation.Magnetic cores for class A residual current devices can be manufactured using a soft magnetic alloy of the type comprising more than 60 atoms% of iron, copper, silicon, boron and an element selected from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese. These magnetic cores are obtained by casting the alloy in the form of an amorphous ribbon which is wound to form a torus, then subjected to a crystallization heat treatment intended to give the alloy a nanocrystalline structure, and, finally, subjected to a heat treatment under magnetic field parallel to the axis of the core applied continuously throughout the heat treatment, the heat treatment taking place at around 400 ° C. The magnetic cores thus obtained have a satisfactory temperature stability and a Br / Bm ratio of less than 0.2. However, they do not make it possible to obtain a magnetic permeability of µ z impedance measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) at 25 ° C greater than 170,000 nor values of ΔB stat and ΔB dyn greater than 0.19 Tesla for an excitation field with a maximum amplitude of 10 mA / cm, which limits the possibilities of miniaturization.

DE 4 019 636 décrit un procédé d'amélioration des propriétés magnétiques de matériaux ferromagnétiques amorphes consistant à les soumettre de façon continue à un champ magnétique alternatif dont la fréquence est comprise entre 50 et 50 kHz, à forme sinusoïdale, à angles droits ou triangulaire et la densité de courant comprise entre 10 et 500 A/cm2.DE 4,019,636 describes a process for improving the magnetic properties of amorphous ferromagnetic materials consisting in subjecting them continuously to an alternating magnetic field whose frequency is between 50 and 50 kHz, in sinusoidal form, at right angles or triangular and the current density between 10 and 500 A / cm 2 .

Le but de la présente invention est de remédier à cet inconvénient en Le but de la présente invention est de remédier à cet inconvénient en proposant un moyen pour fabriquer un noyau magnétique utilisable dans un disjoncteur différentiel de la classe A ayant à la fois une perméabilité magnétique d'impédance µz mesurée à 50 Hz dans un champ d'excitation maximale de 10 mA/cm (valeur de crête) supérieure à 200 000 et des valeurs de ΔBstat et ΔBdyn supérieures à 0,2 Tesla pour un champ d'excitation d'amplitude maximale de 10 mA/cm.The aim of the present invention is to remedy this drawback in The aim of the present invention is to remedy this drawback by proposing a means for manufacturing a magnetic core usable in a class A differential circuit breaker having both magnetic permeability impedance µ z measured at 50 Hz in a maximum excitation field of 10 mA / cm (peak value) greater than 200,000 and values of ΔB stat and ΔB dyn greater than 0.2 Tesla for a field of maximum amplitude excitation of 10 mA / cm.

A cet effet, l'invention a pour objet un procédé pour la fabrication d'un noyau magnétique en alliage magnétique doux nanocristallin dont la composition chimique comprend plus de 60 atomes % de fer, de 10 à 20 atomes % de silicium, de 0,1 à 2 atomes % de cuivre, de 5 à 20 atomes % de bore, de 0,1 à 10 atomes % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse, ainsi que des impuretés résultant de l'élaboration; la somme des teneurs en silicium et en bore étant inférieure à 30 atomes %; l'alliage nanocristallin étant obtenu par un traitement thermique de cristallisation de l'alliage à l'état amorphe. Selon ce procédé, on effectue sur le noyau magnétique un traitement thermique sous champ magnétique parallèle à l'axe du noyau à une température comprise entre 250 °C et 450 °C, le champ magnétique étant appliqué sous forme de créneaux.To this end, the invention relates to a process for the manufacture of a core magnetic nanocrystalline soft magnetic alloy with a chemical composition contains more than 60 atom% of iron, from 10 to 20 atom% of silicon, from 0.1 to 2 atom% of copper, 5 to 20 atom% of boron, 0.1 to 10 atom% of at least minus one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well only impurities resulting from processing; the sum of the silicon and boron being less than 30 atom%; the nanocrystalline alloy being obtained by a heat treatment for crystallization of the alloy in an amorphous state. According to this process, a thermal treatment is carried out on the magnetic core magnetic parallel to the axis of the core at a temperature between 250 ° C and 450 ° C, the magnetic field being applied in the form of slots.

De préférence, le traitement thermique sous champ magnétique parallèle à l'axe du noyau est effectué à une température comprise entre 300 °C et 400 °C.Preferably, the heat treatment under magnetic field parallel to the axis of the core is carried out at a temperature between 300 ° C and 400 ° C.

