[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0982089A1 - Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen - Google Patents

Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen Download PDF

Info

Publication number
EP0982089A1
EP0982089A1 EP98810846A EP98810846A EP0982089A1 EP 0982089 A1 EP0982089 A1 EP 0982089A1 EP 98810846 A EP98810846 A EP 98810846A EP 98810846 A EP98810846 A EP 98810846A EP 0982089 A1 EP0982089 A1 EP 0982089A1
Authority
EP
European Patent Office
Prior art keywords
calculated
mold
temperature
time
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98810846A
Other languages
English (en)
French (fr)
Inventor
Cristophe Bagnoud
Miroslaw Plata
Jürgen Wüst
Klaus Währisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to EP98810846A priority Critical patent/EP0982089A1/de
Priority to DK99944412T priority patent/DK1105237T3/da
Priority to PT99944412T priority patent/PT1105237E/pt
Priority to PCT/EP1999/006002 priority patent/WO2000012246A1/de
Priority to US09/763,527 priority patent/US6557617B1/en
Priority to ES99944412T priority patent/ES2176025T3/es
Priority to EP99944412A priority patent/EP1105237B1/de
Priority to DE59901565T priority patent/DE59901565D1/de
Priority to AT99944412T priority patent/ATE218081T1/de
Priority to CA002341264A priority patent/CA2341264A1/en
Publication of EP0982089A1 publication Critical patent/EP0982089A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/32Controlling equipment

Definitions

  • the invention relates to a method for process monitoring in die casting or thixoforms of metals in a vacuum in a mold.
  • the invention has for its object a method of the aforementioned To create the way with which the production of die-cast and thixoform parts continuously and reliably monitored under production conditions can be.
  • the temporal course leads to the achievement of the object according to the invention the temperature is continuously measured at at least one point in the system and by means of a program the temperature curve of the system in Real time is calculated, and that from the temperature curve of the system the temporal course of the heat flow and from the heat flow the temporal Course of the energy of the system and the amount of heat of solidification of the in the shape of solidified metal is calculated, at a specified time calculated values can be used as characteristic values for monitoring.
  • the amount of heat per unit time between the metal to be cast and exchanging the mold halves determines the rate of solidification of the part produced by die casting or thixoforming. Since the Characteristics of this exchange directly the mechanical properties of the die-cast or thixiform part is the monitoring of Solidification of the metal in the form to maintain a high quality standard indispensable.
  • the detection of the amount of solidification heat dissipated via the mold enables it u.a. determine whether the solidification is completely within the shape takes place whether pre-solidification occurs or what liquid-solid ratio is present in a thixomaterial.
  • the amount of latent heat depends on the liquid metal content Filling the mold cavity.
  • the amount of dispensed over the mold halves latent heat in turn depends on the metal to be cast or on the alloy used and can further by the temperature of the mold or the mold halves, by the pressure exerted, by the piston speed as well as the thickness of the lubricant layer.
  • the heat exchange that occurs during the various phases of solidification takes place is calculated using a program.
  • the calculations lie Based on temperature measurements on the mold, preferably the temperature measured in the mold wall and the temporal course of the temperature is calculated on the shaping surface of the mold.
  • the program takes into account inverse heat conduction and calculates the temperature in real time the shaping surface of the mold halves and the heat exchange between the solidifying metal and the shape. With those arranged in this way Temperature sensors can ensure the uniformity of the cooling process and the thermal equilibrium on the mold surface in the different successive phases of casting and cooling in Be monitored in real time. The sensors are therefore preferred in places arranged where the thermal equilibrium and solidification are good too are recorded.
  • a characteristic value for the amount of solidification heat dissipated at a specified time is preferably between about 20% and 100%, in particular between about 50% and 100% of the maximum amount of solidification heat.
  • the time course of the Heat exchange coefficients can be calculated.
