[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0957420B1 - Clamping circuit - Google Patents

Clamping circuit Download PDF

Info

Publication number
EP0957420B1
EP0957420B1 EP99109644A EP99109644A EP0957420B1 EP 0957420 B1 EP0957420 B1 EP 0957420B1 EP 99109644 A EP99109644 A EP 99109644A EP 99109644 A EP99109644 A EP 99109644A EP 0957420 B1 EP0957420 B1 EP 0957420B1
Authority
EP
European Patent Office
Prior art keywords
transistor
clamping
voltage
diode
clamping circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99109644A
Other languages
German (de)
French (fr)
Other versions
EP0957420A2 (en
EP0957420A3 (en
Inventor
Martin Feldtkeller
Harald Koffler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP0957420A2 publication Critical patent/EP0957420A2/en
Publication of EP0957420A3 publication Critical patent/EP0957420A3/en
Application granted granted Critical
Publication of EP0957420B1 publication Critical patent/EP0957420B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only
    • G05F3/222Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/227Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only with compensation for device parameters, e.g. Early effect, gain, manufacturing process, or external variations, e.g. temperature, loading, supply voltage producing a current or voltage as a predetermined function of the supply voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/24Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
    • G05F3/242Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
    • G05F3/247Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the supply voltage
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology

Definitions

  • the invention relates to a clamping circuit for generating a predetermined minimum voltage with cross-coupled first and second transistors according to the preamble of claim 1, which switches from normal operation to terminal operation, when the voltage of one supplied via an input path Signal drops below a predetermined clamping voltage.
  • Clamping circuits generally serve to level one to keep the signal present at a certain minimum value. Such clamping circuits are of great importance found the application of integrated circuits. A sinking of input signals in the range of a diode voltage below the ground potential and below that would namely cause that over in any integrated circuit existing parasitic device currents flow to neighboring ones Components or even the entire function of the Disrupt circuit. This danger is special, for example great if in electronic circuitry with multiple supply voltages and ground connections Error in the form of an open ground connection. Especially in safety-critical applications (for example in electronic systems in automotive electronics) It must be ensured that the error is not circuit parts directly affected are not influenced.
  • the circuit shown in FIG. 5a with four npn transistors T1, T2, T5, T6 and a current source I bias is known, for example.
  • the first and second transistors T1 and T2, which each have a very steep output characteristic, are cross-connected.
  • the emitter of the first transistor T1 (output transistor) is connected to an input path Vp. the one to be monitored Input signal is present. With such a circuit a good protective effect can be achieved in clamping operation, the desired clamping voltage being observed very precisely becomes.
  • this known circuit has the disadvantage that not for operation with high input voltages (for Example 40V or more) is suitable. This is because the first transistor T1, which is an NPN transistor acts due to its relatively low emitter base breakdown voltage only little strength against has such positive input voltages.
  • DE 25 49 575 is a circuit arrangement with cross-coupled Transistor described for connection to a special current or voltage source is provided. This generates one that is independent of the current or voltage source Signal.
  • the invention has for its object a clamping circuit of the type mentioned at the beginning to create a high dielectric strength with exact adherence to the clamping voltage and at the same time has a low current consumption in normal operation.
  • This solution combines two main advantages. As a result of that in clamp operation the current over the low-resistance channel and does not flow through the reverse diode RD of the transistor on the one hand, the protective function of the clamping circuit is not disturbed. On the other hand, the third transistor protects in normal operation M3 the first transistor T1 before too high voltages of the input signal, so that the desired dielectric strength the clamping circuit can be achieved.
  • the third transistor M3 is preferably a D-MOS field effect transistor, the gate connection of which is connected to a supply voltage V DD for switching on the field effect transistor.
  • a fourth D-MOS field effect transistor M4 is provided, the one in the emitter of a fifth, through a third diode D3 connected to the supply voltage transistor T5 is, the gate terminal of the third transistor M3 connected to the collector of the fifth transistor T5 is.
  • all transistors and the third diode can be used be replaced by field effect transistors.
  • the clamp circuit is particularly suitable for use in connection provided with integrated circuits, the Clamp voltage in this case is 0 volts.
  • the clamp circuit is also particularly in the BICDMOS (Bipolar, C and D-MOS) technology realizable.
  • Figure 1 shows a first embodiment of the invention, which has a third transistor M3 in the form of a self-blocking n-channel insulating layer field-effect transistor (D-MOS-FET), which is connected in the input path Vp of the clamping circuit, and the gate of which with a positive supply voltage V DD is connected, which is sufficient to switch it on completely (for example 5V).
  • D-MOS-FET self-blocking n-channel insulating layer field-effect transistor
  • ZD Zener diode ZD between the emitter of the first transistor T1 and ground.
  • the Zener diode ZD prevents an impermissible charging of the emitter of the first transistor T1 through the blocked through the field effect transistor M3 flowing reverse current.
  • the input voltage applied to the input path Vp drops to ground potential, the field effect transistor M3 goes in the reverse conducting state, and the circuit arrives in the clamp mode, in which the input signal over the first and second transistor T1, T2 connected to ground and thus preventing a further drop in the input voltage becomes.
  • the current flows through the low-impedance Channel of the field effect transistor M3 and not via the reverse diode RD, so that the clamping voltage is not as in the beginning is distorted with reference to the circuit explained in FIG. 5b, but remains unaffected. Consequently, the protective function the clamping circuit is not affected.
  • Figure 2 shows a second embodiment of the invention, the compared to the first embodiment, a fourth transistor in the form of a D-MOS field effect transistor M4 and a third Has diode D3.
  • the fourth transistor M4 is in the Emitter of the fifth transistor T5 switched while on the third diode D3 in the collector circuit of the fifth transistor T5 is located.
  • the influence of the on-resistance can of the third transistor M3 (field effect transistor) partially or fully compensated.
  • the fourth transistor M4 must face one the third transistor M3 smaller or the same on resistance exhibit.
  • This mating property can in particular can be produced in that the two field effect transistors M3 and M4 operated under the same conditions become.
  • This is switched into the collector circuit third diode D3, by an inverse operation of the fourth transistor M4 and in that the gate terminal of the third transistor M3 between the third Diode D3 and the collector of the fifth transistor T5.
  • This second embodiment also has the advantage that the input voltage present at the input path Vp is more precisely limited than in the first embodiment according to FIG Figure 1.
  • Figure 3 shows a third embodiment of the invention. This differs from the second shown in Figure 2 Embodiment in that the transistors T1, T2, T5 and T6 and the third diode D3 each through n-channel insulating layer field-effect transistors (MOS) M1, M2, M5, M6 or M7 are replaced.
  • MOS n-channel insulating layer field-effect transistors
  • Figure 4 finally shows output characteristics 1, 2 and 3 of the first, second and third embodiment, respectively vertical axis the output voltage and on the horizontal Axis of the output current is plotted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Electronic Switches (AREA)
  • Manipulation Of Pulses (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Logic Circuits (AREA)

