[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH06165561A - Controller for synchronous motor - Google Patents

Controller for synchronous motor

Info

Publication number
JPH06165561A
JPH06165561A JP4316697A JP31669792A JPH06165561A JP H06165561 A JPH06165561 A JP H06165561A JP 4316697 A JP4316697 A JP 4316697A JP 31669792 A JP31669792 A JP 31669792A JP H06165561 A JPH06165561 A JP H06165561A
Authority
JP
Japan
Prior art keywords
current
voltage
synchronous motor
axis
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4316697A
Other languages
Japanese (ja)
Inventor
Toshitaka Nakamura
利孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4316697A priority Critical patent/JPH06165561A/en
Publication of JPH06165561A publication Critical patent/JPH06165561A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/32Determining the initial rotor position

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To correct positional shift of rotor being detected automatically when vector control is carried out by detecting rotor position of a synchronous motor. CONSTITUTION:The controller for synchronous motor comprises means 22 for detecting d-axis voltage of a synchronous motor 2, and a position operating means 5 for detecting no-load state from the current of the synchronous motor and outputting a position signal representative of rotor position corrected by d-axis voltage under no-load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は同期電動機をサイクロコ
ンバータやインバータ等の可変電圧、可変周波数電源で
駆動する際の同期電動機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchronous motor controller for driving a synchronous motor with a variable voltage and variable frequency power source such as a cycloconverter or an inverter.

【0002】[0002]

【従来の技術】同期電動機を可変電圧、可変周波数で駆
動する方式には他励転流を用いた無整流子電動機やベク
トル制御を用いた駆動方式がある。このうちベクトル制
御は高性能な駆動が可能で、速い応答や精密な制御を要
する分野に適用されている。図4はこの種の従来装置を
示したものであり、1は電力変換器、2は三相同期電動
機、21は同期電動機の界磁巻線、3は位置検出器、4は
界磁用電力変換器、5は位置演算器、7は電流基準演算
器、9,10は増幅器、14は座標変換器、11,12は電流検
出器、13はdq軸電流演算器である。
2. Description of the Related Art As a method of driving a synchronous motor with a variable voltage and a variable frequency, there are a non-commutator motor using separately excited commutation and a driving method using vector control. Of these, vector control enables high-performance driving, and is applied to fields that require fast response and precise control. FIG. 4 shows a conventional device of this type. 1 is a power converter, 2 is a three-phase synchronous motor, 21 is a field winding of a synchronous motor, 3 is a position detector, and 4 is field power. A converter, 5 is a position calculator, 7 is a current reference calculator, 9 and 10 are amplifiers, 14 is a coordinate converter, 11 and 12 are current detectors, and 13 is a dq-axis current calculator.

【0003】同期電動機2の電機子電流と界磁電流を電
流検出器11,12で検出する。一方、位置検出器3と位置
演算器5では同期電動機の回転子磁極の位置を演算す
る。電流検出器11で検出した三相電機子電流は、dq軸
電流演算器13で位置演算器5からの位置信号とともにd
q軸上での電流検出値として演算される。電流基準演算
器7ではトルク指令T* と磁束指令Φ* および電動機定
数から電流基準値id * ,iq * および界磁電流基準i
f * を演算する。
The synchronous motor 2 is supplied with an armature current and a field current.
It is detected by the flow detectors 11 and 12. On the other hand, position detector 3 and position
The calculator 5 calculates the position of the rotor magnetic pole of the synchronous motor.
It The three-phase armature current detected by the current detector 11 is the dq axis
The current calculator 13 outputs the position signal from the position calculator 5 together with the position signal d.
It is calculated as a current detection value on the q-axis. Current reference calculation
Torque command T* And magnetic flux command Φ* And motor
Number to current reference value id * , Iq * And field current reference i
f * Is calculated.

【0004】演算された電流基準値は検出値と比較さ
れ、増幅器9によってdq軸の電圧基準値vd * ,vq
* として出力される。増幅器9は通常比例積分器により
構成される。この電圧基準値は位置演算器5の出力との
合成で三相巻線電圧vu * ,vv * ,vw * を得る。こ
の値は回転電気角周波数で変化する交流量となる。
The calculated current reference value is compared with the detected value, and the dq-axis voltage reference value v d * is obtained by the amplifier 9 . , V q
* Is output as. The amplifier 9 is usually composed of a proportional integrator. This voltage reference value is combined with the output of the position calculator 5 and the three-phase winding voltage v u * , V v * , V w * To get This value is the amount of alternating current that changes with the rotating electrical angular frequency.

