EP0711442B1 - Detecteur infrarouge d'intrusion actif - Google Patents
Detecteur infrarouge d'intrusion actif Download PDFInfo
- Publication number
- EP0711442B1 EP0711442B1 EP95917879A EP95917879A EP0711442B1 EP 0711442 B1 EP0711442 B1 EP 0711442B1 EP 95917879 A EP95917879 A EP 95917879A EP 95917879 A EP95917879 A EP 95917879A EP 0711442 B1 EP0711442 B1 EP 0711442B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- detector according
- infrared detector
- controller
- infrared
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/183—Single detectors using dual technologies
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/181—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems
- G08B13/187—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using active radiation detection systems by interference of a radiation field
Definitions
- the present invention is in the field of infrared detectors, which are detectors, who monitor a room for unauthorized entry and for this purpose one from Evaluate the infrared radiation received by the detector.
- infrared detectors There are two types of such infrared detectors, the passive and the active.
- passive infrared detectors With passive infrared detectors, the detector waits until one radiation source, the one emits different radiation from the environment, i.e. a different temperature than shows their surroundings, penetrates into the visual field.
- the passive infrared detectors that relatively inexpensive and widespread today, in principle only radiant Detect and hit objects as soon as objects, such as valuables, to be monitored using mechanical, undetectable means are removable.
- special measures are required for passive infrared detectors against the so-called masking, that is the unnoticed changing or covering the field of view of the detector.
- the active infrared detectors do not process the im Objects in the field of view are emitted heat radiation, but rather irradiate them actively monitor the room to be monitored and react to changes in the reflected infrared radiation. As a result, they can also move from "dead", that is, not radiating Detect objects. In addition, they are very difficult to mask because they are notice any approach.
- the active infrared detectors have certain difficulties sensitivity and false alarm security because of the reflected infrared radiation can be overlaid by such strong interference that reliable detection movement becomes almost impossible.
- the invention relates to an active infrared detector for the detection of movements in a surveillance room with a transmitter for transmitting modulated infrared radiation in the surveillance room, with a receiver for those from the surveillance room reflected infrared radiation, and with one connected to the receiver and means for obtaining an evaluation circuit containing a useful signal.
- the evaluation circuit contains an operational amplifier designed as a synchronous amplifier, from which only those receive signals are amplified that with the transmitted signal are in phase. These signals are in two integrators with different time constants integrated, both integrators having the same voltage in the undisturbed state generate, and a difference between these voltages indicates an intruder.
- This infrared detector can not satisfy in terms of responsiveness because the integration of the received signal with two different time constants is not sufficient Guarantees that every object movement in the surveillance room too is actually recognized.
- the detector is also not false alarm-proof because it is not excluded that can be a difference between the signals of the integrators causes other than caused by object movement.
- this known active infrared detector with regard to sensitivity, Reliability and insensitivity to external influences improved become.
- the inventive active infrared detector according to the preamble of claim 1 is to achieve the object characterized in that the evaluation circuit on the one hand with the useful signal acted upon and on the other hand connected to the output of the receiver for delivering a compensation signal superimposed on the receiver signal, and that the compensation signal is selected such that the useful signal is regulated the value is zero.
- An active infrared detector is also known from FR-A-2 290 671, whereby a useful signal is adjusted to zero.
- the evaluation circuit evaluates the received and broadcast signal.
- common optics are provided for the transmitter and receiver is.
- a second preferred embodiment of the infrared detector according to the invention is characterized in that the evaluation circuit is connected downstream of the controller Analog / digital converter has, at one output, the digitized controller signal available and its other output with a digital / analog converter for generation a voltage corresponding to the respective digital signal value and that this voltage is used to generate the compensation signal.
- the digitization of the controller signal has the advantage that it is more differentiated than previously and smarter signal evaluation becomes possible.
- the one output of the analog / digital converter is connected to a microprocessor.
- the microprocessor on the one hand enables an increase in resolution and on the other hand creates the prerequisite, after the existing sensor in the infrared detector with a second another detection principle to couple the sensor and the signals of both Evaluate sensors together.
