[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0811675A1 - Grease composition for constant velocity joints - Google Patents

Grease composition for constant velocity joints Download PDF

Info

Publication number
EP0811675A1
EP0811675A1 EP97303319A EP97303319A EP0811675A1 EP 0811675 A1 EP0811675 A1 EP 0811675A1 EP 97303319 A EP97303319 A EP 97303319A EP 97303319 A EP97303319 A EP 97303319A EP 0811675 A1 EP0811675 A1 EP 0811675A1
Authority
EP
European Patent Office
Prior art keywords
constant velocity
calcium salts
grease composition
overbasic
velocity joints
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97303319A
Other languages
German (de)
French (fr)
Other versions
EP0811675B1 (en
Inventor
Hatakeyama Kyodo Yushi Co. Ltd. Ko
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Automotive Ltd
Kyodo Yushi Co Ltd
Original Assignee
GKN Automotive Ltd
Kyodo Yushi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKN Automotive Ltd, Kyodo Yushi Co Ltd filed Critical GKN Automotive Ltd
Publication of EP0811675A1 publication Critical patent/EP0811675A1/en
Application granted granted Critical
Publication of EP0811675B1 publication Critical patent/EP0811675B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/06Mixtures of thickeners and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M115/00Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof
    • C10M115/08Lubricating compositions characterised by the thickener being a non-macromolecular organic compound other than a carboxylic acid or salt thereof containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M119/00Lubricating compositions characterised by the thickener being a macromolecular compound
    • C10M119/24Lubricating compositions characterised by the thickener being a macromolecular compound containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/22Compounds containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/04Hydroxy compounds
    • C10M129/10Hydroxy compounds having hydroxy groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • C10M129/26Carboxylic acids; Salts thereof
    • C10M129/48Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring
    • C10M129/54Carboxylic acids; Salts thereof having carboxyl groups bound to a carbon atom of a six-membered aromatic ring containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/08Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
    • C10M135/10Sulfonic acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M135/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
    • C10M135/12Thio-acids; Thiocyanates; Derivatives thereof
    • C10M135/14Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond
    • C10M135/18Thio-acids; Thiocyanates; Derivatives thereof having a carbon-to-sulfur double bond thiocarbamic type, e.g. containing the groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M137/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus
    • C10M137/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing phosphorus having no phosphorus-to-carbon bond
    • C10M137/04Phosphate esters
    • C10M137/10Thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/02Natural products
    • C10M159/06Waxes, e.g. ozocerite, ceresine, petrolatum, slack-wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/22Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing phenol radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M159/00Lubricating compositions characterised by the additive being of unknown or incompletely defined constitution
    • C10M159/12Reaction products
    • C10M159/20Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products
    • C10M159/24Reaction mixtures having an excess of neutralising base, e.g. so-called overbasic or highly basic products containing sulfonic radicals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/06Metal compounds
    • C10M2201/065Sulfides; Selenides; Tellurides
    • C10M2201/066Molybdenum sulfide
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/08Inorganic acids or salts thereof
    • C10M2201/084Inorganic acids or salts thereof containing sulfur, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/14Synthetic waxes, e.g. polythene waxes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/17Fisher Tropsch reaction products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/026Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings with tertiary alkyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/027Neutral salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/144Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/10Carboxylix acids; Neutral salts thereof
    • C10M2207/14Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/146Carboxylix acids; Neutral salts thereof having carboxyl groups bound to carbon atoms of six-membered aromatic rings having carboxyl groups bound to carbon atoms of six-membeered aromatic rings having a hydrocarbon substituent of thirty or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/006Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/026Amines, e.g. polyalkylene polyamines; Quaternary amines used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/0813Amides used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/1013Amides of carbonic or haloformic acids used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/10Amides of carbonic or haloformic acids
    • C10M2215/102Ureas; Semicarbazides; Allophanates
    • C10M2215/1026Ureas; Semicarbazides; Allophanates used as thickening material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/12Partial amides of polycarboxylic acids
    • C10M2215/121Partial amides of polycarboxylic acids used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/2206Heterocyclic nitrogen compounds used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/227Phthalocyanines
    • C10M2215/2275Phthalocyanines used as thickening agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/044Polyamides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2217/00Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2217/04Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2217/045Polyureas; Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/044Sulfonic acids, Derivatives thereof, e.g. neutral salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/06Thio-acids; Thiocyanates; Derivatives thereof
    • C10M2219/062Thio-acids; Thiocyanates; Derivatives thereof having carbon-to-sulfur double bonds
    • C10M2219/066Thiocarbamic type compounds
    • C10M2219/068Thiocarbamate metal salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/08Thiols; Sulfides; Polysulfides; Mercaptals
    • C10M2219/082Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms
    • C10M2219/087Thiols; Sulfides; Polysulfides; Mercaptals containing sulfur atoms bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Derivatives thereof, e.g. sulfurised phenols
    • C10M2219/089Overbased salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/047Thioderivatives not containing metallic elements
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2010/00Metal present as such or in compounds
    • C10N2010/12Groups 6 or 16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/32Wires, ropes or cables lubricants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/34Lubricating-sealants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/36Release agents or mold release agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/38Conveyors or chain belts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/40Generators or electric motors in oil or gas winning field
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/42Flashing oils or marking oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/44Super vacuum or supercritical use
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/50Medical uses
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2060/00Chemical after-treatment of the constituents of the lubricating composition
    • C10N2060/04Oxidation, e.g. ozonisation