【0005】一方同期電動機の界磁電流は基準値if *
と検出値とを比較し、その偏差に応じて増幅器10により
界磁電圧基準を得て、界磁用電力変換器4が駆動され
る。図3は図4で示した位置演算器5の詳細図であり、
61は位置変換器、62は加算器である。位置変換器61で
は、機械角を電気角に変換する、すなわち式(1)の演
算をする。 電気角=機械角*(p/2) ……(1) (但し、pは電動機ポール数) さらに、界磁磁極の位置と位置演算器の出力の0ポジシ
ョンが一致するように、オフセット量を加算する。
On the other hand, the field current of the synchronous motor is a reference value if *
And the detected value are compared, the field voltage reference is obtained by the amplifier 10 according to the deviation, and the field power converter 4 is driven. FIG. 3 is a detailed view of the position calculator 5 shown in FIG.
61 is a position converter and 62 is an adder. The position converter 61 converts a mechanical angle into an electrical angle, that is, calculates the equation (1). Electrical angle = mechanical angle * (p / 2) (1) (where p is the number of motor poles) Furthermore, the offset amount is set so that the position of the field magnetic pole and the 0 position of the output of the position calculator match. to add.

【0006】[0006]

【発明が解決しようとする課題】一般に、回転子の界磁
磁極の位置と、回転子に取り付けられた位置検出器の0
ポジションは一致せず、また、一致するように精度良く
取り付けることも困難である。したがって、検出信号側
で前述のようなオフセット量を加える操作をする。この
とき、基準となるのは界磁磁極の位置(中心点)であ
り、ベクトル制御を考慮するとき、それは界磁磁束の向
きとするほうが都合がよい。磁極の位置と、界磁磁束の
向きは理論的に一致する。
Generally, the position of the magnetic field poles of the rotor and the zero of the position detector attached to the rotor.
The positions do not match, and it is difficult to mount them so that they match. Therefore, the operation of adding the offset amount as described above is performed on the detection signal side. At this time, the position (center point) of the field magnetic pole serves as the reference, and it is convenient to set it as the direction of the field magnetic flux when considering vector control. The position of the magnetic pole and the direction of the field magnetic flux theoretically match.

【0007】このように、界磁磁極の位置と、位置検出
器の0ポジションを一致させることを行うが、経年的に
両者がずれた場合、たとえば電動機と位置検出器の結合
部のずれ、あるいは、位置検出器自体の回転止めの取付
ずれが起こった場合、重大な影響を及ぼす。同期電動機
の磁束は式(2)、(3)の方程式で定まる。またトル
クは式(4)で与えられる。 Φd =Lad×(id +if )+la ×id ……(2) Φq =Laq×iq +la ×iq ……(3) T =Φd ×iq −Φq ×id ……(4) 通常同期電動機の場合、力率1にて最大トルクが得られ
るように設計されているため、図5に示すように電流i
と磁束Φは直交する。
In this way, the position of the field magnetic pole and the 0 position of the position detector are made to coincide with each other. However, if the two are displaced over the years, for example, the displacement of the coupling portion between the electric motor and the position detector, or , If the misalignment of the rotation stop of the position detector itself occurs, it will have a serious effect. The magnetic flux of the synchronous motor is determined by the equations (2) and (3). The torque is given by the equation (4). Φ d = L ad × (i d + i f) + l a × i d ...... (2) Φ q = L aq × i q + l a × i q ...... (3) T = Φ d × i q -Φ q × i d ...... (4) If normal synchronous motor, since it is designed so that the maximum torque is obtained at unity power factor, the current i as shown in FIG. 5
And the magnetic flux Φ are orthogonal.