- the active infrared motion detector 1 shown in Fig. 1 consists essentially of a transmitter S which irradiates the room to be monitored with pulsating infrared light, from a receiver E for the infrared radiation reflected from the monitoring room, from evaluation and control electronics 2 and from a power supply 3. 2 and 4, the transmitter S is an infrared light emitting diode (IRED) 4 and the receiver E is formed by a photodiode 5.
- Transmitter S, receiver E, electronics 2 and power supply 3 are arranged in a common housing 6, which in the monitoring room at a suitable location, for example on a wall or on the Ceiling is mounted.
- the power supply 3 is connected to an external supply and contains a fixed voltage regulator (not shown).
- the housing 6 contains in the area of the transmitter S and of the receiver E an infrared-transmissive window 7.
- suitable optics 8 provided, of course not between window 7 on the one hand and the transmitter and receiver S or E must be arranged on the other hand, but also in the window 7 can be integrated.
- the optics 8 can be a lens or a mirror optics.
- transmitter S and receiver E It is essential that common optics are provided for transmitter S and receiver E. is. In other words, this means that the receiver E is exactly in those areas of the surveillance room "sees" that the transmitter S is currently applying infrared radiation. And this enables a multiple range with the same power consumption or massively reduced power consumption with the same range. Between transmitter S and receiver E is a shield 9 for preventing a direct light connection arranged between these two elements. As can also be seen in FIG. 1, the electronics 2 has an alarm output 10 for those obtained in the signal evaluation Alarm signals on. These can be an internal one installed in the respective detector 1 and / or activate an external alarm display.
- the infrared light emitting diode 4 is preceded by a first modulator 11 a suitable modulation of the radiation emitted by the infrared light emitting diode 4 he follows.
- This radiation preferably consists of a continuous sequence of pulses and pulse pauses so that the room to be monitored is irradiated with pulsating infrared light becomes. It can also be useful to run a sequence of a certain number insert a longer, predetermined transmission pause of pulses and pulse pauses. In this In this case, the monitoring room is irradiated by intermittently emitted and pulse trains or pulse packets interrupted by pauses in transmission. The Transmission pauses to the pulse trains in a fixed or in a variable time ratio stand.
- the first modulator 11 is controlled by a control stage 12, which receives its clock from a clock 13.
- the control stage 12 determines in particular the time sequence and the length of the signals emitted to the infrared light-emitting diode 4.
- the infrared radiation emitted by the infrared light-emitting diode 4 is bundled by the optics 8 (FIG. 1) and directed into a defined area of the monitoring room.
- the infrared radiation reflected from this area is collected by the optics 8 and thrown onto the light-sensitive diode 5.
- the received infrared radiation is converted by the diode 5 into a proportional current (receiver signal) I e , which is fed to a current / voltage converter 14 connected downstream of the diode 5 and is converted by this into a voltage (received signal) U e .
- the transducer 14 also acts as a type of filter for uniform light by suppressing light from the sun and room lighting.
- a frequency filter 15 connected downstream of the current / voltage converter 14, undesired frequencies are filtered out of the received signal U e , as a result of which interference caused by incandescent, fluorescent and discharge lamps is suppressed.
- the output of the frequency filter 15 is connected to a switch 16 controlled by the control stage 12 in time with the modulation of the infrared light-emitting diode 4.
- the output signal of the frequency filter 15, which is largely free of interference, is alternately fed to one of two integrators 17, 17 'via the switch 16.
- the switch 16 is controlled by the control stage 12 in such a way that the received signal U e is transmitted to one integrator, for example to the integrator 17, during the duration of the pulse transmission and to the other integrator, for example to the integrator 17 ', during the duration of the pulse pauses. , is directed.
- the switch 16 remains in a neutral position in which neither of the two integrators 17 or 17 'is acted upon by the received signal.
- the switch 16 is preferably formed by a controlled switch.
- the integrator 17 receives only the reflected infrared transmission signal, including any residues of the filtered interference signal from the time of the transmission pulses, and the integrator 17 'only receives any residues of the filtered interference signal from the time of the pulse pauses, so that the reflected infrared transmission signal can be obtained by simply forming the difference between the output signals of the two integrators 17 and 17 '.