Definitions

  • the present invention relates to a grease composition for use in constant velocity joints, in particular, for ball type fixed and plunging constant velocity joints.
  • a very high contact pressure is developed between the parts of the constant velocity joints to be lubricated and the joint parts undergo complicated rolling and sliding motions. This often results in abnormal wear and metal fatigue and, in turn, leads to a spalling phenomenon, i.e., pitting of the joint parts.
  • the present invention relates to a grease composition for constant velocity joints which can effectively lubricate such constant velocity joints to effectively reduce the wear of joints and to effectively reduce the occurrence of any pitting of the parts.
  • lubricating greases conventionally used in such constant velocity joints include a lithium soap thickened extreme pressure grease containing molybdenum disulfide and a lithium soap thickened extreme pressure grease containing molybdenum disulfide and extreme pressure agents, e.g., sulfur-phosphorus or a lead naphthenate.
  • extreme pressure agents e.g., sulfur-phosphorus or a lead naphthenate.
  • FF-type motorcars For use in these vehicles constant velocity joints need to be as making light and small as possible.
  • the double offset type constant velocity joints and cross groove type constant velocity joints used as the plunging joints as well as Birfield joints used as the fixed joints have a structure in which torques are transmitted through 6 balls. These joints cause complicated reciprocating motions such as complicated rolling and sliding motions during rotation under a high contact pressure, stresses are repeatedly applied to the balls and the metal surfaces which come in contact with the balls and accordingly, the pitting phenomenon is apt to occur at such portions due to metal fatigue.
  • the recent improvement in the power of engines is accompanied by an increase in the contact pressure as compared with conventional engines.
  • an object of the present invention is to provide a novel grease composition for constant velocity joints which has an excellent pitting-inhibitory effect and heat resistance.
  • the inventors of this invention have conducted various studies to develop a grease composition capable of optimizing the frictional wear of the constant velocity joints and of eliminating the problem of pitting of joints due to abnormal wear and metal fatigue and having improved heat resistance.
  • the inventors have carried out a quality evaluation of greases used under lubricating conditions which are accompanied by complicated reciprocating motions such as complicated rolling and sliding motions under a high contact pressure as has been discussed above using an SRV (Schwingung Reibung und Verschleiss) tester known as an oscillating friction and wear tester, to determine lubricating characteristics (such as friction coefficient and wear) of various kinds of extreme pressure agents, solid lubricants or combinations of additives.
  • SRV Hughes Reibung und Verschleiss
  • a grease comprising a specific combination of a base oil, an urea thickener, molybdenum disulfide, a calcium salt or an overbasic calcium salt of a specific compound, a metal-free sulfur-phosphorus extreme pressure agent and molybdenum dithiocarbamate exhibits desired lubricating characteristics such as a good friction coefficient and low wear and have confirmed, by a durability test performed using a practical constant velocity joint, that the grease can prevent the occurrence of any pitting phenomena, unlike the conventional greases for constant velocity joints and thus have completed the present invention.
  • the base oil as Component (a) is not restricted to specific ones and may be, for instance, lubricating oils currently used such as mineral oils, ester type synthetic oils, ether type synthetic oils, hydrocarbon type synthetic oils or mixture thereof.
  • the urea thickener as Component (b) is not restricted to specific ones and may be, for instance, diurea compounds and polyurea compounds.
  • diurea compounds include those obtained through a reaction of a monoamine with a diisocyanate compound.