Ce procédé s'applique plus particulièrement aux alliages magnétiques doux nanocristallins dont la composition chimique comprend de 10 à 17 atomes % de silicium, de 0,5 à 1,5 atomes % de cuivre, de 5 à 14 atomes % de bore et de 2 à 4 % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse. This process applies more particularly to soft magnetic alloys nanocrystalline whose chemical composition contains from 10 to 17 atom% of silicon, from 0.5 to 1.5 atom% of copper, from 5 to 14 atom% of boron and from 2 to 4% at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.

Avant d'effectuer le traitement thermique de cristallisation de l'alliage à l'état amorphe, on peut effectuer sur l'alliage à l'état amorphe un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de l'alliage à l'état amorphe. De préférence, le traitement thermique de relaxation consiste en un maintien à une température comprise entre 250 °C et 480 °C pendant un temps compris entre 0,1 et 10 heures.Before carrying out the heat treatment of crystallization of the alloy in the state amorphous, one can carry out on the alloy in the amorphous state a heat treatment of relaxation at a temperature below the temperature at the start of crystallization of the alloy in the amorphous state. Preferably, the thermal relaxation treatment consists of maintaining at a temperature between 250 ° C and 480 ° C for a time between 0.1 and 10 hours.

Le noyau magnétique obtenu par le procédé selon l'invention peut être utilisé avantageusement pour la fabrication d'un disjoncteur différentiel à propre courant de la classe A.The magnetic core obtained by the process according to the invention can be used advantageously for the manufacture of a differential circuit breaker with its own current class A.

L'invention va maintenant être décrite plus en détails et illustrée par un exemple.The invention will now be described in more detail and illustrated by a example.

Pour fabriquer un noyau magnétique en alliage magnétique doux nanocristallin, on coule l'alliage sous forme d'un ruban amorphe, puis on enroule un segment de ruban de longueur appropriée autour d'un mandrin de façon à former une bobine torique de section rectangulaire ou carrée. La bobine qui va constituer le noyau magnétique est alors soumise à un traitement thermique de cristallisation destiné à déstabiliser la structure amorphe et à provoquer la formation de cristaux dont la taille est inférieure à 100 nanomètres, voire inférieure à 20 nanomètres, et, ainsi, obtenir une structure appelée « nanocristalline ». Ce traitement est, ensuite, complété par un traitement thermique sous champ magnétique parallèle à l'axe du noyau, c'est à dire, sous un champ magnétique parallèle à l'axe du noyau. L'alliage est du type décrit notamment dans les demandes de brevet européen EP 0 271 657 et EP 0 299 498. Il est constitué principalement de fer en une teneur supérieure à 60 atomes %, et contient en outre :

  • de 0,1 à 2 at %, et de préférence, de 0,5 à 1,5 at % de cuivre ;
  • de 10 à 20 at %, et de préférence, moins de 17 at % de silicium ;
  • de 5 à 20 at %, et de préférence, moins de 14 at % de bore ;
  • de 0,1 à 10 at % d'au moins un élément pris parmi le niobium, le titane, le zirconium, le hafnium, le vanadium, le tantale, le chrome, le molybdène, le tungstène et le manganèse; de préférence de 2 et 4 at % de niobium .
L'alliage contient également des impuretés résultant de l'élaboraton. To make a magnetic core made of nanocrystalline soft magnetic alloy, the alloy is cast in the form of an amorphous ribbon, then a segment of ribbon of suitable length is wound around a mandrel so as to form a toric coil of rectangular section or square. The coil which will constitute the magnetic core is then subjected to a crystallization heat treatment intended to destabilize the amorphous structure and to cause the formation of crystals whose size is less than 100 nanometers, or even less than 20 nanometers, and, thus, obtain a structure called "nanocrystalline". This treatment is then supplemented by a heat treatment under a magnetic field parallel to the axis of the core, that is to say, under a magnetic field parallel to the axis of the core. The alloy is of the type described in particular in European patent applications EP 0 271 657 and EP 0 299 498. It consists mainly of iron in a content greater than 60 atom%, and also contains:
  • 0.1 to 2 at%, and preferably 0.5 to 1.5 at% copper;
  • from 10 to 20 at%, and preferably, less than 17 at% silicon;
  • from 5 to 20 at%, and preferably less than 14 at% boron;
  • from 0.1 to 10 at% of at least one element chosen from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese; preferably 2 and 4 at% niobium.
The alloy also contains impurities resulting from the production.