Description

Die Erfindung betrifft eine Klemmschaltung zum Erzeugen einer vorgegebenen Mindestspannung mit kreuzgekoppelten ersten und zweiten Transistoren gemäß dem Oberbegriff des Anspruchs 1, die von einem Normalbetrieb in einen Klemmbetrieb umschaltet, wenn die Spannung eines über einen Eingangspfad zugeführten Signals unter eine vorbestimmte Klemmspannung abfällt.The invention relates to a clamping circuit for generating a predetermined minimum voltage with cross-coupled first and second transistors according to the preamble of claim 1, which switches from normal operation to terminal operation, when the voltage of one supplied via an input path Signal drops below a predetermined clamping voltage.

Klemmschaltungen dienen im allgemeinen dazu, den Pegel eines anliegenden Signals auf einem bestimmten Mindestwert zu halten. Eine große Bedeutung haben solche Klemmschaltungen bei der Anwendung von integrierten Schaltungen gefunden. Ein Absinken von Eingangssignalen in den Bereich einer Diodenspannung unter dem Massepotential und darunter würde hier nämlich dazu führen, daß über die in jeder integrierten Schaltung vorhandenen parasitären Bauelemente Ströme fließen, die benachbarte Bauelemente oder sogar die gesamte Funktion der Schaltung stören. Diese Gefahr ist zum Beispiel dann besonders groß, wenn in einer elektronischen Schaltungsanordnung mit mehreren Versorgungsspannungen und Masseverbindungen ein Fehler in Form einer Unterbrechung einer Masseverbindung auftritt. Insbesondere bei sicherheitskritischen Anwendungen (zum Beispiel bei elektronischen Systemen der Automobilelektronik) muß gewährleistet sein, daß die von dem Fehler nicht direkt betroffenen Schaltungsteile nicht beeinflußt werden.Clamping circuits generally serve to level one to keep the signal present at a certain minimum value. Such clamping circuits are of great importance found the application of integrated circuits. A sinking of input signals in the range of a diode voltage below the ground potential and below that would namely cause that over in any integrated circuit existing parasitic device currents flow to neighboring ones Components or even the entire function of the Disrupt circuit. This danger is special, for example great if in electronic circuitry with multiple supply voltages and ground connections Error in the form of an open ground connection. Especially in safety-critical applications (for example in electronic systems in automotive electronics) It must be ensured that the error is not circuit parts directly affected are not influenced.