【0008】ここで、機械的に1°ずれた場合、多極機
たとえば12極機では、電気的に6°ずれたことに相当す
る。この時のベクトル図を図6に示す。図6において
は、磁束Φは少なくなり、電流iと磁束Φの角度も90°
以上に開くため、トルクは約15%不足する。電動機の最
大出力により圧延を行うような鉄鋼プラントにおいては
問題となってくる。
Here, a mechanical deviation of 1 ° corresponds to an electrical deviation of 6 ° in a multi-pole machine such as a 12-pole machine. A vector diagram at this time is shown in FIG. In FIG. 6, the magnetic flux Φ decreases, and the angle between the current i and the magnetic flux Φ is 90 °.
Due to the above opening, the torque is insufficient by about 15%. This becomes a problem in steel plants where rolling is performed by the maximum output of the electric motor.

【0009】本発明は上記欠点を改良するためになされ
たもので、センサーに機械的なずれが発生しても、制御
的に補正することが可能な同期電動機の制御装置を実現
することを目的とする。
The present invention has been made to improve the above-mentioned drawbacks, and an object of the present invention is to realize a control device for a synchronous motor which can controllably correct even if a mechanical displacement occurs in a sensor. And

【0010】[0010]

【課題を解決するための手段】本発明では、dq軸電圧
検出器と無負荷検出器を設けて、無負荷時の電圧ベクト
ルにより、オフセット量を補正する。
In the present invention, a dq-axis voltage detector and a no-load detector are provided, and the offset amount is corrected by the voltage vector when there is no load.

【0011】[0011]

【作用】前述の問題点にて説明したような機械的なずれ
により、見かけ上の0ポイントが異なってしまう。無負
荷時の電圧ベクトルは本q軸方向になるのに対し、この
時は、q軸方向からずれてしまう。本発明では、無負荷
検出器により無負荷時の電圧ベクトルがq軸からずれた
分をオフセット量に補正することにより、機械的ずれを
補償することができる。
The apparent 0 point is different due to the mechanical deviation described in the above problem. The voltage vector when there is no load is in the direction of the main q-axis, but at this time, it shifts from the direction of the q-axis. In the present invention, the mechanical deviation can be compensated by correcting the amount of deviation of the voltage vector under no load from the q-axis by the no-load detector to the offset amount.

【0012】[0012]

【実施例】図1は本発明の一実施例を示す構成図であ
る。図1において20は電圧検出器、22はdq電圧演算器
であり、他の図4で示したものと同じ要素には同一番号
を付け説明を省略する。また、図2は図1で示した位置
演算器5の詳細図であり、64は増幅器、65は比較器、66
は切換器である。
1 is a block diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 20 is a voltage detector, 22 is a dq voltage calculator, and the same elements as those shown in FIG. 2 is a detailed diagram of the position calculator 5 shown in FIG. 1, where 64 is an amplifier, 65 is a comparator, and 66.
Is a switch.

【0013】比較器65は電動機の電流iによりある設定
レベルと比較し電流値が少ないときに無負荷と判定す
る。切換器66は比較器65の出力により無負荷と判定され
たとき接点を閉じる。電圧検出器20で検出した三相電機
子電圧は、dq軸電圧演算器22で位置演算器5からの位
置信号とともにdq軸上での電圧検出値として演算され
る。無負荷時では、vd は0となる。増幅器64は比例積
分増幅器で成り、無負荷時にvd と0を比較してvd
0になるようにオフセット補正量を出力する。これによ
り、機械的なずれが発生した場合でも、無負荷時の電圧
ベクトルがずれていることを検出し、これが0になるよ
うにオフセット量を補正するのでトルク不足などの問題
は解消される。
The comparator 65 compares the current i of the electric motor with a certain set level and determines that there is no load when the current value is small. The switch 66 closes the contact when it is determined by the output of the comparator 65 that there is no load. The three-phase armature voltage detected by the voltage detector 20 is calculated by the dq axis voltage calculator 22 as a voltage detection value on the dq axes together with the position signal from the position calculator 5. At no load, v d becomes 0. The amplifier 64 is composed of a proportional-plus-integral amplifier, which compares v d with 0 when there is no load and outputs an offset correction amount so that v d becomes 0. As a result, even if a mechanical shift occurs, it is detected that the voltage vector at the time of no load is shifted, and the offset amount is corrected so that it becomes 0. Therefore, problems such as insufficient torque are eliminated.