La somme des teneurs en silicium et en bore doit, de préférence, rester inférieure à 30 at % et, mieux encore, rester inférieure à 25 at %.The sum of the silicon and boron contents should preferably remain less than 30 at% and, better still, remain less than 25 at%.

Le recuit de cristallisation consiste en un maintien à une température supérieure à la température de début de cristallisation et inférieure à la température de début d'apparition des phases secondaires qui détériorent les propriétés magnétiques. En général, la température de recuit de cristallisation est comprises entre 500 °C et 600 °C, mais elle peut être optimisée pour chaque ruban, par exemple, en déterminant par des essais la température qui conduit à la perméabilité magnétique maximale. La température de recuit de cristallisation peut alors être choisie égale à cette température.The crystallization annealing consists of maintaining at a temperature higher than the start of crystallization temperature and lower than the temperature from the onset of secondary phases which deteriorate the properties magnetic. In general, the crystallization annealing temperature is understood between 500 ° C and 600 ° C, but it can be optimized for each ribbon, by example, by determining by tests the temperature which leads to permeability maximum magnetic. The crystallization annealing temperature can then be chosen equal to this temperature.

Le traitement thermique effectué sous champ magnétique est effectué à une température comprise entre 250 °C et 450 °C, et de préférence entre 300 °C et 400 °C. Pendant le maintien en température, le champ magnétique est appliqué sous forme d'une succession de créneaux. Un créneau correspond à une période pendant laquelle le champ magnétique appliqué est maximal, suivi d'une période pendant la quelle il est nul ou très faible (inférieur à 10 % du champ magnétique maximal atteint pendant le traitement). Le champ magnétique applique pendant une période peut être continu ou alternatif, dans ce dernier cas, l'intensité du champ magnétique est l'intensité de crête (intensité maximale atteinte à chaque alternance). L'intensité du champ magnétique peut être constante pendant toute la période d'application du champ (créneaux rectangulaires) ou variable. Tous les créneaux peuvent être de même intensité ou au contraire d'intensité variable d'un créneau à l'autre. Le traitement thermique peut se terminer à la fin de la période d'application du champ magnétique du dernier créneau ; l'essentiel étant que le traitement comporte au moins deux périodes pendant lesquelles le champ magnétique appliqué séparées par une période pendant laquelle le champ magnétique n'est pas appliqué. Les inventeurs ont, en effet, constaté qu'en procédant ainsi, la stabilité en température des propriétés magnétiques du noyau magnétique étaient très sensiblement améliorées.The heat treatment carried out under magnetic field is carried out at a temperature between 250 ° C and 450 ° C, and preferably between 300 ° C and 400 ° C. During temperature maintenance, the magnetic field is applied in the form of a succession of slots. A slot corresponds to a period during which the applied magnetic field is maximum, followed by a period during which it is zero or very weak (less than 10% of the magnetic field reached during treatment). The magnetic field applied for a period can be continuous or alternating, in the latter case, the intensity of the magnetic field is peak intensity (maximum intensity reached at each alternation). The intensity of magnetic field can be constant during the entire period of application of the field (rectangular slots) or variable. All slots can be from same intensity or on the contrary of variable intensity from one niche to another. The heat treatment can end at the end of the field application period magnetic of the last slot; the main thing is that the treatment involves at least two periods during which the applied magnetic field separated by a period during which the magnetic field is not applied. The the inventors have in fact found that by doing so, the temperature stability magnetic properties of the magnetic core were very noticeably improved.

Par ce procédé on obtient un noyau magnétique dont la perméabilité magnétique d'impédance µz mesurée à 50 Hertz dans un champ magnétique d'excitation maximale de 10 mA/cm (valeur de crête) à 25 °C est supérieur à 200 000, et dont la perméabilité magnétique varie de moins de 25 % sur la plage de température comprise entre - 25 °C et + 100 °C. De plus, le rapport Br/Bm de l'induction rémanente à l'induction à saturation est inférieure à 0,2, ΔBstat et ΔBdyn sont tous les deux supérieures à 0,2 Tesla, le rapport ΔBstat/ΔBdyn étant voisin de 1. Un tel noyau magnétique peut être utilisé dans un disjoncteur différentiel de la classe A. Du fait de ses propriétés magnétiques, à sensibilité égale du disjoncteur, la section du noyau peut être réduite sensiblement par rapport à la section d'un noyau magnétique selon l'art antérieur.By this process, a magnetic core is obtained, the magnetic permeability of impedance µ z measured at 50 Hertz in a magnetic field of maximum excitation of 10 mA / cm (peak value) at 25 ° C is greater than 200,000, and whose magnetic permeability varies by less than 25% over the temperature range between - 25 ° C and + 100 ° C. In addition, the Br / Bm ratio of the residual induction to the saturation induction is less than 0.2, ΔB stat and ΔB dyn are both greater than 0.2 Tesla, the ΔB stat / ΔB dyn ratio being close to 1. Such a magnetic core can be used in a class A differential circuit breaker. Due to its magnetic properties, at equal sensitivity of the circuit breaker, the section of the core can be reduced significantly compared to the section of a core magnetic according to the prior art.