  • diisocyanates include phenylene diisocyanate, diphenyl diisocyanate, phenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, and hexane diisocyanate.
  • monoamines include octylamine, dodecylamine, hexadecylamine, octadecylamine, oleylamine, aniline, p-toluidine, and cyclohexylamine.
  • Examples of the polyurea compounds include those obtained through a reaction of a diamine with a diisocyanate compound.
  • examples of the diisocyanates include those used for the formation of the diurea compounds as mentioned above.
  • examples of the diamines include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, and xylenediamine.
  • urea thickeners include those obtained through a reaction of aryl amine such as aniline or p-toluidine, cyclohexyl amine or a mixture thereof with a diisocyante.
  • aryl group in the diurea compounds is preferably those having 6 or 7 carbon atoms and the rate of the aryl group in the diurea compound ranges from 100 to 0 mole% based on the total moles of the aryl and the cyclohexyl groups in the diurea compounds.
  • the molybdenum disulfide as Component (c) has widely been used as an extreme pressure agent. With regard to the lubricating mechanism thereof, the molybdenum disulfide is easily sheared under the sliding motions through the formation of a thin layer since it has a layer lattice structure and it shows effects of reducing the frictional force and of preventing seizure of joints.
  • the calcium salts or overbasic calcium salts as Component (d) are selelcted from those known as metal cleaning dispersants or rust-inhibitors which are used in lubricants such as engine oils, such as calcium salts of oxidized waxes, calcium salts of petroleum sulfonates which are obtained by the sulfonation of aromatic hydrocarbon in lubricating oil fraction, calcium salts of synthetic sulfonates such as dinonylnaphthalene sulfonic acid and alkylbenzene sulfonic acid, calcium salts of salicylate, calcium salts of phenates, overbasic calcium salts of oxidized waxes, overbasic calcium salts of petroleum sulfonates, overbasic calcium salts of alkyl aryl sulfonates, overbasic calcium salts of salicylate, and overbasic calcium salts of phenates.
  • metal cleaning dispersants or rust-inhibitors which are used in lubricants such as
  • Preferred metal-free sulfur-phosphorus extreme pressure agents as Component (e) have a sulfur content ranging from 15 to 35% by weight and a phosphorus content ranging from 0.5 to 3% by weight and exhibit excellent effects of inhibiting wear and of preventing seizure of the joints through the well-established balance between the sulfur and phosphorus contents.
  • the grease composition for constant velocity joints according to the present invention may further comprise antioxidants, corrosion inhibitors, rust inhibitors in addition to the foregoing essential components.
  • the grease composition for constant velocity joints preferably comprises, on the basis of the total weight of the grease composition, 52.0 to 97.8% by weight of the base oil (a); 1 to 25% by weight of the urea thickener (b); 0.5 to 5% by weight of the molybdenum disulfide (c); 0.5 to 15% by weight of the calcium salt or overbasic calcium salt (d); 0.1 to 3% by weight of the metal-free sulfur-phosphorus extreme pressure agent (e); and 0.1 to 5% by weight of the molybdenum dithiocarbamate (f).
  • Test Piece ball: diameter 10 mm (SUJ-2)
  • cylindrical plate diameter 24 mm ⁇ 7.85 mm (SUJ-2)
  • the greases were inspected, under the following conditions, for the occurrence of pitting by a durability test on a bench using real joints.
  • the grease composition for constant velocity joints consists essentially of (a) a base oil; (b) an urea thickener; (c) molybdenum disulfide; (d) a specific calcium salt or a specific overbasic calcium salt; (e) a metal-free sulfur-phosphorus extreme pressure agent; and (f) molybdenum dithiocarbamate and thus exhibits excellent wear-resistant effect and an excellent pitting-inhibitory effect as is also apparent from the comparison of the results of Examples with those of Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Lubricants (AREA)

