EP0960231B1 - Laundry treating equipment with a driving motor mounted on the drum shaft - Google Patents
Laundry treating equipment with a driving motor mounted on the drum shaft Download PDFInfo
- Publication number
- EP0960231B1 EP0960231B1 EP98906957A EP98906957A EP0960231B1 EP 0960231 B1 EP0960231 B1 EP 0960231B1 EP 98906957 A EP98906957 A EP 98906957A EP 98906957 A EP98906957 A EP 98906957A EP 0960231 B1 EP0960231 B1 EP 0960231B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- motor
- winding
- laundry treating
- current
- stator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06F—LAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
- D06F37/00—Details specific to washing machines covered by groups D06F21/00 - D06F25/00
- D06F37/30—Driving arrangements
- D06F37/304—Arrangements or adaptations of electric motors
Definitions
- the invention relates to a laundry treatment device such as a washing machine and dryer or washer dryer with a rotatably mounted drum with at least approximately horizontal axis of rotation, and with a drive motor arranged on the drum shaft in Form of a permanent magnet excited synchronous motor, the stator with a winding is provided, which is powered by a converter, the winding is designed as a single-pole winding and the number the stator poles and the magnetic poles are unequal.
- a washing machine is known from WO-A-98/00902.
- a washing machine is already known from DE 38 19 651 A1, in which without use the usual intermediate drive (drive belt, pulley) directly to the laundry drum is driven. In these drives, the rotor forms the rotary motion transmission part to the drum of the washing machine.
- DE 38 19 651 A1 proposes an asynchronous motor to use with a squirrel cage. Such an engine is characterized by a relatively quiet run, but it has the disadvantage that among the given Boundary conditions such as B. large air gap and multi-pole version in asynchronous machines good efficiencies are not possible. Especially with a frequently operated household appliance however, there is a desire for an environmentally friendly, i.e. H. energy-saving Operation.
- a motor according to the preamble of claim 1 is known from DE 43 41 832 A1. There is described a motor driving the drum directly, the converter-fed synchronous motor is executed. No further details are given on the type of engine.
- Washing machines with directly driving motors are also known, which are external rotor motors are constructed (DE 44 14 768 A1, DE 43 35 966 A1, EP 413 915 A1, EP 629 735 A2).
- the rotor can be used as a deep-drawn part, as a plastic bell or in a composite construction getting produced.
- the solution as a deep-drawn part is advantageous, since the iron is used at the same time forms the magnetic inference.
- This design is also a typical one Execution of fan motors.
- collectorless DC motors are used used.
- Their stator winding can either be used as a conventional three-phase winding with a winding step over several stator teeth or as a single pole winding Winding around a stator tooth.
- the current is applied to this type of motor with power semiconductors. The individual are dependent on the rotor position
- Synchronous motors with sinusoidal current and controlled via a converter are already available as Servo drives known. They are used where precise positioning is required is.
- the stator winding is a classic three-phase winding executed, and the number of poles of rotor and stator are identical.
- the three-phase winding is characterized by common and known winding techniques, but has the Disadvantage that the copper volume is very large, especially in the winding heads, which the Manufacturing costs increased and the depth of the engine increased. The latter would be the case with washing machines reduce the drum volume with a given housing depth.
- Servo drives for controlled operation of very precise and expensive sensors Detection of the rotor position
- the invention therefore presents the problem in the case of a laundry treatment machine at the outset mentioned type the engine in terms of energy consumption, noise and costs to optimize. According to the invention, this problem is solved by a laundry treatment device solved the features specified in claim 1. Advantageous configurations and Further developments of the invention result from the following subclaims.
- DC motors are used for all three winding phases the three-phase excitation winding is continuously energized, the frequency of the excitation field is specified by the electronics.
- the motor is considered to be externally managed Synchronous motor operated. This procedure guarantees the lowest noise level in connection with a permanent magnet excited synchronous motor.
- the use of the single-pole winding means that the copper input is less than that of one classic three-phase winding, especially the copper volume of the winding heads is clear lower. This makes the entire drive smaller and more compact. By the lesser Copper volumes can be higher for the same motor size due to lower copper losses Efficiency can be achieved.
- stator poles With a pole ratio of 4 to 3, the use of approximately 30 stator poles is favorable in order to to cover the required speed range from 0 to 2000 1 / min.
- the selected number of poles ensures a safe start-up with external operation, low torque ripple and a large speed spread.
- control device for regulating the motor current mathematical model of the motor is based and when energizing the winding phases done without the rotor position encoder. Since the detection of the motor current and the Voltage on the motor in the frequency converter itself can take place, there are no sensors on Motor required.
- a sensorless control it can be used continuously or continuously the mathematical model is calibrated.
- the engine-specific parameters such as winding resistance, motor inductance and constant of the induced voltage can with the help of the current sensors and the microprocessor control determined in the frequency converter and the mathematical model based on the measured Values are adjusted.
- the main advantage of the laundry treatment device designed according to the invention results the possibility of dimensioning the number of turns of the stator windings in such a way that the amount of the induced voltage or the magnet wheel voltage for high speeds greater than is the maximum output voltage of the frequency converter.
- Such a winding design enables field weakening operation of the synchronous motor in the higher speed range.
- the advantage of this winding design is a significant reduction in the motor current in the washing operation. You can be chosen such that the engine in the washing and Spin operation can be operated with the same current. Because of the lesser Motor currents can therefore use smaller and cheaper power semiconductors become. In addition, the losses in the power semiconductors are reduced, as a result of which Overall efficiency of the motor and power electronics is higher than that of comparable ones Drives with the same copper insert.
- field weakening can also be used with high-pole permanent-magnet excitation Synchronous motors achieve good efficiencies at high speeds because of the magnetic loss be reduced as a result of the field weakening.
- Collectorless DC motors can only be operated with extensive field weakening be changed, since then the position of the rotor position encoder or the commutation times should be postponed arithmetically.
- a field weakening operation is deactivated for servo drives not known for the aforementioned reasons.
- the washing machine shown in Figure 1 has a housing (1) in which a tub (2) is suspended on springs (3) so that it can move. To dampen the vibrations it is supported against the bottom of the housing (1) by friction dampers (5).
- a drum (6) for receiving laundry (not shown) rotatably mounted.
- Drum (6), tub (2) and the front wall of the housing (1a) have corresponding openings through which the items to be washed enter the drum (6) can be filled.
- the openings can be opened through a front wall (1a) arranged door (7) are closed.
- the door (7) is locked by a electromagnetic locking device (8).
- the door lock is in the drawing only shown schematically.
- the structure and functioning of an electromagnetic Closure device (8) itself is from the above.
- DE-OS 16 10 247 or from the DE 34 23 083 C2 is well known and is therefore not described in detail.
- a control panel (not shown), in which a Rotary selector switch (9) is used to select washing programs.
- the washing programs include as is known, a wash cycle and a subsequent rinse cycle, in the course of which the laundry is spun several times.
- the washing speed is at Household washing machines between 20 and 60 min-1, the spin speed should in particular be as high as possible during the last spin at the end of the wash cycle. It is through the resilience of the vibrating system suds container (2) - suspension (3; 5) drive motor (10) drum (6) has an upper limit, the limits are currently approximately 1600 min-1.
- FIG. 2 shows a partial section through the rear area of a tub (2), one Drum (6) and its drive motor (10).
- a four-armed bearing cross (11) shown in FIG. attached.
- In the center of this bearing cross (11) there is a position hub (12) into the two Radial roller bearings (13a, b) are used. These roller bearings (13a, b) in turn serve for rotating Receiving a drive shaft (14) which is connected to the drum base (6a) in a rotationally fixed manner is.
- the rear end (14a) of the drive shaft (14) protrudes from the position hub (12).
- a permanent magnet rotor (15) designed as an external rotor is attached to it thus drives the drum (6) directly.
- the stator (16) of the drive motor (10) is on the bearing cross (11) attached.
- the stator laminated core (17) with the stator windings (18) is essentially ring-shaped.
- Figure 4 shows the sheet section of a single stator sheet (17a).
- the stator laminate stack (17) on the bearing cross has the individual laminations (17a), which are arranged on the inner peripheral surface and provided with through bores (19) are. Fastening screws (not shown) are guided through these bores (19) and screwed into threaded holes (26) on the bearing cross (11).
- the holes (26) are arranged concentrically to the position hub (12). Their free ends have contact surfaces (20) for an end face of the stator laminated core (17). Centering the stator laminated core (17) takes place via radially designed stiffening ribs (21).
- the rotor (15) consists of a pot-shaped deep-drawn part or an aluminum injection molded part (15a) with a hollow cylinder section (15b) which has an annular iron yoke (22) and the permanent magnets (23) attached to it as rotor poles (see a. Figure 5). Furthermore, the rotor (15) has a hub (24) which is connected to the free end (14a) Drive shaft (14) by a screw bolt (25) and a serration (not shown) is positively and thus non-rotatably connected.
- the drive motor is designed as a permanent magnet excited three-phase synchronous motor.
- Stator (16) is a three-strand single pole winding (tooth winding) housed, the Strands in a star connection (see. Fig. 5, 6) are connected.
- the windings of the teeth (27) of a line are connected in series.
- the drive motor is therefore a modular permanent magnet machine built up.
- the pole ratio of rotor poles (23) to stator poles (27) is 4 to 3 with a number of 30 stator poles (27).
- FIG. 6 shows a block diagram of the structure of the controlled drive with three-phase synchronous motor (10).
- the speed of the motor (10) is specified as a setpoint by the program control (101) of the washing machine depending on the program set with the rotary selector switch (9, see FIG. 1)).
- the program control (101) of the washing machine depending on the program set with the rotary selector switch (9, see FIG. 1)).
- both the frequency of voltage and current and the amount of voltage in the stator windings (18) must be adjusted.
- the motor current is additionally set as a function of the load torque.
- at least two phase currents I 1 and I 2 are measured with current sensors (103a, b).
- the aforementioned variables are adjusted via the frequency converter (104).
- the mains voltage is first converted into a DC voltage via a rectifier (105) and smoothed over an intermediate circuit capacitor (106).
- the DC voltage will converted by a three-phase inverter (107) on the output side to the stator winding (18) is connected. Since the DC link voltage is constant, the voltage set on the motor (10) via pulse width modulation. The rms value of the voltage can be changed over the pulse width.
- a pulse pattern is selected through which sinusoidal currents form in the stator winding (18) of the motor (10).
- the sinusoidal currents cause a very quiet running of the motor (10) and a reduction in those caused by current harmonics Losses.
- the inverter (107) has one to influence the pulse pattern Microprocessor control rf (108) assigned in which a control (109) and a valve control (110) is integrated.
- the control signals for the transistors of the inverter (107) are calculated on the basis of the respective rotor position in order to set the optimum orientation and strength of the rotating field at all times and thus to ensure a sufficient torque on the rotor (15). Because of the sinusoidal current supply to the synchronous motor (10) and the torque-dependent current control, continuous and accurate rotor position detection is required. Resolvers or analog Hall sensors (111) can be used for this. Hall sensors (111) should be preferred because of their low cost. In both cases, these are absolute measuring systems which provide precise information about the absolute position of the rotor (15) with respect to the stator (16) immediately after switching on.
- a temperature influence on the remanent induction of the magnets (23) need not be taken into account, since in this case the output signals of both Hall sensors (111) are changed in the same way and in the same size.
- FIG. 6 shows a block diagram of the structure of a control in which sensors for rotor position detection can be omitted.
- the rotor position must be calculated by the microprocessor control (108). This takes place on the basis of a mathematical model (113) of the motor (10) stored in the control, in which the characteristic motor parameters such as winding resistance, motor inductance and induced voltage must be known.
