EP0710328B1 - Continuous conveying process and device for shear-sensitive fluids - Google Patents
Continuous conveying process and device for shear-sensitive fluids Download PDFInfo
- Publication number
- EP0710328B1 EP0710328B1 EP94924738A EP94924738A EP0710328B1 EP 0710328 B1 EP0710328 B1 EP 0710328B1 EP 94924738 A EP94924738 A EP 94924738A EP 94924738 A EP94924738 A EP 94924738A EP 0710328 B1 EP0710328 B1 EP 0710328B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- piston
- pistons
- valves
- pump
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 29
- 230000008569 process Effects 0.000 title claims abstract description 20
- 229920000642 polymer Polymers 0.000 claims abstract description 14
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 239000004033 plastic Substances 0.000 claims abstract description 7
- 229920003023 plastic Polymers 0.000 claims abstract description 7
- 229920000126 latex Polymers 0.000 claims description 15
- 239000004816 latex Substances 0.000 claims description 8
- 239000000178 monomer Substances 0.000 claims description 6
- 230000008859 change Effects 0.000 claims description 3
- 230000003134 recirculating effect Effects 0.000 claims 5
- 238000005070 sampling Methods 0.000 abstract description 4
- 238000012545 processing Methods 0.000 abstract description 2
- 239000000523 sample Substances 0.000 description 23
- 238000005086 pumping Methods 0.000 description 16
- 238000013461 design Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 6
- 230000010349 pulsation Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000003999 initiator Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- FIKFLLIUPUVONI-UHFFFAOYSA-N 8-(2-phenylethyl)-1-oxa-3,8-diazaspiro[4.5]decan-2-one;hydrochloride Chemical compound Cl.O1C(=O)NCC11CCN(CCC=2C=CC=CC=2)CC1 FIKFLLIUPUVONI-UHFFFAOYSA-N 0.000 description 1
- 244000068988 Glycine max Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000007707 calorimetry Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005100 correlation spectroscopy Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000007720 emulsion polymerization reaction Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012538 light obscuration Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002587 poly(1,3-butadiene) polymer Polymers 0.000 description 1
- 238000004886 process control Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
- F04B9/10—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
- F04B9/109—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
- F04B9/111—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B1/00—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
- F04B1/02—Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having two cylinders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B15/00—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
- F04B15/02—Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts the fluids being viscous or non-homogeneous
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B7/00—Piston machines or pumps characterised by having positively-driven valving
- F04B7/0019—Piston machines or pumps characterised by having positively-driven valving a common distribution member forming a single discharge distributor for a plurality of pumping chambers
Definitions
- the invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, a device for carrying out the method and a new double-length reciprocating piston pump.
- polymer latices or plastic dispersions under shear stress e.g. can easily coagulate during funding, i.e. Solid masses (coagulate) separate out from the finely dispersed fluids, which can occupy or clog conveying elements and pipes.
- This coagulum can also settle on sensors of all kinds that dip into latex or come into contact with latex and falsify or prevent ongoing measurements.
- latices which have to be produced with a minimum of emulsifier out of consideration for the product quality, tend to form coagulate very easily.
- centrifugal pumps consist of a stator (housing) and a rotor (impeller). Due to the high speed of the impeller, the product to be conveyed is radially accelerated from the center of the rotor (fulcrum) and pressed by the corresponding centrifugal forces on the outer diameter of the impeller through the pressure port of the housing. As a rule, centrifugal pumps need a speed of more than 500 / min. At this lower speed, product delivery is no longer possible with this system. Due to the design features, centrifugal pumps have large dead space volumes and are not self-priming.
- Diaphragm and piston pumps are positive displacement pumps that operate at lower frequencies than centrifugal pumps. The lowest frequency is 30 strokes / min.
- the conveying movement of the piston or membrane, the drive side also being moved by a piston is jerky, pulsations occur, so that one cannot speak of continuous product conveyance or transport in the short-term view.
- the pulsation is pressure-dependent and affects the delivery consistency and dosing accuracy.
- centrifugal pumps can only deliver and build up pressure at high speed. Due to the high peripheral speeds on the rotor, product particles are very strongly sheared at the pump head gaps, so that a particle change takes place. Due to the high dead space volume, a centrifugal pump is unsuitable for conveying small quantities of products with subsequent sampling. For example, it is not possible to take a representative sample amount of, for example, 10 ml from a reactor and to infer reaction conditions in the actual reactor. Piston or Diaphragm pumps operate at too high stroke frequencies and, due to their design features, have many narrow gaps in which product or particle shear occurs. The non-constant speed of the displacement elements also has a product-changing effect.
- the uneven conveying speed causes different frictional forces on product-contacting pipelines or pump head parts, which cause product shear in the microparticle range.
- the residence time of the product in the pump head is not finite or not precisely defined in the known pump designs, since all pump heads have a high dead space volume. Large portions of a suction stroke volume remain in the pump head for a long time, with each new suction stroke only partial mixing with the old product takes place, so that product particles are subjected to shear stress for a long time.
- Another disadvantage is that the piston or diaphragm pumps have no positively controlled valves (ball valves) that open a large, free cross-section depending on the suction or pressure process.
- Another disadvantage is the fact that the suction and pressure processes are not synchronized.
- Single-piston pumps are very large, are very expensive and do not work continuously. The constructions do not allow self-priming, so that pumps are also required on the suction side. Their large dead space makes them z. B. Not suitable for sampling. Even with conceivable twin piston pumps, synchronous operation of the suction and pressure processes is not possible.
- a delivery device is known from US Pat. No. 5,066,199, in which fluid delivery is made possible by means of a double piston pump in cooperation with two pairs of valves controlled by gravity.
- This device has the disadvantage that the gravity valves used in this case no longer close securely, particularly when the fluid to be pumped is of higher density.
- the construction of the double-piston pumps used has proven to be a particular disadvantage, in which the return of the pistons is to be achieved by means of a return spring which, even with the greatest possible compression, still includes an undesired dead space. Otherwise, the use of the control disk used in the device prevents the pump bodies from being completely emptied.
- the invention has for its object to promote shear-sensitive fluids, in particular polymer dispersions, continuously, with little pulsation and gently, so that the fluids remain unaffected in their phase state by the promotion, and in particular with dispersions there is no phase separation or coagulation.
- shear-sensitive fluids in particular polymer dispersions
- the invention is also based on the object of providing a device which enables this support to be carried out gently and over a long period of time without malfunction and reliably.
- the device should enable the fluid between different parts of the system, for. B. a reactor and a measuring loop with different pressure ratios, gently transfer back and forth.
- This object is achieved in that the fluid is sucked in and pumped by means of a dead space-free, low-pulsation double-length reciprocating piston pump and dead space-free valves are used in the piping system through which the fluid flows.
- This double-length reciprocating pump sits z. B. in a pressure loop, a defined amount of sample is transferred through a lock or an overflow valve, which serves as a connecting element to a parallel measuring circuit with a different pressure level, and in the parallel measuring circuit of a second long-stroke piston pump of the same type the actual on-line measuring devices is fed.
- the invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, with a viscosity of up to 100,000 mPa.s at a delivery rate of 10 ml / h to 100 l / h, characterized in that the fluid has at least one Dead space-free valve is sucked in by a piston of a double-long stroke piston pump, while synchronously fluid from the second piston chamber is also released to the delivery side via at least one further dead space-free valve and, after the second piston chamber has been completely emptied, the first valve is opened on the delivery side and closed on the suction side, while the second valve is discharged is closed and opened on the suction side and the direction of movement of the pistons is reversed synchronously, the pistons being seated on a spindle, the direction of movement of the pistons and the position of the valves being controlled via contact switches, and that in the piston chamber according to E Remaining volume remaining is less than 1% of the stroke
- a preferred embodiment is characterized in that the fluid is conveyed in a pumping loop which is connected to a reactor is coupled.
- Sensors or sensors or internals can be located in this pump-around loop or parallel to it. Examples of such sensors are temperature sensors, pH electrodes, conductivity electrodes, NIR light guide probes, vibrating U-tubes for density measurements, refractometers, ultrasonic measuring heads or devices for calorimetry.
- the sensors or measuring devices mentioned are not occupied or blocked by the circulating fluid (for example a latex). In principle, it is possible to incorporate further mixing devices, such as static mixers or heat exchangers, into the pumping loop, which are not occupied or blocked due to the continuous pusation-free and low shear-stressing conveying device.
- Another preferred variant of the method is characterized in that the fluid is passed through an overflow valve or a lock into a region of reduced pressure (for example a secondary pumping loop).
- a variant of this method is particularly preferred, in which the overflow valve or the lock is connected as a coupling between the primary and secondary pump circuit. With this variant it is possible to branch off defined sample volumes of the fluid from the main flow line or a primary pumping circuit and, for example, to conduct a measurement under reduced pressure.
