EP0793976A2 - Ratenadaptiver Herzschrittmacher - Google Patents
Ratenadaptiver Herzschrittmacher Download PDFInfo
- Publication number
- EP0793976A2 EP0793976A2 EP97250057A EP97250057A EP0793976A2 EP 0793976 A2 EP0793976 A2 EP 0793976A2 EP 97250057 A EP97250057 A EP 97250057A EP 97250057 A EP97250057 A EP 97250057A EP 0793976 A2 EP0793976 A2 EP 0793976A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- impedance
- rate
- adaptive
- value
- variable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36514—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure
- A61N1/36521—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by a physiological quantity other than heart potential, e.g. blood pressure the parameter being derived from measurement of an electrical impedance
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/362—Heart stimulators
- A61N1/365—Heart stimulators controlled by a physiological parameter, e.g. heart potential
- A61N1/36585—Heart stimulators controlled by a physiological parameter, e.g. heart potential controlled by two or more physical parameters
Definitions
- the invention relates to a rate-adaptive pacemaker according to the preamble of claim 1.
- Pacemakers which set the adaptive heart rate as a function of the load on the pacemaker wearer.
- DE-C-34 19 439 describes a pacemaker which measures the blood temperature of the venous blood in the heart with a temperature sensor and adjusts the adaptive heart rate as a function of the measured value. This principle is based on the knowledge that the blood temperature of the human being increases during exercise. The blood temperature is assigned to the physiologically sensible adaptive heart rate by means of a characteristic curve which assigns a value of the adaptive heart rate to each value of the blood temperature.
- a disadvantage of this known pacemaker is that the relationship between blood temperature and physiologically sensible heart rate is generally different for each person, so that the pacemaker must be individually calibrated for each pacemaker wearer.
- a change in the blood temperature independent of the load - for example, due to aging of the temperature sensor or a shift in the temperature sensor in the body of the pacemaker wearer - also leads to a change in the adaptive heart rate, which is not physiologically sensible.
- This method is based on the finding that the intracardiac impedance in a certain time window after a QRS complex - the so-called "region of interest” (ROI) - has a particularly significant dependence on the load on the organism.
- the slope of the impedance curve in the ROI is therefore determined and the difference between the slope of a rest or reference curve and the slope of the currently measured impedance curve (load curve) is calculated.
- the adaptive heart rate is set depending on this difference.
- the assignment of the calculated gradient difference to the heart rate to be set also takes place here by means of a characteristic curve. Since this relationship is usually different for different people, the pacemaker must be calibrated individually for each wearer, and the calibration must be repeated if the patient's state of health and exercise capacity or the life circumstances of the patient have changed significantly. The position of the ROI must also be checked.
- the object of the invention to create a generic pacemaker which can do without a patient-specific calibration process and which adapts itself automatically to changed boundary conditions.
- the invention includes the idea that - due to the connections via the autonomic nervous system (ANS) reflecting the total stress situation (physical and psychological stress) of a patient in an excellent manner - the time course of the intracardiac (especially right ventricular) impedance in a meaningful, no patient-specific setting to use the required size for rate adaptation.
- ANS autonomic nervous system
- the pacemaker evaluates the intracardiac impedance, in particular the unipolar measured right ventricular impedance, in a wide range, which includes the ROI ranges usually set for individual patients. In it, it determines a relation between the rest or reference and load curve, especially on the basis of arithmetic processing of the time integral of the impedance over the range mentioned.
- the output of the corresponding integrator stage is connected in particular to an integral value memory, in each of which a reference integral value determined in at least one previous cardiac cycle is stored, and the rate determination device comprises an arithmetic unit connected to the output of the integrator stage and the integral value memory for calculating a secondary impedance variable the respective primary impedance variable and the reference integral value according to a predetermined arithmetic relationship.
- the arithmetic unit is a subtraction stage for forming the difference value between the primary impedance variable and the reference integral value - however, other arithmetic processing or, if necessary, a multi-stage threshold value discrimination can also take place.
- the definition of the time range or integration limits does not require any patient-specific programming after the implantation, but can be stored in a fixed value memory (at least indirectly) connected to a control input of the integrator stage, in particular during the manufacture of the pacemaker.
- the limits of the predetermined section are determined as a result of examinations of the range of the temporal course of the impedance relevant to the rate adaptation in a patient population.
- the rest or reference curve mentioned is preferably "carried along", i.e. averaged from a predetermined time span of a few (for example three) minutes, wherein either a moving averaging or averaging can be carried out for successive separate time periods. This enables rapid adaptation to changing boundary conditions - such as stimulation parameters, medication or lifestyle habits - and prevents the patient from being endangered by persistence of the pacemaker at unphysiologically high rates.
- the current impedance curve is expediently defined as a new reference curve.
- the rate should not be changed, or should not be changed significantly, which requires the introduction of a rate offset amount which is then gradually reduced again over a predetermined time or number of cardiac cycles.
- the implementation of this function - in addition to a corresponding design of the pacemaker or sequence control - serve a control connection to the output stage and an offset memory.
- An expanded functionality is provided by equipping the pacemaker with a sensor - at least indirectly connected to a control input of the integrator stage and / or a control input of the rate determination device - for an activity variable, the output signal of which adjusts at least one of the limits of the integration range and / or a characteristic curve of the rate determination device .
- a particularly simple and at the same time expedient sensor is a digital motion sensor which, in particular, causes a switchover between different programmed time range or integration limits and / or a corresponding switchover of the processing characteristics (characteristic curve) of the rate determination device.
- the rate determination device comprises a differential element having a data input for the impedance variable, with which very slow changes in impedance for the pacemaker control are rendered ineffective.
- the differential element has a time constant control input connected to the sensor for the activity variable, by means of which the differential time is set to a value which is substantially smaller in the idle state than when the patient is active. If a digital motion sensor - already mentioned above - is used, the setting is carried out in particular as a switchover between preset time constants.
- the characteristic curve determining the dependence of the stimulation rate on the impedance variable as an essential operating parameter of the rate determination device is preferably not static, but is optimized continuously or at certain time intervals.
- the goal of the optimization is first of all to adapt the variation range of the impedance variable to the permissible variation range of the heart rate.
- the range of variation is not known at the beginning of operation, but is determined by continuously measuring the impedance during operation and optimized after each measurement. At the start of operation, an estimate for the lower and the upper limit of the variation range is specified as the starting value.
- the case may arise that a measured value of the impedance exceeds the previously determined range of variation upwards or downwards.
- the range of variation is expanded accordingly and thereby updated.
- the growth time constant of this adaptation process is preferably of the order of a few seconds in order to achieve a rapid adaptation and thus to prevent an excessive heart rate.
- the case may arise that the impedance no longer fully utilizes the previously determined range of variation over a longer period of time. In a Embodiment of the invention is therefore slowly reduced again in this case.
- the time constant of this adjustment process is preferably in the order of several weeks.
- the characteristic curve is adjusted during the optimization to the current value of the range of the activity variable (impedance).
- the characteristic curve assigns the base rate to the lower limit of the range of variation of the activity variable and the maximum stimulation rate corresponding to the upper limit of the activity variable. By changing these limit values during optimization, the characteristic curve also changes.
- the calculated adaptive heart rate is therefore statistically evaluated. From the statistical distribution within the permissible range of variation from the base rate to the maximum stimulation rate, information can be obtained for the optimization of the characteristic curve.
- a physiologically meaningful statistical distribution of the activity variable in the form of a frequency distribution function can be determined for each patient depending on his load profile and by adjusting the course of the characteristic curve between the support points so that the frequency distribution function of the adaptive heart rate of the physiologically meaningful frequency distribution function is as possible comes close.