Abstract

A grease composition for constant velocity joints consists essentially of: (a) a base oil; (b) an urea thickener; (c) molybdenum disulfide; (d) a calcium salt or an overbasic calcium salt selected from the group consisting of calcium salts or overbasic calcium salts of oxidized waxes, petroleum sulfonates, alkyl aryl sulfonates, salicylate, and phenates; (e) a metal-free sulfur-phosphorus extreme pressure agent; and (f) molybdenum dithiocarbamate.
The grease composition exhibits excellent wear-resistance and pitting-inhibitory effect.

Description

    BACKGROUND OF THE INVENTION
  • The present invention relates to a grease composition for use in constant velocity joints, in particular, for ball type fixed and plunging constant velocity joints. A very high contact pressure is developed between the parts of the constant velocity joints to be lubricated and the joint parts undergo complicated rolling and sliding motions. This often results in abnormal wear and metal fatigue and, in turn, leads to a spalling phenomenon, i.e., pitting of the joint parts. More specifically, the present invention relates to a grease composition for constant velocity joints which can effectively lubricate such constant velocity joints to effectively reduce the wear of joints and to effectively reduce the occurrence of any pitting of the parts.
  • Examples of lubricating greases conventionally used in such constant velocity joints include a lithium soap thickened extreme pressure grease containing molybdenum disulfide and a lithium soap thickened extreme pressure grease containing molybdenum disulfide and extreme pressure agents, e.g., sulfur-phosphorus or a lead naphthenate. However, these greases for constant velocity joints have not always been satisfactory in the severe working conditions which occur in the present high-performance motorcars.
  • Recently, the number of four-wheel drive (FF-type) motorcars have rapidly increased. For use in these vehicles constant velocity joints need to be as making light and small as possible. The double offset type constant velocity joints and cross groove type constant velocity joints used as the plunging joints as well as Birfield joints used as the fixed joints have a structure in which torques are transmitted through 6 balls. These joints cause complicated reciprocating motions such as complicated rolling and sliding motions during rotation under a high contact pressure, stresses are repeatedly applied to the balls and the metal surfaces which come in contact with the balls and accordingly, the pitting phenomenon is apt to occur at such portions due to metal fatigue. The recent improvement in the power of engines is accompanied by an increase in the contact pressure as compared with conventional engines. Motorcars are being made lighter to improve fuel consumption and the size of joints has correspondingly been down-sized. This leads to a relative increase in the contact pressure and thus the conventional greases are ineffective in that they cannot sufficiently reduce the pitting phenomenon. In addition, the greases must also be improved in their heat resistance.
  • SUMMARY OF THE INVENTION
  • Accordingly, an object of the present invention is to provide a novel grease composition for constant velocity joints which has an excellent pitting-inhibitory effect and heat resistance.
  • The inventors of this invention have conducted various studies to develop a grease composition capable of optimizing the frictional wear of the constant velocity joints and of eliminating the problem of pitting of joints due to abnormal wear and metal fatigue and having improved heat resistance. The inventors have carried out a quality evaluation of greases used under lubricating conditions which are accompanied by complicated reciprocating motions such as complicated rolling and sliding motions under a high contact pressure as has been discussed above using an SRV (Schwingung Reibung und Verschleiss) tester known as an oscillating friction and wear tester, to determine lubricating characteristics (such as friction coefficient and wear) of various kinds of extreme pressure agents, solid lubricants or combinations of additives. As a result, the inventors have found that a grease comprising a specific combination of a base oil, an urea thickener, molybdenum disulfide, a calcium salt or an overbasic calcium salt of a specific compound, a metal-free sulfur-phosphorus extreme pressure agent and molybdenum dithiocarbamate exhibits desired lubricating characteristics such as a good friction coefficient and low wear and have confirmed, by a durability test performed using a practical constant velocity joint, that the grease can prevent the occurrence of any pitting phenomena, unlike the conventional greases for constant velocity joints and thus have completed the present invention.