- a pumping loop 2 which contains a new double-length reciprocating piston pump 3 with positively controlled inlet and outlet valves 4, 5 as a conveying device, and an overflow valve 6, which the primary circuit 2 connects to the secondary circuit 7.
- the newly developed double-length reciprocating piston pump is shown in FIGS. 3 and 4. Your two pistons 8 and 9 are driven by an angular stroke gear 10 with an upstream control gear 11.
- the stroke volume of the pump heads can be adjusted by means of a ring 12, which at the same time assumes the task of actuating a contact switch 13 for changing the direction of rotation and for switching the fittings.
- Double seals and support rings are placed on the top of each piston to seal the housing.
- the head seal of the pistons enables the design of a low dead space pump head regardless of the stroke volume.
- the aspirated product volume is displaced quantitatively from the pump head during conveying. While on the one hand the reaction mixture is slowly sucked in by the piston 23, for example, the opposite piston 24, which is guided over the same spindle 14 as the piston 23, presses the previously sucked reaction mixture quantitatively out of the Pump head.
- the double-long stroke piston pump according to the invention is self-priming and self-venting at a pulsation frequency of less than 10 strokes per minute.
- the dead space of the pump is less than 1% of the pump head volume.
- the pump it is possible to work with the pump at a pressure of up to 300 bar and a temperature of -100 to + 250 ° C.
- fluids containing solids can also be pumped if the sedimentation time of the solid is greater than the residence time of the fluid in the pump head.
- the spindle of the pump has an additional anti-rotation device.
- the double-length reciprocating piston pump 3 enables a partial flow of the reaction volume from the reactor 1 to be pumped around in a manner that is gentle on the product.
- 100 ml / h of butadiene polymer were pumped over 100 h at a pressure of 5 bar and a temperature of 50 ° C. without deposition or coagulum formation.
- the pumping loop 2 is connected to a vacuum vessel 13 via an overflow valve 6.
- the overflow valve 6 prevents spontaneous expansion of the liquid monomers contained in the sample amount. This prevents uncontrolled foaming.
- the vacuum vessel 13 has a defined volume and is evacuated to a preselected negative pressure, for example 50 mbar, via a control. When the negative pressure is reached, the control switches a valve 25 in the pumping loop into delivery, so that the double-long stroke piston pump 3 pumps the defined volume against the valve 25 in delivery and increases the system pressure in the pumping loop.
- the overflow valve 6 allows the sample amount to pass into the vacuum vessel at a previously set pressure which is above the reactor pressure.
- the control gives the command to open the valve 25 so that the pumping circuit is put into operation again.
- the injected sample produces a pressure increase in the vacuum vessel, which consists of a calibrated, cylindrical measuring vessel 13 and an expansion vessel 15.
- the expansion tank is preferably designed so that when a low-boiling component of the multi-phase fluid is released, the max. resulting pressure does not exceed 1 bar absolutely.
- the pressure increase is in turn increased by evaporating components of the sample. If the pressure in the measuring vessel no longer changes after a certain time (e.g.
- the pressure difference is calculated and, together with the temperature, the volume of the sample and the volume of the vacuum container, the monomer concentration is determined and thus conclusions can be drawn about the current product composition in the Hit reactor. If the pressure-generating component of the reactor sample is isolated, the remaining, non-evaporated sample amount is automatically compared with the specified target sample amount. If the measured sample volume is below the setpoint, the vacuum vessel is evacuated again and a further sample is requested from the double-length reciprocating piston pump. This sub-process is repeated until the sufficient amount of sample is reached. The vacuum vessel 13 is then aerated with inert gas and the rest of the sample is pumped into a measuring loop.
- the measuring circuit 7 is equipped with a single long-stroke piston pump 16 in order to supply measuring sensors with product.
- the single long-stroke piston pump like the double-long stroke piston pump, is equipped with positively controlled valves 17 and 18, respectively. If the isolated sample is sucked out of the vacuum vessel, the valves 17, 18 switch over to the actual measuring circuit. As a result, the vacuum vessel between valve 6 and valve 17 is temporarily excluded from the rest of the process. Now a cleaning process of the degassing cell, consisting of a rinsing and drying process, can run automatically in parallel to the other automated process. The rinsing process is necessary in the case of upstream sample preparation processes in order to clean parts wetted by the product so that there are no falsifications of measurements during subsequent measurements. The rinsing and drying process is initiated by valves 20 and 21, respectively.
- valve 22 opens in order to allow the amount of detergent introduced to flow away into a coupled collecting vessel.
- the rinsing process can optionally be repeated several times depending on the product properties.
- a drying process takes place, which is initiated by valve 21. The drying process is only necessary if the remaining amount of rinsing liquid, which adheres to the inner walls, does not evaporate due to the subsequent evacuation and thereby falsifies the initial measured value for the determination of the low boiler. In this measuring loop more Analysis or measuring devices are installed to determine different properties of the degassed sample.
- the measured sample residue can be fed from the measuring loop into the pumping loop 2 via a further three-way valve and can thus be returned to the reactor as a seed polymer.
- the polymer is preferably conveyed in the measuring loop with the aid of a further conveying device according to the invention, in particular with the aid of a second pump according to the invention.
- the aid of the method according to the invention it is possible to achieve a fully automatic sampling and determination of the current monomer concentration during a pressure polymerization by means of the pressure difference measurement mentioned.
- the monomer concentration determined here can be used as a control variable for the metering of monomer or initiator addition. It proves to be a particular advantage that the measured polymer due to the gentle conveyance and further treatment, e.g.
- reaction mixture in the measuring loop, can be fed back into the reactor without impairing the product quality.
- a variant for transferring polymer into the measuring loop is to shut off a defined volume of the pumping loop 2 filled with reaction mixture and to open a loop at the same time so that the product flow in the pumping loop is not interrupted.
- the pressurized amount of reaction mixture in the lock is then emptied spontaneously into the vacuum vessel.
- the lock is then switched back into the reaction mixture stream and the loop bypass is closed.
- the lock replaces the overflow valve 6.
- Typical measurements for example on demonomerized latex in the course of the measuring loop, are density, refractive index, NIR, ultrasound, pH and conductivity measurements. Furthermore, light extinction measurements can be carried out on defined, diluted, demonomerized latex (if necessary at different wavelengths) or a particle size determination using laser correlation spectroscopy. A combination of the information from these measurements makes it possible to determine the kinetics of the polymerization and to carry out a process control while the reaction is in progress.
- the invention also relates to a device for carrying out the method according to the invention, comprising a double-long-stroke piston pump 3 with two pistons 8 and 9, an intake line and an output line, at least two valves 4 and 5, in particular three-way valves, which define the respective piston chamber 23 or 24 connect the pistons 8 and 9 to the suction line or the discharge line, characterized in that the valve 4 and the further valve 5 are dead space-free valves which are controlled via a respective contact switch 26 or 13 of the double-long stroke piston pump 3, that the pistons 8 and 9 are synchronously movable, and the change in the direction of movement of the pistons 8, 9 is used to control the valves 4 and 5, and that the remaining volume of the piston spaces 23 and 24 is less than 1% of the stroke volume.
- a double-length reciprocating piston pump is a low-pulsation, dead-space-free double-length reciprocating piston pump with a delivery rate of 10 ml / h to 100 l / h for conveying shear-sensitive fluids with a viscosity of up to 100,000 mPa.s upstream control gear 11 or a hydraulic gear for driving the pistons 8, 9 a ring 12 for adjusting the stroke volume of the pump heads 23, 24 a contact switch 26 for changing the direction of rotation of an initiator disk 27 and double seals on the head of the piston chambers.
- the pump is driven, for example, via a reduction gear with an angular stroke gear connected in series, which converts the rotary movement into a rotation-free stroke movement of the pistons 8, 9.
- This has the advantage that the suction and pressure piston head can be mounted on a spindle and the double piston pump can continuously deliver. With this arrangement, the pressure and suction pistons run absolutely synchronously. The side of the respective suction piston head facing away from the product releases the Switch off to switch from printing to suction.
- the design can also be designed so that the print head triggers the switchover instead of the suction head. In this case, the switch sensor would not have to be placed on the transmission side but on the pump head side.
- the lifting rod which is a threaded rod (piston rod) on which the two piston heads are seated, is provided, for example, with an axially extending groove, into which an anti-rotation lock preferably engages in order to avoid rotation of the lifting rod.
- the piston head is provided to the piston housing with at least one elastic seal and at least one guide ring, so that the product sucked in can also be completely displaced from the piston head housing during the printing process.
- Suction and pressure chambers are e.g. connected to each other via two capillaries in which two positively controlled three-way valves (ball valves) (4, 5) are placed.
- the three-way valves separate the two chambers.
- four individual valves can also be provided.
- the valves preferably consist of ball valves in order to ensure a shear-free passage of the product.