- the coefficients K i are then determined in such a way that, on the one hand, the limit values of the variation range of the activity variable are assigned the corresponding limit values of the permissible variation range of the heart rate and, on the other hand, the frequency distribution function of the adaptive heart rate comes as close as possible to the physiologically sensible frequency distribution function.
- the entire permissible range of variation is divided into equidistant frequency intervals, and the time in which the heart rate was within the frequency interval during an observation period is determined for each frequency interval.
- the observation period is preferably in the order of several weeks.
- the combination of activity sensor and differential element results in the following mode of operation in particular: If the motion sensor detects movement of the pacemaker carrier, the differential time T D and the differential transmission factor K D of the differential element are increased equally equally. By increasing the differential time T D it is achieved that even longer lasting loads are supported by an increased heart rate. The simultaneous increase in the differential constant K D ensures the continuity of the output signal of the differential element. Otherwise the output signal of the differential element would jump when the differential time T D changes, which is physiologically not sensible. After the end of the physical load, the differential time T D and the differential transmission factor K D are reset to the values before the load phase.
- FIG. 1 shows, as an exemplary embodiment of the invention, a rate-adaptive cardiac pacemaker 1 as a functional block diagram, only the components which are important for the explanation of the invention being shown.
- the impedance measuring device and processing device 3 measures the right ventricular intracardial impedance Z via a unipolar measuring electrode 2 in the right ventricle of the heart H.
- the measurement is carried out in a clocked manner by applying a measuring voltage to the measuring electrode 2 and measuring the current between the measuring electrode 2 and the housing 1a of the pacemaker acting as a counterelectrode at eight equidistant times within a fixed preprogrammed time range.
- the impedance Z is the quotient of the measurement voltage and current.
- the clock frequency of the impedance measurement is a few tens to approximately 100 Hz. According to the generally known sampling theorem, this ensures that the discrete-time impedance signal reproduces the actual course of the impedance Z sufficiently well.
- the impedance Z exhibits relatively large changes during a cardiac cycle.
- the impedance Z is usually at the beginning of a cardiac cycle immediately after a QRS complex minimal and then increases again until the next QRS complex; their course over time, as will be explained in more detail below with reference to FIG. 4, results in the rate setting parameter after integration and arithmetic processing.
- the measuring device and processing device 3 is followed by a differential element 4 with a differential time T D.
- This differential element 4 has the task of filtering out slow changes in the intracardiac impedance Z , the time constant of which is above the differential time T D.
- a motion sensor 5 which delivers a binary signal (motion yes / no) depending on the motion state of the pacemaker wearer.
- the differential time T D of the differential element 4 is set.
- the output signal of the differential element 4 is fed to a rate determination device 6, which outputs the adaptive heart rate HR at its output.
- the rate determination device 6 has a characteristic curve element 10, which assigns a value of the adaptive heart rate HR to each value of the impedance variable A - which has been reworked in the differential element.
- the characteristic curve is during the operation of the pacemaker is continuously adjusted and optimized by an adjusting device 8 by adapting the processing of the impedance variable to the permissible variation range of the heart rate HR , which is predetermined by a base rate TR as the lower limit value and a maximum stimulation rate MSR as the upper limit value.
- the range of variation of the activity variable A is determined by a discriminator unit (not shown) which continuously determines the maximum A MAX and the minimum A MIN of the impedance variable during the past four weeks.
- the characteristic curve K is realized in the characteristic curve member 10 as a polygon with a total of twelve equidistant support points.
- One interpolation point is given by the lower limit value A MIN of the variation range of the processed impedance variable and the base rate TR and a second interpolation point is given by the upper limit value A MAX of the variation range of the impedance variable and the maximum stimulation rate MSR , whereby the relationships mentioned above apply.
- the position of the remaining (ten in the example) support points can be derived from a further optimization goal, which consists in adapting the frequency distribution function V of the adaptive heart rate HR as well as possible to a reference curve V REF .
- the adaptive heart rate HR is therefore statistically evaluated by an evaluation unit 9.
- the frequency distribution function V of the adaptive heart rate HR is continuously determined. This is done by determining for each of the eleven frequency intervals ⁇ HR i between the twelve support points of the characteristic curve K the percentage of time within an observation period for which the adaptive heart rate HR was within this frequency interval ⁇ HR i .
- the determined frequency distribution function V is compared with a reference curve V REF , which represents a physiologically meaningful frequency distribution function of the adaptive heart rate HR .
- the difference ⁇ V i between the measured frequency distribution function V and the reference curve V REF is formed in the support points V i and fed to the actuating device 8.
- the characteristic curve is optimally adapted. Otherwise the characteristic curve K is optimized by the adjusting device 8. If the frequency distribution function V of the heart rate lies above the reference curve V REF in the frequency interval between the first and the second interpolation point of the characteristic curve, this means that heart rates lying within this frequency interval occur too frequently. The slope dHR / dA of the characteristic curve must therefore be increased in this frequency interval. For this purpose, the second support point is shifted against the first support point in the direction of falling activity values. If, on the other hand, the frequency distribution function V is below the reference curve V REF , this means that heart rates occur too seldom within this frequency interval. The slope dHR / dA of the characteristic curve must therefore be reduced in this frequency interval. For this purpose, the second support point is shifted relative to the first support point in the direction of increasing activity values.
- the new position of the other support points is determined in the same way. If the frequency distribution function V lies above the reference curve V REF in a frequency interval lying between two reference points, the reference point belonging to the higher frequency is shifted in the direction of decreasing activity or impedance variable values.
- a driver or output stage 13 is connected downstream of the control device to stimulate the heart.
- the pacemaker 1 works according to the demand principle, i.e. it only stimulates the heart if there is no contraction of the heart by natural stimulation within a certain waiting time after a previous contraction of the heart.
- the driver stage 13 therefore has a comparator unit 11, which takes the electrocardiogram (ECG) on the heart 1 via the measuring electrode 2, determines the natural heart rate therefrom and compares it with the adaptive heart rate. If no natural contraction of the heart 1 is detected within the waiting time after a previous contraction, then the comparator unit 11 controls a pulse generator 12 which emits an electrical stimulation pulse on the stimulation electrode 2 (which also serves as the measuring electrode).
- ECG electrocardiogram
- a time control (controller) 14 which outputs control signals (symbolically represented by a single arrow) to the functional components.
- FIG. 2 shows, as an example, the characteristic curve K of the characteristic element 10 from FIG. 1 and an optimized characteristic curve K OPT .
- the characteristic curve K is formed by a polygon with a total of twelve support points and assigns a value of the adaptive heart rate HR to each value of the range of variation of the activity variable from A MIN to A MAX .
- the limits of the range of variation of the activity variable A are not constant here. Rather, the pacemaker continuously "learns" during operation what range of variations there is in the everyday life of the pacemaker wearer occurring loads results. The range of variation of activity variable A is therefore continuously being redetermined. This also changes the position of the characteristic curve K.
- the lower limit value A MIN of the variation range of the activity variable A and the base rate TR form a support point and the upper limit value A MAX of the variation range of the activity variable A and the maximum stimulation rate MSR form another support point of the characteristic curve K.
- the characteristic curve K initially runs linearly between these two support points after the pacemaker has been started up for the first time. However, the course is changed as part of an optimization process so that the frequency distribution function of the adaptive heart rate HR comes as close as possible to a physiologically meaningful reference curve.