- the aforementioned difference formation takes place in a stage 18 connected downstream of the two integrators 17, 17 '. Its output signal is the infrared transmission signal U n , largely cleaned of interference and reflected from the monitoring room, which forms the useful signal for the signal evaluation.
- the useful signal U n is supplied on the one hand to a controller 19 and on the other hand to two comparators 20 and 20 '.
- the output of the controller 19 is connected to the one input of a second modulator 21, the second input of which is connected to the control stage 12 and the output of which is connected to the input of the current / voltage converter 14.
- the second modulator 21 superimposes a compensation current I k on the signal of the photodiode 5, the timing conditions for the superimposition of this compensation current being determined by the control stage 12.
- the controller 19 changes the compensation current I k until the output signal of stage 18, that is to say the useful signal U n, becomes zero. This means that the maximum sensitivity is always maintained.
- the control loop can be with a self-balancing scale or with a bridge circuit are compared, the value zero of the useful signal representing the rest position.
- Each received infrared signal, also the unwanted basic signal, is compensated for zero. This is the only way to open the possibility for sender and receiver S or E (Fig. 1) to use a common optics 8. Because reflections caused by the transmitter of lenses, mirrors and / or infrared windows that reflect the possible reflection signal Object in the surveillance room are usually exceeded by potencies suppressed by the control loop. A highly reflective object in the detector's field of vision does not lead to a loss of sensitivity, but is compensated for, and the maximum sensitivity is retained.
- the comparators 20 and 20 ' are used for signal evaluation. They compare the useful signal U n with an upper limit value (comparator 20) and a lower limit value (comparator 20 ') and deliver an alarm signal to the alarm output 10 when the limit value is exceeded or undershot. This signal evaluation can take place despite the described compensation of the useful signal, because the whole control process is so slow that the infrared signal received by the photodiode 5 is not immediately compensated for zero even with very careful and slow entry into the monitoring space, so that the two comparators 20, 20 'sufficient time remains for a detection.
- the controller 19 Because of the considerable size of the interfering reflections caused by imperfect optics 8 or windows 9 (FIG. 1), the controller 19 has to compensate a very large amount of generally more than 90% of the total reflections, the interfering reflections being caused by the geometry and material of the optics and windows have a fixed value. It would be desirable to compensate for this fixed value by means of an additional, fixed compensation current I k ' , as a result of which the amount of total reflections to be compensated for by the controller 19 would decrease sharply and the resolution would increase considerably. In this case, the controller 19 would have to accept not only the reflections from the monitoring room, but also any deviations caused by manufacturing tolerances and / or specimen variations of the infrared light-emitting diode 4.
- a third modulator 22 which is also controlled by the control stage 12, is provided for generating the compensation current I k ' .
- This is either set to a fixed value of the compensation current I k ' , or, as shown in the figure, it is adjustable. In the latter case, the compensation current I k 'can be adjusted so that not only the mentioned interference reflections but also the deviations caused by the infrared light-emitting diode 4 are compensated.
- the controller 19 has an approximately logarithmic behavior. If he is to regulate a small change in the useful signal requires a certain time t, then the Correction of a change ten times larger only twice the time 2t. This behavior is particularly advantageous when switching on the detector, where the change in the useful signal Is 100% and still does not waste an unnecessarily long time for the adjustment.
- the alarm signal at alarm output 10 can be further evaluated, for example for plausibility be checked what can be done in the detector or in a control center, or it is sent to a control center without further processing, where an alarm is then triggered.
- the alarm signal can additionally or alternatively be a light-emitting diode arranged in the detector 23 activate.
- a relay 24 is also provided, whose contacts enable potential-free evaluation of the alarm signal.
- Fig. 3 is another way to suppress or compensate for unwanted Reflections shown.
- the photodiode forming the actual motion detector 5 a second photodiode 5 'with preferably identical data with reversed polarity connected in parallel.
- the geometry of the arrangement is chosen so that the a photodiode 5 in the focus of the optics 8 (Fig. 1) and the second photodiode 5 'outside is arranged by this. This receives the one photodiode 5 from the Monitoring room reflected radiation plus any interfering reflections, against the second photodiode 5 'only receives the interference reflections. So the difference corresponds the photo currents of the two photo diodes 5 and 5 'the signal sought from the monitoring room, which at best from interference signals such as solar radiation or Room lighting can be overlaid.