- the motor currents (I 1 , I 2 ) and the motor voltage U_ w are continuously recorded vectorially, ie according to the magnitude and phase position, the currents being measured with the sensors and the voltage being known on the basis of the pulse pattern generated by the valve control (110).
- the respective operating point of the motor (10) can thus be determined precisely and the motor (10) can be operated with the minimum current required for the load torque. Since the detection of the motor current and the voltage on the motor (10) can take place in the frequency converter (104) itself, no further sensors on the motor (10) are required.
- the sensorless control either takes place or as required continuously adjusting the parameters of the mathematical model (113).
- a Such calibration may be necessary if there are engine-specific parameters (Winding resistance, motor inductance and induced voltage) by heating the Change motors (10) during operation.
- the winding resistance and induced Voltage are strongly temperature-dependent quantities.
- both the instantaneous winding resistance can be (and thus the temperature of the motor) as well as the motor inductance determine if the voltage at the motor (10) is known and the current through the sensors (103a, b) is measured in the frequency converter (104).
- the number of turns of the stator winding (18) is dimensioned such that at higher speeds the magnet wheel voltage and the induced voltage of the synchronous motor (10) are higher than that Output voltage or the intermediate circuit voltage of the frequency converter (104).
- This Design enables operation with field weakening at higher speeds.
- the field weakening enables the engine (10) in two operating points with different speeds and different moments, e.g. Washing and spinning, with about operate the same motor current.
- field weakening is a weakening of that of the permanent magnets (23) of the rotor (15) generated field in the air gap by a in the stator (16) understand generated field with appropriate strength and phase position.
- field weakening are pole wheel voltage and motor current not in phase, but the phase current rushes Flywheel tension ahead.
- the angle between the stator flow and the rotor field is at Field weakening greater than 90 ° (electrical).
- the current points in addition to the force-generating Component in the transverse axis on a negative stator longitudinal current component that the Runner field is opposite.
- the phase current can be vectorially divided into a force-generating and a field-forming component are disassembled, with the force-forming component in phase with the magnet wheel voltage and the field-forming component is directed towards the rotor field and this weakens.
- the current sensors (103a, b) can be used in at least two Phases capture the phase current, the torque-forming component of the current in the Set the transverse axis and the stator longitudinal current component separately.
- the drive can also operate in the field weakening range with minimal current and optimal efficiency operate.
- Sensing and controlling the motor current is in operation with Field weakening is advantageous because the negative longitudinal current component is too large the magnets are irreversibly weakened by the field generated by the stator flooding can be.
- the rotor position or the position of the rotor field is determined using the measured phase currents and with the mathematical model (113) of the motor (10) calculated.
- the rotor position can therefore only be determined as long as the motor (10) is energized becomes.
- the rotating field specified by the frequency converter (104) becomes continuous reduced in frequency and amplitude until standstill is reached. Become the winding strands of the motor (10) even at a standstill, at least partially, energized and the rotor (15) held in position, the next start can be made immediately and smoothly in the specified one Direction of rotation.
- the spout can also take place unguided or de-energized.
- the drive described further enables reversing without or with only a small amount Reversierpause. This is in washing machines that use a drive belt as an intermediate drive have, not easily possible. These washing machines are commonly used Universal motors are used as drives that run out uncontrolled or braked. in this connection If the engine is switched off, the engine coasts down or swings out Washing drum. To avoid increased wear and noise from the drive belt, after switching off until the motor is switched on again until the washing drum has definitely reached a standstill. These downtimes in washing machines with drive belts are typically 2 to 4 seconds. By the Eliminating these previously usual and necessary breaks in reversing operation results in the direct drive described here shortens the washing time.
- a laundry treatment device has a device to evaluate the voltage induced by the rotor (15) during the runout.
- the current speed can be inferred from this voltage.
- a voltage is induced in the stator winding (18) of the motor (10).
- the height and frequency are proportional to the rotor speed.
- the induced voltage can be used to sense drum rotation.
- a washing machine with a Electromagnetically or electromechanically locked door can induce the voltage to Operation of the closure device (8) can be used. This makes it easy to use additional speed sensors a state-dependent, secure locking of the door (7) possible.
- Such an application is common in washing machines with permanent magnet excitation Rotors possible and therefore not limited to the invention Embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Washing Machine And Dryer (AREA)
- Control Of Ac Motors In General (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Control Of Multiple Motors (AREA)
- Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
- Treatment Of Fiber Materials (AREA)
- Rolls And Other Rotary Bodies (AREA)
- Permanent Magnet Type Synchronous Machine (AREA)
Abstract
Description
Die Erfindung betrifft ein Wäschebehandlungsgeräte wie Waschmaschine, Wäschetrockner oder Waschtrockner mit einer drehbar gelagerten Trommel mit mindestens annähernd horizontaler Drehachse, und mit einem auf der Trommelwelle angeordneten Antriebsmotor in Form eines permanentmagneterregten Synchronmotors, dessen Stator mit einer Wicklung versehen ist, welche durch einen Umrichter bestromt wird, wobei die Wicklung als Einzelpolwicklung ausgeführt ist und die Anzahl der Statorpole und der Magnetpole ungleich ist. Eine solche Waschmaschine ist aus der WO-A-98/00902 bekannt.The invention relates to a laundry treatment device such as a washing machine and dryer or washer dryer with a rotatably mounted drum with at least approximately horizontal axis of rotation, and with a drive motor arranged on the drum shaft in Form of a permanent magnet excited synchronous motor, the stator with a winding is provided, which is powered by a converter, the winding is designed as a single-pole winding and the number the stator poles and the magnetic poles are unequal. Such a washing machine is known from WO-A-98/00902.
Aus der DE 38 19 651 A1 ist bereits eine Waschmaschine bekannt, bei der ohne Verwendung des üblichen Zwischentriebs (Antriebsriemen, Riemenscheibe) die Wäschetrommel direkt angetrieben wird. Bei diesen Antrieben bildet der Rotor das Drehbewegungsübertragungsteil zur Trommel der Waschmaschine. In der DE 38 19 651 A1 wird vorgeschlagen, einen Asynchronmotor mit einem Käfigläufer zu verwenden. Ein solcher Motor zeichnet sich durch einen relativ geräuscharmen Lauf aus, er besitzt jedoch den Nachteil, daß unter den gegebenen Randbedingungen wie z. B. großer Luftspalt und hochpolige Ausführung bei Asynchronmaschinen gute Wirkungsgrade nicht möglich sind. Gerade bei einem häufig betriebenen Haushaltgerät besteht jedoch der Wunsch nach einer umweltfreundlichen, d. h. energiesparenden Betriebsweise.A washing machine is already known from DE 38 19 651 A1, in which without use the usual intermediate drive (drive belt, pulley) directly to the laundry drum is driven. In these drives, the rotor forms the rotary motion transmission part to the drum of the washing machine. DE 38 19 651 A1 proposes an asynchronous motor to use with a squirrel cage. Such an engine is characterized by a relatively quiet run, but it has the disadvantage that among the given Boundary conditions such as B. large air gap and multi-pole version in asynchronous machines good efficiencies are not possible. Especially with a frequently operated household appliance however, there is a desire for an environmentally friendly, i.e. H. energy-saving Operation.
Ein Motor gemäß Oberbegriff des Anspruchs 1 ist aus der DE 43 41 832 A1 bekannt. Dort ist
ein die Trommel direkt antreibender Motor beschrieben, der als umrichtergespeister Synchronmotor
ausgeführt ist. Weitere Angaben sind zur Motorart nicht gemacht.A motor according to the preamble of
Es sind weiterhin Waschmaschinen mit direkt antreibenden Motoren bekannt, die als Außenläufermotoren aufgebaut sind (DE 44 14 768 A1, DE 43 35 966 A1, EP 413 915 A1, EP 629 735 A2). Der Rotor kann als Tiefziehteil, als Kunststoffglocke oder in einer Verbundbauweise hergestellt werden. Vorteilhaft ist die Lösung als Tiefziehteil, da hierbei das Eisen gleichzeitig den magnetischen Rückschluß bildet. Diese Bauform ist unter anderem auch eine typische Ausführung von Lüftermotoren.Washing machines with directly driving motors are also known, which are external rotor motors are constructed (DE 44 14 768 A1, DE 43 35 966 A1, EP 413 915 A1, EP 629 735 A2). The rotor can be used as a deep-drawn part, as a plastic bell or in a composite construction getting produced. The solution as a deep-drawn part is advantageous, since the iron is used at the same time forms the magnetic inference. This design is also a typical one Execution of fan motors.
Bei den oben genannten Direktantrieben für Waschmaschinen, insbesondere bei der WO-A-98/00902, werden kollektorlose Gleichstrommotoren eingesetzt. Deren Statorwicklung kann entweder als herkömmliche Drehstromwicklung mit einem Wickelschritt über mehrere Statorzähne oder als Einzelpolwicklung mit Wicklung um einen Statorzahn ausgeführt sein. Die Stromwendung erfolgt bei diesem Motortyp mit Leistungshalbleitem. Dabei werden in Abhängigkeit von der Rotorlage die einzelnen In the above-mentioned direct drives for washing machines, in particular in WO-A-98/00902, collectorless DC motors are used used. Their stator winding can either be used as a conventional three-phase winding with a winding step over several stator teeth or as a single pole winding Winding around a stator tooth. The current is applied to this type of motor with power semiconductors. The individual are dependent on the rotor position
Stränge der Statorwicklung von einem Wechselrichter bestromt, so daß das Erregerfeld mit dem Motor umläuft. In einer dreisträngigen Erregerwicklung fließt bei dieser Ansteuerung des Motors immer nur in zwei Strängen ein Strom, der zur Momentenbildung dient, wobei der dritte Strang unbestromt bleibt. Der zeitliche Stromverlauf in den einzelnen Strängen ist block- oder trapezförmig. Dadurch treten beim Ein- und Ausschalten der einzelnen Wicklungen hohe Stromänderungsgeschwindigkeiten auf, die Geräusche am Motor erzeugen. Bei Wäschebehandlungsgeräten, die zum Teil in Wohnräumen (Küche, Bad) aufgestellt werden, sind solche Geräusche unerwünscht.Strands of the stator winding energized by an inverter, so that the excitation field with the motor revolves. In a three-strand excitation winding, the control flows Motors only ever in two strands a current, which is used for torque generation, the third Strand remains de-energized. The current flow in the individual strings is block or trapezoidal. As a result, high levels occur when switching the individual windings on and off Current change velocities that produce noise on the motor. For laundry treatment devices, some of which are installed in living rooms (kitchen, bathroom) such noises undesirable.
Bei elektronisch kommutierten Gleichstrommotoren, werden zur Sensierung der Rotorlage Hallsensoren, Magnetgeber oder optische Sensoren verwendet. Das Anbringen solcher Sensoren und der dazugehörenden Signalleitungen ist mit zusätzlichen Kosten verbunden. Außerdem sind Sensoren und Leitungen störanfällig. Ein weiterer Nachteil besteht darin, daß bei solchen selbstgeführten permanentmagneterregten Motoren ein Betrieb mit Feldschwächung nicht ohne weiteres möglich ist. Die bei Waschmaschinen erforderliche große Momenten- und Drehzahlspreizungen zwischen Wasch- und Schleuderbetrieb bewirken normalerweise große Spreizungen des Motorstroms. Deshalb müssen umschaltbare oder angezapfte Wicklungen installiert werden oder die Motorwicklung und die Leistungshalbleiter müssen für den größtmöglichen Strom dimensioniert werden.With electronically commutated direct current motors, the rotor position is sensed Hall sensors, magnetic sensors or optical sensors are used. Attaching such Sensors and the associated signal lines are associated with additional costs. In addition, sensors and cables are prone to failure. Another disadvantage is that With such self-guided permanent magnet excited motors, operation with field weakening is not easily possible. The large one required for washing machines Torque and speed spread between wash and spin operation cause usually large spreads in motor current. Therefore, switchable or tapped Windings are installed or the motor winding and the power semiconductors must be dimensioned for the largest possible current.