- the optimized characteristic curve K OPT has a smaller gradient d HR / d A than the linear characteristic curve K in the lower range of the variation in the heart rate HR . As a result, lower heart rates HR occur more frequently with the optimized K OPT characteristic.
- the slope d HR / d A is greater in the upper range of the variation range of the heart rate HR with the optimized characteristic curve K OPT than with the linear characteristic curve K.
- High adaptive heart rates HR close to the maximum stimulation rate MSR therefore occur less frequently with the optimized characteristic curve K OPT .
- FIG. 3 shows frequency distribution functions of the adaptive heart rate HR , which can result from the characteristic curves K and K OPT shown in FIG.
- the frequency distribution function V represents the distribution of the adaptive heart rate HR resulting from the characteristic curve K over the entire range of variation of the heart rate HR from the base rate TR to the maximum stimulation rate MSR .
- the maximum of the frequency distribution function V is in the upper frequency range close to the maximum stimulation rate MSR , ie the Heart beats relatively often in the upper frequency range, which makes no physiological sense.
- the physiologically useful frequency distribution function of the adaptive heart rate is given by the reference curve V REF .
- the maximum in the lower frequency range is close to the base rate TR .
- the characteristic curve K of the characteristic curve element is set according to the principle outlined in FIG. 2 in such a way that the frequency distribution function V assumes the shape of the reference curve V REF .
- FIG. 4 An expedient embodiment of the essential components for impedance measurement and processing of a pacemaker 1 'which is slightly modified compared to FIG. 1 is shown in FIG. 4 in the form of a functional block diagram. Based on the reference number 3 selected in FIG. 2, the actual impedance measuring device is denoted by 3.1 and the impedance processing device by 3.2.
- the impedance measuring device 3.1 connected on the input side to the intracardiac measuring, sensing and stimulating electrode 2 comprises, in a construction known per se, a scanning pulse generator 300, a filter stage 301 for the separation of interfering (eg from breathing activity) signal components, a current meter 302 and an impedance calculation stage 303 Impedance measurements are clocked by the sequence controller 14 (cf. FIG. 1) in synchronism with stimulated or spontaneous cardiac events.
- the number is permanently stored in an integration limit memory 305 and determines the count of one of the measurement control pulses from the sequence control counting counter 306, which stops the integrator when the programmed number is reached.
- the counter 306 simultaneously triggers the transfer of the integration result A ′′ to a subtraction stage 307 on the one hand and via a delay element 308 to a FIFO memory 309 on the other hand.
- a predetermined number of impedance integral values from the past are constantly stored in the memory 309, and are each taken into an averaging stage 310 by the output signal of the counter 306 and subjected to a current averaging.
- the output signal of the averaging stage 310 (in addition to the current impedance integral value as the primary impedance variable A ′′) is fed as the reference value A ′′ ref to the subtraction stage 307, which forms the difference between the current integral value and the current time average of the integral values as a reference value and as a secondary Outputs impedance variable A ', which represents the rate control parameter here.
- the signal connection of the sequence controller 14 to the measuring electrode 2 shown in FIG. 1, with which the cardiac actions or intracardiac ECGs are also recorded distinguishes between spontaneous and evoked cardiac actions and thus deleting the FIFO 309 when the event type changes enables a flip-flop 311 connected to the sequence control 14 on the input side and to an erase input of the FIFO on the output side.
- Its output signal is also fed to a modified rate determination device 6 ', where a rate offset is added to the calculated stimulation rate with each change of event type, the amount of which is selected depending on the previous and the current rate value so that the rate jump does not exceed a predetermined amount exceeds, and which is gradually reduced to zero in the subsequent cardiac events.
- the specific circuitry means for realizing this additional function are available to the person skilled in the art from known arrangements for rate smoothing or adjustment.
- the embodiment of the invention is not limited to the preferred exemplary embodiments specified above. Rather, a number of variants are conceivable which make use of the solution shown, even in the case of fundamentally different types.
- stage 3.2 can have a large number of alternative designs in which, for example, the formation of a moving average value as a reference value is replaced by time averaging with fixed starting points at predetermined time intervals or instead of the output signals of integrator stage 304 using the output signals of impedance calculation stage 303, i.e. of (impedance, time) value pairs.
- a fixed temporal integration range can also be programmed. It is furthermore advantageously possible to provide means for setting the respectively valid integration range as a function of the signal from the motion sensor (or another activity sensor).
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Physiology (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Electrotherapy Devices (AREA)
Abstract
Description
- Die Erfindung betrifft einen ratenadaptiven Herzschrittmacher gemäß dem Oberbegriff des Anspruchs 1.
- Es sind Herzschrittmacher bekannt, die die adaptive Herzrate in Abhängigkeit von der Belastung des Herzschrittmacherträgers einstellen.
- In der DE-C-34 19 439 ist ein Herzschrittmacher beschrieben, der mit einem Temperaturfühler die Bluttemperatur des venösen Blutes im Herzen mißt und die adaptive Herzrate in Abhängigkeit von dem gemessenen Wert einstellt. Diesem Prinzip liegt die Erkenntnis zugrunde, daß die Bluttemperatur des Menschen bei Belastung ansteigt. Die Zuordnung der Bluttemperatur zu der physiologisch sinnvollen adaptiven Herzrate erfolgt dabei durch eine Kennlinie, die jedem Wert der Bluttemperatur einen Wert der adaptiven Herzrate zuordnet.
- Nachteilig bei diesem vorbekannten Herzschrittmacher ist, daß der Zusammenhang von Bluttemperatur und physiologisch sinnvoller Herzrate in der Regel für jeden Menschen unterschiedlich ist, so daß der Herzschrittmacher für jeden Herzschrittmacherträger individuell kalibriert werden muß.
- Darüberhinaus führt eine belastungsunabhängige Änderung der Bluttemperatur - beispielsweise durch Alterung des Temperaturfühlers oder durch eine Verschiebung des Temperaturfühlers im Körper des Herzschrittmacherträgers - ebenfalls zu einer Änderung der adaptiven Herzrate, was physiologisch nicht sinnvoll ist.
- Es ist eine Vielzahl von Anordnungen zur Impedanzmessung im Bereich des Thorax oder im Herzen zur Gewinnung eines Impedanzsignals für ratanadaptive Herzschrittmacher bekannt, so daß die Technik der intrakardialen Impedanzmesung als solche dem Fachmann vertraut ist. Die meisten dieser Anordnuneg streben aber eine Aussage zum Atem- bzw. Minutenvolumen als Ausdruck der körperlichen Belastung des Patienten und als eigentlichem Ratensteuerparameter an.
- Bekannt ist auch das sogenannte ResQ-Verfahren (Regional Effective Slope Quality) (SCHALDACH, Max: Electrotherapy of the Heart, 1.Aufl., Springer-Verlag, S.114ff.), bei dem der zeitliche Verlauf der intrakardialen Impedanz zur Bestimmung der physiologisch sinnvollen adaptiven Herzrate herangezogen wird.
- Diesem Verfahren liegt die Erkenntnis zugrunde, daß die intrakardiale Impedanz in einem bestimmten Zeitfenster nach einem QRS-Komplex - der sogenannten "region of interest" (ROI) - eine besonders signifikante Abhängigkeit von der Belastung des Organismus aufweist.