- Each piston has a product inlet and outlet, they are arranged vertically one below the other, the inlet at the bottom and the outlet at the top to enable self-ventilation and self-priming of the pump.
- a telescopic spindle (length-adjustable spindle) is used in order to be able to generate a pump circuit with the smallest stroke volume quantities and to keep the remaining volume small.
- the double-length reciprocating piston pump can completely drain the pump head regardless of the flow rate. Due to the extremely low stroke frequency (e.g. max. 2 strokes per minute), low-pulsation product delivery occurs, the product is delivered laminar, there is a plug flow in the capillaries or pipelines. The laminar conveyance of a product at constant pressure is a prerequisite for the shear-free transport of latices.
- the pump drive and the pump head volume should preferably be designed so that a switching cycle of more than 5 minutes is maintained. This ensures shear-free pumping e.g. the polymer latices or plastic dispersions guaranteed.
- the pump can deliver small quantities, continuously from 10 ml / h, or suck in defined quantities in the ml range and be used as a sampler in discontinuous or continuous processes.
- the pump can act as a sluice because the pressure and suction sides are separate, it can transfer product quantities from a vacuum or pressure range to a vacuum or pressure range. Due to the dead space-free design, there is no backmixing with older product quantities.
- a particular advantage of the method with the double-length reciprocating piston pump is that with the set sample amount of e.g. 10 ml, a defined amount of product per stroke is conveyed and at any time e.g. can be transferred into a measuring circuit. This sample amount or the max. The stroke can be adjusted with an adjusting nut on the piston spindle inside the piston housing.
- the piston heads and pump housings can consist of suitable metallic and / or non-metallic materials.
- the piston housing can also be lined with glass or ceramic sleeves.
- the piston housing can be easily heated or cooled.
- the pump can be operated at a temperature of -100 ° C to + 200 ° C. It is common to use the pump in a temperature range from around -20 to + 150 ° C, in the case of latices in the range from +2 to + 100 ° C.
- the ratio of stroke volume to residual volume in the pump head is preferably less than 1%.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
- Sampling And Sample Adjustment (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zum kontinuierlichen Fördern scherempfindlicher Fluide, insbesondere von Polymerlatices bzw. Kunststoffdispersionen, eine Vorrichtung zur Durchführung des Verfahrens sowie eine neue Doppellanghubkolbenpumpe.The invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, a device for carrying out the method and a new double-length reciprocating piston pump.
Es ist bekannt, daß Polymerlatices bzw. Kunststoffdispersionen bei Scherbeanspruchung z.B. bei der Förderung leicht koagulieren können, d.h. aus den feindispersen Fluiden scheiden sich feste Massen (Koagulat) aus, welche Förderorgane und Rohrleitungen belegen oder verstopfen können. An Meßfühlern aller Art, die in den Latex tauchen oder mit Latex in Berührung kommen, kann sich dieses Koagulat ebenfalls absetzen und laufende Messungen verfälschen oder verhindern. Besonders Latices, welche aus Rücksicht auf die Produktqualität mit einem Minimum an Emulgator hergestellt werden müssen, neigen sehr leicht zur Koagulatbildung.It is known that polymer latices or plastic dispersions under shear stress e.g. can easily coagulate during funding, i.e. Solid masses (coagulate) separate out from the finely dispersed fluids, which can occupy or clog conveying elements and pipes. This coagulum can also settle on sensors of all kinds that dip into latex or come into contact with latex and falsify or prevent ongoing measurements. Especially latices, which have to be produced with a minimum of emulsifier out of consideration for the product quality, tend to form coagulate very easily.
Bekannte Fördereinrichtungen sind Kreisel-, Membran- oder Kolbenpumpen, Kreiselpumpen bestehen aus Stator (Gehäuse) und Rotor (Laufrad). Durch die hohe Drehzahl des Laufrades wird das zu fördernde Produkt von der Rotormitte (Drehpunkt) radial beschleunigt und durch die entsprechenden Zentrifugalkräfte am äußeren Durchmesser des Laufrades durch den Druckstutzen des Gehäuses gedrückt. In der Regel benötigen Kreiselpumpen eine Drehzahl von größer 500/Min. Bei kleinerer Drehzahl erfolgt mit diesem System keine Produktförderung mehr. Aufgrund der Konstruktionsmerkmale besitzen Kreiselpumpen große Totraumvolumina und sind nicht selbstansaugend.Known conveyors are centrifugal, diaphragm or piston pumps, centrifugal pumps consist of a stator (housing) and a rotor (impeller). Due to the high speed of the impeller, the product to be conveyed is radially accelerated from the center of the rotor (fulcrum) and pressed by the corresponding centrifugal forces on the outer diameter of the impeller through the pressure port of the housing. As a rule, centrifugal pumps need a speed of more than 500 / min. At this lower speed, product delivery is no longer possible with this system. Due to the design features, centrifugal pumps have large dead space volumes and are not self-priming.
Membran- und Kolbenpumpen sind Verdrängerpumpen, die bei niedrigeren Frequenzen arbeiten als Kreiselpumpen. Die niedrigste Frequenz liegt bei 30 Hüben/Min. Die Förderbewegung des Kolbens bzw. der Membran, die antriebsseitig auch durch einen Kolben bewegt wird, ist stoßartig, es kommt zu Pulsationen, so daß man bei der Kurzzeitbetrachtung nicht von einer kontinuierlichen Produktförderung bzw. -transport sprechen kann. Die Pulsation ist druckabhängig und wirkt sich auf die Förderkonstanz und Dosiergenauigkeit aus.Diaphragm and piston pumps are positive displacement pumps that operate at lower frequencies than centrifugal pumps. The lowest frequency is 30 strokes / min. The conveying movement of the piston or membrane, the drive side also being moved by a piston is jerky, pulsations occur, so that one cannot speak of continuous product conveyance or transport in the short-term view. The pulsation is pressure-dependent and affects the delivery consistency and dosing accuracy.
Langhubkolbenpumpen sind als Einhubkolbenpumpen bekannt, aber für das kontinuierliche Dosieren von kleinen Mengen ungeeignet und zu teuer. (Siehe Menges, Recker, Carl-Hanser-Verlag; München, Wien; 1986, Automatisieren in der Kunststoffverarbeitung S. 318-320).Long-stroke piston pumps are known as single-stroke piston pumps, but are unsuitable and too expensive for the continuous metering of small quantities. (See Menges, Recker, Carl-Hanser-Verlag; Munich, Vienna; 1986, Automation in plastics processing, pp. 318-320).
Nachteilig bei diesen Fördergeräten ist, daß z.B. Kreiselpumpen nur bei hoher Drehzahl fördern und Druck aufbauen können. Durch die hohen Umfangsgeschwindigkeiten am Rotor werden an den Pumpenkopfspalten Produktteilchen sehr stark geschert, so daß eine Teilchenveränderung erfolgt. Durch ein hohes Totraumvolumen ist eine Kreiselpumpe zum Fördern von kleinen Produktmengen mit anschließender Probennahme ungeeignet. Es ist z.B. nicht möglich, eine repräsentative Probenmenge von z.B. 10 ml aus einem Reaktor zu entnehmen und daraus auf Reaktionsverhältnisse im eigentlichen Reaktor zu schließen. Kolben-bzw. Membranpumpen arbeiten bei zu hohen Hubfrequenzen und haben aufgrund ihrer Konstruktionsmerkmale viele enge Spalten, in denen es zu Produkt- oder Teilchenscherung kommt. Zusätzlich produktverändernd wirkt auch die nicht konstante Geschwindigkeit der Verdrängerelemente. Die ungleichmäßige Fördergeschwindigkeit verursacht an produktberührten Rohrleitungen bzw. Pumpenkopfteilen unterschiedliche Reibungskräfte, die im Mikroteilchenbereich Produktscherung verursachen. Die Verweilzeit des Produkts im Pumpenkopf ist bei den bekannten Pumpenkonstruktionen nicht endlich bzw. nicht genau definiert, da alle Pumpenköpfe ein hohes Totraumvolumen besitzen. Es bleiben große Anteile eines Saughubvolumens lange Zeit im Pumpenkopf, mit jedem neuen Saughub erfolgt nur eine Teilvermischung mit altem Produkt, so daß Produktteilchen über lange Zeit einer Scherbeanspruchung unterworfen werden. Ein weiterer Nachteil ist, daß die Kolben- bzw. Membranpumpen keine zwangsgesteuerten Ventile (Kugelhähne) besitzen, die je nach Saug- oder Druckvorgang einen großen, freien Querschnitt öffnen. Weiter nachteilig wirkt sich das nicht Synchronlaufen von Saug- und Druckvorgang aus. Bei diesen Pumpenkonstruktionen ist ein absolutes synchrones Arbeiten von Saug- oder Druckseite nicht möglich, selbst wenn eine Besserung in der Förderung durch Mehrfachköpfe teilweise erreicht werden kann. Die Einzelvorgänge, die im einzelnen Pumpenkopf betrachtet werden müssen, sind aufgrund der Rotationsbeschleunigung des Steuergetriebes und der damit verbundenen Umsetzung von Rotation- in Hubbewegung immer ungleichmäßig und Grund für die primäre Pulsation im Förderstrom.A disadvantage of these conveyors is that, for example, centrifugal pumps can only deliver and build up pressure at high speed. Due to the high peripheral speeds on the rotor, product particles are very strongly sheared at the pump head gaps, so that a particle change takes place. Due to the high dead space volume, a centrifugal pump is unsuitable for conveying small quantities of products with subsequent sampling. For example, it is not possible to take a representative sample amount of, for example, 10 ml from a reactor and to infer reaction conditions in the actual reactor. Piston or Diaphragm pumps operate at too high stroke frequencies and, due to their design features, have many narrow gaps in which product or particle shear occurs. The non-constant speed of the displacement elements also has a product-changing effect. The uneven conveying speed causes different frictional forces on product-contacting pipelines or pump head parts, which cause product shear in the microparticle range. The residence time of the product in the pump head is not finite or not precisely defined in the known pump designs, since all pump heads have a high dead space volume. Large portions of a suction stroke volume remain in the pump head for a long time, with each new suction stroke only partial mixing with the old product takes place, so that product particles are subjected to shear stress for a long time. Another disadvantage is that the piston or diaphragm pumps have no positively controlled valves (ball valves) that open a large, free cross-section depending on the suction or pressure process. Another disadvantage is the fact that the suction and pressure processes are not synchronized. With these pump designs there is an absolute synchronous Working from the suction or pressure side is not possible, even if an improvement in the conveyance can be achieved by multiple heads. The individual processes that have to be considered in the individual pump head are always uneven due to the rotational acceleration of the control gear and the associated conversion of rotation into stroke movement and are the reason for the primary pulsation in the delivery flow.