  • The foregoing object of the present invention can effectively be accomplished by providing a grease composition for constant velocity joints which consists essentially of:
    • (a) a base oil;
    • (b) an urea thickener;
    • (c) molybdenum disulfide;
    • (d) a calcium salt or an overbasic calcium salt selected from the group consisting of calcium salts of oxidized waxes, calcium salts of petroleum sulfonates, calcium salts of alkyl aryl sulfonates, calcium salts of salicylate, calcium salts of phenates, overbasic calcium salts of oxidized waxes, overbasic calcium salts of petroleum sulfonates, overbasic calcium salts of alkyl aryl sulfonates, overbasic calcium salts of salicylate, and overbasic calcium salts of phenates;
    • (e) a metal-free sulfur-phosphorus extreme pressure agent; and
    • (f) molybdenum dithiocarbamate.
    DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention will hereunder be explained in more detail.
  • The base oil as Component (a) is not restricted to specific ones and may be, for instance, lubricating oils currently used such as mineral oils, ester type synthetic oils, ether type synthetic oils, hydrocarbon type synthetic oils or mixture thereof.
  • The urea thickener as Component (b) is not restricted to specific ones and may be, for instance, diurea compounds and polyurea compounds.
  • Examples of the diurea compounds include those obtained through a reaction of a monoamine with a diisocyanate compound. Examples of the diisocyanates include phenylene diisocyanate, diphenyl diisocyanate, phenyl diisocyanate, diphenylmethane diisocyanate, octadecane diisocyanate, decane diisocyanate, and hexane diisocyanate. Examples of the monoamines include octylamine, dodecylamine, hexadecylamine, octadecylamine, oleylamine, aniline, p-toluidine, and cyclohexylamine.
  • Examples of the polyurea compounds include those obtained through a reaction of a diamine with a diisocyanate compound. Examples of the diisocyanates include those used for the formation of the diurea compounds as mentioned above. Examples of the diamines include ethylenediamine, propanediamine, butanediamine, hexanediamine, octanediamine, phenylenediamine, tolylenediamine, and xylenediamine.
  • Preferred examples of urea thickeners include those obtained through a reaction of aryl amine such as aniline or p-toluidine, cyclohexyl amine or a mixture thereof with a diisocyante. The aryl group in the diurea compounds is preferably those having 6 or 7 carbon atoms and the rate of the aryl group in the diurea compound ranges from 100 to 0 mole% based on the total moles of the aryl and the cyclohexyl groups in the diurea compounds.
  • The molybdenum disulfide as Component (c) has widely been used as an extreme pressure agent. With regard to the lubricating mechanism thereof, the molybdenum disulfide is easily sheared under the sliding motions through the formation of a thin layer since it has a layer lattice structure and it shows effects of reducing the frictional force and of preventing seizure of joints. There have been known molybdenum disulfide products having various particle sizes, but it is preferable, in the present invention, to use those having a particle size ranging from 0.25 to 10 µm expressed in terms of an average particle size as determined by the method called Fisher method (by the use of a Fisher Sub-Sieve sizer), in particular, those having an average particle size of 0.55 to 0.85 µm.
  • The calcium salts or overbasic calcium salts as Component (d) are selelcted from those known as metal cleaning dispersants or rust-inhibitors which are used in lubricants such as engine oils, such as calcium salts of oxidized waxes, calcium salts of petroleum sulfonates which are obtained by the sulfonation of aromatic hydrocarbon in lubricating oil fraction, calcium salts of synthetic sulfonates such as dinonylnaphthalene sulfonic acid and alkylbenzene sulfonic acid, calcium salts of salicylate, calcium salts of phenates, overbasic calcium salts of oxidized waxes, overbasic calcium salts of petroleum sulfonates, overbasic calcium salts of alkyl aryl sulfonates, overbasic calcium salts of salicylate, and overbasic calcium salts of phenates.
  • Preferred metal-free sulfur-phosphorus extreme pressure agents as Component (e) have a sulfur content ranging from 15 to 35% by weight and a phosphorus content ranging from 0.5 to 3% by weight and exhibit excellent effects of inhibiting wear and of preventing seizure of the joints through the well-established balance between the sulfur and phosphorus contents.
  • The molybdenum dithiocarbamate as Component (f) is preferably represented by the following formula:

            (R1R2N-CS-S)2-Mo2OmSn

    wherein R1 and R2 independently represent an alkyl group having 1 to 24 carbon atoms, preferably 3 to 18 carbon atoms, m is 0 to 3, n is 4 to 1 and m + n = 4
    Figure imgb0001
    .
  • The grease composition for constant velocity joints according to the present invention may further comprise antioxidants, corrosion inhibitors, rust inhibitors in addition to the foregoing essential components.
  • The grease composition for constant velocity joints according to the present invention preferably comprises, on the basis of the total weight of the grease composition, 52.0 to 97.8% by weight of the base oil (a); 1 to 25% by weight of the urea thickener (b); 0.5 to 5% by weight of the molybdenum disulfide (c); 0.5 to 15% by weight of the calcium salt or overbasic calcium salt (d); 0.1 to 3% by weight of the metal-free sulfur-phosphorus extreme pressure agent (e); and 0.1 to 5% by weight of the molybdenum dithiocarbamate (f).
  • The present invention will hereunder be described in more detail with reference to the following non-limitative working Examples and Comparative Examples.
  • Examples 1 to 9 and Comparative Examples 1 to 3
  • There were added, to a container, 4100 g of a base oil and 1012 g of diphenylmethane-4,4'-diisocyanate and the mixture was heated to a temperature between 70 and 80°C. To another container, there were added 4100 g of a base oil, 563 g of cyclohexylamine and 225 g of aniline followed by heating at a temperature between 70 and 80 °C and addition thereof to the foregoing container. The mixture was then reacted for 30 minutes with sufficient stirring, the temperature of the reaction system was raised up to 160 °C with stirring and the reaction system was allowed to cool to give a base urea grease. To the base grease, there were added the following additives listed in Table 1 in amounts likewise listed in Table 1 and an optional and additional amount of the base oil and the penetration of the resulting mixture was adjusted to the No. 1 grade by a three-stage roll mill.
  • Example 10
  • There were added, to a container, 440 g of a base oil and 58.9 g of diphenylmethane-4,4'-diisocyanate and the mixture was heated to a temperature between 70 and 80 °C. To another container, there were added 440 g of a base oil and 61.1 g of octylamine followed by heating at a temperature between 70 and 80°C and addition thereof to the forementioned container. The mixture was then reacted for 30 minutes with sufficient stirring, the temperature of the reaction system was raised up to 160 °C with stirring and the reaction system was allowed to cool to give a base aliphatic amine urea grease. To the base grease, there were added the following additives listed in Table 1 in amounts likewise listed in Table 1 and an optional and additional amount of the base oil and the penetration of the resulting mixture was adjusted to the No. 1 grade by a three-stage roll mill.
  • In all of the abovementioned Examples and Comparative Examples, a mineral oil having the following properties was used as the base oil.
    Viscosity: at 40°C 157 mm2/s
    at 100°C 14 mm2/s
    Viscosity Index: 88
  • Moreover, a commercially available lithium grease containing molybdenum disulfide, a sulfur-phosphorus extreme pressure agent and a lead naphthenate was used as the grease of Comparative Example 4.
  • Physical properties of these greases were evaluated according to the methods detailed below. The results thus obtained are also summarized in Table 1.
  • [Penetration] According to ISO 2137. [Dropping point] According to ISO 2176. [SRV Test]
  • Test Piece: ball: diameter 10 mm (SUJ-2)
    cylindrical plate: diameter 24 mm × 7.85 mm (SUJ-2)
  • Conditions for Evaluation:
  • Load: 500 N
    Frequency: 15 Hz
    Amplitude: 3000 µm
    Time: 10 min
    Test Temperature: 25°C
  • Items evaluated:
    Maximum coefficient of friction
    Averaged diameter of wear scar observed on balls (mm)
    Maximum depth of wear observed on plates (µm)
    [Durability Test on Bench Using Real Joints]
  • The greases were inspected, under the following conditions, for the occurrence of pitting by a durability test on a bench using real joints.
  • Test Conditions:
  • Number of Revolutions: 1000 rpm
    Torque: 392 N · m
    Angle of Joint: 8 °
    Operation Time: 100 hours
    Type of Joint Used: Birfield Joint
    Cross Groove Joint
  • Item evaluated:
    Occurrence of pitting at each part after operation.
    Figure imgb0002
    Figure imgb0003
    Figure imgb0004
    Figure imgb0005
    Figure imgb0006
  • As has been discussed above in detail, the grease composition for constant velocity joints according to the present invention consists essentially of (a) a base oil; (b) an urea thickener; (c) molybdenum disulfide; (d) a specific calcium salt or a specific overbasic calcium salt; (e) a metal-free sulfur-phosphorus extreme pressure agent; and (f) molybdenum dithiocarbamate and thus exhibits excellent wear-resistant effect and an excellent pitting-inhibitory effect as is also apparent from the comparison of the results of Examples with those of Comparative Examples.

Claims (5)

  1. A grease composition for constant velocity joints consisting essentially of:
    (a) a base oil;
    (b) an urea thickener;
    (c) molybdenum disulfide;
    (d) a calcium salt or an overbasic calcium salt selected from the group consisting of calcium salts of oxidized waxes, calcium salts of petroleum sulfonates, calcium salts of alkyl aryl sulfonates, calcium salts of salicylate, calcium salts of phenates, overbasic calcium salts of oxidized waxes, overbasic calcium salts of petroleum sulfonates, overbasic calcium salts of alkyl aryl sulfonates, overbasic calcium salts of salicylate, and overbasic calcium salts of phenates;
    (e) a metal-free sulfur-phosphorus extreme pressure agent; and
    (f) molybdenum dithiocarbamate.
  2. The grease composition for constant velocity joints of claim 1 wherein the grease composition consists essentially of, on the basis of the total weight of the composition, 52.0 to 97.8% by weight of the base oil (a); 1 to 25% by weight of the urea thickener (b); 0.5 to 5.0% by weight of the molybdenum disulfide (c); 0.5 to 15% by weight of the calcium or overbasic calcium salt (d); 0.1 to 3% by weight of the metal-free sulfur-phosphorus extreme pressure agent (e); and the molybdenum dithiocarbamate (f).
  3. The grease composition for constant velocity joints of claim 1 or 2 wherein the metal-free sulfur-phosphorus extreme pressure agent (e) has a sulfur content ranging from 15 to 35% by weight and a phosphorus content ranging from 0.5 to 3% by weight.
  4. The grease composition for constant velocity joints of claim 1 or 2 wherein said constant velocity joints are constant velocity plunging ball joints.
  5. The grease composition for constant velocity joints of claim 1 or 2 wherein said constant velocity joints are constant velocity fixed ball joints.
EP97303319A 1996-06-05 1997-05-15 Grease composition for constant velocity joints Expired - Lifetime EP0811675B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP142787/96 1996-06-05
JP14278796 1996-06-05
JP14278796A JP3320611B2 (en) 1996-06-05 1996-06-05 Grease composition for constant velocity joints