Über einen Umrichter sinusförmig bestromte und geregelte Synchronmotoren sind bereits als Servoantriebe bekannt. Sie werden dort eingesetzt, wo ein genaues Positionieren erforderlich ist. Bei bekannten Servoantrieben ist die Statorwicklung als klassische Drehstromwicklung ausgeführt, und die Polzahl von Rotor und Stator sind identisch. Die Drehstromwicklung zeichnet sich zwar durch gängige und bekannte Wickeltechniken aus, besitzt jedoch den Nachteil, daß das Kupfervolumen insbesondere in den Wickelköpfen sehr groß ist, was die Fertigunskosten erhöht und die Bautiefe des Motors vergrößert. Letzteres würde bei Waschmaschinen mit vorgegebener Gehäusetiefe das Trommelvolumen verringem. Außerdem benötigen Servoantriebe für einen geregelten Betrieb sehr genaue und teure Sensoren zur Erkennung der RotorlageSynchronous motors with sinusoidal current and controlled via a converter are already available as Servo drives known. They are used where precise positioning is required is. In known servo drives, the stator winding is a classic three-phase winding executed, and the number of poles of rotor and stator are identical. The three-phase winding is characterized by common and known winding techniques, but has the Disadvantage that the copper volume is very large, especially in the winding heads, which the Manufacturing costs increased and the depth of the engine increased. The latter would be the case with washing machines reduce the drum volume with a given housing depth. Also need Servo drives for controlled operation of very precise and expensive sensors Detection of the rotor position
Ein weiterer Nachteil aller vorgenannten permanentmagneterregten Motoren besteht darin, daß sie keine Feldschwächung kennen, da der magnetische Fluß des Motors im wesentlichen vom Feld der Dauermagnete abhängt und somit konstant ist. Für Waschmaschinenantriebe sind solche Motoren deshalb eher ungeeignet, da eine große Momenten- und Drehzahlspreizung zwischen dem Waschbetrieb und dem Schleuderbetrieb eine große Spreizung des Motorstroms zur Folge hätte. Die Motorwicklung und die Leistungshalbleiter des Frequenzumrichters müßten deshalb für den größten Strom dimensioniert werden und wären sehr teuer. Alternativ dazu könnte eine Wicklungsanzapfung verwendet werden, wobei jedoch zusätzliche Leitungen vom Motor zur Elektronik geführt werden müssen. Außerdem werden teure Umschaltrelais notwendig.Another disadvantage of all of the aforementioned permanent magnet motors is that they do not know any field weakening, since the magnetic flux of the motor essentially from Field of permanent magnets depends and is therefore constant. For washing machine drives are Such engines are therefore rather unsuitable because of a large torque and speed spread a large spread of the motor current between the washing mode and the spinning mode would result. The motor winding and the power semiconductors of the frequency converter should be therefore be dimensioned for the largest current and would be very expensive. Alternatively a winding tap could be used, but additional lines from Motor must be led to the electronics. In addition, expensive changeover relays necessary.
Der Erfindung stellt sich somit das Problem, bei einer Wäschebehandlungsmaschine der eingangs
genannten Art den Motor in puncto Energieverbrauch, Geräuschentwicklung und Kosten
zu optimieren. Erfindungsgemäß wird dieses Problem durch ein Wäschebehandlungsgerät mit
den im Patentanspruch 1 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen und
Weiterbildungen der Erfindung ergeben sich aus den nachfolgenden Unteransprüchen.The invention therefore presents the problem in the case of a laundry treatment machine at the outset
mentioned type the engine in terms of energy consumption, noise and costs
to optimize. According to the invention, this problem is solved by a laundry treatment device
solved the features specified in
Im Gegensatz zu bisher bekannten Direktantrieben für Waschmaschinen mit kollektorlosen Gleichstrommotoren werden bei dem hier beschriebenen Antriebskonzept alle drei Wicklungsstränge der dreiphasigen Erregerwicklung kontinuierlich bestromt, wobei die Frequenz des Erregerfeldes von der Elektronik vorgegeben wird. Der Motor wird in diesem Fall als fremdgeführter Synchronmotor betrieben. Dieses Verfahren garantiert die geringste Geräuschentwicklung in Verbindung mit einem permanentmagneterregten Synchronmotor.In contrast to previously known direct drives for washing machines with collectorless In the drive concept described here, DC motors are used for all three winding phases the three-phase excitation winding is continuously energized, the frequency of the excitation field is specified by the electronics. In this case, the motor is considered to be externally managed Synchronous motor operated. This procedure guarantees the lowest noise level in connection with a permanent magnet excited synchronous motor.
Durch die Verwendung der Einzelpolwicklung ist der Kupfereinsatz geringer als bei einer klassischen Drehstromwicklung, insbesondere das Kupfervolumen der Wickelköpfe ist deutlich geringer. Hierdurch wird der gesamte Antrieb kleiner und kompakter. Durch das geringere Kupfervolumen können bei gleicher Motorgröße aufgrund geringerer Kupferverluste höhere Wirkungsgrade erreicht werden.The use of the single-pole winding means that the copper input is less than that of one classic three-phase winding, especially the copper volume of the winding heads is clear lower. This makes the entire drive smaller and more compact. By the lesser Copper volumes can be higher for the same motor size due to lower copper losses Efficiency can be achieved.
Es ist vorteilhaft, den Rotor als Außenläufer auszubilden, hierdurch lassen sich die kompaktesten Bauformen erzielen, weil der drehmomentbildende Luftspaltradius nahe am Außenradius liegt.It is advantageous to design the rotor as an external rotor, as a result of which the most compact can be made Achieve designs because the torque-forming air gap radius is close to the outer radius lies.
Es ist weiterhin vorteilhaft, eine Steuervorrichtung einzusetzen, welche die Ausgangsspannung des Frequenzumrichters durch eine Regelung derart einstellt, daß sich in Abhängigkeit vom Lastmoment ein minimaler sinusförmiger Strom einstellt. Sinusförmige Ströme bewirken einen sehr leisen Motorlauf und eine Reduzierung der durch Stromoberwellen hervorgerufenen Verluste. Dies ist insbesondere der Fall, wenn die Ausgangsspannung in Form einer sinusbewerteten Pulsweitenmodulation eingestellt ist. Weiterhin gewährleistet die momentenabhängige Stromregelung in jedem Lastpunkt einen optimalen Wirkungsgrad.It is also advantageous to use a control device which controls the output voltage the frequency converter adjusts in such a way that depending on Load torque sets a minimum sinusoidal current. Sinusoidal currents cause one very quiet engine running and a reduction in the current harmonics Losses. This is particularly the case when the output voltage is in the form of a sinusoidal-weighted Pulse width modulation is set. Furthermore, the torque dependent ensures Current regulation at every load point an optimal efficiency.
Bei Synchronmotoren mit Einzelpolwicklung weicht die Anzahl der Magnetpole in charakteristischer Weise von der Zahl der Statorpole ab. Bei einer dreisträngigen Auslegung und einer kontinuierlichen Bestromung bzw. einer Drehdurchflutung der Statorwicklung ist ein Verhältnis von Rotorpolen zu Statorpolen von 2 zu 3 oder von 4 zu 3 günstig. Nur in diesen beiden Fällen ergibt die vektorielle Addition der in den einzelnen Polwicklungen induzierten Spannungen eines Stranges ein Maximum und ein Optimum an Wirkungsgrad.In the case of synchronous motors with a single-pole winding, the number of magnetic poles differs more significantly Depends on the number of stator poles. With a three-strand design and one Continuous current supply or a rotating flood of the stator winding is a ratio from rotor poles to stator poles from 2 to 3 or from 4 to 3 cheaply. Only in these two cases gives the vectorial addition of the voltages induced in the individual pole windings of a strand a maximum and an optimum in efficiency.
Bei einem Polverhältnis von 4 zu 3 ist die Verwendung von etwa 30 Statorpolen günstig, um den geforderten Drehzahlbereich von 0 bis 2000 1/min zu überdecken. Die gewählte Polzahl gewährleistet einen sicheren Anlauf bei fremdgeführten Betrieb, eine geringe Momentenwelligkeit und eine große Drehzahlspreizung.With a pole ratio of 4 to 3, the use of approximately 30 stator poles is favorable in order to to cover the required speed range from 0 to 2000 1 / min. The selected number of poles ensures a safe start-up with external operation, low torque ripple and a large speed spread.
Daneben ist es vorteilhaft, wenn der Steuervorrichtung zur Regelung des Motorstroms ein mathematisches Modell des Motors zugrundeliegt und wenn die Bestromung der Wicklungsstränge unter Verzicht auf Rotorlagegeber erfolgt. Da die Erfassung des Motorstroms und der Spannung am Motor im Frequenzumrichter selbst erfolgen kann, sind keine Sensoren am Motor erforderlich.In addition, it is advantageous if the control device for regulating the motor current mathematical model of the motor is based and when energizing the winding phases done without the rotor position encoder. Since the detection of the motor current and the Voltage on the motor in the frequency converter itself can take place, there are no sensors on Motor required.
In einer vorteilhaften Ausführung einer sensorlosen Regelung kann bei Bedarf oder kontinuierlich eine Kalibrierung des mathematischen Modells erfolgen. Die motorspezifischen Parameter wie Wicklungswiderstand, Motorinduktivität und Konstante der induzierten Spannung können mithilfe der ohnehin vorhandenen Stromsensoren und der Mikroprozessor-Steuerung im Frequenzumrichter ermittelt und das mathematischen Modell anhand der gemessenen Werte angepaßt werden.In an advantageous embodiment of a sensorless control, it can be used continuously or continuously the mathematical model is calibrated. The engine-specific parameters such as winding resistance, motor inductance and constant of the induced voltage can with the help of the current sensors and the microprocessor control determined in the frequency converter and the mathematical model based on the measured Values are adjusted.