  • the one at a particular Time calculated value for the heat exchange coefficient e.g. the maximum values in the solidification or cooling phase, or also the entire curve, can be used as additional parameters.
  • the time course of the solidification length can be derived from the time course of the temperature be calculated.
  • the solidification length is that of Mold surface understood from the measured thickness of the solidified metal.
  • the solidification length calculated at a specified time can be used as a further additional length Characteristic value can be used.
  • the calculated or measured characteristic values can be used for process monitoring are compared as actual values with corresponding target values, whereby it can be provided that in the event of an impermissibly large deviation of the actual values an alarm is triggered by the setpoints within a tolerance range and if the tolerance range of the die casting or thixoforming process is exceeded is interrupted.
  • the setpoint for the amount of solidification heat removed is, for example given as the mean with a standard deviation.
  • the standard deviation can be set as the first tolerance limit, for example Exceeded by the actual value triggers an alarm.
  • a particularly interesting field of application of the method lies in Die casting and thixoforming, in particular of aluminum and magnesium alloys, for example for the production of safety components for the Automotive industry.
  • the examination results shown in FIG. 8 show that with the monitoring method according to the invention with regard to the solidification process a high quality standard can be achieved. Deviations are displayed immediately online. The calculated values can, for example via a RS232 interface to a programmable machine, which controls the die casting machine. The data are checked, if necessary displayed and finally archived. Fall the calculated Values for the amount of solidification in the tolerance range R, see above an alarm can be triggered directly by the machine. With more deviating Values that fall within the range S can, for example, be automatic Production stop can be triggered.
  • Process monitoring can be carried out at various points in the mold halves Temperature sensors are arranged. The calculations are preferred carried out individually for the individual temperature sensors and also individually recorded as monitoring results. In this way it is possible to locate specific production problems on the mold. The recorded Monitoring results are conveniently archived and can later be used, for example, to prove the production quality of a particular Die-cast or thixiform part can be used.
  • a die casting system 10 has a filling chamber 12 with a filling chamber cavity 14 on. That from a furnace 18 via a feed line 20 for everyone Shot in the filling chamber cavity 14 filled with liquid metal a piston 16 via a sprue 22 from the filling chamber cavity 14 in one of a fixed mold half 24 and a movable mold half 26 formed mold cavity 28 shot.
  • the mold cavity 28 has one or more ventilation channels 30 which possibly combined into a collecting channel.
  • a control insert 32 with a control pin 34 arranged in the fixed Mold half 24 .
  • the control bolt 34 has a locking head 36 for opening or closing the ventilation channel 30.
  • the shift of the Control bolt 34 is carried out by means of an actuating cylinder 38. When this is done The mold is filled via the locking head 36 of the control bolt 34 the ventilation channel 30 is closed at the end of the mold cavity 28.
  • a vacuum line 40 connects to the control insert 32 Valves 42 connected to a vacuum container, not shown in the drawing is. Before the metal is shot into the mold cavity 28 this evacuates and the time course of the pressure in the mold cavity 28 over a pressure sensor 44 connected into the vacuum line 40 is measured.
  • Temperature sensors are located at different points in the two mold halves 24, 26 46 arranged. Not shown in the drawing is one with the Mold cavity related probe to measure relative Humidity.
  • the temperature sensors 46, the pressure sensor 44 and the one not shown Probe for measuring the relative humidity are connected to a program-controlled Computer 48 connected.
  • This computer transfers the measured and calculated parameters to a data acquisition device 50 for monitoring and archiving.
  • the triggering of an alarm or a production stop if tolerance values for individual or all characteristic values are exceeded takes place directly on the computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Continuous Casting (AREA)