Zur Lösung dieses Problems ist zum Beispiel die in Figur 5a gezeigte Schaltung mit vier npn-Transistoren T1, T2, T5, T6 und einer Stromquelle Ibias bekannt. Der erste und zweite Transistor T1 und T2, die jeweils eine sehr steile Ausgangskennlinie aufweisen, sind kreuzverschaltet. To solve this problem, the circuit shown in FIG. 5a with four npn transistors T1, T2, T5, T6 and a current source I bias is known, for example. The first and second transistors T1 and T2, which each have a very steep output characteristic, are cross-connected.

Der Emitter des ersten Transistors T1 (Ausgangstransistor) ist mit einem Eingangspfad Vp verbunden, an. dem das zu überwachende Eingangssignal anliegt. Mit einer solchen Schaltung läßt sich eine gute Schutzwirkung im Klemmbetrieb erzielen, wobei die gewünschte Klemmspannung sehr genau eingehalten wird. Diese bekannte Schaltung hat jedoch den Nachteil, daß sie nicht für einen Betrieb mit hohen Eingangsspannungen (zum Beispiel 40V oder mehr) geeignet ist. Dies beruht darauf, daß der erste Transistor T1, bei dem es sich um einen NPN-Transistors handelt, aufgrund seiner relativ geringen Emitter-Basis-Durchbruchspannung eine nur geringe Festigkeit gegen solche positiven Eingangsspannungen aufweist.The emitter of the first transistor T1 (output transistor) is connected to an input path Vp. the one to be monitored Input signal is present. With such a circuit a good protective effect can be achieved in clamping operation, the desired clamping voltage being observed very precisely becomes. However, this known circuit has the disadvantage that not for operation with high input voltages (for Example 40V or more) is suitable. This is because the first transistor T1, which is an NPN transistor acts due to its relatively low emitter base breakdown voltage only little strength against has such positive input voltages.

Als Abhilfe hierfür ist es bekannt, die in Figur 5a gezeigte Schaltung gemäß Figur 5b mit einer ersten Diode D1 zwischen dem Emitter des ersten Transistors T1 und dem Eingangspfad Vp für die Eingangsspannung spannungsfest zu machen, wobei aus Symmetriegründen eine zweite Diode D2 am Emitter des zweiten Transistors T2 erforderlich ist. Dadurch kann die gewünschte Klemmspannung eingehalten werden. Diese Schaltung hat jedoch den Nachteil, daß die stromabhängige Flußspannung der ersten Diode D1 die Klemmspannung verzerrt und damit die Schutzwirkung im Klemmbetrieb stark beeinträchtigt ist. Dieses Problem läßt sich zwar durch eine Erhöhung des Stroms Ibias teilweise lösen. Diese Maßnahme hat jedoch zur Folge, daß sich der Strom durch den ersten Transistors T1 bereits vor dem Erreichen der vorbestimmten Klemmspannung erhöht und damit auch die Gesamtstromaufnahme der Klemmschaltung im Normalbetrieb in unerwünschter Weise steigt.As a remedy for this, it is known to make the circuit shown in FIG. 5a according to FIG. 5b voltage-proof with a first diode D1 between the emitter of the first transistor T1 and the input path Vp for the input voltage, a second diode D2 on the emitter of the second for reasons of symmetry Transistor T2 is required. This enables the required clamping voltage to be maintained. However, this circuit has the disadvantage that the current-dependent forward voltage of the first diode D1 distorts the clamping voltage and thus the protective effect in the clamping operation is severely impaired. This problem can be partially solved by increasing the current I bias . However, this measure has the consequence that the current through the first transistor T1 increases before the predetermined clamping voltage is reached, and thus the total current consumption of the clamping circuit also increases undesirably in normal operation.

Aus der US 5,519,341 ist eine Komparatorschaltung mit kreuzgekoppelten Transistoren bekannt, die den Laststrom durch einen Transistor mittels eines Source-Widerstandes erfaßt und auf einen vorgegebenen Strom-Wert detektiert. Mittels eines Flip-Flops kann der Strom durch den Transistor begrenzt werden.From US 5,519,341 is a comparator circuit with cross-coupled Transistors known that the load current through a Transistor detected by means of a source resistor and detected at a predetermined current value. By means of a Flip-flops can limit the current through the transistor.