Der wesentliche Vorteil des erfindungsgemäß ausgebildeten Wäschebehandlungsgeräts ergibt sich aus der Möglichkeit, die Windungszahl der Statorwicklungen derart zu dimensionieren, daß der Betrag der induzierten Spannung bzw. der Polradspannung für hohe Drehzahlen größer als die maximale Ausgangsspannung des Frequenzumrichters ist. Eine solche Wicklungsauslegung ermöglicht einen Feldschwächungsbetrieb des Synchronmotors im höheren Drehzahlbereich. Der Vorteil dieser Wicklungsauslegung ist eine deutliche Reduzierung des Motorstromes im Waschbetrieb. Sie kann derart gewählt sein, daß der Motor im Wasch- und Schleuderbetrieb mit dem gleichen Strom betrieben werden kann. Aufgrund des geringeren Motorstroms können deswegen kleinere und kostengünstigere Leistungshalbleiter eingesetzt werden. Außerdem werden die Verluste in den Leistungshalbleitern reduziert, wodurch der Gesamtwirkungsgrad von Motor und Leistungselektronik höher ist als bei vergleichbaren Antrieben mit gleichem Kupfereinsatz. Um eine Feldschwächung auch bei Verwendung einer Regelung mit Rotorlagegebem zu ermöglichen, ist es vorteilhaft, auf deren Auswertung bei höheren Drehzahlen zu verzichten. Bei höheren Drehzahlen treten bei Waschmaschinen keine großen oder kurzzeitigen Lastschwankungen auf, so daß eine Regelung des Motorstromes nicht unbedingt erforderlich ist. Der Motor wird in diesem Fall fremdgeführt betrieben, wobei Spannung und Frequenz vom Umrichter ohne Rücksicht auf die Lage des Rotorfeldes vorgegeben werden. Der Motorstrom stellt sich dann in Abhängigkeit vom Lastmoment in Grenzen von selbst ein. Um eine Überlastung und ein außer Tritt fallen des Motors zu verhindern, reicht es aus die Höhe des Motorstromes in Abhängigkeit von der Drehfeldfrequenz zu überwachen.The main advantage of the laundry treatment device designed according to the invention results the possibility of dimensioning the number of turns of the stator windings in such a way that the amount of the induced voltage or the magnet wheel voltage for high speeds greater than is the maximum output voltage of the frequency converter. Such a winding design enables field weakening operation of the synchronous motor in the higher speed range. The advantage of this winding design is a significant reduction in the motor current in the washing operation. You can be chosen such that the engine in the washing and Spin operation can be operated with the same current. Because of the lesser Motor currents can therefore use smaller and cheaper power semiconductors become. In addition, the losses in the power semiconductors are reduced, as a result of which Overall efficiency of the motor and power electronics is higher than that of comparable ones Drives with the same copper insert. To weaken the field even when using a To enable control with rotor position sensors, it is advantageous to use their evaluation to forego higher speeds. At higher speeds, there are no washing machines large or short-term load fluctuations, so that a regulation of the motor current is not absolutely necessary. In this case, the motor is operated externally, whereby Voltage and frequency specified by the converter regardless of the position of the rotor field become. The motor current is then limited depending on the load torque by itself. To prevent overloading and the motor from falling out of step, it is enough to monitor the level of the motor current as a function of the rotating field frequency.
Weiterhin lassen sich durch eine Feldschwächung auch mit hochpoligen permanenterregten Synchronmotoren gute Wirkungsgrade bei hohen Drehzahlen erzielen, da die Ummagnetisierungsverluste in Folge der Feldschwächung verringert werden.Furthermore, field weakening can also be used with high-pole permanent-magnet excitation Synchronous motors achieve good efficiencies at high speeds because of the magnetic loss be reduced as a result of the field weakening.
Kollektorlose Gleichstrommmotoren können nur sehr aufwendig mit Feldschwächung betrieben werden, da dann die Position der Rotorlagegeber verändert oder die Kommutierungszeitpunkte rechnerisch verschoben werden müßten. Bei Servoantrieben ist ein Feldschwächebetrieb aus den vorgenannten Gründen nicht bekannt.Collectorless DC motors can only be operated with extensive field weakening be changed, since then the position of the rotor position encoder or the commutation times should be postponed arithmetically. A field weakening operation is deactivated for servo drives not known for the aforementioned reasons.
Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen rein schematisch dargestellt und wird nachfolgend näher beschrieben. Es zeigt:
Figur 1- einen Schnitt durch eine erfindungsgemäß aufgebaute Waschmaschine als Schemaskizze
Figur 2- einen Teilschnitt durch den hinteren Bereich eines Laugenbehälters (2), einer Trommel (6) und deren Antriebsmotor (10)
Figur 3- das Lagerkreuz (11) einer Waschmaschine in perspektivischer Darstellung
- Figur 4
- ein Einzelblech eines Stators (16) des Antriebsmotors (10)
Figur 5- einen permanentmagnetischen Rotor (15) in perspektivischer Darstellung
Figur 6- ein Blockschaltbild der Struktur des geregelten Antriebs mit Drehstrom-Synchronmotor und Rotorlagegebem
- Figur 7
- ein Blockschaltbild der Struktur des sensorlos geregelten Antriebs mit Drehstrom-Synchronmotor
- Figure 1
- a section through a washing machine constructed according to the invention as a schematic sketch
- Figure 2
- a partial section through the rear area of a tub (2), a drum (6) and its drive motor (10)
- Figure 3
- the bearing cross (11) of a washing machine in a perspective view
- Figure 4
- a single sheet of a stator (16) of the drive motor (10)
- Figure 5
- a permanent magnetic rotor (15) in perspective
- Figure 6
- a block diagram of the structure of the controlled drive with three-phase synchronous motor and rotor position encoder
- Figure 7
- a block diagram of the structure of the sensorless controlled drive with three-phase synchronous motor
Die in Figur 1 dargestellte Waschmaschine besitzt ein Gehäuse (1), in dem ein Laugenbehälter
(2) an Federn (3) schwingbeweglich aufgehängt ist. Zur Dämpfung der Schwingungen
wird er gegenüber dem Boden des Gehäus (1) durch Reibungsdämpfer (5) abgestützt. Im Laugenbehälter
(2) ist in bekannter Weise eine Trommel (6) zur Aufnahme von Waschgut (nicht
dargestellt) drehbar gelagert. Trommel (6), Laugenbehälter (2) und die Gehäusevorderwand
(1a) besitzen korrespondierende Öffnungen, durch die das Waschgut in die Trommel (6)
eingefüllt werden kann. Die Öffnungen können durch eine an der Gehäusevorderwand (1a)
angeordnete Tür (7) verschlossen werden. Die Verriegelung der Tür (7) erfolgt durch eine
elektromagnetische Verschlußeinrichtung (8). Die Türverriegelung ist in der Zeichnung
lediglich schematisch dargestellt. Der Aufbau und die Funktionsweise einer elektromagnetischen
Verschlußeinrichtung (8) selbst ist aus der o. g. DE-OS 16 10 247 oder aus der
DE 34 23 083 C2 hinreichend bekannt und wird deshalb nicht näher beschrieben. Im oberen
Teil der Gehäusevorderwand (1a) ist ein Bedienfeld (nicht dargestellt) angeordnet, in dem ein
Drehwahlschalter (9) zur Anwahl von Waschprogrammen dient. Die Waschprogramme beinhalten
bekanntermaßen einen Waschgang und einen sich daran anschließenden Spülgang, in
dessen Verlauf die Wäsche mehrmals geschleudert wird. Die Waschdrehzahl beträgt bei
Haushaltswaschmaschinen zwischen 20 und 60 min-1, die Schleuderdrehzahl sollte insbesondere
beim letzten Schleudern zum Ende des Spülgangs möglichst hoch sein. Sie wird durch
die Belastbarkeit des schwingenden Systems Laugenbehälter (2) - Aufhängung (3; 5)-Antriebsmotor
(10) -Trommel (6) nach oben begrenzt, die Grenzen liegen derzeit etwa bei
1600 min-1.The washing machine shown in Figure 1 has a housing (1) in which a tub
(2) is suspended on springs (3) so that it can move. To dampen the vibrations
it is supported against the bottom of the housing (1) by friction dampers (5). In the tub
(2) is a drum (6) for receiving laundry (not
shown) rotatably mounted. Drum (6), tub (2) and the front wall of the housing
(1a) have corresponding openings through which the items to be washed enter the drum (6)
can be filled. The openings can be opened through a front wall (1a)
arranged door (7) are closed. The door (7) is locked by a
electromagnetic locking device (8). The door lock is in the drawing
only shown schematically. The structure and functioning of an electromagnetic
Closure device (8) itself is from the above.
Figur 2 zeigt einen Teilschnitt durch den hinteren Bereich eines Laugenbehälters (2), einer Trommel (6) und deren Antriebsmotor (10). Zur drehbaren Lagerung der Trommel (6) ist an einem Randansatz (2a), der durch den Mantel (2b) des Laugenbehälters (2) und eine Umkantung seines Bodens (2c) gebildet wird, ein in Figur 3 dargestelltes vierarmiges Lagerkreuz (11) befestigt. Im Zentrum dieses Lagerkreuzes (11) befindet sich eine Lagemabe (12), in die zwei Radialwälzlager (13a,b) eingesetzt sind. Diese Wälzlager (13a,b) wiederum dienen zur drehbaren Aufnahme einer Antriebswelle (14), welche drehfest mit dem Trommelboden (6a) verbunden ist. Das hintere Ende (14a) der Antriebswelle (14) ragt aus der Lagemabe (12) heraus. An ihm ist ein als Außenläufer ausgebildeter permantentmagnetischer Rotor (15) befestigt und treibt die Trommel (6) somit direkt an. Der Stator (16) des Antriebsmotors (10) ist am Lagerkreuz (11) befestigt.Figure 2 shows a partial section through the rear area of a tub (2), one Drum (6) and its drive motor (10). For rotatable mounting of the drum (6) is on an edge approach (2a) through the jacket (2b) of the tub (2) and a fold its bottom (2c) is formed, a four-armed bearing cross (11) shown in FIG. attached. In the center of this bearing cross (11) there is a position hub (12) into the two Radial roller bearings (13a, b) are used. These roller bearings (13a, b) in turn serve for rotating Receiving a drive shaft (14) which is connected to the drum base (6a) in a rotationally fixed manner is. The rear end (14a) of the drive shaft (14) protrudes from the position hub (12). A permanent magnet rotor (15) designed as an external rotor is attached to it thus drives the drum (6) directly. The stator (16) of the drive motor (10) is on the bearing cross (11) attached.
Das Statorblechpaket (17) mit den Statorwicklungen (18) ist im wesentlichen ringförmig ausgebildet. Figur 4 zeigt den Blechschnitt eines einzelnen Statorblechs (17a). Zur Befestigung des Statorblechpakets (17) am Lagerkreuz besitzt die einzelnen Bleche (17a) Befestigungsaugen, die an der inneren Umfangsfläche angeordnet und mit Durchgangsbohrungen (19) versehen sind. Durch diese Bohrungen (19) werden Befestigungsschrauben (nicht dargestellt) geführt und in Gewindebohrungen (26) am Lagerkreuz (11) geschraubt. Die Bohrungen (26) sind konzentrisch zur Lagemabe (12) angeordnet. Ihre freien Enden weisen Auflageflächen (20) für eine Stirnfläche des Statorblechpaketes (17) auf. Die Zentrierung des Statorblechpaketes (17) erfolgt über radial ausgebildete Versteifungsrippen (21). The stator laminated core (17) with the stator windings (18) is essentially ring-shaped. Figure 4 shows the sheet section of a single stator sheet (17a). To attach the The stator laminate stack (17) on the bearing cross has the individual laminations (17a), which are arranged on the inner peripheral surface and provided with through bores (19) are. Fastening screws (not shown) are guided through these bores (19) and screwed into threaded holes (26) on the bearing cross (11). The holes (26) are arranged concentrically to the position hub (12). Their free ends have contact surfaces (20) for an end face of the stator laminated core (17). Centering the stator laminated core (17) takes place via radially designed stiffening ribs (21).
Der Rotor (15) besteht aus einem topfförmigen Tiefziehteil oder einem Aluminiumspritzgußteil (15a) mit einem Hohlzylinderabschnitt (15b), welcher einen ringförmigen Eisenrückschluß (22) und die darauf befestigten Permanentmagnete (23) als Rotorpole enthält (s. a. Figur 5). Weiterhin weist der Rotor (15) eine Nabe (24) auf, die mit dem freien Ende (14a) der Antriebswelle (14) durch einen Schraubenbolzen (25) und eine Kerbverzahnung (nicht dargestellt) formschlüssig und somit drehfest verbunden ist.The rotor (15) consists of a pot-shaped deep-drawn part or an aluminum injection molded part (15a) with a hollow cylinder section (15b) which has an annular iron yoke (22) and the permanent magnets (23) attached to it as rotor poles (see a. Figure 5). Furthermore, the rotor (15) has a hub (24) which is connected to the free end (14a) Drive shaft (14) by a screw bolt (25) and a serration (not shown) is positively and thus non-rotatably connected.