- the temperature coefficients of the photosensitivity are mutually compensated for with respect to the common received signals.
- all those influences and potential sources of interference that have an effect on both photodiodes remain ineffective. Influences or disturbances of this type are in particular specimen scatter and temperature drifts of the infrared light-emitting diode 4, as well as specimen scatter and changes over time in the reflection constants of the relevant mechanical components, such as varying colors and surface structures.
- the controller 19 and the second modulator 21 thus only have the compensation of the infrared signals reflected from the monitoring room, whereas around 95% of the total reflections and photo currents are compensated by the second photo diode 5 '.
- the influence of the controller 19 can be reduced to approximately ⁇ 5%, as a result of which the resolution of the useful signal U n increases to approximately ten times what corresponds to approximately ten times the sensitivity for constant limits of the comparators 20, 20 '.
- the evaluation circuit 2 'shown in FIG. 4 differs from the evaluation circuit 2 of FIG. 2 essentially in that another controller is used and that the controller signal is converted analog / digital and thus for evaluation in digitized Form is available.
- the control of the first modulator 11 by a program control stage 26 which has a counter 27, among other things.
- the program control stage 26 receives its clock from a clock 13 and determines the time sequence and the length of the infrared light-emitting diode 4 signals emitted.
- With the reference numeral 28 is the first modulator 11 assigned temperature sensor to compensate for the temperature response of the the infrared light emitting diode 4 and the photodiode 5 containing the control circuit.
- stage 18 downstream of the two integrators 17 and 17 ' the signal processing proceeds analogously to that in the evaluation circuit shown in FIG. 2.
- the output signal U n of stage 18, which forms the useful signal for the signal evaluation is fed to a controller 29, which is preferably a so-called PID controller, that is to say a controller with a proportional, integral and differential component, and reaches a voltage from it / Pulse width converter 30.
- PID controller a controller with a proportional, integral and differential component
- the pulse-shaped signal from the converter 30 reaches the program control stage 26, the counter 27 of which counts the clock clocks per width of each of the pulses of this signal. Because of the proportionality between the pulse width and the output signal of the controller 29, the number of clock cycles determined by the counter 27 per pulse width represents a digital image of the analog output signal of the PID controller 29.
- the constant length pulse + Pulse pause is defined by the program control stage 26 and is at a clock frequency of 4 MHz and approx. 1 ms when using a 12 bit counter. So stand pro Second 1,000 results with a maximum of 12 bits, that's 4,096 pieces of information with accuracy of ⁇ 1d plus the possible error of converter 30 are available.
- the values of the clock clocks determined by the counter 27 pass from the program control stage 26 into a pulse width / voltage converter 32, in which a voltage corresponding to the respective counter value, which determines the compensation current I k , is formed with reference to a reference voltage obtained from the reference voltage source 25. An accuracy of ⁇ 0.001% can easily be achieved here, so that the compensation current corresponds exactly to the level of the counter 27.
- the output of the differential controller 31 is also connected to the pulse width / voltage converter 32 and supplies it with the higher-frequency components of the useful signal U n .
- the output of converter 32 is connected to one input of second modulator 21 (FIG. 2), whose second input is connected to program control stage 26 and whose output is connected to the input of current / voltage converter 14.
- the second modulator 21 superimposes the compensation current I k on the signal of the photodiode 5 in the opposite phase, the time conditions for this superimposition being determined by the program control stage 26.
- the PID controller 29 changes its output signal and thus the pulse / pause ratio in such a way that the output signal of the stage 18, ie the useful signal U n , becomes zero.
- the status of the counter 27 thus corresponds to the infrared image of the monitored room except for the already mentioned possible deviation of ⁇ 1d.
- accuracy can be determined further increase by averaging from a large number of individual values.
- a Such averaging can be done, for example, by the counter 27 or by a the microprocessor 33 downstream of the program control stage 26.
- the microprocessor also facilitates a meaningful coupling of the measuring principle described with a second in a so-called dual Detector.