Aus der US 5,576,616 ist ebenfalls eine SA mit kreuzgekoppelten Transistoren bekannt, die als Referenzspannungsquelle für eine integrierte Schaltungsanordnung dient, bei denen das Versorgungspotential schwanken kann. Die angegebene Schaltungsanordnung ist ferner unempfindlich gegenüber Temperaturschwanken.From US 5,576,616 is also an SA with cross-coupled Transistors known as the reference voltage source for an integrated circuit arrangement is used in which the Supply potential can fluctuate. The specified circuit arrangement is also insensitive to temperature fluctuations.

In der DE 25 49 575 ist eine Schaltungsanordnung mit kreuzgekoppelten Transistor beschrieben, die zum Anschluß an eine spezielle Strom- oder Spannungsquelle vorgesehen ist. Diese erzeugt ein von der Strom- oder Spannungsquelle unabhängiges Signal.DE 25 49 575 is a circuit arrangement with cross-coupled Transistor described for connection to a special current or voltage source is provided. This generates one that is independent of the current or voltage source Signal.

Weiter solche Schaltungen sind aus US 5614850, US 4764897 und US 5436552 bekannt.Further such circuits are known from US 5614850, US 4764897 and US 5436552.

Der Erfindung liegt die Aufgabe zugrunde, eine Klemmschaltung der eingangs genannten Art zu schaffen, die eine hohe Spannungsfestigkeit bei genauer Einhaltung der Klemmspannung und gleichzeitig eine geringe Stromaufnahme im Normalbetrieb aufweist.The invention has for its object a clamping circuit of the type mentioned at the beginning to create a high dielectric strength with exact adherence to the clamping voltage and at the same time has a low current consumption in normal operation.

Gelöst wird diese Aufgabe gemäß Anspruch 1 mit einer Klemmschaltung der eingangs genannten Art, die sich durch einen dritten Transistor M3 auszeichnet, der so in den Eingangspfad geschaltet ist, daß er sich im Klemmbetrieb der Schaltung in rückwärts leitendem Zustand und im Normalbetrieb der Schaltung in vorwärts gesperrtem Zustand befindet.This object is achieved according to claim 1 with a clamping circuit of the type mentioned at the outset, which is characterized by a third transistor M3, which is in the input path is switched that he is in the clamp operation of the circuit reverse conducting state and in normal operation of the circuit is in the forward locked state.

Diese Lösung vereint zwei wesentliche Vorteile. Dadurch, daß im Klemmbetrieb der Strom über den niederohmigen Kanal und nicht über die Reversdiode RD des Transistors fließt, wird einerseits die Schutzfunktion der Klemmschaltung nicht gestört. Im Normalbetrieb schützt andererseits der dritte Transistor M3 den ersten Transistor T1 vor zu hohen Spannungen des Eingangssignals, so daß die gewünschte Spannungsfestigkeit der Klemmschaltung erzielbar ist.This solution combines two main advantages. As a result of that in clamp operation the current over the low-resistance channel and does not flow through the reverse diode RD of the transistor on the one hand, the protective function of the clamping circuit is not disturbed. On the other hand, the third transistor protects in normal operation M3 the first transistor T1 before too high voltages of the input signal, so that the desired dielectric strength the clamping circuit can be achieved.

Die Unteransprüche beinhalten vorteilhafte Weiterbildungen der Erfindung.The subclaims contain advantageous developments the invention.

Danach ist der dritte Transistor M3 vorzugsweise ein D-MOS-Feldeffekttransistor, dessen Gateanschluß mit einer Versorgungsspannung VDD zum Durchschalten des Feldeffekttransistors verbunden ist.Thereafter, the third transistor M3 is preferably a D-MOS field effect transistor, the gate connection of which is connected to a supply voltage V DD for switching on the field effect transistor.

Zur zumindest teilweisen Kompensation des Einschaltwiderstandes des dritten D-MOS-Feldeffekttransistors M3 ist vorzugsweise ein vierter D-MOS-Feldeffekttransistor M4 vorgesehen, der in den Emitter eines fünften, über eine dritte Diode D3 mit der Versorgungsspannung verbundenen Transistors T5 geschaltet ist, wobei der Gateanschluß des dritten Transistors M3 mit dem Kollektor des fünften Transistors T5 verbunden ist.For at least partial compensation of the on-resistance of the third D-MOS field effect transistor M3 is preferred a fourth D-MOS field effect transistor M4 is provided, the one in the emitter of a fifth, through a third diode D3 connected to the supply voltage transistor T5 is, the gate terminal of the third transistor M3 connected to the collector of the fifth transistor T5 is.

Weiterhin können alle Transistoren sowie die dritte Diode jeweils durch Feldeffekttransistoren ersetzt sein.Furthermore, all transistors and the third diode can be used be replaced by field effect transistors.