Ein weiterer Nachteil bei bekannten Pumpenkonstruktionen ist, daß bei kleiner werdenden Volumenstrom der Totraum im Pumpenkopf größer wird. Das heißt, daß der eigentliche fördernde Verdrängerkörper seinen Arbeitsweg proportional der Fördermenge verändert.Another disadvantage of known pump designs is that the dead space in the pump head increases as the volume flow becomes smaller. This means that the actual promoting displacement body changes its way of work in proportion to the delivery rate.
Einkolbenpumpen bauen sehr groß, sind sehr teuer und arbeiten nicht kontinuierlich. Die Konstruktionen lassen ein Selbstansaugen nicht zu, so daß zusätzlich saugseitig Pumpen benötigt werden. Ihr großes Totraumvolumen macht sie z. B. für Probennahmen nicht tauglich. Selbst bei denkbaren Zwillingskolbenpumpen ist ein synchrones Arbeiten von Saug- und Druckvorgang nicht möglich.Single-piston pumps are very large, are very expensive and do not work continuously. The constructions do not allow self-priming, so that pumps are also required on the suction side. Their large dead space makes them z. B. Not suitable for sampling. Even with conceivable twin piston pumps, synchronous operation of the suction and pressure processes is not possible.
Aus der Patentschrift US 5,066,199 ist eine Fördervorrichtung bekannt, bei der eine Fluidförderung mittels einer Doppelkolbenpumpe im Zusammenwirken mit zwei Paaren von durch Schwerkraft gesteuerten Ventilen ermöglicht wird. Diese Vorrichtung hat den Nachteil, daß die dabei verwendeten Schwerkraftventile insbesondere bei höherer Dichte des zu fördernden Fluids nicht mehr sicher schließen. Als besonderer Nachteil erweist sich die Konstruktion der verwendeten Doppelkolbenpumpen, bei der die Rückholung der Kolben mittels einer Rückholfeder erreicht werden soll, die selbst bei weitestmöglicher Kompression immer noch einen unerwünschten Totraum einschließt. Im übrigen verhindert die Verwendung der in der Vorrichtung benutzten Steuerscheibe eine vollständige Entleerung der Pumpenkörper.A delivery device is known from US Pat. No. 5,066,199, in which fluid delivery is made possible by means of a double piston pump in cooperation with two pairs of valves controlled by gravity. This device has the disadvantage that the gravity valves used in this case no longer close securely, particularly when the fluid to be pumped is of higher density. The construction of the double-piston pumps used has proven to be a particular disadvantage, in which the return of the pistons is to be achieved by means of a return spring which, even with the greatest possible compression, still includes an undesired dead space. Otherwise, the use of the control disk used in the device prevents the pump bodies from being completely emptied.
Der Erfindung liegt die Aufgabe zugrunde, scherempfindliche Fluide, insbesondere Polymerdispersionen, kontinuierlich, pulsationsarm und schonend zu fördern, so daß die Fluide in ihrem Phasenzustand durch die Förderung unbeeinflußt bleiben, und insbesondere bei Dispersionen keine Phasentrennung oder Koagulation erfolgt. Insbesondere soll ermöglichst werden, einen Polymerlatex aus einem Reaktor in eine Umpumpschleife und zurück zu fördern, wobei die Bildung von Koagulat oder Teilchenneubildung vermieden wird. Der Erfindung liegt ferner die Aufgabe zugrunde, eine Vorrichtung bereitzustellen, die diese Förderung schonend und über einen langen Zeitraum störungsfrei und betriebssicher ermöglicht. Insbesondere soll die Vorrichtung ermöglichen, das Fluid zwischen verschiedenen Anlagenteilen, z. B. einem Reaktor und einer Meßschleife mit unterschiedlichen Druckverhältnissen, schonend hin und her zu überführen. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Fluid mittels einer totraumfreien, pulsationsarmen Doppellanghubkolbenpumpe angesaugt und gepumpt wird und im durchflossenen Leitungssystem totraumfreie Ventile zum Einsatz kommen. Diese Doppellanghubkolbenpumpe sitzt z. B. in einer Druckschleife, wobei durch eine Schleuse oder ein Überstromventil, welches als verbindendes Element zu einem parallel angeordneten Meßkreis mit anderem Druckniveau dient, eine definierte Probenmenge überführt wird und im parallelen Meßkreis von einer zweiten Langhubkolbenpumpe gleicher Bauart den eigentlichen On-line-Meßgeräten zugeführt wird.The invention has for its object to promote shear-sensitive fluids, in particular polymer dispersions, continuously, with little pulsation and gently, so that the fluids remain unaffected in their phase state by the promotion, and in particular with dispersions there is no phase separation or coagulation. In particular, it should be made possible to convey a polymer latex from a reactor into a pumping loop and back, avoiding the formation of coagulate or new particle formation. The invention is also based on the object of providing a device which enables this support to be carried out gently and over a long period of time without malfunction and reliably. In particular, the device should enable the fluid between different parts of the system, for. B. a reactor and a measuring loop with different pressure ratios, gently transfer back and forth. This object is achieved in that the fluid is sucked in and pumped by means of a dead space-free, low-pulsation double-length reciprocating piston pump and dead space-free valves are used in the piping system through which the fluid flows. This double-length reciprocating pump sits z. B. in a pressure loop, a defined amount of sample is transferred through a lock or an overflow valve, which serves as a connecting element to a parallel measuring circuit with a different pressure level, and in the parallel measuring circuit of a second long-stroke piston pump of the same type the actual on-line measuring devices is fed.