- the microprocessor 33, the alarm signal present as a result of the evaluation outputs to alarm output 10, the alarm signal can check for plausibility and thereby relieve the head office.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Geophysics And Detection Of Objects (AREA)
- Burglar Alarm Systems (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Claims (21)
- Détecteur d'intrusion infrarouge actif pour la détection de mouvement dans une zone de surveillance, comportant un émetteur pour émettre un rayonnement infrarouge modulé dans la zone de surveillance, comportant un récepteur pour le rayonnement infrarouge réfléchi dans la zone de surveillance et comportant un circuit d'exploitation, raccordé au récepteur, contenant des moyens pour récupérer un signal utile et n'exploitant que des signaux reçus, caractérisé en ce que le circuit d'exploitation comporte un régulateur (19, 29), alimenté d'une part en le signal (Un) utile et relié d'autre part à la sortie du récepteur (5), pour fournir un signal (Ik) de compensation superposé au signal (le) de réception, et en ce que le signal de compensation est choisi de manière qu'il s'effectue une régulation du signal utile à la valeur 0.
- Détecteur d'intrusion infrarouge suivant la revendication 1, caractérisé en ce qu'il est prévu une optique (8) commune pour l'émetteur (S, 4) et le récepteur (E, 5).
- Détecteur d'intrusion infrarouge suivant la revendication 2, caractérisé en ce que le circuit d'exploitation comporte un premier modulateur (11), raccordé à un étage (12, 26) de commande, pour la modulation sous forme d'impulsions du signal émis par l'émetteur (S, 4), un répartiteur (16) commandé, raccordé à l'étage de commande, deux intégrateurs (17, 17') montés en aval du répartiteur et un moyen (18) pour former la différence des signaux de sortie des intégrateurs.
- Détecteur d'intrusion infrarouge suivant la revendication 3, caractérisé en ce que le signal (Ue) de réception des intégrateurs (17, 17') est envoyé, par l'intermédiaire du répartiteur (16) à la cadence de modulation du signal d'émission, si bien qu'il s'effectue dans l'un (17) des intégrateurs une intégration du signal de réception par rapport à la durée d'impulsions et dans l'autre intégrateur (17') une intégration par rapport aux arrêts entre les impulsions.
- Détecteur d'intrusion infrarouge suivant la revendication 4, caractérisé en ce qu'il est monté en aval du moyen (18) servant à former une différence au moins un comparateur (20, 20') dans lequel s'effectue une comparaison du signal (Un) utile à au moins une valeur limite.
- Détecteur d'intrusion infrarouge suivant la revendication 5, caractérisé en ce qu'il est prévu deux comparateurs (20, 20') dans lesquels s'effectue une comparaison du signal (Un) utile à une valeur limite supérieure et à une valeur limite inférieure.
- Détecteur d'intrusion infrarouge suivant la revendication 6, caractérisé en ce que, pour constater la direction de déplacement d'un objet détecté dans la zone de surveillance, il s'effectue une recherche du signe du signal de sortie des deux comparateurs (20, 20').
- Détecteur d'intrusion infrarouge suivant l'une des revendications 3 à 7, caractérisé en ce qu'il est monté en aval du régulateur (19) un deuxième modulateur (21) qui est commandé par l'étage (12) de commande et qui superpose de manière symétrique au signal (le) de réception le signal (Ik) de compensation.
- Détecteur d'intrusion infrarouge suivant la revendication 8, caractérisé en ce que le régulateur (19) a un comportement de régulation à peu près logarithmique.
- Détecteur d'intrusion infrarouge suivant la revendication 8, caractérisé par un troisième modulateur (22), réalisé de préférence de manière à pouvoir être réglé, pour produire un signal (Ik,) de compensation supplémentaire en vue de compenser des réflexions causées par l'optique (8) ou par une fenêtre (7) transparente au rayonnement infrarouge du détecteur (1) d'intrusion.
- Détecteur d'intrusion infrarouge suivant la revendication 8, caractérisé en ce qu'il est monté en parallèle, avec polarité inversée, à une première diode (5) formant le récepteur (E) une deuxième diode (5') ayant de préférence des données identiques, et en ce que la différence des courants photoélectriques des deux diodes forme le signal (le) du récepteur.