Die Klemmschaltung ist insbesondere zur Anwendung in Verbindung mit integrierten Schaltungen vorgesehen, wobei die Klemmspannung in diesem Fall 0 Volt beträgt. Die Klemmschaltung ist ferner insbesondere in der BICDMOS (Bipolar, C- und D-MOS) Technologie realisierbar.The clamp circuit is particularly suitable for use in connection provided with integrated circuits, the Clamp voltage in this case is 0 volts. The clamp circuit is also particularly in the BICDMOS (Bipolar, C and D-MOS) technology realizable.

Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von bevorzugten Ausführungsformen anhand der Zeichnung. Es zeigen:

Fig. 1
ein Schaltbild einer ersten Ausführungsform der Erfindung;
Fig. 2
ein Schaltbild einer zweiten Ausführungsform der Erfindung;
Fig. 3
ein Schaltbild einer dritten Ausführungsform der Erfindung;
Fig. 4
die Ausgangskennlinien der in den Figuren 1 bis 3 gezeigten Schaltungen und
Fig. 5a und 5b
eine Klemmschaltung gemäß dem Stand der Technik.
Further details, features and advantages of the invention will become apparent from the following description of preferred embodiments with reference to the drawing. Show it:
Fig. 1
a circuit diagram of a first embodiment of the invention;
Fig. 2
a circuit diagram of a second embodiment of the invention;
Fig. 3
a circuit diagram of a third embodiment of the invention;
Fig. 4
the output characteristics of the circuits shown in Figures 1 to 3 and
5a and 5b
a clamping circuit according to the prior art.

Der Stand der Technik wurde eingangs bereits anhand der Figuren 5a und 5b erläutert. Figur 1 zeigt demgegenüber eine erste Ausführungsform der Erfindung, die einen dritten Transistor M3 in Form eines selbstsperrenden n-Kanal-Isolierschicht-Feldeffekttransistors (D-MOS-FET) aufweist, der in den Eingangspfad Vp der Klemmschaltung geschaltet ist, und dessen Gate mit einer positiven Versorgungsspannung VDD verbunden ist, die ausreicht, um diesen vollständig einzuschalten (zum Beispiel 5V). Eine Reversdiode RD des Feldeffekttransistors M3 ist gestrichelt angedeutet. Schließlich liegt zwischen dem Emitter des ersten Transistors T1 und Masse eine Zener-Diode ZD.The prior art was already explained at the beginning with reference to FIGS. 5a and 5b. In contrast, Figure 1 shows a first embodiment of the invention, which has a third transistor M3 in the form of a self-blocking n-channel insulating layer field-effect transistor (D-MOS-FET), which is connected in the input path Vp of the clamping circuit, and the gate of which with a positive supply voltage V DD is connected, which is sufficient to switch it on completely (for example 5V). A reverse diode RD of the field effect transistor M3 is indicated by dashed lines. Finally, there is a Zener diode ZD between the emitter of the first transistor T1 and ground.

Im Normalbetrieb mit positiver Eingangsspannung befindet sich der Feldeffekttransistor M3 im vorwärts gesperrten Betrieb und schützt somit den ersten Transistor T1 der Klemmschaltung gegen zu hohe Eingangsspannungen. Die Zener-Diode ZD verhindert eine unzulässige Aufladung des Emitters des ersten Transistors T1 durch den über den gesperrten Feldeffekttransistor M3 fließenden Sperrstrom. Is in normal operation with positive input voltage the field effect transistor M3 in forward locked mode and thus protects the first transistor T1 of the clamping circuit against too high input voltages. The Zener diode ZD prevents an impermissible charging of the emitter of the first transistor T1 through the blocked through the field effect transistor M3 flowing reverse current.

Sinkt die an dem Eingangspfad Vp anliegende Eingangsspannung auf Massepotential ab, so geht der Feldeffekttransistor M3 in den rückwärts leitenden Zustand über, und die Schaltung gelangt in den Klemmbetrieb, in dem das Eingangssignal über den ersten und zweiten Transistor T1, T2 mit Masse verbunden und somit ein weiteres Absinken der Eingangsspannung verhindert wird. Der Strom fließt in diesem Fall über den niederohmigen Kanal des Feldeffekttransistors M3 und nicht über die Reversdiode RD, so daß die Klemmspannung nicht wie bei der eingangs mit Bezug auf Figur 5b erläuterten Schaltung verzerrt wird, sondern unbeeinflußt bleibt. Folglich wird auch die Schutzfunktion der Klemmschaltung nicht beeinträchtigt.The input voltage applied to the input path Vp drops to ground potential, the field effect transistor M3 goes in the reverse conducting state, and the circuit arrives in the clamp mode, in which the input signal over the first and second transistor T1, T2 connected to ground and thus preventing a further drop in the input voltage becomes. In this case, the current flows through the low-impedance Channel of the field effect transistor M3 and not via the reverse diode RD, so that the clamping voltage is not as in the beginning is distorted with reference to the circuit explained in FIG. 5b, but remains unaffected. Consequently, the protective function the clamping circuit is not affected.