Abstract

Bei einem Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen im Vakuum in einer Form wird der zeitliche Verlauf der Temperatur (T) an mindestens einer Stelle des Systems kontinuierlich gemessen und mittels eines Programmes der Temperaturverlauf des Systems in Echtzeit berechnet. Aus dem Temperaturverlauf des Systems wird der zeitliche Verlauf des Wärmeflusses (W) und aus dem Wärmefluss der zeitliche Verlauf der Energie (U) des Systems sowie der Erstarrungswärmemenge (UE) des in der Form erstarrten Metalls berechnet. Zu einem festgelegten Zeitpunkt berechnete Werte werden als Kennwerte für die Überwachung verwendet.

Description

Die Erfindung betrifft ein Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen im Vakuum in einer Form.
Von der Automobilindustrie werden immer höhere Anforderungen an die Toleranzen und an die mechanischen Eigenschaften von Druckguss- und Thixoformteilen gestellt. Zur Erzielung dieser hohen Qualitätsanforderungen ist eine möglichst vollständige Überwachung der Verfahrensparameter sowie deren Reproduzierbarkeit von grosser Bedeutung. Ein wesentlicher Faktor, der direkt die mechanischen Eigenschaften eines durch Druckgiessen oder Thixoformen hergestellten Teiles bestimmt, ist der Erstarrungsverlauf des Metalls in der Form.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit dem die Herstellung von Druckguss- und Thixoformteilen unter Produktionsbedingungen kontinuierlich und zuverlässig überwacht werden kann.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass der zeitliche Verlauf der Temperatur an mindestens einer Stelle des Systems kontinuierlich gemessen und mittels eines Programmes der Temperaturverlauf des Systems in Echtzeit berechnet wird, und dass aus dem Temperaturverlauf des Systems der zeitliche Verlauf des Wärmeflusses und aus dem Wärmefluss der zeitliche Verlauf der Energie des Systems sowie der Erstarrungswärmemenge des in der Form erstarrten Metalls berechnet wird, wobei zu einem festgelegten Zeitpunkt berechnete Werte als Kennwerte für die Überwachung verwendet werden.
Die Wärmemenge, die pro Zeiteinheit zwischen dem zu vergiessenden Metall und den Formhälften ausgetauscht wird, bestimmt die Erstarrungsgeschwindigkeit des durch Druckgiessen oder Thixoformen hergestellten Teiles. Da die Charakteristiken dieses Austausches direkt die mechanischen Eigenschaften des Druckguss- oder Thixoformteiles mitbestimmen, ist die Überwachung der Erstarrung des Metalls in der Form zur Einhaltung eines hohen Qualitätsstandards unabdingbar.
Die Erfassung der über die Form abgeführten Erstarrungswärmemenge ermöglicht es u.a. festzustellen, ob die Erstarrung vollständig innerhalb der Form stattfindet, ob Vorerstarrungen auftreten oder welches Flüssig-Fest-Verhältnis in einem Thixomaterial vorliegt.
Ein überwiegender Teil der Wärme, die während der Erstarrung ausgetauscht wird, stammt von der beim Erstarren frei werdenden latenten Wärme. Die Menge der latenten Wärme hängt ihrerseits stark vom Flüssigmetallanteil beim Füllen des Formhohlraumes ab. Die Menge der über die Formhälften abgegebenen latenten Wärme hängt wiederum vom zu vergiessenden Metall bzw. von der eingesetzten Legierung ab und kann weiter durch die Temperatur der Form bzw. der Formhälften, durch den ausgeübten Druck, durch die Kolbengeschwindigkeit sowie durch die Dicke der Schmiermittelschicht beeinflusst werden.
Der Wärmeaustausch, der während den verschiedenen Phasen der Erstarrung stattfindet, wird mit Hilfe eines Programmes berechnet. Den Berechnungen liegen Temperaturmessungen an der Form zugrunde, wobei bevorzugt die Temperatur in der Formwand gemessen und der zeitliche Verlauf der Temperatur an der formgebenden Oberfläche der Form berechnet wird. Hierzu werden Sensoren verwendet, die in der Formwand der Formhälften in einem Abstand von beispielsweise 1 mm zur Oberfläche befestigt sind. Das Programm berücksichtigt die inverse Wärmeleitung und berechnet in Echtzeit die Temperatur an der formgebenden Oberfläche der Formhälften und den Wärmeaustausch zwischen dem erstarrenden Metall und der Form. Mit den in dieser Weise angeordneten Temperatursensoren kann die Gleichmässigkeit des Abkühlvorganges und das thermische Gleichgewicht an der Formoberfläche bei den verschiedenen aufeinanderfolgenden Phasen des Giessens und der Abkühlung in Echtzeit überwacht werden. Die Sensoren werden deshalb bevorzugt an Stellen angeordnet, wo das thermische Gleichgewicht und die Erstarrung gut zu erfassen sind.
Ein Kennwert für die zu einer festgelegten Zeit abgeführte Erstarrungswärmemenge liegt bevorzugt zwischen etwa 20% und 100%, insbesondere zwischen etwa 50% und 100% der maximalen Erstarrungswärmemenge.