En complément des traitements thermiques qui viennent d'être décrit, on peut, avant le traitement thermique de cristallisation, effectuer sur le noyau un traitement thermique de relaxation à une température inférieure à la température de début de cristallisation de la bande amorphe, et, de préférence, comprise entre 250°C et 480 °C. Ce recuit de relaxation a pour avantage de réduire encore la sensibilité des propriétés magnétiques des noyaux à la température, de réduire la dispersion des propriétés magnétiques de noyaux fabriqués en série et de réduire la sensibilité des propriétés magnétiques aux contraintes.In addition to the heat treatments which have just been described, it is possible, before the crystallization heat treatment, carry out a treatment on the core thermal relaxation at a temperature below the start temperature of crystallization of the amorphous band, and preferably between 250 ° C and 480 ° C. This relaxation annealing has the advantage of further reducing the sensitivity of magnetic properties of cores at temperature, reduce the dispersion of magnetic properties of mass-produced cores and reduce the sensitivity of magnetic properties under stress.

A titre d'exemple, à partir d'un ruban en alliage Fe73,5Si13,5B9Cu1Nb3, (73,5 at % de fer, 13,5 at % de silicium, etc.), de 20 µm d'épaisseur et 10 mm de largeur obtenus par trempe directe sur une roue refroidie, on a fabriqué deux séries A et B de noyaux magnétiques qui ont été soumises toutes les deux à un traitement de cristallisation de 1 heures à 530 °C (sans traitement de relaxation). A titre de comparaison, la première série A de noyaux a été soumise à un traitement thermique de 1 heure à 350 °C sous champ magnétique parallèle à l'axe du noyau appliqué de façon continue. Conformément à l'invention, l'autre série, B, a été soumise à un traitement thermique de 1 heure à 350 sous champ magnétique parallèle à l'axe du noyau appliqué sous forme de créneaux de 5 mn sous champ magnétique séparées par des périodes de 15 mn sans champ magnétique. Pour l'une des séries, on a mesuré à 25 °C les grandeurs µz, ΔBstat et ΔBdyn pour un champ magnétique d'excitation alternatif à 50 Hertz d'amplitude maximale de 10 mA/cm ; on a également mesuré le rapport Br/Bm. Les résultats ont été les suivants : série µ (10 mA/cm° ΔBstat (T) ΔBdyn (T) ΔBstat / ΔBdyn Br/Bm A compar. 153 000 0,172 0,169 1,017 0,05 B invention 230 000 0,240 0,234 1,025 0,1 For example, from a strip of Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 alloy (73.5 at% iron, 13.5 at% silicon, etc.), 20 µm thick and 10 mm wide obtained by direct quenching on a cooled wheel, two series A and B of magnetic cores were produced, which were both subjected to a 1 hour crystallization treatment at 530 ° C (without relaxation treatment). By way of comparison, the first series A of cores was subjected to a heat treatment for 1 hour at 350 ° C. under a magnetic field parallel to the axis of the core applied continuously. In accordance with the invention, the other series, B, was subjected to a heat treatment of 1 hour at 350 under magnetic field parallel to the axis of the core applied in the form of slots of 5 min under magnetic field separated by periods 15 min without magnetic field. For one of the series, the magnitudes µ z , ΔB stat and ΔB dyn were measured at 25 ° C for an alternating magnetic excitation field at 50 Hertz with a maximum amplitude of 10 mA / cm; the Br / Bm ratio was also measured. The results were as follows: series µ (10 mA / cm ° ΔB stat (T) ΔB dyn (T) ΔB stat / ΔB dyn Br / Bm To compare. 153,000 0.172 0.169 1,017 0.05 B invention 230,000 0,240 0.234 1.025 0.1

Ces exemples montrent bien l'amélioration de propriétés magnétiques apportées par le procédé selon l'invention : µz supérieur à 200 000, ΔBstat et ΔBdyn supérieurs à 0,2 Tesla, avec ΔBstat/ΔBdyn voisin de 1 et Br/Bm inférieur à 0,2.These examples clearly show the improvement in magnetic properties provided by the method according to the invention: μ z greater than 200,000, ΔB stat and ΔB dyn greater than 0.2 Tesla, with ΔB stat / ΔB dyn close to 1 and Br / Bm less than 0.2.