Figur 2 zeigt eine zweite Ausführungsform der Erfindung, die gegenüber der ersten Ausführungsform einen vierten Transistor in Form eines D-MOS-Feldeffekttransistors M4 sowie eine dritte Diode D3 aufweist. Der vierte Transistor M4 ist in den Emitter des fünften Transistors T5 geschaltet, während sich die dritte Diode D3 in dem Kollektorkreis des fünften Transistors T5 befindet.Figure 2 shows a second embodiment of the invention, the compared to the first embodiment, a fourth transistor in the form of a D-MOS field effect transistor M4 and a third Has diode D3. The fourth transistor M4 is in the Emitter of the fifth transistor T5 switched while on the third diode D3 in the collector circuit of the fifth transistor T5 is located.

Mit dieser zweiten Ausführungsform kann der Einfluß des Einschaltwiderstandes des dritten Transistors M3 (Feldeffekttransistor) teilweise oder ganz kompensiert werden. Aus Stabilitätsgründen muß der vierte Transistor M4 einen gegenüber dem dritten Transistor M3 kleineren oder gleichen Einschaltwiderstand aufweisen. Diese Paarungseigenschaft kann insbesondere dadurch hergestellt werden, daß die beiden Feldeffekttransistoren M3 und M4 unter gleichen Bedingungen betrieben werden. Dies wird durch die in den Kollektorkreis geschaltete dritte Diode D3, durch einen inversen Betrieb der vierten Transistors M4 sowie dadurch erreicht, daß der Gateanschluß des dritten Transistors M3 zwischen der dritten Diode D3 und dem Kollektor des fünften Transistors T5 liegt. With this second embodiment, the influence of the on-resistance can of the third transistor M3 (field effect transistor) partially or fully compensated. For reasons of stability the fourth transistor M4 must face one the third transistor M3 smaller or the same on resistance exhibit. This mating property can in particular can be produced in that the two field effect transistors M3 and M4 operated under the same conditions become. This is switched into the collector circuit third diode D3, by an inverse operation of the fourth transistor M4 and in that the gate terminal of the third transistor M3 between the third Diode D3 and the collector of the fifth transistor T5.

Diese zweite Ausführungsform hat darüberhinaus den Vorteil, daß die an dem Eingangspfad Vp anliegende Eingangsspannung genauer begrenzt wird, als bei der ersten Ausführungsform gemäß Figur 1. Wenn der Spannungsabfall an dem vierten Transistor M4 so groß wird, daß der erste Transistor T1 in die Sättigung geht, kann der Stromfluß über den ersten und den fünften Transistor T1, T5 nicht weiter ansteigen, und die Ausgangsspannung sinkt ab.This second embodiment also has the advantage that the input voltage present at the input path Vp is more precisely limited than in the first embodiment according to FIG Figure 1. When the voltage drop across the fourth transistor M4 becomes so large that the first transistor T1 saturates goes, the current can flow through the first and fifth Transistor T1, T5 no longer rise, and the output voltage sinks.

Figur 3 zeigt eine dritte Ausführungsform der Erfindung. Diese unterscheidet sich von der in Figur 2 gezeigten zweiten Ausführungsform dadurch, daß die Transistoren T1, T2, T5 und T6 sowie die dritte Diode D3 jeweils durch n-Kanal-Isolierschicht-Feldeffekttransistoren (MOS) M1, M2, M5, M6 bzw. M7 ersetzt sind. Für einen sicheren Betrieb dieser Schaltung ist es erforderlich, daß der erste und der fünfte Transistor M1, M5 jeweils die gleiche Transferkennlinie aufweisen.Figure 3 shows a third embodiment of the invention. This differs from the second shown in Figure 2 Embodiment in that the transistors T1, T2, T5 and T6 and the third diode D3 each through n-channel insulating layer field-effect transistors (MOS) M1, M2, M5, M6 or M7 are replaced. For safe operation of this Circuitry requires that the first and fifth Transistors M1, M5 each have the same transfer characteristic.