In der Praxis hat es sich als zweckmässig herausgestellt, als Kennwert beim Druckgiessen die Erstarrungswärmemenge bei einer festgelegten Zeit von 0.1 bis 2 s, vorzugsweise 0.3 bis 0.8 s und insbesondere etwa 0.5 s zu berechnen.
Als weiterer Kennwert kann die unmittelbar vor jedem Schuss für die Formoberfläche berechnete Temperatur verwendet werden.
Aus dem zeitlichen Verlauf der Temperatur kann der zeitliche Verlauf des Wärmeaustauschkoeffizienten berechnet werden. Der bei einer bestimmten Zeit berechnete Wert für den Wärmeaustauschkoeffizienten, z.B. die Maximalwerte in der Erstarrung- oder in der Kühlphase, oder auch der gesamte Kurvenverlauf, können als weitere zusätzliche Kennwerte verwendet werden.
Aus dem zeitlichen Verlauf der Energie des Systems kann die Differenz zwischen den Energiewerten zu Beginn der Formfüllung bei aufeinanderfolgenden Schüssen ebenfalls als zusätzlicher weiterer Kennwert dienen.
Aus dem zeitlichen Verlauf der Temperatur kann der zeitliche Verlauf der Erstarrungslänge berechnet werden. Unter Erstarrungslänge wird die von der Formoberfläche aus gemessene Dicke des erstarrten Metalls verstanden. Die zu einer festgelegten Zeit berechnete Erstarrungslänge kann als weiterer zusätzlicher Kennwert verwendet werden.
Weitere mögliche Kennwerte sind der minimale Druck, der aus der Messung des zeitlichen Verlaufs des Druckes im Formhohlraum bestimmt wird, sowie die unmittelbar vor einem Schuss im Formhohlraum gemessene minimale relative Feuchtigkeit.
Zur Prozessüberwachung können die berechneten oder gemessenen Kennwerte als Istwerte mit entsprechenden Sollwerten verglichen werden, wobei vorgesehen sein kann, dass bei unzulässig starker Abweichung der Istwerte von den Sollwerten innerhalb eines Toleranzbereiches ein Alarm ausgelöst und bei Überschreiten des Toleranzbereiches der Druckgiess- oder Thixoformvorgang unterbrochen wird.
Der Sollwert für die abgeführte Erstarrungswärmemenge wird beispielsweise als Mittelwert mit einer Standardabweichung angegeben. Die Standardabweichung kann beispielsweise als erste Toleranzgrenze festgelegt werden, deren Überschreiten durch den Istwert einen Alarm auslöst.
Die Einhaltung der Kennwerte führt zu einem gleichmässig hohen Qualitätsstandard. Abweichungen der lstwerte von den Sollwerten werden in Echtzeit erfasst, so dass entsprechende Korrekturmassnahmen rasch durchgeführt werden können.
Ein besonderes interessantes Anwendungsgebiet des Verfahrens liegt beim Druckgiessen und Thixoformen insbesondere von Aluminium- und Magnesiumlegierungen, beispielsweise zur Herstellung von Sicherheitsbauteilen für die Fahrzeugindustrie.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Versuchsergebnissen am Beispiel des Druckgiessens sowie anhand der Zeichnung; diese zeigt schematisch in
  • Fig. 1 den zeitlichen Verlauf des Wärmeflusses;
  • Fig. 2 den zeitlichen Temperaturverlauf während eines Druckgiesszyklus;
  • Fig. 3 den zeitlichen Verlauf der Energie während eines Druckgiesszyklus;
  • Fig. 4 den zeitlichen Verlauf der Erstarrungswärmemenge im Bereich A von Fig. 2;
  • Fig. 5 den zeitlichen Verlauf der Temperatur bei der Abkühlung der Form im Bereich B von Fig. 2;
  • Fig. 6 den zeitlichen Verlauf des Wärmeaustauschkoeffizienten bei der Abkühlung der Form im Bereich B von Fig. 2;
  • Fig. 7 den zeitlichen Verlauf des Drucks im Formhohlraum;
  • Fig. 8 die Erstarrungswärmemenge als Kennwert für drei verschiedene Aluminiumlegierungen bei zunehmender Schusszahl;
  • Fig. 9 eine Druckgiessanlage mit Prozessüberwachung.
In den Fig. 1 bis 7 ist der zeitliche Verlauf der von einem programmgesteuerten Rechner aufgrund der Temperatur- und Druckmessungen berechneten Parameter dargestellt. Es bedeuten:
t
Zeit
T0
berechnete Temperatur an der formgebenden Oberfläche
T
gemessene Temperatur in der Formwand, 1 mm unter der Oberfläche
Tv
Oberflächentemperatur der Form unmittelbar vor dem Schuss
U
Energie
ΔU
Energiedifferenz zwischen Beginn der Formfüllung und nach Abkühlung der Form
UE
Erstarrungswärmemenge
UE1s,i
Soll- bzw. Istwert der Erstarrungswärmemenge bei der Zeit t1 = 0.5 s
W
Wärmefluss
h
Wärmeaustauschkoeffizient
p
Druck im Formhohlraum
rH
relative Feuchtigkeit im Formhohlraum
n
Schusszahl