Gegenstand der Erfindung ist ein Verfahren zum kontinuierlichen Fördern scherempfindlicher Fluide, insbesondere von Polymerlatices bzw. Kunststoffdispersionen, mit einer Viskosität bis 100.000 mPa.s bei einer Förderleistung von 10 ml/h bis 100 l/h, dadurch gekennzeichnet, daß das Fluid über wenigstens ein totraumfreies Ventil von einem Kolben einer Doppellanghubkolbenpumpe angesaugt wird, während synchron Fluid aus dem zweiten Kolbenraum ebenfalls über wenigstens ein weiteres totraumfreies Ventil zur Förderseite abgegeben wird und nach vollständiger Entleerung des zweiten Kolbenraumes das erste Ventil abgabeseitig geöffnet und ansaugseitig geschlossen wird, während das zweite Ventil abgabeseitig geschlossen und ansaugseitig geöffnet wird und synchron die Bewegungsrichtung der Kolben umgekehrt wird, wobei die Kolben auf einer Spindel sitzen, wobei die Bewegungsrichtung der Kolben und die Stellung der Ventile über Kontaktschalter gesteuert werden und das im Kolbenraum nach Entleerung noch verbleibende Restvolumen weniger als 1 % des Hubvolumens beträgt. Eine bevorzugte Ausführungsform ist dadurch aekennzeichnet, daß das Fluid in einer Umpumpschleife gefördert wird, die an einen Reaktor angekoppelt ist. In dieser Umpumpschleife oder parallel zu dieser können sich Meßfühler bzw. Sensoren oder Einbauten befinden. Beispiele für solche Meßfühler sind Temperaturmeßfühler, pH-Elektroden, Leitfähigkeitselektroden, NIR-Lichtleitersonden, schwingende U-Rohre für Dichtemessungen, Refraktometer, Ultraschallmeßköpfe oder Vorrichtungen zur Kalorimetrie. Die genannten Meßfühler bzw. Meßgeräte werden durch das im Kreis geführte Fluid (z. B. ein Latex) nicht belegt oder verstopft. Es ist grundsätzlich möglich, in die Umpumpschleife weiter Vorrichtungen zur Durchmischung, wie Statikmischer oder Wärmetauscher, einzubringen, welche aufgrund der stetigen pusationsfreien und gering scherbeanspruchenden Fördervorrichtung nicht belegt oder verstopft werden. Eine weitere bevorzugte Variante des Verfahrens ist dadurch gekennzeichnet, daß das Fluid durch ein Überstromventil oder eine Schleuse in einen Bereich verminderten Drucks (z.B. eine sekundäre Umpumpschleife) geleitet wird. Besonders bevorzugt ist eine Variante dieses Verfahrens, bei der das Überstromventil bzw. die Schleuse als Kopplung zwischen Primär-und Sekundärpumpkreislauf geschaltet ist. Mit dieser Variante ist es möglich, definierte Probenvolumina des Fluids aus der Hauptfließleitung bzw. einem primären Umpumpkreislauf abzuzweigen und z.B. einer Messung unter vermindertem Druck zuzuführen.The invention relates to a method for the continuous delivery of shear-sensitive fluids, in particular polymer latices or plastic dispersions, with a viscosity of up to 100,000 mPa.s at a delivery rate of 10 ml / h to 100 l / h, characterized in that the fluid has at least one Dead space-free valve is sucked in by a piston of a double-long stroke piston pump, while synchronously fluid from the second piston chamber is also released to the delivery side via at least one further dead space-free valve and, after the second piston chamber has been completely emptied, the first valve is opened on the delivery side and closed on the suction side, while the second valve is discharged is closed and opened on the suction side and the direction of movement of the pistons is reversed synchronously, the pistons being seated on a spindle, the direction of movement of the pistons and the position of the valves being controlled via contact switches, and that in the piston chamber according to E Remaining volume remaining is less than 1% of the stroke volume. A preferred embodiment is characterized in that the fluid is conveyed in a pumping loop which is connected to a reactor is coupled. Sensors or sensors or internals can be located in this pump-around loop or parallel to it. Examples of such sensors are temperature sensors, pH electrodes, conductivity electrodes, NIR light guide probes, vibrating U-tubes for density measurements, refractometers, ultrasonic measuring heads or devices for calorimetry. The sensors or measuring devices mentioned are not occupied or blocked by the circulating fluid (for example a latex). In principle, it is possible to incorporate further mixing devices, such as static mixers or heat exchangers, into the pumping loop, which are not occupied or blocked due to the continuous pusation-free and low shear-stressing conveying device. Another preferred variant of the method is characterized in that the fluid is passed through an overflow valve or a lock into a region of reduced pressure (for example a secondary pumping loop). A variant of this method is particularly preferred, in which the overflow valve or the lock is connected as a coupling between the primary and secondary pump circuit. With this variant it is possible to branch off defined sample volumes of the fluid from the main flow line or a primary pumping circuit and, for example, to conduct a measurement under reduced pressure.
Im folgenden wird die Erfindung anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles beispielhaft näher erläutert.The invention is explained in more detail below by way of example using an exemplary embodiment illustrated in the drawings.
Es zeigen
- Fig. 1
- Schema der erfindungsgemäßen Förderung von scherempfindlichen Fluiden
- Fig. 2
- schematische Abbildung des Förderverfahrens als Teil einer Umpumpschleife und zum Auskoppeln von Polymerisat
- Fig. 3
- Aufbau der erfindungsgemäßen Doppellanghubkolbenpumpe in einer Seitenansicht
- Fig. 4
- erfindungsgemäße Doppellanghubkolbenpumpe in Draufsicht.
- Fig. 1
- Scheme of the promotion of shear sensitive fluids according to the invention
- Fig. 2
- schematic representation of the conveying process as part of a pumping loop and for coupling out polymer
- Fig. 3
- Construction of the double-length reciprocating piston pump according to the invention in a side view
- Fig. 4
- Double-length reciprocating piston pump according to the invention in plan view.
An einen Reaktor 1 zur Emulsionspolymerisation von Butadien, der unter einem Druck von > 5 bar arbeitet, ist eine Umpumpschleife 2 geschaltet, die eine neue Doppellanghubkolbenpumpe 3 mit zwangsgesteuerten Ein- bzw. Ausgangsventilen 4, 5 als Fördervorrichtung enthält sowie ein Überstromventil 6, welches den primären Kreislauf 2 mit dem sekundären Kreislauf 7 verbindet. Die neu entwickelte Doppellanghubkolbenpumpe ist in den Figuren 3 und 4 abgebildet. Ihre beiden Kolben 8 und 9 werden über ein Winkelhubgetriebe 10 mit vorgeschaltetem Regelgetriebe 11 angetrieben. Das Hubvolumen der Pumpenköpfe läßt sich durch einen Ring 12 einstellen, der gleichzeitig die Aufgabe übernimmt, einen Kontaktschalter 13 für die Drehrichtungsänderung und für die Umschaltung der Armaturen zu betätigen. Doppelte Dichtungen und Stützringe sind am Kopf jedes Kolbens zum Gehäuse abdichtend plaziert. Die Kopfdichtung der Kolben ermöglicht die Gestaltung eines totraumarmen Pumpenkopfes unabhängig von der Hubvolumenmenge. Das angesaugte Produktvolumen wird quantitativ aus dem Pumpenkopf während des Förderns verdrängt. Während einerseits das Reaktionsgemisch durch den Kolben 23 beispielsweise langsam angesaugt wird, drückt der entgegengesetzte Kolben 24, der über die gleiche Spindel 14 geführt ist wie Kolben 23, vorher angesaugtes Reaktionsgemisch quantitativ aus dem Pumpenkopf. Die erfindungsgemäße Doppellanghubkolbenpumpe ist selbstansaugend und selbstbelüftend bei einer Pulsationsfrequenz von weniger als 10 Hub pro Minute. Der Totraum der Pumpe beträgt weniger als 1% des Pumpenkopfvolumens. Es ist möglich, mit der Pumpe bei einem Druck bis 300 bar und einer Temperatur von -100 bis +250° C zu arbeiten. Mit Hilfe der erfindungsgemäßen Pumpe können auch feststoffhaltige Fluide gepumpt werden, wenn die Sedimentationszeit des Feststoffs größer ist als die Verweilzeit des Fluids im Pumpenkopf. In einer bevorzugten Ausführung weist die Spindel der Pumpe eine zusätzliche Verdrehsicherung auf.To a