- Détecteur d'intrusion infrarouge suivant la revendication 11, caractérisé en ce que la première diode (5) est alimentée par le rayonnement infrarouge réfléchi par la zone de surveillance et par le rayonnement parasite réfléchi le cas échéant par l'optique (8) ou par une fenêtre (7) transparente au rayonnement infrarouge du détecteur (1) d'intrusion et en ce que la deuxième diode (5') n'est alimentée que par le rayonnement parasite précité.
- Détecteur d'intrusion infrarouge suivant la revendication 12, caractérisé en ce que la première diode (5) est montée au foyer de l'optique (8) commune et la deuxième diode (5') est montée hors du foyer.
- Détecteur d'intrusion infrarouge suivant l'une des revendications 1 à 4, caractérisé en ce que le circuit d'exploitation comporte un convertisseur (26, 30) analogique/numérique qui est monté en aval du régulateur (29), à l'une des sorties duquel on peut obtenir le signal du régulateur numérisé et dont l'autre sortie est reliée à un convertisseur (25, 32) numérique/analogique pour produire une tension correspondant à la valeur du signal numérique associée, et en ce que cette tension est utilisée pour produire le signal (Ik) de compensation.
- Détecteur d'intrusion infrarouge suivant la revendication 14, caractérisé en ce que l'une des sorties du convertisseur (26, 30) analogique/numérique est reliée à un microprocesseur (33).
- Détecteur d'intrusion infrarouge suivant la revendication 15, caractérisé en ce que le régulateur (29) alimenté en le signal (Un) utile est formé par un régulateur PID.
- Détecteur d'intrusion infrarouge suivant l'une des revendications 14 à 16, caractérisé en ce que le convertisseur analogique/numérique est formé par un convertisseur (30) de signaux servant à convertir le signal de régulation en un signal sous forme d'impulsions et par un étage (26) monté en aval du convertisseur de signaux et servant à récupérer des valeurs de comptage correspondant à la grandeur des impulsions individuelles.
- Détecteur d'intrusion infrarouge suivant la revendication 17, caractérisé en ce que le convertisseur (30) de signaux est formé par un convertisseur tension/durée d'impulsions, qui produit un signal sous forme d'impulsions à partir du signal de sortie analogique du régulateur, la durée d'impulsions plus l'arrêt entre les impulsions étant une valeur constante et la durée de l'impulsions étant proportionnelle au signal du régulateur.
- Détecteur d'intrusion infrarouge suivant la revendication 18, caractérisé en ce que l'étage (26) monté en aval du convertisseur (30) de signaux comporte un compteur (27) et un générateur (13) de cadence, un comptage des impulsions de cadence correspondant à la durée des impulsions de signaux individuels étant effectué par le compteur.
- Détecteur d'intrusion infrarouge suivant la revendication 19, caractérisé en ce que le convertisseur numérique/analogique est formé par un convertisseur (32) durée d'impulsions/tension qui est relié à une source (25) de tension de référence et dans lequel s'effectue une conversion de la valeur associée du compteur (27) en une tension.
- Détecteur d'intrusion infrarouge suivant la revendication 20, caractérisé en ce que le signal (Un) utile est envoyé, parallèlement au régulateur (29) PID, à un régulateur (31) différentiel prévu pour la composante différentielle du signal et en ce que la sortie du régulateur différentiel est reliée au convertisseur (32)/durée d'impulsions/tension.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95917879A EP0711442B1 (fr) | 1994-05-30 | 1995-05-19 | Detecteur infrarouge d'intrusion actif |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94108289 | 1994-05-30 | ||
EP94108289 | 1994-05-30 | ||
CH90795 | 1995-03-31 | ||
CH907/95 | 1995-03-31 | ||
CH90795 | 1995-03-31 | ||
EP95917879A EP0711442B1 (fr) | 1994-05-30 | 1995-05-19 | Detecteur infrarouge d'intrusion actif |