【0014】以上の説明により本実施例では、機械的ず
れが発生して界磁磁極位置と位置演算器の出力が異なっ
ても、電圧ベクトルによりずれを検出して補正するた
め、トルク不足などの問題はなく所望の電動機特性を出
力することができる。
According to the above description, in this embodiment, even if a mechanical deviation occurs and the field magnetic pole position and the output of the position calculator differ, the deviation is detected and corrected by the voltage vector. There is no problem and the desired motor characteristics can be output.

【0015】[0015]

【発明の効果】以上の説明により本発明では、機械的ず
れが発生して界磁磁極位置と位置演算器の出力が異なっ
ても、電圧ベクトルによりずれを検出して補正するた
め、最大出力にて圧延を行うような過酷な用途にも適用
できる同期電動機の制御装置を提供することができる。
As described above, according to the present invention, even if a mechanical deviation occurs and the field magnetic pole position and the output of the position calculator differ, the deviation is detected and corrected by the voltage vector, so that the maximum output is obtained. It is possible to provide a control device for a synchronous motor that can be applied to severe applications such as rolling by rolling.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す要部構成図FIG. 1 is a configuration diagram of essential parts showing an embodiment of the present invention.

【図2】上記実施例の位置演算器5の詳細図FIG. 2 is a detailed view of the position calculator 5 of the above embodiment.

【図3】従来装置の位置演算器の詳細図FIG. 3 is a detailed diagram of a position calculator of a conventional device.

【図4】従来装置の要部構成図FIG. 4 is a configuration diagram of main parts of a conventional device.

【図5】ベクトルid が磁極に一致したときのベクトル
FIG. 5 is a vector diagram when the vector i d matches the magnetic pole.

【図6】ベクトルid が磁極からずれたときのベクトル
FIG. 6 is a vector diagram when the vector i d deviates from the magnetic pole.

【符号の説明】[Explanation of symbols]

1…電力変換器 2…同期電動機 3…位置検出器 4…界磁用電力変換器 5…位置演算器 6…磁束演算器 7…電流基準演算器 9,10…増幅器 11,12…電流検出器 13…dq軸電流演算器 14…座標変換器 20…電圧検出器 22…dq軸電圧演算器 1 ... Power converter 2 ... Synchronous motor 3 ... Position detector 4 ... Field power converter 5 ... Position calculator 6 ... Flux calculator 7 ... Current reference calculator 9, 10 ... Amplifier 11, 12 ... Current detector 13 ... dq-axis current calculator 14 ... coordinate converter 20 ... voltage detector 22 ... dq-axis voltage calculator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 可変電圧、可変周波数の電力を供給する
電力変換器により三相同期電動機を駆動する同期電動機
の駆動装置において、該同期電動機の電機子電流を検出
する電流検出器、該同期電動機の回転子位置を検出する
位置検出器、前記電流検出器からの電流を前記位置検出
器からの信号により回転子の磁極と同一方向(d軸)と
直行する方向(q軸)の成分を演算する電流演算器、界
磁電流を検出する界磁電流検出器、磁束指令とトルク指
令とからdq軸電流指令および界磁電流指令を演算する
電流指令演算器、前記dq軸電流指令と前記電流演算器
の電流との偏差に応じてdq軸上での電圧基準を演算す
る電圧基準演算器、このdq軸電圧基準を電力変換器の
三相電圧基準に変換する座標変換器により構成され、前
記同期電動機の電圧を検出する電圧検出器と、前記電圧
検出器からの検出電圧と前記位置検出器からの信号によ
り回転子の磁極と同一方向(d軸)と直行する方向(q
軸)の成分を演算する電圧演算器と、該同期電動機の無
負荷状態を検出すると共に、前記回転子の0点と位置検
出器の0点を合わせるオフセット量を、無負荷時の電圧
ベクトルにより補正する手段を設けたことを特徴とする
同期電動機の制御装置。
1. A drive device of a synchronous motor for driving a three-phase synchronous motor by a power converter that supplies electric power of variable voltage and variable frequency, a current detector for detecting an armature current of the synchronous motor, and the synchronous motor. A position detector for detecting the rotor position of the rotor, and a component of the current from the current detector in the direction (q axis) orthogonal to the same direction (d axis) as the magnetic pole of the rotor is calculated by the signal from the position detector. Current calculator for detecting field current, current command calculator for calculating dq axis current command and field current command from magnetic flux command and torque command, dq axis current command and current calculation Voltage reference calculator for calculating the voltage reference on the dq axes according to the deviation from the current of the power supply, and a coordinate converter for converting the dq axis voltage reference to the three-phase voltage reference of the power converter, Electric motor voltage And a direction (q) perpendicular to the same direction (d-axis) as the magnetic pole of the rotor by the voltage detected by the voltage detector and the signal from the voltage detector and the signal from the position detector.
Axis) and a voltage calculator for detecting a no-load state of the synchronous motor, and an offset amount for aligning the zero point of the rotor and the zero point of the position detector is determined by a voltage vector at no load. A control device for a synchronous motor, which is provided with a correcting means.
JP4316697A 1992-11-26 1992-11-26 Controller for synchronous motor Pending JPH06165561A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4316697A JPH06165561A (en) 1992-11-26 1992-11-26 Controller for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4316697A JPH06165561A (en) 1992-11-26 1992-11-26 Controller for synchronous motor