Die Doppellanghubkolbenpumpe 3 ermöglicht, eine Teilstrommenge des Reaktionsvolumens aus dem Reaktor 1 ständig produktschonend umzupumpen. Mit Hilfe der erfindungsgemäßen Vorrichtung wurden 100 ml/h Butadien-Polymerisat über 100 h bei einem Druck von 5 bar und einer Temperatur von 50°C ohne Ablagerung oder Koagulatbildung umgepumpt.The double-length
Die Umpumpschleife 2 ist in einer bevorzugten Ausführung über ein Überstromventil 6 mit einem Vakuumgefäß 13 verbunden. Das Überströmventil 6 verhindert eine spontane Entspannung der flüssigen Monomere, die in der Probenmenge enthalten sind. Es wird dadurch eine unkontrollierte Schaumbildung verhindert. Das Vakuumgefäß 13 hat ein definiertes Volumen und wird über eine Steuerung auf einen vorgewählten Unterdruck, z.B. 50 mbar, evakuiert. Ist der Unterdruck erreicht, schaltet die Steuerung ein in der Umpumpschleife befindliches Ventil 25 in Zustellung, so daß die Doppellanghubkolbenpumpe 3 das definierte Volumen gegen das in Zustellung befindliche Ventil 25 pumpt und den Systemdruck in der Umpumpschleife erhöht. Das Überströmventil 6 läßt die Probenmenge bei einem vorher eingestellten Druck, der über dem Reaktordruck liegt, in das Vakuumgefäß passieren. Sobald die Probenmenge aus der Umpumpschleife geschleust ist, gibt die Steuerung den Befehl, das Ventil 25 zu öffnen, so daß der Umpumpkreislauf wieder in Betrieb gesetzt wird. Die eingespritzte Probe erzeugt im Vakuumgefäß, welches aus einem geeichten, zylindrischen Meßgefäß 13 und einem Ausgleichsgefäß 15 besteht eine Druckerhöhung. Das Ausgleichsgefäß ist bevorzugt so ausgelegt, daß bei Entspannung eines niedrigsiedenden Bestandteils des mehrphasigen Fluids der max. entstehende Druck 1 bar absolut nicht übersteigt. Die Druckerhöhung wird wiederum verstärkt durch verdampfende Bestandteile der Probe. Verändert sich nach einer gewissen Zeit (z.B. < 30 min) der Druck im Meßgefäß nicht mehr, so wird die Druckdifferenz berechnet und zusammen mit der Temperatur, dem Volumen der Probe und dem Volumen des Vakuumbehälters die Monomerkonzentration bestimmt und damit Rückschluß auf die derzeitige Produktzusammensetzung im Reaktor getroffen. Ist der druckerzeugende Bestandteil der Reaktorprobe isoliert, wird die verbleibende, nicht verdampfte Probenmenge automatisch mit der vorgegebenen Sollprobenmenge verglichen. Ist das gemessene Probenvolumen unter dem Sollwert wird erneut das Vakuumgefäß evakuiert und eine weitere Probe von der Doppellanghubkolbenpumpe angefordert. Dieser Teilvorgang wiederholt sich so lange, bis die ausreichende Probenmenge erreicht ist. Anschließend wird das Vakuumgefäß 13 mit Inertgas belüftet und der Rest der Probe in eine Meßschleife gepumpt. Der Meßkreis 7 ist mit einer Einfachlanghubkolbenpumpe 16 ausgerüstet um Meßsensoren mit Produkt zu versorgen. Die Einfachlanghubkolbenpumpe ist wie die Doppellanghubkolbenpumpe mit zwangsgesteuerten Ventilen 17 bzw. 18 ausgerüstet. Ist die isolierte Probe aus dem Vakuumgefäß abgesaugt, schalten die Ventile 17, 18 auf den eigentlichen Meßkreis um. Dadurch wird das Vakuumgefäß zwischen Ventil 6 und Ventil 17 vom übrigen Verfahren zwischenzeitlich ausgeklammert. Jetzt kann automatisiert ein Reinigungsvorgang der Entgasungszelle, bestehend aus Spül- und Trockenvorgang, parallel zum anderen automatisierten Prozeß ablaufen. Der Spülvorgang ist bei vorangeschalteten Probenaufarbeitungsvorgängen notwendig um produktbenetzte Teile zu reinigen, damit bei Folgemessungen keine Meßwertverflälschungen erfolgen. Der Spül- und Trocknungsvorgang wird durch die Ventile 20 bzw. 21 eingeleitet. Nachdem die Spülflüssigkeit in das Vakuumgefäß eingeleitet wurde öffnet das Ventil 22, um die eingeschleuste Spülmittel menge in ein angekoppeltes Auffanggefäß abfließen zu lassen. Der Spülvorgang kann wahlweise nach Produkteigenschaften mehrmals wiederholt werden. Nach Beendigung des Spülens erfolgt ein Trocknungsvorgang, der durch das Ventil 21 eingeleitet wird. Der Trocknungsvorgang ist nur dann erforderlich, wenn die restliche Spülflüssigkeitsmenge, die an inneren Wandungen haftet, nicht durch das anschließende Evakuieren verdampft und dadurch den Ausgangsmeßwert für die Ermittlung des Niedrigsieders verfälscht. In dieser Meßschleife können weitere Analysen- oder Meßgeräte eingebaut werden, um unterschiedliche Eigenschaften der entgasten Probe zu bestimmen.In a preferred embodiment, the
Der gemessene Probenrest kann über ein weiteres Drei-Wege-Ventil aus der Meßschleife in die Umpumpschleife 2 zugeführt werden und damit in den Reaktor als Saatpolymer zurückgeführt werden. Die Förderung des Polymerisats in der Meßschleife wird bevorzugt ebenfalls mit Hilfe einer weiteren erfindungsgemäßen Fördereinrichtung, insbesondere mit Hilfe einer zweiten erfindungsgemäßen Pumpe vorgenommen. Mit Hilfe des erfindungsgemäßen Verfahrens ist es möglich, eine vollautomatische Probennahme und Bestimmung der aktuellen Monomerkonzentration während einer Druckpolymerisation durch die genannte Druckdifferenzmessung zu erreichen. Die hierbei ermittelte Monomerkonzentration kann als Steuergröße für die Dosierung von Monomer- bzw. Initiatorzugabe verwendet werden. Als besonderer Vorteil erweist sich, daß das gemessene Polymerisat aufgrund der schonenden Förderung und der weiteren Behandlung, z.B. in der Meßschleife, dem Reaktionsgemisch im Reaktor wieder zugeführt werden kann, ohne Beeinträchtigung der Produktqualität. Eine Variante zur Uberführung von Polymerisat in die Meßschleife besteht darin, ein definiertes, mit Reaktionsgemisch gefülltes Volumen der Umpumpschleife 2 abzusperren und im gleichen Augenblick einen Schleifenumgang zu öffnen, so daß der Produktstrom in der Umpumpschleife nicht unterbrochen wird. Die unter Druck stehende Menge Reaktionsgemisch in der Schleuse wird dann spontan in das Vakuumgefäß entleert. Anschließend wird die Schleuse wieder in den Reaktionsgemischstrom geschaltet und die Schleifenumgehung geschlossen. Die Schleuse ersetzt hierbei das Überstromventil 6.The measured sample residue can be fed from the measuring loop into the
Es ist möglich, die Entmonomerisierung oder Aufbereitung des Reaktionsgemisches im Vakuumgefäß durch mehrfaches Evakuieren und anschließendes Belüften mit Inertgas zu vervollständigen, wobei Lichtschranken als Schaumwächter z.B. bei schäumenden Produkten eingesetzt werden können.It is possible to complete the demonomerization or preparation of the reaction mixture in the vacuum vessel by multiple evacuation and subsequent aeration with inert gas, with light barriers as foam monitors e.g. can be used for foaming products.
Typische Messungen, z.B. an entmonomerisiertem Latex im Zuge der Meßschleife, sind Dichte-, Brechzahl-, NIR-, Ultraschall-, pH- und Leitfähigkeitsmessungen. Des weiteren können an definiert verdünnnten, entmonomerisiertem Latex Lichtextinktionsmessungen (gegebenenfalls bei verschiedenen Wellenlängen) oder eine Teilchengrößenbestimmung mit Hilfe der Laserkorrelationsspektroskopie durchgeführt werden. Durch eine Kombination der Informationen aus diesen Messungen wird es möglich, bei laufender Reaktion die Kinetik der Polymerisation zu bestimmen und eine Prozeßsteuerung durchzuführen.Typical measurements, for example on demonomerized latex in the course of the measuring loop, are density, refractive index, NIR, ultrasound, pH and conductivity measurements. Furthermore, light extinction measurements can be carried out on defined, diluted, demonomerized latex (if necessary at different wavelengths) or a particle size determination using laser correlation spectroscopy. A combination of the information from these measurements makes it possible to determine the kinetics of the polymerization and to carry out a process control while the reaction is in progress.