- Es wird deshalb die Steigung der Impedanzkurve in der ROI bestimmt und die Differenz zwischen der Steigung einer Ruhe- bzw. Referenzkurve und der Steigung der aktuell gemessenen Impedanzkurve (Belastungskurve) berechnet. In Abhängigkeit von dieser Differenz wird die adaptive Herzrate eingestellt. Die Zuordnung der berechneten Steigungsdifferenz zu der einzustellenden Herzrate erfolgt auch hier durch eine Kennlinie. Da dieser Zusammenhang in der Regel für verschiedene Menschen unterschiedlich ist, muß der Herzschrittmacher für jeden Träger individuell kalibriert werden, und die Kalibrierung ist bei wesentlich verändertem Gesundheitszustand und Belastungsvermögen oder veränderten Lebensumständen des Patienten zu wiederholen, wobei auch die Lage der ROI zu überprüfen ist.
- Es ist deshalb insbesondere die Aufgabe der Erfindung, einen gattungsgemäßen Herzschrittmacher zu schaffen, der ohne patientenspezifischen Kalibrierungsvorgang auskommen kann und sich an veränderte Randbedingungen selbsttätig anpaßt.
- Diese Aufgabe wird durch die in Anspruch 1 angegebenen Merkmale gelöst.
- Die Erfindung schließt den Gedanken ein, den - aufgrund der Verknüpfungen über das autonome Nervensystem (ANS) die Gesamt-Belastungssituation (physische und psychische Belastung) eines Patienten ausgezeichnet reflektierenden - zeitlichen Verlauf der intrakardialen (speziell rechtsventrikulären) Impedanz in einer aussagekräftigen, keine patientenindividuelle Einstellung erfordernden Größe zur Ratenadaption zu nutzen.
- Der erfindungsgemäße Herzschrittmacher wertet die intrakardiale Impedanz, insbesondere die unipolar gemessene rechtsventrikuläre Impedanz, in einem breiten Bereich aus, der die üblicherweise für einzelne Patienten eingestellten ROI-Bereiche einschließt. Er bestimmt in diesem eine Relation zwischen Ruhe- bzw. Referenz- und Belastungskurve, speziell anhand einer arithmetischen Verarbeitung des Zeitintegrals der Impedanz über den genannten Bereich.
- Hierzu ist der Ausgang der entsprechenden Integratorstufe insbesondere mit einem Integralwertspeicher verbunden, in den jeweils ein in mindestens einem vorhergehenden Herzzyklus ermittelter Referenz-Integralwert gespeichert wird, und die Ratenbestimmungseinrichtung umfaßt eine mit dem Ausgang der Integratorstufe und dem Integralwertspeicher verbundene Arithmetikeinheit zur Berechnung einer sekundären Impedanzgröße aus der jeweiligen primären Impedanzgröße und dem Referenz-Integralwert gemäß einer vorgegebenen arithmetischen Beziehung. Die Arithmetikeinheit ist in einer vorteilhaft einfachen Ausführung eine Subtraktionsstufe zur Bildung des Differenzwertes zwischen der primären Impedanzgröße und dem Referenz-Integralwert - es kann aber auch eine andere arithmetische Verarbeitung oder ggfs. auch eine mehrstufige Schwellwert-Diskrimination erfolgen.
- Die Festlegung der Zeitbereichs- bzw. Integrationsgrenzen bedarf keiner patientenindividuellen Programmierung nach der Implantation, sondern diese können insbesondere bei der Herstellung des Schrittmachers in einem (mindestens mittelbar) mit einem Steuereingang der Integratorstufe verbundenen Festwertspeicher gespeichert werden. Die Grenzen des vorbestimmten Abschnitts werden im Ergebnis von Untersuchungen des für die Ratenadaption relevanten Bereichs des zeitlichen Verlaufs der Impedanz an einer Patientenpopulation ermittelt.
- Die genannte Ruhe- bzw. Referenzkurve wird bevorzugt "mitgeführt", d.h. aus über eine vorbestimmte Zeitspanne von einigen (beispielsweise drei) Minuten gewonnenen Impedanzwerten gemittelt, wobei entweder eine gleitende Mittelung oder jeweils eine Mittelung für aufeinanderfolgende getrennte Zeiträume vorgenommen werden kann. Dadurch wird eine schnelle Adaption an sich verändernde Randbedingungen - wie Stimulationsparameter, Medikation oder Lebensgewohnheiten - erreicht und eine Gefährdung des Patienten durch ein Beharren des Schrittmachers bei unphysiologisch hohen Raten verhindert.
- Bei einem Übergang von spontaner auf stimulierte Herztätigkeit (bei Belastungserhöhung) oder umgekehrt wird zweckmäßigerweise die jeweils aktuelle Impedanzkurve als neue Referenzkurve definiert. Zur Vermeidung sprunghafter Ratenänderungen sollte zu diesem Zeitpunkt jedoch die Rate nicht oder nicht wesentlich verändert werden, was die Einführung eines Ratenoffsetbetrages erfordert, der dann über eine vorbestimmte Zeit oder Anzahl von Herzzyklen allmählich wieder verringert wird. Der Realisierung dieser Funktion dienen - neben einer entsprechenden Ausbildung der Schrittmacher- bzw. Ablaufsteuerung - eine Steuerverbindung zur Ausgangsstufe und ein Offset-Speicher.
- Eine erweiterte Funktionalität bietet eine Ausrüstung des Schrittmachers mit einem - mindestens mittelbar mit einem Steuereingang der Integratorstufe und/oder einem Steuereingang der Ratenbestimmungseinrichtung verbundenen - Fühler für eine Aktivitätsgröße vorgesehen ist, dessen Ausgangssignal mindestens eine der Grenzen des Integrationsbereiches und/oder eine Kennlinie der Ratenbestimmungseinrichtung einstellt. Als besonders einfacher und zugleich zweckmäßiger Fühler kommt ein digitaler Bewegungssensor in Betracht, der insbesondere eine Umschaltung zwischen verschiedenen programmierten Zeitbereichs- bzw. Integrationsgrenzen und/oder eine entsprechende Umschaltung der Verarbeitungscharakteristik (Kennlinie) der Ratenbestimmungseinrichtung bewirkt.
- In einer weiteren speziellen Ausbildung umfaßt die Ratenbestimmungseinrichtung ein einen Dateneingang für die Impedanzgröße aufweisendes Differentialglied, mit dem sehr langsame Impedanzänderungen für die Schrittmachersteuerung unwirksam gemacht werden. Es wird hierdurch - mit drasisch verringertem Berechnungsaufwand und Stromverbrauch - ein ähnlicher Effekt wie mit der Mitführung der Impedanz-Ruhekurve erreicht.
- Das Differentialglied weist in einer zweckmäßigen Fortbildung einen mit dem Fühler für die Aktivitätsgröße verbundenen Zeitkonstanten-Steuereingang auf, über den die Differentialzeit auf einen im Ruhezustand wesentlich kleineren Wert als bei Aktivität des Patienten eingestellt wird. Wird eine - oben bereits erwähnter - digitaler Bewegungssensor eingesetzt, erfolgt die Einstellung inbesondere als Umschaltung zwischen voreingestellten Zeitkonstanten.
- Die die Abhängigkeit der Stimulationsrate von der Impedanzgröße bestimmende Kennlinie als wesentlicher Betriebsparameter der Ratenbestimmungseinrichtung ist bevorzugt nicht statisch, sondern wird kontinuierlich oder in bestimmten Zeitabständen optimiert. Das Ziel der Optimierung ist zunächst die Anpassung der Variationsbreite der Impedanzgröße an die zulässige Variationsbreite der Herzrate.
- Die Variationsbreite ist zu Beginn des Betriebs nicht bekannt, sondern wird durch laufende Messung der Impedanz während des Betriebs ermittelt und nach jeder Messung optimiert. Zu Beginn des Betriebs wird ein Schätzwert für den unteren und den oberen Grenzwert der Variationsbreite als Startwert vorgegeben.