Fig. 8 zeigt das Ergebnis einer Versuchsreihe mit drei verschiedenen Aluminiumlegierungen. Es wurden 128 gleiche Teile auf derselben Druckgussmaschine gegossen, nämlich 79 Teile aus der Legierung 1, 35 Teile aus der Legierung 2 und 14 Teile aus der Legierung 3. In der Darstellung ist der Sollwert für die zur Zeit t1 = 0.5 s abgeführte Erstarrungswärmemenge UE1s als Mittelwert mit der Standardabweichung eingezeichnet. Die Standardabweichung definiert einen ersten Grenzwert, der mit einem zweiten Grenzwert einen Toleranzbereich R einschliesst. Der zweite Grenzwert grenzt den Toleranzbereich R gegen den Fehlerbereich S ab. Fallen zwei aufeinanderfolgende Istwerte UE1i für die Erstarrungswärmemenge in den Toleranzbereich R, wie dies bei den Schüssen 76 bis 79 (Bereich X) der Fall ist, so wird ein Alarm ausgelöst und die entsprechende Korrektur eingeleitet. Im Fall der Schüsse im Bereich X --diese zeigen einen zu hohen Wert UE1i -- war die Oberflächentemperatur Tv der Form unmittelbar vor dem Schuss um etwa 30°C tiefer als der Mittelwert der vorangehenden Schüsse. Für die Schüsse 123 bis 125 (Bereich Y) lagen die lstwerte UE1i für die abgeführte Erstarrungswärmemenge im Fehlerbereich S. Der Grund war eine zu tiefe Schmelzetemperatur, was zu Vorerstarrungen ausserhalb der Form und in der Folge zu einem niedrigeren Wert für die in der Form abgeführte Erstarrungswärmemenge führte. In diesem Fall ist ein Produktionsunterbruch und die Durchführung von Korrekturmassnahmen angezeigt.
Die in Fig. 8 gezeigten Untersuchungsergebnisse lassen erkennen, dass mit dem erfindungsgemässen Überwachungsverfahren bezüglich des Erstarrungsvorganges ein hoher Qualitätsstandard erreicht werden kann. Abweichungen werden unmittelbar online angezeigt. Die berechneten Werte können beispielsweise über eine RS232-Schnittstelle an einen programmierbaren Automaten, der die Druckgussmaschine steuert, weitergegeben werden. Die Daten werden kontrolliert, ggf. angezeigt und schliesslich archiviert. Fallen die berechneten Werte für die Erstarrungswärmemenge in den Toleranzbereich R, so kann vom Automaten direkt ein Alarm ausgelöst werden. Bei stärker abweichenden Werten, die in den Bereich S fallen, kann beispielsweise ein automatischer Produktionsstopp ausgelöst werden.
Zur Prozessüberwachung können an verschiedenen Stellen in den Formhälften Temperatursensoren angeordnet werden. Die Berechnungen werden bevorzugt für die einzelnen Temperatursensoren einzeln durchgeführt und auch einzeln als Überwachungsergebnisse aufgezeichnet. Auf diese Weise ist es möglich, spezifische Produktionsprobleme an der Form zu lokalisieren. Die aufgezeichneten Überwachungsergebnisse werden zweckmässigerweise archiviert und können später beispielsweise zum Nachweis der Produktionsqualität eines bestimmten Druckguss- oder Thixoformteiles herangezogen werden.
Die Prozessüberwachung wird aus der nachfolgenden Beschreibung von Fig. 9 verständlich.
Eine Druckgiessanlage 10 weist eine Füllkammer 12 mit einem Füllkammerhohlraum 14 auf. Das aus einem Ofen 18 über eine Zuleitung 20 für jeden Schuss in den Füllkammerhohlraum 14 eingefüllte flüssige Metall wird mit einem Kolben 16 über einen Angusskanal 22 aus dem Füllkammerhohlraum 14 in einen aus einer feststehenden Formhälfte 24 und einer beweglichen Formhälfte 26 gebildeten Formhohlraum 28 eingeschossen.
Der Formhohlraum 28 weist einen oder mehrere Entlüftungskanäle 30 auf, die ggf. zu einem Sammelkanal zusammengefasst sind. In der feststehenden Formhälfte 24 ist ein Steuerungseinsatz 32 mit einem Steuerungsbolzen 34 angeordnet. Der Steuerungsbolzen 34 weist einen Verschlusskopf 36 zum Öffnen bzw. Schliessen des Entlüftungskanals 30 auf. Die Verschiebung des Steuerungsbolzens 34 erfolgt mittels eines Betätigungszylinders 38. Bei erfolgter Formfüllung wird über den Verschlusskopf 36 des Steuerungsbolzens 34 der Entlüftungskanal 30 am Ende des Formhohlraumes 28 verschlossen.
An den Steuerungseinsatz 32 schliesst eine Vakuumleitung 40 an, die über Ventile 42 mit einem in der Zeichnung nicht dargestellten Vakuumbehälter verbunden ist. Vor dem Einschiessen des Metalls in den Formhohlraum 28 wird dieser evakuiert und der zeitliche Verlauf des Drucks im Formhohlraum 28 über einen in die Vakuumleitung 40 geschalteten Drucksensor 44 gemessen.
In den beiden Formhälften 24, 26 sind an verschiedenen Stellen Temperatursensoren 46 angeordnet. In der Zeichnung nicht dargestellt ist eine mit dem Formhohlraum in Verbindung stehende Sonde zur Messung der relativen Feuchtigkeit.
Die Temperatursensoren 46, der Drucksensor 44 und die nicht dargestellte Sonde zur Messung der relativen Feuchtigkeit sind an einen programmgesteuerten Rechner 48 angeschlossen. Dieser Rechner übergibt die gemessenen und berechneten Parameter einem Datenerfassungsgerät 50 zur Überwachung und Archivierung. Die Auslösung eines Alarmes oder eines Produktionsstopps bei der Überschreitung von Toleranzwerten für einzelne oder alle Kennwerte erfolgt direkt über den Rechner.