Gegenstand der Erfindung ist auch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, aufweisend eine Doppellanghubkolbenpumpe 3 mit zwei Kolben 8 und 9, einer Ansaugleitung und einer Abgabeleitung, wenigstens zwei Ventilen 4 und 5, insbesondere Drei-Wege-Ventilen, die den jeweiligen Kolbenraum 23 oder 24 der Kolben 8 und 9 mit der Ansaugleitung oder der Abgabeleitung verbinden, dadurch gekennzeichnet, daß das Ventil 4 und das weitere Ventil 5 totraumfreie Ventile sind, die über einen jeweiligen Kontaktschalter 26 oder 13 der Doppellanghubkolbenpumpe 3 gesteuert sind, daß die Kolben 8 und 9 synchron bewegbar sind, und die Änderung der Bewegungsrichtung der Kolben 8, 9 zur Steuerung der Ventile 4 und 5 verwendet wird, und daß das Restvolumen der Kolben räume 23 und 24 weniger als 1 % des Hubvolumens beträgt.The invention also relates to a device for carrying out the method according to the invention, comprising a double-long-
Als Doppellanghubkolbenpumpe ist insbesondere geeignet eine pulsationsarme totraumfreie Doppellanghubkolbenpumpe mit einer Förderleistung von 10 ml/h bis 100 l/h zur Förderung von scherempflindlichen Fluiden mit einer Viskosität bis 100.000 mPa.s aufweisend zwei Kolben 8, 9 auf einer gemeinsamen Antriebsspindel 14 einem Winkelhubgetriebe 10 mit vorgeschaltetem Regelgetriebe 11 oder einem hydraulischen Getriebe zum Antrieb der Kolben 8, 9 einen Ring 12 zum Einstellen des Hubvolumens der Pumpenköpfe 23, 24 einem Kontaktschalter 26 für die Drehrichtungsänderung einer Initiatorscheibe 27 sowie doppelten Dichtungen am Kopf der Kolbenräume.Particularly suitable as a double-length reciprocating piston pump is a low-pulsation, dead-space-free double-length reciprocating piston pump with a delivery rate of 10 ml / h to 100 l / h for conveying shear-sensitive fluids with a viscosity of up to 100,000 mPa.s
Der Antrieb der Pumpe erfolgt z.B. über ein Untersetzungsgetriebe mit in Reihe geschaltetem Winkelhubgetriebe, welches die Drehbewegung in eine rotationsfreie Hubbewegung der Kolben 8, 9 umsetzt. Das hat den Vorteil, daß der Saug- und Druckkolbenkopf auf einer Spindel montiert werden und die Doppelkolbenpumpe kontinuierlich fördern kann. Durch diese Anordnung fahren Druck- bzw. Saugkolben absolut synchron. Jeweils die Produkt abgewandte Seite des jeweiligen Saugkolbenkopfes löst den Schalter aus, um vom Druckvorgang auf den Saugvorgang umzuschalten. Die Konstruktion kann auch so ausgelegt werden, daß anstatt des Saugkopfes der Druckkopf die Umschaltung auslöst. In dem Fall müßte der Schaltsensor nicht getriebeseitig sondern pumpenkopfseitig plaziert werden. Die Hubstange, die eine Gewindestange ist (Kolbenstange), auf der die beiden Kolbenköpfe sitzen, ist beispielsweise mit einer axialverlaufenden Nut versehen, in die bevorzugt eine Verdrehsicherung eingreift, um eine Rotation der Hubstange zu vermeiden. Der Kolbenkopf ist zum Kolbengehäuse mit mindestens einer elastischen Dichtung und mindestens einem Führungsring versehen, so daß das angesaugte Produkt auch vollständig beim Druckvorgang aus dem Kolbenkopfgehäuse verdrängt werden kann.The pump is driven, for example, via a reduction gear with an angular stroke gear connected in series, which converts the rotary movement into a rotation-free stroke movement of the
Saug- und Druckkammer sind z.B. über zwei Kapillaren, in denen zwei zwangsgesteuerte Drei-Wege-Ventile (Kugelhähne) (4, 5), plaziert sind, miteinander verbunden. Die Drei-Wege-Ventile sorgen für eine Trennung der beiden Kammern. Anstatt der zwei Drei-Wege-Ventile können auch vier Einzelventile vorgesehen werden. Vorzugsweise bestehen die Ventile aus Kugelhähnen, um einen scherungsfreien Produktdurchgang zu gewährleisten. Jeder Kolben hat eine Produkteintrittsöffnung und eine -austrittsöffnung, sie sind vertikal untereinander angeordnet, der Eintritt unten und der Austritt oben, um eine Selbstbelüftung und ein Selbstansaugen der Pumpe zu ermöglichen. In einer besonderen Ausführungsform wird eine Teleskopspindel (längenverstellbare Spindel) eingesetzt, um bei kleinsten Hubvolumenmengen einen Pumpkreislauf erzeugen zu können und das Restvolumen klein zu halten. Die Doppellanghubkolbenpumpe kann unabhängig von der Fördermenge den Pumpenkopf restlos entleeren. Aufgrund der extrem niedrigen Hubfrequenz (z.B. max. 2 Hübe pro Minute) entsteht eine pulsationsarme Produktförderung, das Produkt wird laminar gefördert, es entsteht eine Pfropfenströmung in den Kapillaren oder Rohrleitungen. Die laminare Förderung eines Produkts ist bei konstantem Druck Voraussetzung für den scherungsfreien Transport von Latices. Vorzugsweise sollte der Pumpenantrieb und das Pumpenkopfvolumen so ausgelegt werden, daß ein Schaltzyklus größer 5 Minuten eingehalten wird. Dadurch wird ein scherungsfreies Pumpen z.B. der Polymerlatices bzw. Kunststoffdispersionen gewährleistet. Diese Frequenzmerkmale beschreiben ein pulsationsfreies (-armes) Förderungssystem, welches scherempfindliche Produkte über lange Zeit pumpen kann.Suction and pressure chambers are e.g. connected to each other via two capillaries in which two positively controlled three-way valves (ball valves) (4, 5) are placed. The three-way valves separate the two chambers. Instead of the two three-way valves, four individual valves can also be provided. The valves preferably consist of ball valves in order to ensure a shear-free passage of the product. Each piston has a product inlet and outlet, they are arranged vertically one below the other, the inlet at the bottom and the outlet at the top to enable self-ventilation and self-priming of the pump. In a special embodiment, a telescopic spindle (length-adjustable spindle) is used in order to be able to generate a pump circuit with the smallest stroke volume quantities and to keep the remaining volume small. The double-length reciprocating piston pump can completely drain the pump head regardless of the flow rate. Due to the extremely low stroke frequency (e.g. max. 2 strokes per minute), low-pulsation product delivery occurs, the product is delivered laminar, there is a plug flow in the capillaries or pipelines. The laminar conveyance of a product at constant pressure is a prerequisite for the shear-free transport of latices. The pump drive and the pump head volume should preferably be designed so that a switching cycle of more than 5 minutes is maintained. This ensures shear-free pumping e.g. the polymer latices or plastic dispersions guaranteed. These frequency characteristics describe a pulsation-free (low-arm) delivery system that can pump shear-sensitive products over a long period of time.
Aufgrund der einfachen Konstruktion kann die Pumpe Kleinstmengen, ab 10 ml/h kontinuierlich fördern, oder auch definierte Mengen im ml-Bereich ansaugen und als Probennehmer bei diskontinuierlichen bzw. kontinuierlichen Prozessen eingesetzt werden. Die Pumpe kann als Schleuse fungieren, weil Druck- und Saugseite voneinander getrennt sind, sie kann Produktmengen aus einem Unterdruck- bzw. Überdruckbereich in einem Unterdruck- bzw. Überdruckbereich überführen. Aufgrund der totraumfreien Ausführung erfolgt keine Rückvermischung mit zeitlich älteren Produktmengen.Due to its simple design, the pump can deliver small quantities, continuously from 10 ml / h, or suck in defined quantities in the ml range and be used as a sampler in discontinuous or continuous processes. The pump can act as a sluice because the pressure and suction sides are separate, it can transfer product quantities from a vacuum or pressure range to a vacuum or pressure range. Due to the dead space-free design, there is no backmixing with older product quantities.
Ein besonderer Vorteil des Verfahrens mit der Doppellanghubkolbenpumpe ist, daß mit der eingestellten Probenmenge von z.B. 10 ml, eine definierte Produktmenge pro Hub gefördert wird und zu einem beliebigen Zeitpunkt z.B. in einen Meßkreislauf überführt werden kann. Diese Probenmenge bzw. der max. Hubweg ist mit einer Stellmutter auf der Kolbenspindel im Inneren des Kolbengehäuses einstellbar.A particular advantage of the method with the double-length reciprocating piston pump is that with the set sample amount of e.g. 10 ml, a defined amount of product per stroke is conveyed and at any time e.g. can be transferred into a measuring circuit. This sample amount or the max. The stroke can be adjusted with an adjusting nut on the piston spindle inside the piston housing.
Die Kolbenköpfe und Pumpengehäuse können aus geeigneten metallischen und/oder nichtmetallischen Werkstoffen bestehen. In besonderen Ausführungsformen kann auch das Kolbengehäuse mit Glas- oder Keramikhülsen ausgekleidet werden. Das Kolbengehäuse kann auf einfache Weise beheizt oder gekühlt werden.The piston heads and pump housings can consist of suitable metallic and / or non-metallic materials. In special embodiments, the piston housing can also be lined with glass or ceramic sleeves. The piston housing can be easily heated or cooled.
Aufgrund der Trennung von Druck- und Saugseite können zwischen diesen beliebigen positive oder negative Druckdifferenzen bestehen. Die Pumpe kann bei einer Temperatur von -100°C bis +200°C betrieben werden. Üblich ist es, die Pumpe in einem Temperaturbereich von etwa -20 bis +150°C, im Falle von Latices im Bereich von +2 bis +100°C einzusetzen. Das Verhältnis von Hubvolumen zu Restvolumen im Pumpenkopf, welches ein Maß für die Totraumfreiheit ist, beträgt bevorzugt kleiner als 1 %.Due to the separation of the pressure and suction side, there can be any positive or negative pressure differences between them. The pump can be operated at a temperature of -100 ° C to + 200 ° C. It is common to use the pump in a temperature range from around -20 to + 150 ° C, in the case of latices in the range from +2 to + 100 ° C. The ratio of stroke volume to residual volume in the pump head, which is a measure of the freedom from dead space, is preferably less than 1%.