Publications (1)

Publication Number Publication Date
JPH06165561A true JPH06165561A (en) 1994-06-10

Family

ID=18079898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4316697A Pending JPH06165561A (en) 1992-11-26 1992-11-26 Controller for synchronous motor

Country Status (1)

Country Link
JP (1) JPH06165561A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322583A (en) * 1996-05-30 1997-12-12 Aisin Aw Co Ltd Motor drive device and its control method
JPH1118489A (en) * 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd Drive controller for synchronous motor
JP2000166278A (en) * 1998-11-27 2000-06-16 Okuma Corp Control device for synchronous motor
JP2001511674A (en) * 1997-02-17 2001-08-14 ミーレ ウント コンパニー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Laundry processing apparatus having a drive motor disposed on a drum shaft
JP2001339999A (en) * 2000-05-30 2001-12-07 Toshiba Corp Motor control device
JP2002125353A (en) * 2000-10-13 2002-04-26 Toyota Motor Corp Electric motor
JP2003079185A (en) * 2001-08-30 2003-03-14 Fuji Electric Co Ltd Permanent magnet type synchronous motor controller
JP2003083087A (en) * 2001-09-14 2003-03-19 Mitsubishi Heavy Ind Ltd Gas turbine plant and operation method therefor
JP2003259679A (en) * 2002-02-26 2003-09-12 Toshiba Corp Vector control inverter apparatus and rotation driving apparatus
JP2003333884A (en) * 2002-05-09 2003-11-21 Toyota Motor Corp Energy converter controller
JP2004129359A (en) * 2002-10-01 2004-04-22 Honda Motor Co Ltd Controller of permanent magnet type rotating machine
JP2004266935A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Control device for synchronous motor and rotational position displacement correcting method for synchronous motor
JP2005295721A (en) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd Brushless motor control device
JP2006033993A (en) * 2004-07-15 2006-02-02 Mitsubishi Electric Corp Computation method for zero offset in rotational position detector for motor and motor controller using this computation method
JP2007037274A (en) * 2005-07-27 2007-02-08 Toshiba Mitsubishi-Electric Industrial System Corp Control unit for synchronous motor
JP2007159353A (en) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp Field winding type synchronous generator motor
JP2008072858A (en) * 2006-09-15 2008-03-27 Honda Motor Co Ltd Controller of vehicle rotary electric machine
US7388346B2 (en) 2004-01-30 2008-06-17 Mitsubishi Denki Kabushiki Kaisha Adjustment method of rotor position detection of synchronous motor
US20100207463A1 (en) * 2007-04-13 2010-08-19 Repower Systems Ag Method for operating a wind power plant with excess voltage in the grid
JP2010268612A (en) * 2009-05-15 2010-11-25 Aida Eng Ltd Drive control system for multiple synchronous motors
JP2011106318A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Control device for electric supercharger
JP2011519262A (en) * 2008-04-28 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting offset angle of synchronous machine
FR2990088A1 (en) * 2012-04-30 2013-11-01 Renault Sa METHOD FOR DETERMINING THE ANGULAR SHIFT BETWEEN THE ROTOR AND THE STATOR OF AN ELECTRIC MACHINE OF A MOTOR VEHICLE
US9077279B2 (en) 2012-12-18 2015-07-07 Honda Motor Co., Ltd. Load drive control system for hybrid vehicle and method of controlling hybrid vehicle
US9312799B2 (en) 2011-10-21 2016-04-12 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
JP2016063735A (en) * 2014-09-12 2016-04-25 セイコーエプソン株式会社 Control unit of stepping motor, electronic apparatus, storage unit, robot, control method of stepping motor and control program of stepping motor
US9350282B2 (en) 2011-10-21 2016-05-24 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9438156B2 (en) 2011-10-21 2016-09-06 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
WO2018225139A1 (en) * 2017-06-06 2018-12-13 三菱電機株式会社 Control device for permanent magnet type rotating electrical machine