Der Antriebsmotor ist als permanentmagneterregter Drehstrom-Synchronmotor ausgeführt. Im Stator (16) ist eine dreisträngige Einzelpolwicklung (Zahnbewicklung) untergebracht, wobei die Stränge in einer Sternschaltung (s. Fig. 5, 6) verbunden sind. Die Wicklungen der Zähne (27) eines Stranges sind in Reihe geschaltet. Der Antriebsmotor ist somit als modulare Dauermagnetmaschine aufgebaut. Das Polverhältnis von Rotorpolen (23) zu Statorpolen (27) beträgt 4 zu 3 bei einer Anzahl von 30 Statorpolen (27).The drive motor is designed as a permanent magnet excited three-phase synchronous motor. in the Stator (16) is a three-strand single pole winding (tooth winding) housed, the Strands in a star connection (see. Fig. 5, 6) are connected. The windings of the teeth (27) of a line are connected in series. The drive motor is therefore a modular permanent magnet machine built up. The pole ratio of rotor poles (23) to stator poles (27) is 4 to 3 with a number of 30 stator poles (27).
Figur 6 zeigt als Blockschaltbild die Struktur des geregelten Antriebs mit Drehstrom-Synchronmotor (10). Die Drehzahl des Motors (10) wird in Abhängigkeit von dem mit dem Drehwahlschalter (9, s. Fig. 1)) eingestellten Programm als Sollwert von der Programmsteuerung (101) der Waschmaschine vorgegeben. Zur Beeinflussung der Motordrehzahl muß sowohl die Frequenz von Spannung und Strom als auch die Höhe der Spannung in den Statorwicklungen (18) verstellt werden. Zur Regelung des Motors (10) wird zusätzlich der Motorstrom in Abhängigkeit vom Lastmoment eingestellt. Hierzu werden mit Stromsensoren (103a, b) mindestens zwei Strangströme I1 und I2 gemessen.Figure 6 shows a block diagram of the structure of the controlled drive with three-phase synchronous motor (10). The speed of the motor (10) is specified as a setpoint by the program control (101) of the washing machine depending on the program set with the rotary selector switch (9, see FIG. 1)). In order to influence the motor speed, both the frequency of voltage and current and the amount of voltage in the stator windings (18) must be adjusted. To regulate the motor (10), the motor current is additionally set as a function of the load torque. For this purpose, at least two phase currents I 1 and I 2 are measured with current sensors (103a, b).
Die Verstellung der vorgenannten Größen erfolgt über den Frequenzumrichter (104). Hierbei wird zunächst die Netzspannung über einen Gleichrichter (105) in eine Gleichspannung umgewandelt und über einen Zwischenkreiskondensator (106) geglättet. Die Gleichspannung wird von einem dreiphasigen Wechselrichter (107) umgewandelt, der ausgangsseitig an die Statorwicklung (18) angeschlossen ist. Da die Zwischenkreisspannung konstant ist, wird die Spannung am Motor (10) über eine Pulsweiten-modulation eingestellt. Der Effektivwert der Spannung läßt sich dabei über die Pulsbreite verändern. Es wird ein Pulsmuster gewählt, durch das sich in der Statorwicklung (18) des Motors (10) sinusförmige Ströme ausbilden. Man spricht deshalb von einer sinusbewerteten Pulsweitenmodulation. Die sinusförmigen Ströme bewirken einen sehr leisen Lauf des Motors (10) und eine Reduzierung der durch Stromoberwellen hervorgerufenen Verluste. Zur Beeinflussung der Pulsmuster ist dem Wechselrichter (107) eine Mikroprozessor-Steuerungrf (108) zugeordnet, in der eine Regelung (109) und eine Ventilansteuerung (110) integriert ist. The aforementioned variables are adjusted via the frequency converter (104). in this connection the mains voltage is first converted into a DC voltage via a rectifier (105) and smoothed over an intermediate circuit capacitor (106). The DC voltage will converted by a three-phase inverter (107) on the output side to the stator winding (18) is connected. Since the DC link voltage is constant, the voltage set on the motor (10) via pulse width modulation. The rms value of the voltage can be changed over the pulse width. A pulse pattern is selected through which sinusoidal currents form in the stator winding (18) of the motor (10). One speaks therefore from a sine-weighted pulse width modulation. The sinusoidal currents cause a very quiet running of the motor (10) and a reduction in those caused by current harmonics Losses. The inverter (107) has one to influence the pulse pattern Microprocessor control rf (108) assigned in which a control (109) and a valve control (110) is integrated.
Die Berechnung der Steuersignale für die Transistoren des Wechselrichters (107) erfolgt auf
der Grundlage der jeweiligen Rotorlage, um jederzeit die optimale Ausrichtung und Stärke des
Drehfeldes einzustellen und damit ein ausreichendes Moment am Rotor (15) zu gewährleisten.
Wegen der sinusförmigen Bestromung des Synchronmotors (10) und der momentenabhängigen
Stromregelung ist eine kontinuierliche und genaue Rotorlageerkennung erforderlich.
Hierzu können Resolver oder analoge Hallsensoren (111) eingesetzt werden. Hallsensoren
(111) ist wegen ihrer Preisgünstigkeit der Vorzug zu geben. In beiden Fällen handelt es
sich um absolute Meßsysteme, die bereits unmittelbar nach dem Einschalten eine genaue
Information über die absolute Lage des Rotors (15) in Bezug auf den Stator (16) liefern. Bei
Verwendung von zwei analogen Hallsensoren (111) werden diese mit Hilfe der Rotormagneten
zwei gegeneinander um 90° phasenverschobene Signale erzeugen. Mit diesen
beiden Signalen läßt sich mit Hilfe der mathematischen Funktion
β= arctan(a/b)
der Rotorwinkel bestimmen.The control signals for the transistors of the inverter (107) are calculated on the basis of the respective rotor position in order to set the optimum orientation and strength of the rotating field at all times and thus to ensure a sufficient torque on the rotor (15). Because of the sinusoidal current supply to the synchronous motor (10) and the torque-dependent current control, continuous and accurate rotor position detection is required. Resolvers or analog Hall sensors (111) can be used for this. Hall sensors (111) should be preferred because of their low cost. In both cases, these are absolute measuring systems which provide precise information about the absolute position of the rotor (15) with respect to the stator (16) immediately after switching on. If two analog Hall sensors (111) are used, they will generate two signals that are 90 ° out of phase with each other with the help of the rotor magnets. With these two signals you can use the mathematical function
β = arctan (a / b)
determine the rotor angle.
Bei Einsatz von analogen Hallsensoren (111) ist deren Selbstkalibrierung sinnvoll, da aufgrund
von Exemplarstreuungen wie z. B. Empfindlichkeit, Offset, Temperaturdrift usw. die
analogen Ausgangssignale verschiedener Hallsensoren (111) in einem konstanten magnetischen
Feld nicht unbedingt identisch sind. Für eine genaue Rotorlageerkennung muß daher
eine Korrektur der Ausgangssignale erfolgen. Ziel dieser Korrektur ist es, daß die eingesetzten
Hallsensoren (111) in einem konstanten magnetischen Feld die gleichen Ausgangssignale
liefern. Eine solche Korrektur kann dadurch erfolgen, daß in einer in der Mikroprozessor-Steuerung
(108) integrierten Korrekturvorrichtung (112) während einer Rotorumdrehung die
analogen Ausgangssignale beider Hallsensoren (111) gespeichert werden und anschließend
aus den gespeicherten Werten der Mittelwert sowie Maximum und Minimum ermittelt werden.
Ist der Mittelwert bekannt, so läßt sich ein Offset korrigieren, während anhand von Maximum
und Minimum die Empfindlichkeit und die Temperaturdrift korrigiert werden können. Ein Temperatureinfluß
auf die Remanenzinduktion der Magnete (23) braucht nicht berücksichtig zu
werden, da in diesem Fall die Ausgangssignale beider Hallsensoren (111) in gleicher Weise
und in gleicher Größe verändert werden. Wird der Rotorwinkel mit Hilfe der mathematischen
Funktion
β = arctan(a/b)
berechnet, so bleibt der Quotient (a/b) bei Änderung des Magnetfeldes in Abhängigkeit von der
Temperatur konstant. When using analog Hall sensors (111), it makes sense to self-calibrate them, because B. sensitivity, offset, temperature drift, etc. the analog output signals of different Hall sensors (111) are not necessarily identical in a constant magnetic field. The output signals must therefore be corrected for accurate rotor position detection. The aim of this correction is that the Hall sensors (111) used deliver the same output signals in a constant magnetic field. Such a correction can be made by storing the analog output signals of both Hall sensors (111) in a correction device (112) integrated in the microprocessor control (108) during a rotor revolution and then determining the mean value as well as maximum and minimum from the stored values , If the mean value is known, an offset can be corrected, while the sensitivity and the temperature drift can be corrected on the basis of maximum and minimum. A temperature influence on the remanent induction of the magnets (23) need not be taken into account, since in this case the output signals of both Hall sensors (111) are changed in the same way and in the same size. The rotor angle is calculated using the mathematical function
β = arctan (a / b)
calculated, the quotient (a / b) remains constant when the magnetic field changes depending on the temperature.
Figur 6 zeigt ein Blockschaltbild der Struktur einer Regelung bei der auf Sensoren zur Rotorlageerkennung verzichtet werden kann. Bei einer sensorlosen Regelung des Synchronmotors (10) mit kontinuierlicher, insbesondere mit sinusförmiger Bestromung muß die Rotorpostion durch die Mikroprozessor-Steuerung (108) berechnet werden. Dies erfolgt auf der Grundlage eines in der Steuerung abgelegten mathematischen Modells (113) des Motors (10), bei dem die charakteristischen Motorparameter wie Wicklungswiderstand, Motorinduktivität und induzierte Spannung bekannt sein müssen. Die Motorströme (I1,I2) und die Motorspannung U_w werden kontinuierlich vektoriell, d. h. nach Betrag und Phasenlage erfaßt, wobei die Ströme mit den Sensoren gemessen werden und die Spannung aufgrund des von der Ventilansteuerung (110) erzeugten Pulsmusters bekannt ist. Somit läßt sich der jeweilige Betriebspunkt des Motors (10) genau bestimmen und der Motor (10) kann mit dem für das Lastmoment erforderlichen minimalen Strom betrieben werden. Da die Erfassung des Motorstroms und der Spannung am Motor (10) im Frequenzumrichter (104) selbst erfolgen kann, sind keine weiteren Sensoren am Motor (10) erforderlich.FIG. 6 shows a block diagram of the structure of a control in which sensors for rotor position detection can be omitted. In the case of sensorless control of the synchronous motor (10) with continuous, in particular with sinusoidal current supply, the rotor position must be calculated by the microprocessor control (108). This takes place on the basis of a mathematical model (113) of the motor (10) stored in the control, in which the characteristic motor parameters such as winding resistance, motor inductance and induced voltage must be known. The motor currents (I 1 , I 2 ) and the motor voltage U_ w are continuously recorded vectorially, ie according to the magnitude and phase position, the currents being measured with the sensors and the voltage being known on the basis of the pulse pattern generated by the valve control (110). The respective operating point of the motor (10) can thus be determined precisely and the motor (10) can be operated with the minimum current required for the load torque. Since the detection of the motor current and the voltage on the motor (10) can take place in the frequency converter (104) itself, no further sensors on the motor (10) are required.