Da die Inversdiode des vierten Transistors M4 zu leiten beginnt, bevor die Drain-Source-Spannung des ersten Transistors M1 zu klein wird, hat diese Schaltung nicht den gleichen Strombegrenzungseffekt wie die in Figur 2 gezeigte zweite Ausführungsform. Erst wenn auf Grund der niedrigeren Drain-Source-Spannung des ersten Transistor M1 im Vergleich zu dem fünften Transistor M5 die Transferkennlinien beider Transistoren voneinander abweichen, nimmt die Ausgangsspannung bei zunehmendem Betrag des Ausgangsstroms langsam ab.As the inverse diode of the fourth transistor M4 begins to conduct, before the drain-source voltage of the first transistor M1 becomes too small, this circuit does not have the same Current limiting effect like the second shown in Figure 2 Embodiment. Only if due to the lower drain-source voltage of the first transistor M1 compared to that fifth transistor M5 the transfer characteristics of both transistors deviate from each other, the output voltage increases increasing amount of output current slowly decreases.

Figur 4 zeigt schließlich Ausgangskennlinien 1, 2 bzw. 3 der ersten, zweiten bzw. dritten Ausführungsform, wobei auf der vertikalen Achse die Ausgangsspannung und auf der horizontalen Achse der Ausgangsstrom aufgetragen ist. Figure 4 finally shows output characteristics 1, 2 and 3 of the first, second and third embodiment, respectively vertical axis the output voltage and on the horizontal Axis of the output current is plotted.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

T1/M1T1 / M1
- erster Transistor/erster Feldeffekttransistor- First transistor / first field effect transistor
T2/M2T2 / M2
- zweiter Transistor/zweiter Feldeffekttransistor- Second transistor / second field effect transistor
M3M3
- dritter Feldeffekttransistor- third field effect transistor
M4M4
- vierter Feldeffekttransistor- fourth field effect transistor
T5/M5T5 / M5
- fünfter Transistor/fünfter Feldeffekttransistor- fifth transistor / fifth field effect transistor
T6/M6T6 / M6
- sechster Transistor/sechster Feldeffekttransistor- sixth transistor / sixth field effect transistor
M7M7
- siebter Feldeffekttransistor- Seventh field effect transistor
D1D1
- erste Diode- first diode
D2D2
- zweite Diode- second diode
D3D3
- dritte Diode- third diode
ZDZD
- Zenerdiode- Zener diode
RDRD
- Reversdiode- reverse diode
VDD V DD
- Versorgungsspannung- supply voltage
Ibias I bias
- Stromquelle- power source
Vpvp
- Eingangspfad- Entry path

Claims (6)

  1. Clamping circuit for generating a predetermined minimum voltage with cross-coupled first and second transistors (T1, T2), which changes over from a normal mode to a clamping mode if the voltage of a signal fed via an input path (Vp) falls below a predetermined clamping voltage, characterized in that a third transistor (M3) is connected into the input path (Vp) in such a way that it is in the reverse conducting state in the clamping mode of the circuit and in the forward blocked state in the normal mode of the circuit.
  2. Clamping circuit according to Claim 1,
    in which the third transistor is a D-MOS field-effect transistor (M3), whose gate terminal is connected to a supply voltage (VDD) for activating the field-effect transistor.
  3. Clamping circuit according to Claim 2,
    in which a zener diode (ZD) is provided at the emitter of the first transistor (T1) for the purpose of preventing impermissible charging of the emitter by the reverse current flowing via the switched-off third transistor (M3).
  4. Clamping circuit according to Claim 2 or 3,
    in which a fourth D-MOS field-effect transistor (M4) is provided, which, in order to at least partly compensate for the on resistance of the third D-MOS field-effect transistor (M3), is connected into the emitter of a fifth transistor (T5), which is connected to the supply voltage (VDD) via a third diode (D3), the gate terminal of the third transistor (M3) being connected to the. collector of the fifth transistor (T5).
  5. Clamping circuit according to one of the preceding claims,
    in which the first, second, fourth and fifth transistors (T1, T2, T4, T5) and the third diode (D3) are in each case MOS field-effect transistors (M1, M2, M4, M5, M7).
  6. Clamping circuit according to one of the preceding claims, in particular for use in connection with integrated circuits,
    in which the clamping voltage is 0 volts.
EP99109644A 1998-05-15 1999-05-14 Clamping circuit Expired - Lifetime EP0957420B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19821906A DE19821906C1 (en) 1998-05-15 1998-05-15 Clamping circuit
DE19821906 1998-05-15

Publications (3)

Publication Number Publication Date
EP0957420A2 EP0957420A2 (en) 1999-11-17
EP0957420A3 EP0957420A3 (en) 2000-03-29
EP0957420B1 true EP0957420B1 (en) 2003-04-16

Family

ID=7867934

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99109644A Expired - Lifetime EP0957420B1 (en) 1998-05-15 1999-05-14 Clamping circuit

Country Status (3)