Publications (2)

Publication Number Publication Date
EP0811675A1 true EP0811675A1 (en) 1997-12-10
EP0811675B1 EP0811675B1 (en) 2001-12-12

Family

ID=15323603

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97303319A Expired - Lifetime EP0811675B1 (en) 1996-06-05 1997-05-15 Grease composition for constant velocity joints

Country Status (7)

Country Link
EP (1) EP0811675B1 (en)
JP (1) JP3320611B2 (en)
KR (1) KR100410724B1 (en)
CN (1) CN1069691C (en)
DE (1) DE69708974T2 (en)
ES (1) ES2164991T3 (en)
TW (1) TW349118B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972821A2 (en) * 1998-07-15 2000-01-19 Nippon Mitsubishi Oil Corporation Grease composition suitable for a constant velocity joint
FR2795736A1 (en) * 1999-06-29 2001-01-05 Kyodo Yushi Grease formulation for the lubrication of constant velocity joints in automobiles, has a high capacity for absorption of axial thrust and long grease life
EP1642957A1 (en) * 2004-09-30 2006-04-05 Toyoda Koki Kabushiki Kaisha Grease composition for ball type constant velocity joints and ball type constant velocity joints containing the grease composition
WO2006049280A1 (en) 2004-11-08 2006-05-11 Thk Co., Ltd. Grease composition conforming to vibration and guide employing the same
US7910526B2 (en) 2004-07-01 2011-03-22 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joint and constant velocity joint containing the composition sealed therein
US9243671B2 (en) 2009-10-22 2016-01-26 Ntn Corporation Fixed type constant velocity universal joint

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100131C (en) * 2000-04-29 2003-01-29 中国石油化工集团公司 Grease lubricant for constant-velocity universal joint and its preparation method
JP4641336B2 (en) * 2000-08-10 2011-03-02 協同油脂株式会社 Grease composition
JP2006283830A (en) * 2005-03-31 2006-10-19 Ntn Corp Constant velocity universal joint
JP2007224134A (en) * 2006-02-23 2007-09-06 Nippon Koyu Ltd Flame-retardant lubricating grease composition
WO2008040383A1 (en) * 2006-10-07 2008-04-10 Gkn Driveline International Gmbh Grease composition for use in constant velocity joints comprising at least one tri-nuclear molybdenum compound and a urea derivative thickener
JP5132170B2 (en) * 2007-03-22 2013-01-30 日本精工株式会社 Diurea grease composition
JP2012052654A (en) * 2010-08-05 2012-03-15 Ntn Corp Fixed-type constant-velocity universal joint
CN104822811B (en) 2012-10-05 2019-03-01 协同油脂株式会社 Lubricant composition
JP6804156B2 (en) * 2017-03-29 2020-12-23 日本製鉄株式会社 Grease composition for rolling bearings
CN116410813A (en) * 2021-12-31 2023-07-11 朗盛特殊化学品有限公司 Polyurea/calcium sulfonate complex grease composition for use in constant velocity joints

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059336A (en) * 1989-08-22 1991-10-22 Nippon Seiko Kabushiki Kaisha Grease composition for high speed anti-friction bearing
US5160645A (en) * 1991-04-30 1992-11-03 Ntn Corporation Grease composition for constant velocity joint
US5207936A (en) * 1991-04-01 1993-05-04 Ntn Corporation Grease composition for constant velocity joint
US5449471A (en) * 1993-05-25 1995-09-12 Showa Shell Seikyu K.K. Urea grease compostition
US5498357A (en) * 1991-10-04 1996-03-12 Nsk Ltd. Grease composition for high-temperature, high-speed and high-load bearings
US5516439A (en) * 1994-07-15 1996-05-14 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joints
EP0773280A2 (en) * 1995-11-13 1997-05-14 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joints

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5059336A (en) * 1989-08-22 1991-10-22 Nippon Seiko Kabushiki Kaisha Grease composition for high speed anti-friction bearing
US5207936A (en) * 1991-04-01 1993-05-04 Ntn Corporation Grease composition for constant velocity joint
US5160645A (en) * 1991-04-30 1992-11-03 Ntn Corporation Grease composition for constant velocity joint
US5498357A (en) * 1991-10-04 1996-03-12 Nsk Ltd. Grease composition for high-temperature, high-speed and high-load bearings
US5449471A (en) * 1993-05-25 1995-09-12 Showa Shell Seikyu K.K. Urea grease compostition
US5516439A (en) * 1994-07-15 1996-05-14 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joints
EP0773280A2 (en) * 1995-11-13 1997-05-14 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joints