PCT/CH1995/000112 WO1995033248A1 (fr) | 1994-05-30 | 1995-05-19 | Detecteur infrarouge d'intrusion actif |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0711442A1 EP0711442A1 (fr) | 1996-05-15 |
EP0711442B1 true EP0711442B1 (fr) | 1999-09-22 |
Family
ID=25686074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95917879A Expired - Lifetime EP0711442B1 (fr) | 1994-05-30 | 1995-05-19 | Detecteur infrarouge d'intrusion actif |
Country Status (8)
Country | Link |
---|---|
US (1) | US5675150A (fr) |
EP (1) | EP0711442B1 (fr) |
JP (1) | JPH09501253A (fr) |
CN (1) | CN1088225C (fr) |
CA (1) | CA2166389C (fr) |
DE (1) | DE59506883D1 (fr) |
IL (1) | IL113653A (fr) |
WO (1) | WO1995033248A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008004419A1 (de) * | 2008-01-14 | 2009-07-16 | Elmos Semiconductor Ag | Beleuchtungsvorrichtung als Außenbeleuchtung und Verfahren zu deren Steuerung |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09186574A (ja) * | 1995-12-28 | 1997-07-15 | Nec Corp | 検出機能付き端末装置 |
EP0845765A1 (fr) | 1996-12-02 | 1998-06-03 | Cerberus Ag | Système de détection d'intrusions |
DE19709805A1 (de) * | 1997-03-10 | 1998-09-24 | Stribel Gmbh | Raumüberwachungsgerät |
US6768504B2 (en) | 2001-03-31 | 2004-07-27 | Videojet Technologies Inc. | Device and method for monitoring a laser-marking device |
JP3959461B2 (ja) * | 2002-01-31 | 2007-08-15 | オプテックス株式会社 | 能動型赤外線センサ |
US20040004577A1 (en) * | 2002-04-29 | 2004-01-08 | Forster Ian J. | Flexible curtain antenna for reading RFID tags |
DE10236937A1 (de) * | 2002-08-12 | 2004-02-26 | BSH Bosch und Siemens Hausgeräte GmbH | Elektrisches Gerät |
US6812466B2 (en) * | 2002-09-25 | 2004-11-02 | Prospects, Corp. | Infrared obstacle detection in the presence of sunlight |
WO2005045473A1 (fr) * | 2003-11-10 | 2005-05-19 | Omron Corporation | Dispositif de traitement et dispositif de detection d'objets |
US7616109B2 (en) * | 2006-03-09 | 2009-11-10 | Honeywell International Inc. | System and method for detecting detector masking |
US8384559B2 (en) | 2010-04-13 | 2013-02-26 | Silicon Laboratories Inc. | Sensor device with flexible interface and updatable information store |
EP2453426B2 (fr) * | 2010-11-15 | 2021-03-17 | Cedes AG | Capteur de surveillance doté d'un autotest |
EP2631674A1 (fr) * | 2012-02-23 | 2013-08-28 | ELMOS Semiconductor AG | Procédé et système de capteur destinés à la mesure des propriétés d'une voie de transmission d'un système de mesure entre émetteur et récepteur |
CN105046860B (zh) * | 2015-09-14 | 2018-04-13 | 北京世纪之星应用技术研究中心 | 一种利用光波多普勒效应的入侵探测系统和方法 |
CN107367340B (zh) * | 2017-06-21 | 2023-11-14 | 陈中杰 | 红外光力矩监控系统 |
CN111025416A (zh) * | 2018-10-09 | 2020-04-17 | 众智光电科技股份有限公司 | 红外线感测装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2452794C3 (de) * | 1974-11-07 | 1979-08-30 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Automatische Pegeleinstellschaltung für voreinstellbare IR-Puls-Überwachungsgeräte mit getaktetem Empfänger |
DE3045217C2 (de) * | 1980-12-01 | 1986-08-07 | Brown, Boveri & Cie Ag, 6800 Mannheim | Verfahren und Vorrichtung zur optischen Überwachung und Sicherung von Räumen gegen Eindringlinge |
DE3618693A1 (de) * | 1985-06-12 | 1986-12-18 | Yoshida Kogyo K.K., Tokio/Tokyo | Verfahren und vorrichtung zur feststellung der anwesenheit eines menschlichen koerpers |
GB8529585D0 (en) * | 1985-11-30 | 1986-01-08 | Casswell P H | Active infra red detector |
-
1995
- 1995-05-08 IL IL11365395A patent/IL113653A/en not_active IP Right Cessation
- 1995-05-19 JP JP8500128A patent/JPH09501253A/ja active Pending
- 1995-05-19 US US08/592,363 patent/US5675150A/en not_active Expired - Fee Related
- 1995-05-19 EP EP95917879A patent/EP0711442B1/fr not_active Expired - Lifetime
- 1995-05-19 CN CN95190495A patent/CN1088225C/zh not_active Expired - Fee Related