Claims (12)

  1. Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen im Vakuum in einer Form,
    dadurch gekennzeichnet, dass
    der zeitliche Verlauf der Temperatur (T) an mindestens einer Stelle des Systems kontinuierlich gemessen und mittels eines Programmes der Temperaturverlauf des Systems in Echtzeit berechnet wird, und dass aus dem Temperaturverlauf des Systems der zeitliche Verlauf des Wärmeflusses (W) und aus dem Wärmefluss der zeitliche Verlauf der Energie (U) des Systems sowie der Erstarrungswärmemenge (UE) des in der Form erstarrten Metalls berechnet wird, wobei zu einem festgelegten Zeitpunkt berechnete Werte als Kennwerte für die Überwachung verwendet werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Temperatur (T) in der Formwand gemessen und der zeitliche Verlauf der Temperatur (To) an der formgebenden Oberfläche der Form berechnet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Kennwert für die zu einer festgelegten Zeit (t1) abgeführte Erstarrungswärmemenge (UE1) beim Druckgiessen zwischen 20% und 100%, vorzugsweise zwischen 50% und 100% der maximalen Erstarrungswärmemenge (UEmax) liegt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Kennwert beim Druckgiessen die Erstarrungswärmemenge (UE1) bei einer festgesetzten Zeit (t1) von 0.1 bis 2 s, vorzugsweise 0.3 bis 0.8 s und insbesondere etwa 0.5 s berechnet wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die unmittelbar vor jedem Schuss für die Formoberfläche berechnete Temperatur (Tv) als weiterer Kennwert verwendet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass aus dem zeitlichen Verlauf der Temperatur (T) der zeitliche Verlauf des Wärmeaustauschkoeffizienten (h) berechnet und der Wärmeaustauschkoeffizient als weiterer Kennwert verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass aus dem zeitlichen Verlauf der Engergie (U) des Systems die Differenz (ΔU) zwischen den Energiewerten zu Beginn der Formfüllung bei aufeinanderfolgenden Schüssen als weiterer Kennwert verwendet wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass aus dem zeitlichen Verlauf der Temperatur (T) der zeitliche Verlauf der Erstarrungslänge berechnet und die zu einer festgelegten Zeit berechnete Erstarrungslänge als weiterer Kennwert verwendet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der zeitliche Verlauf des Drucks (p) in der Form gemessen und der minimale Druck (pmin) als weiterer Kennwert verwendet wird.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die minimale relative Feuchtigkeit (rH) unmittelbar vor einem Schuss in der Form gemessen und als weiterer Kennwert verwendet wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die berechneten oder gemessenen Kennwerte als Istwerte mit entsprechenden Sollwerten verglichen werden.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, dass bei unzulässig starker Abweichung der Istwerte von den Sollwerten innerhalb eines Toleranzbereiches ein Alarm ausgelöst und bei Überschreiten des Toleranzbereiches der Druckgiess- oder Thixoformvorgang unterbrochen wird.
EP98810846A 1998-08-27 1998-08-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen Withdrawn EP0982089A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP98810846A EP0982089A1 (de) 1998-08-27 1998-08-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
DK99944412T DK1105237T3 (da) 1998-08-27 1999-08-16 Fremgangsmåde til procesovervågning ved trykstøbining eller thixoformning af metaller
PT99944412T PT1105237E (pt) 1998-08-27 1999-08-16 Processo para a monitorizacao do processamento na moldacao por injeccao por pressao ou na moldacao tixotropica de metais
PCT/EP1999/006002 WO2000012246A1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
US09/763,527 US6557617B1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals
ES99944412T ES2176025T3 (es) 1998-08-27 1999-08-16 Procedimiento de vigilancia del proceso de fundicion a presion o tixomoldeo de metales.
EP99944412A EP1105237B1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
DE59901565T DE59901565D1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
AT99944412T ATE218081T1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
CA002341264A CA2341264A1 (en) 1998-08-27 1999-08-16 Method for process monitoring during die casting or thixoforming of metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP98810846A EP0982089A1 (de) 1998-08-27 1998-08-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen

Publications (1)

Publication Number Publication Date
EP0982089A1 true EP0982089A1 (de) 2000-03-01

Family

ID=8236284

Family Applications (2)

Application Number Title Priority Date Filing Date
EP98810846A Withdrawn EP0982089A1 (de) 1998-08-27 1998-08-27 Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
EP99944412A Expired - Lifetime EP1105237B1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99944412A Expired - Lifetime EP1105237B1 (de) 1998-08-27 1999-08-16 Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen

Country Status (9)

Country Link
US (1) US6557617B1 (de)
EP (2) EP0982089A1 (de)
AT (1) ATE218081T1 (de)
CA (1) CA2341264A1 (de)
DE (1) DE59901565D1 (de)
DK (1) DK1105237T3 (de)
ES (1) ES2176025T3 (de)
PT (1) PT1105237E (de)
WO (1) WO2000012246A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460605A1 (de) * 2010-12-01 2012-06-06 Volkswagen AG Verfahren zum Herstellen einer Serie von Gussbauteilen und Vorrichtung zum Herstellen eines Gussbauteils
WO2014072188A1 (de) * 2012-11-12 2014-05-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren und vorrichtung zur herstellung eines druckgussteils

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7886807B2 (en) * 2007-06-15 2011-02-15 Die Therm Engineering L.L.C. Die casting control method
JP4889783B2 (ja) * 2009-11-17 2012-03-07 日信工業株式会社 重力鋳造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065841A2 (de) * 1981-05-15 1982-12-01 Toyota Jidosha Kabushiki Kaisha Verfahren und Vorrichtung zur Qualitätskontrolle von Spritzgussstücken
EP0126174A1 (de) * 1983-05-20 1984-11-28 John Mickowski Verfahren zum Überwachen und Steuern von periodisch arbeitenden Form- und Giessmaschinen und eine Vorrichtung zur Durchführung dieses Verfahrens
US4493362A (en) * 1982-05-27 1985-01-15 Ex-Cell-O Corporation Programmable adaptive control method and system for die-casting machine
DE4444092A1 (de) * 1994-10-12 1996-04-18 Werner Kotzab Verfahren und Anordnung zum Temperieren einer Spritzgießform mit wenigstens einer beheizten Düse oder einem Heißkanal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4976305A (en) * 1987-12-01 1990-12-11 Honda Giken Kogyo Kabushiki Kaisha Method of and apparatus for controlling die temperature in low-pressure casting process
US5407000A (en) * 1992-02-13 1995-04-18 The Dow Chemical Company Method and apparatus for handling molten metals
US5772933A (en) 1994-10-12 1998-06-30 Kotzab; Werner Method for tempering an injection mold having at least one heated nozzle or hot runner
US5758707A (en) * 1995-10-25 1998-06-02 Buhler Ag Method for heating metallic body to semisolid state
US6148899A (en) * 1998-01-29 2000-11-21 Metal Matrix Cast Composites, Inc. Methods of high throughput pressure infiltration casting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0065841A2 (de) * 1981-05-15 1982-12-01 Toyota Jidosha Kabushiki Kaisha Verfahren und Vorrichtung zur Qualitätskontrolle von Spritzgussstücken
US4493362A (en) * 1982-05-27 1985-01-15 Ex-Cell-O Corporation Programmable adaptive control method and system for die-casting machine
EP0126174A1 (de) * 1983-05-20 1984-11-28 John Mickowski Verfahren zum Überwachen und Steuern von periodisch arbeitenden Form- und Giessmaschinen und eine Vorrichtung zur Durchführung dieses Verfahrens
DE4444092A1 (de) * 1994-10-12 1996-04-18 Werner Kotzab Verfahren und Anordnung zum Temperieren einer Spritzgießform mit wenigstens einer beheizten Düse oder einem Heißkanal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"SYSTEM ZUR UBERWACHUNG DER HEIZ-/KUHLKREISLAUFE IM DRUCKGIESSPROZESS", GIESSEREI, vol. 81, no. 13, 11 July 1994 (1994-07-11), pages 452/453, XP000457407 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2460605A1 (de) * 2010-12-01 2012-06-06 Volkswagen AG Verfahren zum Herstellen einer Serie von Gussbauteilen und Vorrichtung zum Herstellen eines Gussbauteils
WO2014072188A1 (de) * 2012-11-12 2014-05-15 Bayerische Motoren Werke Aktiengesellschaft Verfahren und vorrichtung zur herstellung eines druckgussteils