- Bei der Optimierung sind nun zwei Fälle zu unterscheiden: Einerseits kann der Fall eintreten, daß ein Meßwert der Impedanz die bisher ermittelte Variationsbreite nach oben oder unten überschreitet. In diesem Fall wird die Variationsbreite entsprechend erweitert und dadurch aktualisiert. Die Wachstumszeitkonstante dieses Anpassungsvorgangs liegt vorzugsweise in der Größenordnung weniger Sekunden, um eine schnelle Anpassung zu erreichen und so eine überhöhte Herzrate zu verhindern. Andererseits kann der Fall auftreten, daß die Impedanz die zuvor bestimmte Variationsbreite über einen längeren Zeitraum nicht mehr voll ausschöpft. In einer Ausführungsform der Erfindung wird deshalb in diesem Fall die Variationsbreite langsam wieder verringert. Die Zeitkonstante dieses Anpassungsvorgangs liegt dabei vorzugsweise in der Größenordnung mehrerer Wochen.
- Die Kennlinie wird während der Optimierung jeweils an den aktuellen Wert der Variationsbreite der Aktivitätsgröße (Impedanz) angepaßt. So weist die Kennlinie dem unteren Grenzwert der Variationsbreite der Aktivitätsgröße die Basisrate zu und entsprechend dem oberen Grenzwert der Aktivitätsgröße die maximale Stimulationsrate. Durch eine Veränderung dieser Grenzwerte während der Optimierung ändert sich deshalb auch die Kennlinie.
- In einer vorteilhaften Variante wird deshalb die errechnete adaptive Herzrate statistisch ausgewertet. Aus der statistischen Verteilung innerhalb der zulässigen Variationsbreite von der Basisrate bis zur maximalen Stimulationsrate lassen sich Informationen gewinnen für die Optimierung der Kennlinie. Es läßt sich für jeden Patienten in Abhängigkeit von seinem Belastungsprofil und anderen Faktoren eine physiologisch sinnvolle statistische Verteilung der Aktivitätsgröße in Form einer Häufigkeitsverteilungsfunktion bestimmen, indem der Verlauf der Kennlinie zwischen den Stützstellen so eingestellt wird, daß die Häufigkeitsverteilungsfunktion der adaptiven Herzrate der physiologisch sinnvollen Häufigkeitsverteilungsfunktion möglichst nahekommt.
-
- Die Koeffizienten K i werden dann so bestimmt, daß zum einen den Grenzwerten der Variationsbreite der Aktivitätsgröße die entsprechenden Grenzwerte der zulässigen Variationsbreite der Herzrate zugeordnet werden und zum anderen die Häufigkeitsverteilungsfunktion der adaptiven Herzrate der physiologisch sinnvollen Häufigkeitsverteilungsfunktion möglichst nahekommt.
-
- A MIN , A MAX
- Grenzwerte der Variationsbreite der Aktivitätsgröße
- TR
- Target Rate (Basisrate)
- MSR
- maximale Stimulationsrate
- V
- Häufigkeitsverteilungsfunktion der Herzrate
- V REF
- physiologisch sinnvolle Häufigkeitsverteilungsfunktion
- Zur Berechnung der Häufigkeitsverteilungsfunktion der adaptiven Herzrate wird beispielsweise die gesamte zulässige Variationsbreite in äquidistante Frequenzintervalle aufgeteilt, und für jedes Frequenzintervall die Zeit bestimmt, in der die Herzrate während eines Beobachtungszeitraums innerhalb des Frequenzintervalls lag. Um die Auswirkung zyklischer Schwankungen der adaptiven Herzrate im Tages- oder Wochenzyklus zu unterdrücken, liegt die Beobachtungsdauer hierbei vorzugsweise in der Größenordnung mehrerer Wochen.
- In der Kombination von Aktivitätsfühler und Differentialglied ergibt sich insbesondere folgende Funktionsweise: Detektiert der Bewegungssensor eine Bewegung des Herzschrittmacherträgers, so werden die Differentialzeit T D und der differentiale Übertragungsfaktor K D des Differentialglieds gleichermaßen stark erhöht. Durch die Erhöhung der Differentialzeit T D wird erreicht, daß auch länger anhaltende Belastungen durch eine erhöhte Herzrate unterstützt werden. Durch die gleichzeitige Erhöhung der Differentialkonstante K D wird die Stetigkeit des Ausgangssignals des Differentialglieds sichergestellt. Andernfalls würde das Ausgangssignal des Differentialglieds bei einer Änderung der Differentialzeit T D springen, was physiologisch nicht sinnvoll ist. Nach dem Ende der physischen Belastung werden die Differentialzeit T D und der differentiale Übertragungsfaktor K D wieder auf die Werte vor der Belastungsphase zurückgesetzt.
- Vorteilhafte Weiterbildungen der Erfindung sind weiterhin in den Unteransprüchen gekennzeichnet bzw. werden nachstehend zusammen mit der Beschreibung einer bevorzugten Ausführung der Erfindung anhand der Figuren näher dargestellt.
- Es zeigen:
- Figur 1
- einen Herzschrittmacher als Ausführungsbeispiel der Erfindung als Blockschaltbild,
- Figur 2
- eine Kennlinie und eine optimierte Kennlinie für die Zuordnung der Aktivitätsgröße zur adaptiven Herzrate in dem in Figur 1 dargestellten Herzschrittmacher,
- Figur 3
- die sich aus den in Figur 2 dargestellten Kennlinien ergebenden Häufigkeitsverteilungsfunktionen der adaptiven Herzrate und
- Figur 4
- eine Ausführungsform einer Impedanzmeß- und - verarbeitungseinrichtung, die bei einem Herzschrittmacher ähnlich dem in Fig. 1 gezeigten eingesetzt werden kann.
- Figur 1 zeigt als Ausführungsbeispiel der Erfindung einen ratenadaptiven Herzschrittmacher 1 als Funktions-Blockschaltbild, wobei nur die für die Erläuterung der Erfindung wichtigen Komponenten dargestellt sind.
- Die Impedanzmeßvorrichtung und -verarbeitungseinrichtung 3 mißt über eine unipolare Meßelektrode 2 im rechten Ventrikel des Herzens H die rechtsventrikuläre intrakardiale Impedanz Z. Die Messung erfolgt getaktet, indem die Meßelektrode 2 mit einer Meßspannung beaufschlagt und zu acht äquidistanten Zeitpunkten innerhalb eines fest vorprogrammierten Zeitbereiches der Strom zwischen der Meßelektrode 2 und dem als Gegenelektrode wirkenden Gehäuse 1a des Herzschrittmachers gemessen wird. Die Impedanz Z ergibt sich als Quotient aus Meßspannung und Strom. Die Takfrequenz der Impedanzmessung beträgt hierbei einige zehn bis ca. 100 Hz. Dadurch wird gemäß dem allgemein bekannten Abtasttheorem erreicht, daß das zeitdiskrete Impedanzsignal den tatsächlichen Verlauf der Impedanz Z hinreichend gut wiedergibt.
- Die Impedanz Z weist während eines Herzzyklus relativ starke Änderungen auf. So ist die Impedanz Z in der Regel zu Beginn eines Herzzyklus unmittelbar nach einem QRS-Komplex minimal und steigt anschließend bis zum nächsten QRS-Komplex wieder an; ihr zeitlicher Verlauf ergibt - wie weiter unten unter Bezugnahme auf Fig. 4 genauer erläutert wird - nach Integration und arithmetischer Verarbeitung den Rateneinstellparameter.