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0972821A2 (en) * 1998-07-15 2000-01-19 Nippon Mitsubishi Oil Corporation Grease composition suitable for a constant velocity joint
EP0972821A3 (en) * 1998-07-15 2001-04-04 Nippon Mitsubishi Oil Corporation Grease composition suitable for a constant velocity joint
US6432889B1 (en) 1998-07-15 2002-08-13 Nippon Mitsubishi Oil Corporation Grease composition
FR2795736A1 (en) * 1999-06-29 2001-01-05 Kyodo Yushi Grease formulation for the lubrication of constant velocity joints in automobiles, has a high capacity for absorption of axial thrust and long grease life
US6319880B1 (en) 1999-06-29 2001-11-20 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joint
DE10031647B4 (en) * 1999-06-29 2013-05-16 Kyodo Yushi Co., Ltd. Lubricant for constant velocity joints and its use
US7910526B2 (en) 2004-07-01 2011-03-22 Kyodo Yushi Co., Ltd. Grease composition for constant velocity joint and constant velocity joint containing the composition sealed therein
EP1642957A1 (en) * 2004-09-30 2006-04-05 Toyoda Koki Kabushiki Kaisha Grease composition for ball type constant velocity joints and ball type constant velocity joints containing the grease composition
WO2006049280A1 (en) 2004-11-08 2006-05-11 Thk Co., Ltd. Grease composition conforming to vibration and guide employing the same
EP1811012A1 (en) * 2004-11-08 2007-07-25 THK Co., Ltd. Grease composition conforming to vibration and guide employing the same
EP1811012A4 (en) * 2004-11-08 2009-03-18 Thk Co Ltd Grease composition conforming to vibration and guide employing the same
US9243671B2 (en) 2009-10-22 2016-01-26 Ntn Corporation Fixed type constant velocity universal joint

Also Published As

Publication number Publication date
CN1168916A (en) 1997-12-31
JP3320611B2 (en) 2002-09-03
CN1069691C (en) 2001-08-15
JPH09324189A (en) 1997-12-16
KR100410724B1 (en) 2004-03-30
EP0811675B1 (en) 2001-12-12
TW349118B (en) 1999-01-01
ES2164991T3 (en) 2002-03-01
KR980002219A (en) 1998-03-30
DE69708974T2 (en) 2002-08-08
DE69708974D1 (en) 2002-01-24

Similar Documents

Publication Publication Date Title
EP0773280B1 (en) Grease composition for constant velocity joints
US5589444A (en) Grease composition for constant velocity joints
US5604187A (en) Grease composition for constant velocity joints
US6037314A (en) Grease composition for constant velocity joints
US8216983B2 (en) Grease composition for use in constant velocity joint and constant velocity joint
US5043085A (en) Grease composition containing urea, urea-urethane, or urethane thickeners
EP0811675B1 (en) Grease composition for constant velocity joints
US5498357A (en) Grease composition for high-temperature, high-speed and high-load bearings
US7910526B2 (en) Grease composition for constant velocity joint and constant velocity joint containing the composition sealed therein
US20150045272A1 (en) Grease composition
US20060068996A1 (en) Grease composition for ball type constant velocity joints and ball type constant velocity joints containing the grease composition
CN101679904A (en) Grease composition for constant-velocity joint and enclose its constant velocity cardan joint
EP2687584A1 (en) Grease composition
EP2135924B1 (en) Grease composition
JP3320598B2 (en) Grease composition for constant velocity joints
JP3988898B2 (en) Grease composition for constant velocity joints
JP4112419B2 (en) Grease composition
JP4397977B2 (en) Grease composition for constant velocity joints
JPH08165488A (en) Grease composition for constant-velocity joint
JP2021161382A (en) Grease composition for constant velocity joint
JP2023128103A (en) grease composition
JP2000044977A (en) Grease composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19971219

17Q First examination report despatched

Effective date: 19990706

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 69708974

Country of ref document: DE

Date of ref document: 20020124

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2164991

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160523

Year of fee payment: 20

Ref country code: ES

Payment date: 20160523

Year of fee payment: 20

Ref country code: DE

Payment date: 20160525

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160524

Year of fee payment: 20

Ref country code: FR

Payment date: 20160523

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69708974

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20170825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170516