Also Published As

Publication number Publication date
ATE218081T1 (de) 2002-06-15
EP1105237A1 (de) 2001-06-13
US6557617B1 (en) 2003-05-06
WO2000012246A1 (de) 2000-03-09
PT1105237E (pt) 2002-09-30
ES2176025T3 (es) 2002-11-16
EP1105237B1 (de) 2002-05-29
DE59901565D1 (de) 2002-07-04
DK1105237T3 (da) 2002-09-23
CA2341264A1 (en) 2000-03-09

Similar Documents

Publication Publication Date Title
DE2734388C2 (de) Verfahren und Vorrichtung zum Stranggießen
DE102012224132B4 (de) Überwachungsverfahren für eine Stranggießkokille mit Aufbau einer Datenbank
DE69808295T2 (de) Verfahren und vorrichtung zur oberflächentemperaturkontrolle eines blockes während des giessens und insbesondere während des angiessens
DE69124657T2 (de) Verfahren zur Beurteilung der Qualität von Druckgusstücken
DE69308263T2 (de) Schätzung der Metalltemperatur über die Abnutzung des Tauchrohres auf Grund des Eintauchens in Metallschmelze
EP1105237B1 (de) Verfahren zur prozessüberwachung beim druckgiessen oder thixoformen von metallen
DE3887162T2 (de) Giess- und eichsystem.
EP1080809B1 (de) Verfahren zur Regelung der Metalldosiermenge
DE10027324C2 (de) Verfahren zum Gießen eines metallischen Strangs sowie System hierzu
EP0191350A2 (de) Verfahren zur Steuerung des Schmelz- und Giessvorganges der Feingiesstechnik, insbesondere der Dentaltechnik, und Vorrichtung zur Durchführung des Verfahrens
DE19500005C2 (de) Verfahren und Vorrichtung zur Evakuierung und/oder Druckmessung in einer Druck- oder Spritzgußform
EP1072340B1 (de) Verfahren zur Prozessüberwachung beim Druckgiessen oder Thixoformen von Metallen
DE4103243A1 (de) Verfahren zur steuerung des giessens einer fluessigkeit aus einem gefaess in einzelne gussformen sowie einrichtung zur durchfuehrung des verfahrens
DE3424028C2 (de) Verfahren zur Analyse der Zusammensetzung einer zweiphasigen Messingschmelze
DE69123036T2 (de) Verfahren zum Ausziehen eines Gussstranges in einer Horizontalstranggiessanlage
DE4203337A1 (de) Verfahren zum Stranggießen von Metallen
EP1070560B1 (de) Verfahren zum Regeln der Kühlwasser-Durchflussgeschwindigkeit durch Kokillenbreitseiten
DE3009697C2 (de)
DE3806583A1 (de) Verfahren an einer giessanlage zur erzeugung von straengen
EP2460605B1 (de) Verfahren zum Herstellen einer Serie von Gussbauteilen und Vorrichtung zum Herstellen eines Gussbauteils
DE60212877T2 (de) Vorrichtung zur herstellung von metallgussteilen
DE2821352A1 (de) Verfahren und entsprechendes geraet fuer die voraussage metallographischer strukturen
DE69000282T2 (de) Verfahren und vorrichtung zur herstellung von duennen metallprodukten mittels strangguss.
DE102019201249B4 (de) Verfahren zur Einstellung einer Anfangsbedingung für Formungsprozessbedingungen
CH646352A5 (en) Apparatus for regulating the secondary cooling in a continuous-casting installation with batchwise smelt supply via a tundish

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000901

AKX Designation fees paid

Free format text: AT DE FR

AXX Extension fees paid

Free format text: SI PAYMENT 20000901

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

17Q First examination report despatched

Effective date: 20020617

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030415