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09322583A (en) * 1996-05-30 1997-12-12 Aisin Aw Co Ltd Motor drive device and its control method
JP2001511674A (en) * 1997-02-17 2001-08-14 ミーレ ウント コンパニー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー Laundry processing apparatus having a drive motor disposed on a drum shaft
JPH1118489A (en) * 1997-06-19 1999-01-22 Toyo Electric Mfg Co Ltd Drive controller for synchronous motor
JP2000166278A (en) * 1998-11-27 2000-06-16 Okuma Corp Control device for synchronous motor
JP2001339999A (en) * 2000-05-30 2001-12-07 Toshiba Corp Motor control device
JP2002125353A (en) * 2000-10-13 2002-04-26 Toyota Motor Corp Electric motor
JP2003079185A (en) * 2001-08-30 2003-03-14 Fuji Electric Co Ltd Permanent magnet type synchronous motor controller
JP2003083087A (en) * 2001-09-14 2003-03-19 Mitsubishi Heavy Ind Ltd Gas turbine plant and operation method therefor
JP2003259679A (en) * 2002-02-26 2003-09-12 Toshiba Corp Vector control inverter apparatus and rotation driving apparatus
JP2003333884A (en) * 2002-05-09 2003-11-21 Toyota Motor Corp Energy converter controller
JP2004129359A (en) * 2002-10-01 2004-04-22 Honda Motor Co Ltd Controller of permanent magnet type rotating machine
US6984957B2 (en) 2002-10-01 2006-01-10 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling permanent-magnet rotary machine
JP2004266935A (en) * 2003-02-28 2004-09-24 Mitsubishi Electric Corp Control device for synchronous motor and rotational position displacement correcting method for synchronous motor
US6940250B2 (en) 2003-02-28 2005-09-06 Mitsubishi Denki Kabushiki Kaisha Synchronous motor control device and method of correcting deviation in rotational position of synchronous motor
US7388346B2 (en) 2004-01-30 2008-06-17 Mitsubishi Denki Kabushiki Kaisha Adjustment method of rotor position detection of synchronous motor
JP2005295721A (en) * 2004-04-01 2005-10-20 Matsushita Electric Ind Co Ltd Brushless motor control device
JP4604538B2 (en) * 2004-04-01 2011-01-05 パナソニック株式会社 Brushless motor control device
JP2006033993A (en) * 2004-07-15 2006-02-02 Mitsubishi Electric Corp Computation method for zero offset in rotational position detector for motor and motor controller using this computation method
FR2874466A1 (en) * 2004-07-15 2006-02-24 Mitsubishi Electric Corp METHOD OF ORIGIN CALCULATION CALCULATION OF ELECTRIC MOTOR ROTATION POSITION DETECTING DEVICE AND MOTOR CONTROL DEVICE USING THE CALCULATION METHOD
JP4502734B2 (en) * 2004-07-15 2010-07-14 三菱電機株式会社 Origin offset amount calculation method for motor rotational position detection device and motor control device using this calculation method
JP4721801B2 (en) * 2005-07-27 2011-07-13 東芝三菱電機産業システム株式会社 Control device for synchronous motor
JP2007037274A (en) * 2005-07-27 2007-02-08 Toshiba Mitsubishi-Electric Industrial System Corp Control unit for synchronous motor
JP2007159353A (en) * 2005-12-08 2007-06-21 Mitsubishi Electric Corp Field winding type synchronous generator motor
JP2008072858A (en) * 2006-09-15 2008-03-27 Honda Motor Co Ltd Controller of vehicle rotary electric machine
US8692419B2 (en) * 2007-04-13 2014-04-08 Repower Systems Se Method for operating a wind power plant with excess voltage in the grid
US20100207463A1 (en) * 2007-04-13 2010-08-19 Repower Systems Ag Method for operating a wind power plant with excess voltage in the grid
JP2011519262A (en) * 2008-04-28 2011-06-30 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Method for detecting offset angle of synchronous machine
US9190948B2 (en) 2008-04-28 2015-11-17 Robert Bosch Gmbh Offset angle determination for synchronous machines
JP2010268612A (en) * 2009-05-15 2010-11-25 Aida Eng Ltd Drive control system for multiple synchronous motors
JP2011106318A (en) * 2009-11-16 2011-06-02 Mitsubishi Electric Corp Control device for electric supercharger
US9312799B2 (en) 2011-10-21 2016-04-12 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9350282B2 (en) 2011-10-21 2016-05-24 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
US9438156B2 (en) 2011-10-21 2016-09-06 Mitsubishi Heavy Industries, Ltd. Motor control device and motor control method
FR2990088A1 (en) * 2012-04-30 2013-11-01 Renault Sa METHOD FOR DETERMINING THE ANGULAR SHIFT BETWEEN THE ROTOR AND THE STATOR OF AN ELECTRIC MACHINE OF A MOTOR VEHICLE
US9664499B2 (en) 2012-04-30 2017-05-30 Renault S.A.S. Method for determining the angular offset between the rotor and the stator of an electrical machine of a motor vehicle
US9077279B2 (en) 2012-12-18 2015-07-07 Honda Motor Co., Ltd. Load drive control system for hybrid vehicle and method of controlling hybrid vehicle
JP2016063735A (en) * 2014-09-12 2016-04-25 セイコーエプソン株式会社 Control unit of stepping motor, electronic apparatus, storage unit, robot, control method of stepping motor and control program of stepping motor
WO2018225139A1 (en) * 2017-06-06 2018-12-13 三菱電機株式会社 Control device for permanent magnet type rotating electrical machine
JPWO2018225139A1 (en) * 2017-06-06 2020-05-21 三菱電機株式会社 Controller for permanent magnet type rotating electrical machine