Claims (7)

  1. Process for manufacturing a magnetic core from a nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60 at% iron, 10-20 at% silicon, 0.1 to 2 at% copper, 5 to 20 at% boron and 0.1 to 10 at% of at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the smelting, the sum of the silicon and boron contents being less than 30AT% and the nanocrystalline alloy being obtained by a crystallization heat treatment of the alloy in the amorphous state, characterized in that a heat treatment is carried out on the magnetic core in a magnetic field parallel to the axis of the core at a temperature between 250°C and 450°C, the magnetic field being applied in the form of square pulses.
  2. Process according to Claim 1, characterized in that the heat treatment in a magnetic field parallel to the axis of the core is carried out at a temperature between 300°C and 400°C.
  3. Process according to Claim 1 or Claim 2, characterized in that the chemical composition of the nanocrystalline soft magnetic alloy comprises 10 to 17 at% silicon, 0.5 to 1.5 at% copper, 5 to 14 at% boron and 2 to 4% of at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese.
  4. Process according to any one of Claims 1 to 3, characterized in that, before the crystallization heat treatment of the alloy in the amorphous state is carried out, a relaxation heat treatment is carried out on the alloy in the amorphous state at a temperature below the crystallization onset temperature of the alloy in the amorphous state.
  5. Process according to Claim 4, characterized in that the relaxation heat treatment consists of a soak at a temperature between 250°C and 480°C for a time between 0.1 and 10 hours.
  6. Magnetic core made of a nanocrystalline soft magnetic alloy, the chemical composition of which comprises more than 60 at% iron, 10-20 at% silicon, 0.1 to 2 at% copper, 5 to 20 at% boron and 0.1 to 10 at% of at least one element taken from niobium, titanium, zirconium, hafnium, vanadium, tantalum, chromium, molybdenum, tungsten and manganese, as well as impurities resulting from the smelting, the sum of the silicon and boron contents being less than 30 at%, it being possible to obtain the nanocrystalline alloy by a crystallization heat treatment of the alloy in the amorphous state in a field parallel to the axis of the core, characterized in that, for a 50 Hz AC excitation magnetic field with a maximum amplitude of 10 mA/cm, at 25°C, the impedance magnetic permeability µz is greater than 200 000, the ratio Br/Bm of the remnant induction Br to the saturation induction Bm is less than 0.2 and the quantities ΔBstat and ΔBdyn are greater than 0.2 tesla.
  7. Use of a magnetic core according to Claim 6 for the manufacture of a Class A residual-current circuit breaker.
EP98402804A 1997-12-04 1998-11-13 Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker Expired - Lifetime EP0921541B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9715273 1997-12-04
FR9715273A FR2772181B1 (en) 1997-12-04 1997-12-04 METHOD FOR MANUFACTURING A NANOCRYSTALLINE SOFT MAGNETIC ALLOY MAGNETIC CORE FOR USE IN A CLASS A DIFFERENTIAL CIRCUIT BREAKER AND MAGNETIC CORE OBTAINED

Publications (2)

Publication Number Publication Date
EP0921541A1 EP0921541A1 (en) 1999-06-09
EP0921541B1 true EP0921541B1 (en) 2004-05-06

Family

ID=9514143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98402804A Expired - Lifetime EP0921541B1 (en) 1997-12-04 1998-11-13 Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker

Country Status (5)

Country Link
EP (1) EP0921541B1 (en)
AT (1) ATE266245T1 (en)
DE (1) DE69823621T2 (en)
FR (1) FR2772181B1 (en)
PL (1) PL186806B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19948897A1 (en) * 1999-10-11 2001-04-19 Vacuumschmelze Gmbh Interface modules for local data networks
EP1710812B1 (en) * 2005-02-25 2008-07-16 Magnetec GmbH Fault-current circuit breaker and magnetic core for a fault-current circuit breaker
US8699190B2 (en) 2010-11-23 2014-04-15 Vacuumschmelze Gmbh & Co. Kg Soft magnetic metal strip for electromechanical components
CN107419200B (en) * 2017-06-30 2019-11-22 江苏理工学院 A kind of soft magnetic iron-based nanocrystalline and amorphous alloy and preparation method thereof containing manganese