- Der Meßvorrichtung und Verarbeitungseinrichtung 3 nachgeschaltet ist ein Differentialglied 4 mit einer Differentialzeit T D . Dieses Differentialglied 4 hat die Aufgabe, langsame Änderungen der intrakardialen Impedanz Z, deren Zeitkonstante über der Differentialzeit T D liegt, auszufiltern.
- Neben der Impedanzmeßvorrichtung ist ein Bewegungssensor 5 vorgesehen, der in Abhängigkeit vom Bewegungszustand des Herzschrittmacherträgers ein binäres Signal (Bewegung ja/nein) liefert. In Abhängigkeit von diesem Bewegungssignal wird die Differentialzeit T D des Differentialglieds 4 eingestellt. Im Ruhezustand des Herzschrittmacherträgers wird eine Differentialzeit T D1 = 10 min eingestellt. Das bedeutet, daß Änderungen der Impedanz Z, deren Zeitkonstante größer ist als 10 min, nicht zu einer relevanten Änderung der adaptiven Herzrate führen. Detektiert der Bewegungssensor eine Bewegung des Herzschrittmacherträgers, die mit einer physischen Belastung assoziiert ist, so wird die Differentialzeit auf T D2 = 5 h eingestellt.
- Das Ausgangssignal des Differentialglieds 4 wird einer Ratenbestimmungseinrichtung 6 zugeführt, die an ihrem Ausgang die adaptive Herzrate HR ausgibt.
- Die Ratenbestimmungseinrichtung 6 weist ein Kennlinienglied 10 auf, das jedem Wert der - im Differentialglied nachbearbeiteten - Impedanzgröße A durch eine Kennlinie einen Wert der adaptiven Herzrate HR zuordnet. Die Kennlinie wird während des Betriebs des Herzschrittmachers laufend durch eine Stellvorrichtung 8 eingestellt und optimiert, indem die Verarbeitung der Impedanzgröße an die zulässige Variationsbreite der Herzrate HR angepaßt wird, die durch eine Basisrate TR als unterem Grenzwert und eine maximale Stimulationsrate MSR als oberem Grenzwert vorgegeben ist.
- Die Variationsbreite der Aktivitätsgröße A wird durch eine (nicht gezeigte) Diskriminatoreinheit bestimmt, die laufend das Maximum A MAX und das Minimum A MIN der Impedanzgröße während der letzten vier Wochen bestimmt.
- Die Kennlinie K ist in dem Kennlinienglied 10 als Polygonzug mit insgesamt zwölf äquidistanten Stützstellen realisiert. Eine Stützstelle ist durch den unteren Grenzwert A MIN des Variationsbereiches der verarbeiteten Impedanzgröße und die Basisrate TR und eine zweite Stützstelle durch den oberen Grenzwert A MAX des Variationsbereiches der Impedanzgröße und die maximale Stimulationsrate MSR gegeben, wobei die weiter oben genannten Beziehungen gelten. Die Lage der restlichen (im Beispiel zehn) Stützstellen läßt sich aus einem weiteren Optimierungsziel ableiten, das darin besteht, die Häufigkeitsverteilungsfunktion V der adaptiven Herzrate HR möglichst gut an eine Referenzkurve V REF anzupassen.
- Es wird deshalb von einer Auswerteeinheit 9 die adaptive Herzrate HR statistisch ausgewertet. Hierzu wird laufend die Häufigkeitsverteilungsfunktion V der adaptiven Herzrate HR bestimmt. Dies geschieht dadurch, daß für jedes der zwischen den zwölf Stützstellen der Kennlinie K liegenden elf Frequenzintervalle ΔHR i jeweils der prozentuale Zeitanteil innerhalb eines Beobachtungszeitraums bestimmt wird, für den die adaptive Herzrate HR innerhalb dieses Frequenzintervalls ΔHR i lag. Die ermittelte Häufigkeitsverteilungsfunktion V wird mit einer Referenzkurve V REF verglichen, die eine physiologisch sinnvolle Häufigkeitsverteilungsfunktion der adaptiven Herzrate HR darstellt. Hierzu wird jeweils in den Stützstellen V i die Differenz ΔV i zwischen der gemessenen Häufigkeitsverteilungsfunktion V und der Referenzkurve V REF gebildet und der Stellvorrichtung 8 zugeführt.
- Stimmen die gemessene Häufigkeitsverteilungsfunktion V und die Referenzkurve V REF überein, so ist die Kennlinie optimal angepaßt. Andernfalls wird die Kennlinie K von der Stellvorrichtung 8 optimiert. Liegt in dem Frequenzintervall zwischen der ersten und der zweiten Stützstelle der Kennlinie die Häufigkeitsverteilungsfunktion V der Herzrate über der Referenzkurve V REF , so bedeutet dies, daß innerhalb dieses Frequenzintervalls liegende Herzraten zu häufig auftreten. Die Steigung dHR / dA der Kennlinie ist deshalb in diesem Frequenzintervall anzuheben. Hierzu wird die zweite Stützstelle gegen die erste Stützstelle in Richtung fallender Aktivitätswerte verschoben. Liegt dagegen die Häufigkeitsverteilungsfunktion V unterhalb der Referenzkurve V REF , so bedeutet dies, daß Herzraten innerhab dieses Frequenzintervalls zu selten auftreten. Die Steigung dHR / dA der Kennlinie ist deshalb in diesem Frequenzintervall zu verringern. Hierzu wird die zweite Stützstelle gegenüber der ersten Stützstelle in Richtungsteigender Aktivitätswerte verschoben.
- In der gleichen Weise wird die neue Lage der anderen Stützstellen bestimmt. Liegt in einem zwischen zwei Stützstellen liegenden Frequenzintervall die Häufigkeitsverteilungsfunktion V über der Referenzkurve V REF , so wird die zu der höheren Frequenz gehörende Stützstelle in Richtung abnehmender Aktivitäts- bzw. Impedanzgrößenwerte verschoben.
- Der Steuervorrichtung ist zur Stimulation des Herzens eine Treiber- bzw. Ausgangsstufe 13 nachgeschaltet. Der Herzschrittmacher 1 arbeitet nach dem Bedarfs(Demand)-Prinzip, d.h. er stimuliert das Herz nur dann, wenn innerhalb einer bestimmten Wartezeit nach einer vorangegangenen Kontraktion des Herzens keine Kontraktion des Herzens durch eine natürliche Stimulation stattfindet. Die Treiberstufe 13 weist deshalb eine Vergleichereinheit 11 auf, die über die Meßelektrode 2 das Elektrokardiogramm (ECG) am Herzen 1 abnimmt, daraus die natürliche Herzrate bestimmt und diese mit der adaptiven Herzrate vergleicht. Wird innerhalb der Wartezeit nach einer vorangegangenen Kontraktion keine natürliche Kontraktion des Herzens 1 detektiert, so steuert die Vergleichereinheit 11 einen Impulsgeber 12 an, der einen elektrischen Stimulationsimpuls auf die (gleichzeitig als Meßelektrode dienende Reizelektrode 2 gibt.
- Zur Steuerung der allgemeinen Schrittmacherfunktionen sowie zur Durchführung der Impedanzmessung und -verarbeitung ist eine eine Zeitbasis umfassende Ablaufsteuerung (Controller) 14 vorgesehen, die (symbolisch mit einem einzelnen Pfeil dargestellte) Steuersignale an die Funktionskomponenten ausgibt.