- 1995-05-19 CA CA002166389A patent/CA2166389C/fr not_active Expired - Fee Related
- 1995-05-19 WO PCT/CH1995/000112 patent/WO1995033248A1/fr active IP Right Grant
- 1995-05-19 DE DE59506883T patent/DE59506883D1/de not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008004419A1 (de) * | 2008-01-14 | 2009-07-16 | Elmos Semiconductor Ag | Beleuchtungsvorrichtung als Außenbeleuchtung und Verfahren zu deren Steuerung |
Also Published As
Publication number | Publication date |
---|---|
CN1129042A (zh) | 1996-08-14 |
CA2166389A1 (fr) | 1995-12-07 |
WO1995033248A1 (fr) | 1995-12-07 |
JPH09501253A (ja) | 1997-02-04 |
US5675150A (en) | 1997-10-07 |
IL113653A (en) | 1998-10-30 |
IL113653A0 (en) | 1995-08-31 |
EP0711442A1 (fr) | 1996-05-15 |
DE59506883D1 (de) | 1999-10-28 |
CN1088225C (zh) | 2002-07-24 |
CA2166389C (fr) | 2004-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0711442B1 (fr) | Detecteur infrarouge d'intrusion actif | |
EP0360126B2 (fr) | Méthode d'opération d'un détecteur optique de fumée et détecteur de fumée pour la mise en oeuvre de la méthode | |
EP2252984B1 (fr) | Évaluation d'un signal différentiel entre deux signaux de sortie de deux dispositifs de réception situés dans un dispositif de détection | |
DE60121807T2 (de) | Hinderniserkennungssensor mit synchroner erkennung | |
EP2541273B1 (fr) | Détection et détermination de distance d'objets | |
DE10229408B4 (de) | Optischer Sensor | |
EP0107042A1 (fr) | Détecteur infra-rouge pour déterminer un intrus dans une zone | |
EP1061489B1 (fr) | Détecteur d'intrusion avec dispositif de surveillance contre un sabotage | |
EP2159603B1 (fr) | Procédé de détection d'objets et capteur de détection d'objets | |
EP1071931B1 (fr) | Dispositif detecteur et procede destine au fonctionnement d'un dispositif detecteur | |
EP0926646A1 (fr) | Détecteur de fumée optique | |
EP2698649B1 (fr) | Capteur de surveillance doté d'un contrôle automatique | |
EP2093731A1 (fr) | Détecteur de fumée optique linéaire doté de plusieurs rayons partiels | |
EP1087352A1 (fr) | Détecteur optique de fumée | |
EP0039799B1 (fr) | Dispositif pour détecter des mouvements | |
DE3316010C2 (fr) | ||
DE19520242C2 (de) | Vorrichtung zur Bewegungsmeldung mit mindestens einem optoelektrischen Sensor zur Erfassung von Lichtstrahlen aus einem zu überwachenden Raumbereich | |
DE10016892A1 (de) | Optoelektronische Vorrichtung | |
DE3415233A1 (de) | Raumueberwachungseinrichtung | |
DE102006023971B4 (de) | Optischer Sensor und Verfahren zum Nachweis von Personen, Tieren oder Gegenständen | |
DE2911363A1 (de) | Ueberwachungseinrichtung | |
DE102010064682B3 (de) | Optoelektronischer Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten | |
DE8609515U1 (de) | Vorrichtung zur Sabotageüberwachung an einem IR-Bewegungsmelder | |
DE3624195C2 (fr) | ||
EP1162475B1 (fr) | Détecteur Doppler de mouvement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960120 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB LI NL |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 19981103 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS BUILDING TECHNOLOGIES AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990928 |
|
REF | Corresponds to: |
Ref document number: 59506883 Country of ref document: DE Date of ref document: 19991028 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20040506 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20040511 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20040525 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20040719 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20040806 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20050519 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060131 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20051201 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20060131 |