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4881989A (en) * 1986-12-15 1989-11-21 Hitachi Metals, Ltd. Fe-base soft magnetic alloy and method of producing same
JPH0777167B2 (en) * 1987-07-14 1995-08-16 日立金属株式会社 Magnetic core parts
DE3911480A1 (en) * 1989-04-08 1990-10-11 Vacuumschmelze Gmbh USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS
JPH0346205A (en) * 1989-07-01 1991-02-27 Jionkoo Kantee Guufun Yousenkonsuu Method of improving magnetizing properties by ac or pulse currents
DE4210748C1 (en) * 1992-04-01 1993-12-16 Vacuumschmelze Gmbh Current transformers for pulse current sensitive residual current circuit breakers, residual current circuit breakers with such a current transformer, and method for heat treatment of the iron alloy strip for its magnetic core
FR2733376B1 (en) * 1995-04-18 1997-06-06 Schneider Electric Sa CURRENT TRANSFORMER ESPECIALLY FOR FAULT CURRENT TRIGGER SENSITIVE TO PULSED CURRENTS AND TRIGGER EQUIPPED WITH SUCH A TRANSFORMER

Also Published As

Publication number Publication date
ATE266245T1 (en) 2004-05-15
EP0921541A1 (en) 1999-06-09
FR2772181A1 (en) 1999-06-11
PL186806B1 (en) 2004-02-27
PL330101A1 (en) 1999-06-07
FR2772181B1 (en) 2000-01-14
DE69823621D1 (en) 2004-06-09
DE69823621T2 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
EP0848397B1 (en) Manufacturing process of a soft magnetic iron based alloy component with nanocristalline structure
EP0844628B1 (en) Process for producing a magnetic core of nanocristalline soft magnetic material
EP1805772B1 (en) Nanocrystalline core for a current sensor, single and double-stage energy meters and current probes containing same
JP2587890B2 (en) Electrode for electrical discharge machining and method of manufacturing the same
EP0921541B1 (en) Fabrication process of a soft nanocrystalline magnetic core for use in a differential circuit breaker
EP2387788B1 (en) Process for manufacturing a magnetic core made of a magnetic alloy having a nanocrystalline structure
EP0921540B1 (en) Fabrication process of a magnetic core of a soft magnetic nanocrystalline alloy and use in a differential circuit breaker
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
KR100360762B1 (en) Iron Amorphous Alloy Strip for Winding Trans
JP2000119821A (en) Magnetic alloy excellent in iso-permeability characteristic and having high saturation magnetic flux density and low core loss, and magnetic parts using same
JP4217038B2 (en) Soft magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JP2698769B2 (en) Manufacturing method of high permeability core
Kojima et al. Soft magnetic properties of nanocrystalline Fe-Nb-BP alloys produced in the atmosphere by melt-spinning method
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPS62124250A (en) Amorphous alloy for electric current-detecting device
Shishido et al. Influence of toroid radius on magnetic properties of iron-based amorphous alloys and 6.5 WT% Si-Fe rapidly solidified ribbons
JPS6323242B2 (en)
EP0905263A1 (en) Process for manufacturing iron-nickel alloy strip from a continuously cast thin strip
JPS6159815B2 (en)
JPH04275409A (en) Heat treatment of magnetic core
JPH04275411A (en) Heat treatment of magnetic core
JPH08273918A (en) Iron-based amorphous alloy thin belt for wound transformer
JP2011068998A (en) Fe-Ni BASED PERMALLOY
JPS5825433A (en) Directional property silicon steel band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19991209

AKX Designation fees paid

Free format text: AT DE ES FR IT NL

17Q First examination report despatched

Effective date: 20021022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: FABRICATION PROCESS OF A SOFT NANOCRYSTALLINE MAGNETIC CORE FOR USE IN A DIFFERENTIAL CIRCUIT BREAKER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040506

REF Corresponds to:

Ref document number: 69823621

Country of ref document: DE

Date of ref document: 20040609

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040817

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061130

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171116

Year of fee payment: 20

Ref country code: FR

Payment date: 20171130

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69823621

Country of ref document: DE