- Figur 2 zeigt als ein Beispiel die Kennlinie K des Kennlinienglieds 10 aus Figur 1 sowie eine optimierte Kennlinie K OPT . Die Kennlinie K wird durch einen Polygonzug mit insgesamt zwölf Stützstellen gebildet und ordnet jedem Wert der Variationsbreite der Aktivitätsgröße von A MIN bis A MAX einen Wert der adaptiven Herzrate HR zu.
- Die Grenzwerte der Variationsbreite der Aktivitätsgröße A sind hierbei nicht konstant. Vielmehr "lernt" der Herzschrittmacher während des Betriebs laufend, welche Variationsbreite sich bei den im täglichen Leben des Herzschrittmacherträgers auftretenden Belastungen ergibt. Die Variationsbreite der Aktivitätsgröße A wird also laufend neu bestimmt. Dadurch ändert sich auch jeweils die Lage der Kennlinie K.
- Der untere Grenzwert A MIN der Variationsbreite der Aktivitätsgröße A und die Basisrate TR bilden eine Stützstelle und der obere Grenzwert A MAX der Variationsbreite der Aktivitätsgröße A und die maximale Stimulationsrate MSR eine weitere Stützstelle der Kennlinie K. Zwischen diesen beiden Stützstellen verläuft die Kennlinie K nach der erstmaligen Inbetriebnahme des Herzschrittmachers zunächst linear. Der Verlauf wird jedoch im Rahmen eines Optimierungsprozesses so verändert, daß die Häufigkeitsverteilungsfunktion der adaptiven Herzrate HR einer physiologisch sinnvollen Referenzkurve möglichst nahekommt. Die optimierte Kennlinie K OPT weist im unteren Bereich der Variationsbreite der Herzrate HR eine geringere Steigung dHR /dA auf als die lineare Kennlinie K. Dadurch treten bei der optimierten Kennlinie K OPT geringere Herzraten HR häufiger auf. Entsprechend ist die Steigung dHR /dA im oberen Bereich der Variationsbreite der Herzrate HR bei der optimierten Kennlinie K OPT größer als bei der linearen Kennlinie K. Hohe adaptive Herzraten HR nahe der maximalen Stimulationsrate MSR treten deshalb bei der optmierten Kennlinie K OPT seltener auf.
- Figur 3 zeigt Häufigkeitsverteilungsfunktionen der adaptiven Herzrate HR, die sich aus den in Figur 2 dargestellten Kennlinien K und K OPT ergeben können. Die Häufigkeitsverteilungsfunktion V stellt die sich aus der Kennlinie K ergebende Verteilung der adaptiven Herzrate HR über die gesamte Variationsbreite der Herzrate HR von der Basisrate TR bis zur maximalen Stimulationsrate MSR dar. Das Maximum der Häufigkeitsverteilungsfunktion V liegt im oberen Frequenzbereich nahe der maximalen Stimulationsrate MSR, d.h. das Herz schlägt relativ oft im oberen Frequenzbereich, was physiologisch nicht sinnvoll ist. Die physiologisch sinnvolle Häufigkeitsverteilungsfunktion der adaptiven Herzrate ist durch die Referenzkurve V REF gegeben. Hierbei liegt das Maximum im unteren Frequenzbereich nahe der Basisrate TR. Die Kennlinie K des Kennlinienglieds wird nach dem in Figur 2 skizzierten Prinzip so eingestellt, daß die Häufigkeitsverteilungsfunktion V die Form der Referenzkurve V REF annimmt.
- Eine zweckmäßige Ausführung der wesentlichen Komponenten zur Impedanzmessung und -verarbeitung eines gegenüber Fig. 1 geringfügig modifizierten Schrittmachers 1' zeigt Fig. 4 in Form eines Funktions-Blockschaltbildes. In Anlehnung an die in Fig. 2 gewählte Bezugsziffer 3 sind die eigentliche Impedanzmeßvorrichtung mit 3.1 und die Impedanzverarbeitungseinrichtung mit 3.2 bezeichnet.
- Die eingangsseitig mit der intrakardialen Meß-, Abfühl- und Reizelektrode 2 verbundene Impedanzmeßvorrichtung 3.1 umfaßt in an sich bekanntem Aufbau einen Abtastimpulsgenerator 300, eine Filterstufe 301 zur Abtrennung störender (etwa aus der Atemtätigkeit herrührender) Signalanteile, einen Stromstärkemesser 302 und eine Impedanzberechnungsstufe 303. Die Impedanzmessungen werden durch die Ablaufsteuerung 14 (vgl. Fig. 1) in Synchronität zu stimulierten oder spontanen Herzereignissen getaktet.
- Das Meßsignal Z' gelangt vom Ausgang der Impedanzberechnungsstufe 303 zum Eingang einer Integratorstufe 304, in der eine fest programmierte Anzahl (von beispielsweise acht) Impedanzmeßwerten aus einem Herzzyklus einer Integration unterzogen wird. Die Anzahl ist in einem Integrationsgrenzenspeicher 305 fest gespeichert und bestimmt den Zählwert eines die Meßsteuerimpulse von der Ablaufsteuerung zählenden Zählers 306, welcher bei Erreichen der prgrammierten Anzahl den Integrator stoppt. Der Zähler 306 löst zugleich die Übergabe des Integrationsergebnisses A'' an eine Subtraktionsstufe 307 einerseits und über ein Verzögerungsglied 308 an einen FIFO-Speicher 309 andererseits aus.
- Im Speicher 309 ist ständig eine vorbestimmte Anzahl von Impedanz-Integralwerten aus der Vergangenheit (beispielsweise den jeweils letzten drei Betriebsminuten des Schrittmachers) gespeichert, die jeweils durch das Ausgangssignal des Zählers 306 in eine Mittelwertbildungsstufe 310 übernommen und einer aktuellen Mittelung unterzogen werden.
- Das Ausgangssignal der Mittelwertbildungsstufe 310 wird (neben dem aktuellen Impedanz-Integralwert als primäre Impedanzgröße A'') als Referenzwert A''ref der Subtraktionsstufe 307 zugeführt, die die Differenz zwischen dem aktuellen Integralwert und dem aktuellen Zeitmittel der Integralwerte als Referenzwert bildet und als sekundäre Impedanzgröße A' ausgibt, die hier den Ratensteuerparameter darstellt.
- Zu beachten ist, daß die in Fig. 1 gezeigte Signalverbindung der Ablaufsteuerung 14 zur Meßelektrode 2, mit der auch die Herzaktionen bzw. intrakardialen EKGs erfaßt werden, eine Unterscheidung zwischen spontanen und evozierten Herzaktionen und damit ein Löschen des FIFO 309 bei einem Wechsel des Ereignistyps ermöglicht, wozu ein eingangsseitig mit der Ablaufsteuerung 14 und ausgangsseitig mit einem Löscheingang des FIFO verbundener Flipflop 311 vorgesehen ist. Dessen Ausgangssignal wird auch einer modifizierten Ratenbestimmungseinrichtung 6' zugeführt, wo der errechneten Stimulationsrate bei jedem Ereignistypwechsel ein Ratenoffset hinzugefügt wird, dessen Betrag in Abhängigkeit vom vorhergehenden und vom aktuellen Ratenwert so gewählt ist, daß der Ratensprung einen vorbestimmten Betrag nicht überschreitet, und der bei den nachfolgenden Herzereignissen stufenweise bis auf Null zurückgeführt wird. Die konkreten schaltungstechnischen Mittel zur Realisierung dieser Zusatzfunktion stehen dem Fachmann aus bekannten Anordnungen zur Ratenglättung bzw. -angleichung zur Verfügung.