Claims (8)
- Process for continuously conveying shear-sensitive fluids having a viscosity of up to 100,000 mPa.s with a pump capacity of 10 ml/h to 100 l/h, characterised in that the fluid is aspirated via at least one clearance-free valve (4) by a piston (8) of a double-long-stroke reciprocating pump (3) while fluid is synchronously emitted by the second piston (9) from the second piston chamber (24) likewise via at least one additional clearance-free valve (5) towards the conveying side and after evacuation of the second piston chamber (24) the valves (4) is opened on the emission side and closed on the suction side while the additional valve (5) is closed on the emission side and opened on the suction side and the direction of motion of the pistons (8, 9) is synchronously reversed, whereby the pistons (8) and (9) are located on one spindle (14), whereby the direction of motion of the pistons (8, 9) and the positions of the valves (4, 5) are controlled via contact switches (26) and the residual volume still remaining in the piston chamber after evacuation amounts to less than 1 % of the stroke volume.
- Process according to Claim 1, characterised in that the shear-sensitive fluid is conveyed in a recirculating loop (2) which is coupled to a reactor (1).
- Process according to Claims 1 and 2, characterised in that the shear-sensitive fluid is a polymer latex or a plastic dispersion.
- Process according to Claims 2 and 3, characterised in that the fluid is pumped into the region of reduced pressure via an overflow valve (6) or a sluice which is connected between the recirculating circuit (2) and a region of reduced pressure.
- Process according to Claims 3 to 4, characterised in that the region of reduced pressure is part of a metering loop (7) which is parallel to the recirculating loop (2) and by way of metering devices comprises at least one calibrated vacuum vessel with pressure gauge for determining the monomer concentration of the polymer latex.
- Device for implementing the process according to Claim 1, comprising a double-long-stroke reciprocating pump (3).with two pistons (8) and (9), a suction line and an emission line, at least two valves (4) and (5), in particular three-way valves, which connect the respective piston chamber (23) or (24) of the pistons (8) and (9) to the suction line or the emission line, characterised in that the valve (4) and the additional valve (5) are clearance-free valves which are controlled via a respective contact switch (26) or (13) of the double-long-stroke reciprocating pump (3), in that the pistons (8) and (9) are capable of being moved synchronously and the change in the direction of motion of the pistons (8, 9) is used for controlling the valves (4) and (5), and in that the residual volume of the piston chambers (23) and (24) amounts to less than 1 % of the stroke volume.
- Device according to Claim 6, characterised in that it is connected to a recirculating loop (2) which is coupled to a reactor (1).
- Device according to Claim 7, with an overflow valve (6) or a sluice on the emission side of the conveying device in the recirculating loop for transporting fluid in a region of reduced pressure.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4324777A DE4324777A1 (en) | 1993-07-23 | 1993-07-23 | Method and device for the continuous delivery of shear sensitive fluids |
DE4324777 | 1993-07-23 | ||
PCT/EP1994/002267 WO1995003491A1 (en) | 1993-07-23 | 1994-07-11 | Continuous conveying process and device for shear-sensitive fluids |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0710328A1 EP0710328A1 (en) | 1996-05-08 |
EP0710328B1 true EP0710328B1 (en) | 1997-10-29 |
Family
ID=6493552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94924738A Expired - Lifetime EP0710328B1 (en) | 1993-07-23 | 1994-07-11 | Continuous conveying process and device for shear-sensitive fluids |
Country Status (6)
Country | Link |
---|---|
US (1) | US20030165390A1 (en) |
EP (1) | EP0710328B1 (en) |
JP (1) | JPH10508073A (en) |
DE (2) | DE4324777A1 (en) |
ES (1) | ES2108486T3 (en) |
WO (1) | WO1995003491A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10146672B4 (en) * | 2001-09-21 | 2004-12-09 | Intec Bielenberg Gmbh & Co Kg | Device for dosing viscous materials |
US20110044830A1 (en) * | 2004-06-07 | 2011-02-24 | Hunter Hitech Pty Ltd | Pump assembly |
US9765768B2 (en) * | 2014-01-15 | 2017-09-19 | Francis Wayne Priddy | Concrete pump system and method |
US20210310334A1 (en) * | 2020-04-03 | 2021-10-07 | High Roller E & C, LLC | Oilfield liquid waste processing facility and methods |
US11911732B2 (en) | 2020-04-03 | 2024-02-27 | Nublu Innovations, Llc | Oilfield deep well processing and injection facility and methods |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4580954A (en) * | 1983-05-23 | 1986-04-08 | Boyle Bede Alfred | Oscillating-deflector pump |
US5066199A (en) * | 1989-10-23 | 1991-11-19 | Nalco Chemical Company | Method for injecting treatment chemicals using a constant flow positive displacement pumping apparatus |
US5094596A (en) * | 1990-06-01 | 1992-03-10 | Binks Manufacturing Company | High pressure piston pump for fluent materials |
-
1993
- 1993-07-23 DE DE4324777A patent/DE4324777A1/en not_active Withdrawn
-
1994
- 1994-07-11 ES ES94924738T patent/ES2108486T3/en not_active Expired - Lifetime
- 1994-07-11 WO PCT/EP1994/002267 patent/WO1995003491A1/en active IP Right Grant
- 1994-07-11 EP EP94924738A patent/EP0710328B1/en not_active Expired - Lifetime
- 1994-07-11 US US08/581,589 patent/US20030165390A1/en not_active Abandoned
- 1994-07-11 JP JP7504903A patent/JPH10508073A/en active Pending
- 1994-07-11 DE DE59404484T patent/DE59404484D1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
EP0710328A1 (en) | 1996-05-08 |
DE59404484D1 (en) | 1997-12-04 |
DE4324777A1 (en) | 1995-01-26 |
ES2108486T3 (en) | 1997-12-16 |
JPH10508073A (en) | 1998-08-04 |
WO1995003491A1 (en) | 1995-02-02 |
US20030165390A1 (en) | 2003-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE68915865T2 (en) | Multi-purpose positive displacement pump for various liquids. | |
EP1886018B1 (en) | Device and method for transporting medicinal liquids | |
DE2719317C2 (en) | Device for the production of an eluent composed of several liquids for liquid chromatography | |
DE10329314A1 (en) | Pump for introducing a liquid into a chromatograph comprises chambers, plungers forming a first and a second volume with the chambers, a liquid connecting channel, a liquid inlet channel, and a liquid outlet channel | |
DE102012211192A1 (en) | Continuous fluid delivery system and its control method | |
EP3004643B1 (en) | Metering pump and metering system | |
EP0521043B1 (en) | Automatic polyelectrolyte determining device | |
WO2019243063A1 (en) | Modular processing system and method for the modular construction of a processing system | |
EP0710328B1 (en) | Continuous conveying process and device for shear-sensitive fluids | |
EP3479855B1 (en) | Device for extracorporeal blood treatment with gravimetric balancing and ultrafiltration | |
EP0793566B1 (en) | Device for the metered feed of the individual components of fluid multi-component plastics to a mixing head | |
EP0997643B1 (en) | Diaphragm metering pump | |
DE1815502A1 (en) | Device and method for the automatic mixing and filling of liquids | |
DE2401643C2 (en) | Process for proportional metering in sludge pumps that work on filter presses | |
EP1611355B1 (en) | Diaphragm pump | |
DE2931017A1 (en) | PRESSURE AMPLIFIER SYSTEM, ESPECIALLY FOR LIQUID FEEDING IN LIQUID CHROMATOGRAPHS | |
EP3275790A2 (en) | Filling device with improved hose pump | |
DE1911919B2 (en) | Diaphragm pump with hose squeeze valve action - has drive shaft with cams actuating inlet and outlet and eccentric actuating diaphragm | |
DE3536624A1 (en) | Method and device for controlling the discharge of solid material or thick matter from a separator | |
DE19546299B4 (en) | Double piston pump | |
DE112004002344T5 (en) | The catalyst supply | |
DE2302142C2 (en) | Process for the addition of sludge treatment chemicals for filter presses | |
EP0628390A1 (en) | Proportioning and conveyer pump and employment of such a pump for making moulded resin bodies | |
DE202011100403U1 (en) | Automatic sampling device for liquids with volatile ingredients | |
EP0482151A1 (en) | System for applying liquids. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT SE |
|
17Q | First examination report despatched |
Effective date: 19961030 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT SE |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19971104 |
|
REF | Corresponds to: |
Ref document number: 59404484 Country of ref document: DE Date of ref document: 19971204 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2108486 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727A |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 727B |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: SP |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20050611 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20050615 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050704 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20050706 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20050718 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060712 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060731 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070201 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20060711 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070330 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060712 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070711 |