In einer vorteilhaften Ausführung der sensorlosen Regelung erfolgt entweder bedarfsweise oder kontinuierlich eine Anpassung der Parameter des mathematischen Modells (113). Eine solche Kalibrierung kann erforderlich werden, wenn sich die motorspezifischen Parameter (Wicklungswiderstand, Motorinduktivität und induzierte Spannung) durch Erwärmung des Motors (10) im Betrieb verändern. Insbesondere der Wicklungswiderstand und induzierte Spannung sind stark temperaturabhängige Größen. Durch eine kurzzeitige Bestromung der Statorwicklung (18) durch den Frequenzumrichter (104) mit Gleichstrom, vorteilhafterweise während der Reversierpausen im Waschbetrieb, läßt sich sowohl der augenblickliche Wicklungswiderstand (und damit auch die Temperatur des Motors) als auch die Motorinduktivität ermitteln, wenn die Spannung am Motor (10) bekannt ist und der Strom über die Sensoren (103a, b) im Frequenzumrichter (104) gemessen wird.In an advantageous embodiment of the sensorless control either takes place or as required continuously adjusting the parameters of the mathematical model (113). A Such calibration may be necessary if there are engine-specific parameters (Winding resistance, motor inductance and induced voltage) by heating the Change motors (10) during operation. In particular, the winding resistance and induced Voltage are strongly temperature-dependent quantities. By briefly energizing the Stator winding (18) by the frequency converter (104) with direct current, advantageously during the reversing breaks in the washing operation, both the instantaneous winding resistance can be (and thus the temperature of the motor) as well as the motor inductance determine if the voltage at the motor (10) is known and the current through the sensors (103a, b) is measured in the frequency converter (104).
Der Wicklungswiderstand R ergibt sich aus Beziehung R = U/I und die Induktivität L aus der Zeitkonstanten T = L/R, wobei der Strom kontinuierlich erfasst werden muß, um die Zeitkonstante T zu ermitteln.The winding resistance R results from the relationship R = U / I and the inductance L from the Time constants T = L / R, whereby the current has to be continuously measured by the time constant T to determine.
Da die Maschine als fremdgeführter Synchronmotor (10) betrieben wird, ist es wichtig, daß die Ausgangsfrequenz des Frequenzumrichters (104) beim Anlauf des Motors (10) niedrig ist. Typisch sind Einschalt-Frequenzen von 0,1 bis 1 Hz. Dies gewährleistet in Verbindung mit der hohen Polzahl des Motors (10) auch unter Last einen sicheren und ruckfreien Anlauf. Since the machine is operated as an externally operated synchronous motor (10), it is important that the Output frequency of the frequency converter (104) when the motor (10) starts is low. Switch-on frequencies of 0.1 to 1 Hz are typical. This is guaranteed in conjunction with the high number of poles of the motor (10) a safe and smooth start even under load.
Die Windungszahl der Statorwicklung (18) ist derart bemessen, daß bei höheren Drehzahlen die Polradspannung und die induzierte Spannung des Synchronmotors (10) höher sind als die Ausgangsspannung oder die Zwischenkreisspannung des Frequenzumrichters (104). Diese Auslegung ermöglicht einen Betrieb mit Feldschwächung bei höheren Drehzahlen. Die Feldschwächung ermöglicht den Motor (10) in zwei Betriebspunkten mit unterschiedlichen Drehzahlen und unterschiedlichen Momenten, wie z.B. Wasch- und Schleuderbetrieb, mit etwa dem gleichem Motorstrom zu betreiben.The number of turns of the stator winding (18) is dimensioned such that at higher speeds the magnet wheel voltage and the induced voltage of the synchronous motor (10) are higher than that Output voltage or the intermediate circuit voltage of the frequency converter (104). This Design enables operation with field weakening at higher speeds. The field weakening enables the engine (10) in two operating points with different speeds and different moments, e.g. Washing and spinning, with about operate the same motor current.
Unter Feldschwächung ist in diesem Fall eine Schwächung des von den Permanentmagneten (23) des Rotors (15) erzeugten Feldes im Luftspalt durch ein im Stator (16) erzeugtes Feld mit entsprechender Stärke und Phasenlage zu verstehen. Bei Feldschwächung sind Polradspannung und Motorstrom nicht in Phase, sondem der Strangstrom eilt der Polradspannung voraus. Der Winkel zwischen Ständerdurchflutung und Läuferfeld wird bei Feldschwächung größer als 90° (elektrisch). Der Strom weist zusätzlich zu der kraftbildenden Komponente in der Querachse eine negative Ständerlängsstromkomponente auf, die dem Läuferfeld entgegengerichtet ist. Der Strangstrom kann vektoriell in eine kraftbildende und eine feldbildende Komponente zerlegt werden, wobei die kraftbildende Komponente in Phase mit der Polradspannung ist und die feldbildende Komponente dem Läuferfeld entgegengerichtet ist und dieses schwächt.In this case, field weakening is a weakening of that of the permanent magnets (23) of the rotor (15) generated field in the air gap by a in the stator (16) understand generated field with appropriate strength and phase position. With field weakening are pole wheel voltage and motor current not in phase, but the phase current rushes Flywheel tension ahead. The angle between the stator flow and the rotor field is at Field weakening greater than 90 ° (electrical). The current points in addition to the force-generating Component in the transverse axis on a negative stator longitudinal current component that the Runner field is opposite. The phase current can be vectorially divided into a force-generating and a field-forming component are disassembled, with the force-forming component in phase with the magnet wheel voltage and the field-forming component is directed towards the rotor field and this weakens.
Im geregelten Betrieb läßt sich mit Hilfe der Stromsensoren (103a, b), die in mindestens zwei Phasen den Strangstrom erfassen, die drehmomentbildende Komponente des Strom in der Querachse und die Ständerlängsstromkomponente getrennt voneinander einstellen. Damit kann der Antrieb auch im Feldschwächbereich mit minimalem Strom und optimalem Wirkungsgrad betrieben werden. Eine Sensierung und Regelung des Motorstroms ist im Betrieb mit Feldschwächung vorteilhaft, da bei einer zu großen negativen Ständerlängsstromkomponente die Magnete durch das von der Ständerdurchflutung erzeugte Feld irreversibel geschwächt werden können.In controlled operation, the current sensors (103a, b) can be used in at least two Phases capture the phase current, the torque-forming component of the current in the Set the transverse axis and the stator longitudinal current component separately. In order to the drive can also operate in the field weakening range with minimal current and optimal efficiency operate. Sensing and controlling the motor current is in operation with Field weakening is advantageous because the negative longitudinal current component is too large the magnets are irreversibly weakened by the field generated by the stator flooding can be.
Bei einer sensorlosen Regelung wird die Rotorposition bzw. die Lage des Rotorfeldes mit Hilfe der gemessenen Strangströme und mit dem mathematischen Modell (113) des Motors (10) berechnet. Die Rotorlage kann daher nur bestimmt werden, solange der Motor (10) bestromt wird. Bei einer sensorlosen Regelung ist es daher vorteilhaft, den Motor (10) auch während der Auslaufphase von der Waschdrehzahl oder von der Schleuderdrehzahl bis zum Stillstand zu bestromen. Hierbei wird das vom Frequenzumrichter (104) vorgegebene Drehfeld kontinuierlich in Frequenz und Amplitude verringert, bis der Stillstand erreicht ist. Werden die Wicklungsstränge des Motors (10) auch im Stillstand, zumindest teilweise, bestromt und der Rotor (15) dadurch in Position gehalten, so kann der nächste Anlauf sofort und ruckfrei in die vorgegebene Drehrichtung erfolgen. Bei Verwendung von Hallsensoren (111) kann der Auslauf auch ungeführt bzw. auch unbestromt erfolgen.In the case of sensorless control, the rotor position or the position of the rotor field is determined using the measured phase currents and with the mathematical model (113) of the motor (10) calculated. The rotor position can therefore only be determined as long as the motor (10) is energized becomes. In the case of sensorless control, it is therefore advantageous to keep the motor (10) even during the Run-out phase from the washing speed or from the spin speed to a standstill energize. Here, the rotating field specified by the frequency converter (104) becomes continuous reduced in frequency and amplitude until standstill is reached. Become the winding strands of the motor (10) even at a standstill, at least partially, energized and the rotor (15) held in position, the next start can be made immediately and smoothly in the specified one Direction of rotation. When using Hall sensors (111), the spout can also take place unguided or de-energized.
Der beschriebene Antrieb ermöglicht weiterhin ein Reversieren ohne oder mit nur geringer Reversierpause. Dies ist bei Waschmaschinen, die einen Antriebsriemen als Zwischentrieb aufweisen, nicht ohne weiteres möglich. Bei diesen Waschmaschinen werden üblicherweise Universalmotoren als Antrieb eingesetzt, die ungeregelt bzw. ungebremst auslaufen. Hierbei kommt es nach dem Abschalten des Motors zu einem Austrudeln oder Auspendeln der Wäschetrommel. Um eine erhöhte Abnutzung und Geräusche des Antriebsriemens zu vermeiden, muß nach Abschalten bis zum Wiedereinschalten des Motors solange gewartet werden, bis die Wäschetrommel mit Sicherheit den Stillstand erreicht hat. Diese Stillstandszeiten bei Waschmaschinen mit Antriebsriemen betragen typisch 2 bis 4 Sekunden. Durch den Entfall dieser bisher üblichen und notwendigen Pausen im Reversierbetrieb ergeben sich bei dem hier beschriebenen Direktantrieb Verkürzungen der Waschdauer.The drive described further enables reversing without or with only a small amount Reversierpause. This is in washing machines that use a drive belt as an intermediate drive have, not easily possible. These washing machines are commonly used Universal motors are used as drives that run out uncontrolled or braked. in this connection If the engine is switched off, the engine coasts down or swings out Washing drum. To avoid increased wear and noise from the drive belt, after switching off until the motor is switched on again until the washing drum has definitely reached a standstill. These downtimes in washing machines with drive belts are typically 2 to 4 seconds. By the Eliminating these previously usual and necessary breaks in reversing operation results in the direct drive described here shortens the washing time.
Eine weitere vorteilhafte Ausführungsform eines Wäschebehandlungsgeräts besitzt eine Vorrichtung zur Auswertung der vom Rotor (15) während des Auslaufs induzierten Spannung. Anhand dieser Spannung kann auf die momentane Drehzahl geschlossen werden. Solange der Motor (10) dreht, wird in der Statorwicklung (18) des Motors (10) eine Spannung induziert. Höhe und Frequenz verhalten sich proportional zur Rotordrehzahl. Die induzierte Spannung kann zur Sensierung der Trommeldrehung genutzt werden. Bei einer Waschmaschine mit einer elektromagnetisch oder elektromechanisch verriegelten Tür kann die induzierte Spannung zum Betrieb der Verschlußeinrichtung (8) verwendet werden. Hierdurch ist in einfacher Weise ohne Verwendung zusätzlicher Drehzahlsensoren eine zustandsabhängige, sichere Verriegelung der Tür (7) möglich. Eine solche Anwendung ist allgemein bei Waschmaschinen mit permanentmagneterregten Rotoren möglich und beschränkt sich deshalb nicht auf die erfindungsgemäße Ausführungsform.Another advantageous embodiment of a laundry treatment device has a device to evaluate the voltage induced by the rotor (15) during the runout. The current speed can be inferred from this voltage. As long as the Motor (10) rotates, a voltage is induced in the stator winding (18) of the motor (10). The height and frequency are proportional to the rotor speed. The induced voltage can be used to sense drum rotation. In a washing machine with a Electromagnetically or electromechanically locked door can induce the voltage to Operation of the closure device (8) can be used. This makes it easy to use additional speed sensors a state-dependent, secure locking of the door (7) possible. Such an application is common in washing machines with permanent magnet excitation Rotors possible and therefore not limited to the invention Embodiment.