Similar Documents

Publication Publication Date Title
JPH06165561A (en) Controller for synchronous motor
US6628099B2 (en) Synchronous motor driving system and sensorless control method for a synchronous motor
US6498449B1 (en) Low ripple torque control of a permanent magnet motor without using current sensors
EP1710902B1 (en) Method for detecting/adjusting synchronous motor rotor position
US6650083B2 (en) Speed control apparatus of synchronous reluctance motor and method thereof
JP4629659B2 (en) Synchronous electric machine having one stator and at least one rotor and related control device
JPS6024676B2 (en) Device that controls a permanent magnet synchronous motor
JPH1127999A (en) Estimating method for induced electromotive force for induction motor, speed estimating method, shaft deviation correcting method and induction motor control equipment
JP3661864B2 (en) Stepping motor drive device
EP1060560B1 (en) Motor controller
JPH11299297A (en) Control device for permanent magnet synchronous motor
JP4088734B2 (en) Control device for permanent magnet type synchronous motor
JP2000166278A (en) Control device for synchronous motor
JPH10229687A (en) Variable speed control device for induction motor
JP3680618B2 (en) Control device for permanent magnet type synchronous motor
JP3576509B2 (en) Motor control device
JPH06165560A (en) Controller for synchronous motor
JPH03222686A (en) Torque detecting method for synchronous motor
JP2538624B2 (en) Brushless motor drive
JP2856950B2 (en) Control device for synchronous motor
JP3667069B2 (en) Bearingless rotating machine
JPH0344509B2 (en)
JPH08172799A (en) Simple vector control system of three-phase induction motor
JP3942550B2 (en) Stepping motor drive device
JP3124019B2 (en) Induction motor control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040225

A131 Notification of reasons for refusal

Effective date: 20070213

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071002