Country Link
US (1) US6137278A (en)
EP (1) EP0957420B1 (en)
DE (2) DE19821906C1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7242240B2 (en) * 2005-05-05 2007-07-10 Agere Systems, Inc. Low noise bandgap circuit
US20090121770A1 (en) * 2007-03-29 2009-05-14 Linear Technology Corporation Method for clamping a semiconductor region at or near ground
JP4553395B2 (en) * 2007-06-15 2010-09-29 シャープ株式会社 Oscilloscope and semiconductor evaluation apparatus using the same
US9000791B2 (en) * 2010-04-30 2015-04-07 Katholieke Universiteit Leuven Voltage clamping circuit and use thereof
US20130027117A1 (en) * 2011-07-28 2013-01-31 Anadyne, Inc. Precision voltage clamp with very low temperature drift
CN109474246B (en) * 2018-10-31 2022-06-28 西安微电子技术研究所 Voltage clamping protection structure and operational amplifier input stage structure
CN111208401B (en) * 2018-11-22 2023-01-31 宁波飞芯电子科技有限公司 Test method and device for clamping photodiode
CN112152189B (en) * 2020-09-15 2023-01-31 广东省大湾区集成电路与系统应用研究院 Clamping circuit and electronic equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3703711A (en) * 1971-01-04 1972-11-21 Honeywell Inf Systems Memory cell with voltage limiting at transistor control terminals
US3930172A (en) * 1974-11-06 1975-12-30 Nat Semiconductor Corp Input supply independent circuit
JPH0746506B2 (en) * 1985-09-30 1995-05-17 株式会社東芝 Semiconductor memory device
GB2189954B (en) * 1986-04-30 1989-12-20 Plessey Co Plc Improvements relating to memory cell devices
US4926073A (en) * 1989-05-01 1990-05-15 Motorola Inc. Negative voltage clamp
JPH06104672A (en) * 1992-09-22 1994-04-15 Mitsubishi Electric Corp Clamp circuit
KR950005577B1 (en) * 1992-12-30 1995-05-25 현대전자산업주식회사 Bit line load circuit
FR2718259A1 (en) * 1994-03-30 1995-10-06 Philips Composants Regulator circuit providing a voltage independent of the power supply and the temperature.
US5519341A (en) * 1994-12-02 1996-05-21 Texas Instruments Incorporated Cross coupled quad comparator for current sensing independent of temperature
US5614850A (en) * 1994-12-09 1997-03-25 Texas Instruments Incorporated Current sensing circuit and method

Also Published As

Publication number Publication date
DE19821906C1 (en) 2000-03-02
US6137278A (en) 2000-10-24
EP0957420A2 (en) 1999-11-17
EP0957420A3 (en) 2000-03-29
DE59905031D1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
DE69701176T2 (en) Electronic circuit provided with neutralizing device
DE3342336A1 (en) INTERFACE CIRCUIT
DE69425368T2 (en) Circuit for shifting the signal level from high to low potential
EP0496018B1 (en) Integrated circuit for generating a reset signal
EP0591561B1 (en) Integrated circuit for generating a reset signal
DE4334513C1 (en) CMOS circuit having increased voltage rating
EP0957420B1 (en) Clamping circuit
DE2518078B2 (en) Logical MOS circuit arrangement
DE3323446A1 (en) INPUT SIGNAL LEVEL CONVERTER FOR A MOS DIGITAL CIRCUIT
DE3343700C2 (en)
DE68928238T2 (en) Protected Darlington transistor arrangement
DE2925008A1 (en) INTEGRATED POWER DRIVER CIRCUIT
DE3110355C2 (en) DC voltage generator for supplying a temperature-dependent DC output voltage
DE10053374C2 (en) Bipolar comparator
DE69429409T2 (en) BiCMOS logic circuit
EP1099308B1 (en) Driving circuit
DE19838109B4 (en) Control circuit for inductive loads
EP0748047A1 (en) Integrated buffer circuit
DE69601198T2 (en) Short-circuit protection for an audio-video data bus
DE3518413C2 (en) Input buffer circuit and logic circuit using it
DE3485764T2 (en) PMOS INPUT BUFFER COMPATIBLE WITH LOGICAL INPUTS FROM AN NMOS MICROPROCESSOR.
EP0676846B1 (en) Switch with a bipolar transistor as first switching element
DE19719448A1 (en) Inverter circuit for level converter
DE3615513A1 (en) DIGITAL-ANALOG CONVERTER FOR LOW VOLTAGE VALUES
DE102021111003B4 (en) DUAL-MODE SUPPLY CIRCUIT AND METHOD

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 05F 3/22 A, 7G 11C 5/14 B

17P Request for examination filed

Effective date: 20000503

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59905031

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030416

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170523

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170526

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170718

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59905031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180514

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531