Claims (14)
- Laundry treating appliance, such as a washing machine, laundry dryer or washer-dryer, having a rotatably mounted drum (6) with an at least approximately horizontal axis of rotation, and a driving motor (10), which is disposed on the drum shaft and is in the form of a synchronous motor (10), which is energised by a permanent magnet and has a stator (16) provided with a winding (18) which is supplied with current by a converter, the winding (18) being in the form of a single-pole winding, and the number of stator poles (27) and magnet poles (23) not being identical, characterised in that a frequency converter (104) is used as the converter, the output voltage of which is set in such a manner that continuous currents are formed in all of the winding strands.
- Laundry treating appliance according to claim 1, characterised in that the rotor (15) is in the form of an external rotor.
- Laundry treating appliance according to one of claims 1 or 2, characterised by a control apparatus (108), which sets the output voltage of the frequency converter (104), by a regulating means (109), in such a manner that a minimum sinusoidal motor current is generated in dependence on the load moment.
- Laundry treating appliance according to claim 3, characterised in that the output voltage is set in the form of a sine-evaluated pulse-width modulation.
- Laundry treating appliance according to claim 4, characterised in that the stator winding (18) is in the form of a three-strand winding, and in that the ratio of magnet poles (23) to stator poles (27) is 2/3 or 4/3.
- Laundry treating machine according to claim 5, characterised in that the number of stator poles is approx. 30.
- Laundry treating appliance according to one of claims 1 to 6, characterised in that a mathematical model (113) of the motor (10) forms the basis for the control apparatus (108) for regulating the motor current, and in that the winding strands (18) are provided with current without the need for rotor position sensors.
- Laundry treating appliance according to claim 7, characterised by sensors for determining variable parameters specific to the motor, such as winding resistance, motor inductance and constant for the induced voltage, the corresponding reference values of the mathematical model (113) being correctable in the control apparatus (108) by the measured values.
- Laundry treating appliance according to one of claims 7 or 8, characterised in that the rotor (15) is positionable, through a guided discharge in the washing operation, in such a manner that, after being stationary, it can be immediately started in the opposite direction.
- Laundry treating appliance according to one of claims 1 to 6, characterised in that the winding strands are provided with current by the use of the analogue output signals of two Hall sensors (111), these output signals being calibrated in respect of their variations, which are dependent on time or state, by means of a correcting apparatus (112).
- Laundry treating machine according to one of claims 1 to 10, characterised in that the number of stator windings (18) is dimensioned such that the amount of induced voltage, or respectively of synchronous internal voltage is greater than the maximum output voltage of the frequency converter (104).
- Laundry treating machine according to one of claims 1 to 11, characterised in that the motor (10) is supplied with current at relatively high speeds with field weakening without any evaluation of any existing rotor position sensors (Hall sensors 111).
- Laundry treating machine, more especially according to one of claims 1 to 12, characterised by an apparatus (8) for evaluating the voltage induced by the rotor (15).
- Laundry treating machine according to claim 13, provided with an electromagnetically or electromechanically locked door (7), characterised in that the door (7) is closable by the apparatus (8).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19706184 | 1997-02-17 | ||
DE19706184 | 1997-02-17 | ||
PCT/EP1998/000902 WO1998036123A2 (en) | 1997-02-17 | 1998-02-17 | Laundry treating equipment with a driving motor mounted on the drum shaft |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0960231A2 EP0960231A2 (en) | 1999-12-01 |
EP0960231B1 true EP0960231B1 (en) | 2002-05-15 |
EP0960231B2 EP0960231B2 (en) | 2012-01-25 |
Family
ID=7820597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP98906957A Expired - Lifetime EP0960231B2 (en) | 1997-02-17 | 1998-02-17 | Laundry treating equipment with a driving motor mounted on the drum shaft |
Country Status (8)
Country | Link |
---|---|
US (1) | US6341507B1 (en) |
EP (1) | EP0960231B2 (en) |
JP (1) | JP2001511674A (en) |
KR (1) | KR100436152B1 (en) |
AT (1) | ATE217655T1 (en) |
DE (2) | DE59804137D1 (en) |
ES (1) | ES2176972T3 (en) |
WO (1) | WO1998036123A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0982425B2 (en) † | 1998-08-17 | 2007-08-29 | Miele & Cie. KG | Laundry treatment apparatus |
DE102015101043A1 (en) | 2015-01-26 | 2016-07-28 | Miele & Cie. Kg | Frequency converter for an electric motor, mechatronic system and washing machine |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19849594C1 (en) * | 1998-10-27 | 2000-03-30 | Miele & Cie | Washing machine or tumble drier with an uneven weight balancing mechanism, comprises a container with a drum, a drive motor, and a drum balancing system |
KR100539513B1 (en) * | 1998-12-29 | 2006-02-28 | 엘지전자 주식회사 | Supporting structure of bearing for drum washing wachine |
TW470801B (en) * | 1999-03-31 | 2002-01-01 | Toshiba Corp | Drum type washing machine |
TW472094B (en) * | 1999-05-19 | 2002-01-11 | Toshiba Corp | Rolling drum type washing machine |
DE29910332U1 (en) * | 1999-06-10 | 2000-10-26 | Struckmeier GmbH Antriebstechnik, 65527 Niedernhausen | Electric drive motor for work machines, especially for extruders or injection molding machines |
US6341509B1 (en) * | 1999-09-03 | 2002-01-29 | Kryptonite Corporation | Tie lock assemblage with replaceable lock mechanism |
EP1091037B1 (en) * | 1999-09-28 | 2003-06-18 | Miele & Cie. GmbH & Co. | Machine fo treating laundry having a cantilever-supported drum |
AU782017B2 (en) * | 1999-10-18 | 2005-06-30 | Lg Electronics Inc. | A driving unit for a drum type washing machine |
AU753411B2 (en) | 1999-10-19 | 2002-10-17 | Lg Electronics Inc. | Structure of driving unit in drum type washing machine |
DE19963703A1 (en) * | 1999-12-29 | 2001-07-05 | Bsh Bosch Siemens Hausgeraete | Drive device for a washing machine |
KR100370010B1 (en) * | 2000-04-19 | 2003-02-05 | 엘지전자 주식회사 | Drive structure for drum type washing machine |
KR100348626B1 (en) * | 2000-09-28 | 2002-08-13 | 엘지전자주식회사 | Dection of the weight of a washing machine |
DE10054947A1 (en) * | 2000-11-06 | 2002-05-08 | Bsh Bosch Siemens Hausgeraete | Treatment of laundry in washing machine with rotationally located washing drum in which laundry is received and liquid during washing method flows through washing drum in laundry or washing and out from it and drum in operation of machine |
DE10060633A1 (en) * | 2000-12-06 | 2002-06-13 | Bsh Bosch Siemens Hausgeraete | Drum washing machine has drum whose angular position during reversing phase can be predefined by activating winding legs of motor with associated fixing of rotor in defined position |
DE10064549A1 (en) * | 2000-12-22 | 2002-06-27 | Bsh Bosch Siemens Hausgeraete | Drum washing machine with improved washing or rinsing liquid feed into inner drum, has motor rotor and drum held in water input position by activating motor winding strand after loading |
TW584688B (en) * | 2001-06-06 | 2004-04-21 | Toshiba Corp | Washing machine |
JP3651595B2 (en) * | 2001-12-13 | 2005-05-25 | 株式会社東芝 | Inverter device for washing machine and inverter device for washing dryer |
DE10202252C1 (en) * | 2002-01-21 | 2003-03-20 | Miele & Cie | Speed regulation and control method, for washing machine, determines drum speed by evaluation of dynamic component of movement or acceleration signal for self-regulation of regulation and control unit |
RU2337194C2 (en) * | 2002-03-26 | 2008-10-27 | Арчелык А.Ш. | Drum for washing/drying machine |
DE10254286B4 (en) * | 2002-11-20 | 2007-06-28 | Miele & Cie. Kg | Method for producing a rotor designed as an external rotor for a permanent magnet synchronous motor |
KR100495183B1 (en) * | 2002-11-28 | 2005-06-14 | 엘지전자 주식회사 | A tub assembly of washer |
JP3977762B2 (en) * | 2003-03-06 | 2007-09-19 | 株式会社東芝 | Drum washing machine |
ES2392686T3 (en) | 2003-06-11 | 2012-12-12 | Askoll Holding S.R.L. | Procedure for detecting unbalanced conditions of a rotating load driven by a synchronous motor and for controlling said motor |
DE10361405A1 (en) * | 2003-12-29 | 2005-07-28 | BSH Bosch und Siemens Hausgeräte GmbH | Laundry treatment device with a control arrangement for operating an electric motor |
KR20050089355A (en) * | 2004-03-04 | 2005-09-08 | 엘지전자 주식회사 | Bldc motor for large capacity drum-type washing machine |
DE102004049549A1 (en) * | 2004-03-24 | 2005-10-13 | Diehl Ako Stiftung & Co. Kg | Motor as direct drive and method of mounting the motor |
DE102004050898B4 (en) * | 2004-10-19 | 2007-04-12 | Siemens Ag | Method and device for monitoring a temperature of a bearing of a rotating revolving shaft |
DE202005021593U1 (en) | 2005-02-25 | 2008-10-30 | Askoll Holding S.R.L., Povolaro Di Dueville | Structure of an electric synchronous motor, in particular for washing machines with a rotating drum, which is kinematically coupled by a pulley drive with the motor |
DE102005048487A1 (en) * | 2005-10-07 | 2007-04-19 | TRüTZSCHLER GMBH & CO. KG | Device on a spinning preparation machine, esp. Carding, cleaner, track, comber o. The like., With at least one electric motor driven roller |
DE102006028201A1 (en) * | 2006-06-20 | 2007-12-27 | Schaeffler Kg | Drive for washing machine |
KR101270538B1 (en) * | 2006-07-12 | 2013-06-03 | 삼성전자주식회사 | A tableware washing machine |
DE102006045146A1 (en) * | 2006-07-17 | 2008-01-31 | Diehl Ako Stiftung & Co. Kg | Drive device for a washing machine, comprises an electric motor, a drive shaft, which is connected to the electric motor for the rotary drive, and an electronic system for controlling the operation of the electric motor |
ITTO20070843A1 (en) * | 2007-11-23 | 2009-05-24 | Indesit Co Spa | METHOD FOR DETECTING THE LEVEL OF A WASHING LIQUID INSIDE A WASHING MACHINE, AND ITS WASHING MACHINE. |
DE102008015717A1 (en) * | 2008-03-26 | 2009-10-08 | BSH Bosch und Siemens Hausgeräte GmbH | Circuit arrangement for sensorless operation of a universal motor of a domestic appliance and corresponding method |
DE102008018356A1 (en) * | 2008-04-11 | 2009-10-15 | Diehl Ako Stiftung & Co. Kg | clothes dryer |
DE102008019921A1 (en) * | 2008-04-21 | 2009-10-22 | BSH Bosch und Siemens Hausgeräte GmbH | Domestic appliance for drying laundry items and method for operating such a domestic appliance |
KR20100022145A (en) * | 2008-08-19 | 2010-03-02 | 삼성전자주식회사 | Method of controlling washing machine and motor |
DE102009033026A1 (en) * | 2009-07-02 | 2011-01-05 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Electronic commutating electric motor has network rectifier for rectifying network changeover voltage to intermediate circuit-direct current voltage, and has commutating electronics for controlling three-standed motor coil |
US8405268B2 (en) | 2010-02-18 | 2013-03-26 | Nidec Motor Corporation | Stator with monolithic mounting bosses and assembly comprising the same |
WO2012087156A1 (en) | 2010-12-22 | 2012-06-28 | Fisher & Paykel Appliances Limited | Improved appliance, motor or stator |
DE102014203550A1 (en) * | 2014-02-27 | 2015-08-27 | Robert Bosch Gmbh | Electric drive system |
DE102014206637A1 (en) * | 2014-04-07 | 2015-10-08 | BSH Hausgeräte GmbH | A method for producing a drum base for a laundry drum of a household appliance, laundry drum and household appliance |
BE1029057B1 (en) * | 2021-01-26 | 2022-08-29 | Miele & Cie | Method for driving an at least two-phase brushless motor |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1760382A1 (en) † | 1968-05-11 | 1971-06-16 | Licentia Gmbh | Drum washing machine |
US3840764A (en) * | 1972-08-25 | 1974-10-08 | M Burger | Drive arrangement for a washing or dry cleaning machine |
US4654566A (en) † | 1974-06-24 | 1987-03-31 | General Electric Company | Control system, method of operating an electronically commutated motor, and laundering apparatus |
DE3275393D1 (en) * | 1981-12-18 | 1987-03-12 | Cerac Inst Sa | Washing machine |
CH664654A5 (en) * | 1981-12-18 | 1988-03-15 | Cerac Inst Sa | METHOD AND DEVICE FOR CONTROLLING A BRUSHLESS AC MOTOR. |
DE3436470A1 (en) † | 1984-10-05 | 1986-04-10 | Joachim-Andreas Dipl.-Ing. Wozar (FH), 7300 Esslingen | Plunge-cutting tool |
NZ213490A (en) * | 1985-09-16 | 1990-03-27 | Fisher & Paykel | Cyclic motor reversal by forced commutation |
US4712035A (en) * | 1985-11-12 | 1987-12-08 | General Electric Company | Salient pole core and salient pole electronically commutated motor |
NZ215389A (en) | 1986-03-06 | 1992-02-25 | Fisher & Paykel | Washing machine: spin tub connected to drive at low water level |
DE3819651A1 (en) † | 1988-06-09 | 1989-12-14 | Miele & Cie | WASHING MACHINE OR LAUNDRY DRYER WITH A DRIVE MOTOR DIRECTLY DRIVING THE LAUNDRY DRUM |
JPH02142350A (en) * | 1988-08-03 | 1990-05-31 | Victor Co Of Japan Ltd | Motor provided with polyphase dc core |
US5162709A (en) † | 1989-04-25 | 1992-11-10 | Diesel Kiki Co., Ltd. | Apparatus for controlling blower motor of automobile air-conditioner |
US4998052A (en) * | 1989-07-28 | 1991-03-05 | General Electric Company | Gearless direct drive switched reluctance motor for laundry application |
DE3927426B4 (en) | 1989-08-19 | 2006-02-23 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Drive unit for a laundry treatment machine |
AU633738B2 (en) † | 1990-06-20 | 1993-02-04 | Matsushita Electric Industrial Co., Ltd. | Brushless DC motor |
JP2895942B2 (en) * | 1990-09-18 | 1999-05-31 | 三洋電機株式会社 | Washing machine |
JPH05344741A (en) * | 1992-06-10 | 1993-12-24 | Hitachi Ltd | Inverter unit, air-conditioner, electric washing machine, and electric cleaner equipped with inverter unit |
GB9217761D0 (en) † | 1992-08-21 | 1992-10-07 | British Tech Group | Method of and apparatus for determining a rotor displacement parameter |
GB2295160B (en) * | 1992-08-27 | 1996-10-02 | Gen Electric | Electronic washer control including automatic brake operations |
JPH06165561A (en) * | 1992-11-26 | 1994-06-10 | Toshiba Corp | Controller for synchronous motor |
DE4335966C2 (en) | 1993-10-21 | 1998-07-16 | Fhp Motors Gmbh | Drive device for a washing machine or similar machine with a brushless DC motor |
DE4341832C2 (en) | 1993-12-08 | 2001-11-08 | Fhp Motors Gmbh | Washing machine |
TW262496B (en) * | 1994-03-30 | 1995-11-11 | Toshiba Eng Co | |
DE4414768A1 (en) | 1994-04-27 | 1995-11-02 | Mulfingen Elektrobau Ebm | Laundry treatment appliance has rotating drum |
US5448149A (en) † | 1994-06-20 | 1995-09-05 | Texas A&M University | Indirect rotor position sensor for a sinusoidal synchronous reluctance machine |
JP2956484B2 (en) * | 1994-09-01 | 1999-10-04 | 日本ビクター株式会社 | Brushless motor |
JP2905119B2 (en) * | 1995-06-30 | 1999-06-14 | 株式会社東芝 | Washing machine |
JPH0947075A (en) * | 1995-07-28 | 1997-02-14 | Matsushita Electric Ind Co Ltd | Brushless motor |
TR199802748T2 (en) * | 1996-07-02 | 1999-03-22 | Domel Elektromotorji In Gospodinjski Aparati, D.O.O. | Electronically commutated motor for direct drive of a washing machine drum. |
JP3290354B2 (en) † | 1996-07-05 | 2002-06-10 | 株式会社東芝 | Washing machine and driving method of washing machine |
KR100229135B1 (en) † | 1997-02-18 | 1999-11-01 | 윤종용 | Power transfer apparatus of a washing machine |
-
1998
- 1998-02-17 DE DE59804137T patent/DE59804137D1/en not_active Expired - Lifetime
- 1998-02-17 JP JP53537798A patent/JP2001511674A/en active Pending
- 1998-02-17 AT AT98906957T patent/ATE217655T1/en active
- 1998-02-17 KR KR10-1999-7004953A patent/KR100436152B1/en not_active IP Right Cessation
- 1998-02-17 WO PCT/EP1998/000902 patent/WO1998036123A2/en active IP Right Grant
- 1998-02-17 EP EP98906957A patent/EP0960231B2/en not_active Expired - Lifetime
- 1998-02-17 ES ES98906957T patent/ES2176972T3/en not_active Expired - Lifetime
- 1998-02-17 DE DE19806258A patent/DE19806258A1/en not_active Withdrawn
- 1998-02-17 US US09/367,378 patent/US6341507B1/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0982425B2 (en) † | 1998-08-17 | 2007-08-29 | Miele & Cie. KG | Laundry treatment apparatus |
DE102015101043A1 (en) | 2015-01-26 | 2016-07-28 | Miele & Cie. Kg | Frequency converter for an electric motor, mechatronic system and washing machine |
Also Published As
Publication number | Publication date |
---|---|
ES2176972T3 (en) | 2002-12-01 |
ATE217655T1 (en) | 2002-06-15 |
KR100436152B1 (en) | 2004-06-18 |
WO1998036123A2 (en) | 1998-08-20 |
KR20000069295A (en) | 2000-11-25 |
WO1998036123A3 (en) | 1998-11-19 |
EP0960231B2 (en) | 2012-01-25 |
EP0960231A2 (en) | 1999-12-01 |
US6341507B1 (en) | 2002-01-29 |
DE19806258A1 (en) | 1998-08-20 |
JP2001511674A (en) | 2001-08-14 |
DE59804137D1 (en) | 2002-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0960231B1 (en) | Laundry treating equipment with a driving motor mounted on the drum shaft | |
DE69909543T2 (en) | Automatic washing machine with two drive motors | |
EP1124321B1 (en) | AC-synchron motor | |
EP2112264B1 (en) | Household device for drying items of laundry and method for operating same | |
JPH10295990A (en) | Spin tub braking method of washing machine | |
DE3927426A1 (en) | DRIVE UNIT FOR A LAUNDRY TREATMENT MACHINE | |
EP0945973A2 (en) | Control device for a single phase synchronous motor | |
DE4341832C2 (en) | Washing machine | |
DE102010062918A1 (en) | Household appliance e.g. laundry washing machine has permanent magnets that are attached at laundry drum, and stator winding that is attached to container | |
EP0957570A2 (en) | Device for controlling a single phase synchronous motor | |
DE3819651A1 (en) | WASHING MACHINE OR LAUNDRY DRYER WITH A DRIVE MOTOR DIRECTLY DRIVING THE LAUNDRY DRUM | |
DE3805662A1 (en) | Ring spinning machine | |
DE4411293C2 (en) | Drive device for a component rotating at high speed | |
DE10025016B4 (en) | Laundry treatment device with a drive motor in the form of a direct drive | |
EP1048774B1 (en) | Method and device for detecting unbalance in a rotor driven by a brushless electric motor | |
WO1999010584A1 (en) | Washing machine | |
DE69031548T2 (en) | Motor with a permanently connected phase shift capacitor for a washing machine | |
WO2009098143A2 (en) | Electric machine excited by permanent magnets for a domestic appliance and circuit arrangement comprising a machine excited by permanent magnets | |
EP0539617B1 (en) | Unbalanced load detection for an automatic washing machine | |
DE102008007403A1 (en) | Permanent magnet electric machine for a household appliance | |
DE3140405A1 (en) | WASHING MACHINE DRIVE | |
AT383916B (en) | DC MOTOR WITH PERMANENT MAGNETIC ROTOR AND ELECTRONIC COMMUTING CIRCUIT | |
JPH0549780A (en) | Laundry apparatus | |
DE3645316C2 (en) | Washing machine control | |
DE102020211671A1 (en) | Laundry care device with an electric synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19990514 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 20010816 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 217655 Country of ref document: AT Date of ref document: 20020615 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PA ALDO ROEMPLER |
|
REF | Corresponds to: |
Ref document number: 59804137 Country of ref document: DE Date of ref document: 20020620 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020815 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020819 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2176972 Country of ref document: ES Kind code of ref document: T3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: DIEHL STIFTUNG & CO Effective date: 20030131 |
|
26 | Opposition filed |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Effective date: 20030217 Opponent name: DIEHL STIFTUNG & CO Effective date: 20030131 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MIELE & CIE. KG |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: MIELE & CIE. KG |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Effective date: 20030217 Opponent name: DIEHL STIFTUNG & CO. Effective date: 20030131 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Opponent name: DIEHL STIFTUNG & CO. |
|
APBP | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2O |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20061019 |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
PLAB | Opposition data, opponent's data or that of the opponent's representative modified |
Free format text: ORIGINAL CODE: 0009299OPPO |
|
R26 | Opposition filed (corrected) |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Effective date: 20030217 Opponent name: DIEHL STIFTUNG & CO. Effective date: 20030131 |
|
R26 | Opposition filed (corrected) |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Effective date: 20030217 Opponent name: DIEHL STIFTUNG & CO. Effective date: 20030131 |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Opponent name: DIEHL STIFTUNG & CO. |
|
NLR1 | Nl: opposition has been filed with the epo |
Opponent name: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH Opponent name: DIEHL STIFTUNG & CO. |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PCAR Free format text: ALDO ROEMPLER PATENTANWALT;BRENDENWEG 11 POSTFACH 154;9424 RHEINECK (CH) |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PLBP | Opposition withdrawn |
Free format text: ORIGINAL CODE: 0009264 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20120125 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 59804137 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 59804137 Country of ref document: DE Effective date: 20120125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20120221 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120222 Year of fee payment: 15 Ref country code: SE Payment date: 20120221 Year of fee payment: 15 Ref country code: BE Payment date: 20120221 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120125 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20120224 Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: NAV |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20120220 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20020826 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120221 Year of fee payment: 15 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120506 |
|
BERE | Be: lapsed |
Owner name: *MIELE & CIE. G.M.B.H. & CO. Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 217655 Country of ref document: AT Kind code of ref document: T Effective date: 20130228 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130217 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130217 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59804137 Country of ref document: DE Owner name: DIEHL AKO STIFTUNG & CO. KG, DE Free format text: FORMER OWNER: MIELE & CIE. KG, 33332 GUETERSLOH, DE Effective date: 20140206 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: DIEHL AKO STITFTUNG & CO. KG, DE Effective date: 20140304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130218 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170217 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170221 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170420 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59804137 Country of ref document: DE |