- Die weitere Verarbeitung der sekundären Impedanzgröße A' entspricht im übrigen - bis auf den Fortfall des durch die Komponenten zur Bildung des gleitenden Mittelwertes ersetzten - Differentialgliedes der zu Fig. 1 gegebenen Erläuterung.
- Die Erfindung beschränkt sich in ihrer Ausführung nicht auf die vorstehend angegebenen bevorzugten Ausführungsbeispiele. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebrauch macht.
- Insbesondere kann die Stufe 3.2 eine Vielzahl alternativer Ausführungen aufweisen, bei denen beispielsweise die Bildung eines gleitenden Mittelwertes als Referenzwert durch eine Zeitmittelung mit festen Startpunkten in vorbestimmtne Zeitabständen ersetzt sein oder statt anhand der Ausgangssignale der Integratorstufe 304 anhand der Ausgangssignale der Impedanzberechnungstufe 303, d.h. von (Impedanz,Zeit)-Wertepaaren, durchgeführt werden kann. Statt einer fest vorgegeben Anzahl von zu inegrierenden Impedanzwerten kannauch ein fester zeitlicher Integrationsbereich programmiert sein. Es ist weiterhin in vorteilhafter Weise möglich, Mittel zur Einstellung des jeweils gültigen Integrationsbereiches in Abhängigkeit vom Signal des Bewegungssensors (oder eines anderen Aktivitätsfühlers) vorzusehen.
Claims (9)
- Ratenadaptiver Herzschrittmacher (1; 1') mit einer Impedanzmeßvorrichtung (3; 3.1) zur Messung des zeitlichen Verlaufes der, insbesondere rechtsventrikulären, intrakardialen Impedanz (Z) über mindestens einen vorbestimmten Abschnitt eines Herzzyklus,einer Impedanzverarbeitungseinrichtung (3.2; 4) zur Gewinnung einer Impedanzgröße aus dem zeitlichen Verlauf undeiner der Impedanzverarbeitungseinrichtung nachgeschalteten und durch eine Ablaufsteuerung (14) gesteuerte Ratenbestimmungseinrichtung (6; 6') zur Bestimmung der adaptiven Stimulationsrate (HR) unter Nutzung der Impedanzgröße,
dadurch gekennzeichnet, daßdie Impedanzverarbeitungseinrichtung eine Integratorstufe (304) zur Bestimmung des Zeitintegrals der Impedanz über den vorbestimmten Abschnitt des Herzzyklus als primäre Impedanzgröße (A; A'') aufweist. - Aktivitätsgesteuerter Herzschrittmacher nach Anspruch 1, dadurch gekennzeichnet, daßder Ausgang der Integratorstufe (304) mit einem Integralwertspeicher (309) verbunden ist, in den jeweils ein in mindestens einem vorhergehenden Herzzyklus ermittelter Referenz-Integralwert (A''ref)gespeichert wird,die Impedanzverarbeitungseinrichtung eine mit dem Ausgang der Integratorstufe und dem Integralwertspeicher verbundene Arithmetikeinheit (307) zur Berechnung einer sekundären Impedanzgröße (A') aus der jeweiligen primären Impedanzgröße und dem Referenz-Integralwert gemäß einer vorgegebenen arithmetischen Beziehung aufweist unddie Ratenbestimmungseinrichtung (6') zur Berechnung der adaptiven Stimulationsrate aufgrund der sekundären Impedanz größe ausgebildet ist.
- Ratenadaptiver Herzschrittmacher nach Anspruch 2, dadurch gekennzeichnet, daß die Arithmetikeinheit eine Subtraktionsstufe (307) zur Bildung des Differenzwertes zwischen der primären Impedanzgröße und dem Referenz-Integralwert aufweist.
- Ratenadaptiver Herzschrittmacher nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen mindestens mittelbar mit einem Steuereingang der Integratorstufe verbundenen Festwertspeicher (305) zur Speicherung der Grenzen des vorbestimmten Abschnitts des Herzzyklus oder der Lage von Impedanzerfassungspunkten innerhalb dessen.
- Ratenadaptiver Herzschritmacher nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß eine eingangsseitig mit dem Integralwertspeicher (309) und ausgangsseitig mit der Arithmetikeinheit (307) verbundene Mittelwertbildungsstufe (310) zur Bildung eines, insbesondere gleitenden, Mittelwertes aus Vergangenheits-Impedanzmessungen als Referenz-Integralwert vorgesehen ist.
- Ratenadaptiver Herzschrittmacher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß ein mindestens mittelbar mit einem Steuereingang der Integratorstufe und/oder einem Steuereingang der Ratenbestimmungseinrichtung (6) verbundener Fühler (5) für eine Aktivitätsgröße vorgesehen ist, dessen Ausgangssignal mindestens eine der Grenzen des Integrationsbereiches und/oder ein Kennlinienglied (10) der Ratenbestimmungseinrichtung einstellt.
- Ratenadaptiver Herzschrittmacher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Ratenbestimmungseinrichtung ein einen Dateneingang für die Impedanzwert (Z) aufweisendes Differentialglied (4) umfaßt.
- Ratenadaptiver Herzschrittmacher nach Ansprüch 7, dadurch gekennzeichnet, daßdas Differentialglied (4) einen mit dem Fühler (5) für die Aktivitätsgröße verbundenen Zeitkonstanten-Steuereingang aufweist,daß als Fühler für die Aktivitätsgröße ein digitaler Bewegungssensor (5) mit einem Ausgang vorgesehen ist, welcher im Ruhezustand des Patienten einen ersten Zustand und bei Bewegung einen zweiten Zustand einnimmt, unddaß das Differentialglied mit dem Bewegungssensor verbunden ist und dessen Ausgang die Differentialzeit (TD) auf einen im Ruhezustand wesentlich kleineren Wert als bei Bewegung einstellt.
- Ratenadaptiver Herzschrittmacher nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine unipolare Ventrikelelektrode (2), die insbesondere zugleich als Abfühl- und Reizelektrode geschaltet ist, mit dem Eingang der Meßvorrichtung (3) verbunden ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19609382 | 1996-03-04 | ||
DE19609382A DE19609382A1 (de) | 1996-03-04 | 1996-03-04 | Aktivitätsgesteuerter Herzschrittmacher |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0793976A2 true EP0793976A2 (de) | 1997-09-10 |
EP0793976A3 EP0793976A3 (de) | 1998-11-25 |
EP0793976B1 EP0793976B1 (de) | 2004-07-07 |
Family
ID=7787861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97250057A Expired - Lifetime EP0793976B1 (de) | 1996-03-04 | 1997-03-04 | Ratenadaptiver Herzschrittmacher |
Country Status (3)
Country | Link |
---|---|
US (1) | US6263243B1 (de) |
EP (1) | EP0793976B1 (de) |
DE (2) | DE19609382A1 (de) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19859653A1 (de) * | 1998-12-15 | 2000-06-21 | Biotronik Mess & Therapieg | Selbstkalibrierender ratenadaptiver Herzschrittmacher |
US6154674A (en) * | 1998-01-29 | 2000-11-28 | Biotronik Mess-Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Self-calibrating adaptive-rate cardiac pacemaker |
EP1062974A2 (de) * | 1999-06-23 | 2000-12-27 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Verfahren zur Bestimmung eines variablen Steuer-Parameters eines medizinischen Geräteimplantates |
WO2001060451A1 (de) * | 2000-02-17 | 2001-08-23 | BIOTRONIK MESS- UND THERAPIEGERäTE GMBH & CO. INGENIEURBüRO BERLIN | Vorrichtung zur detektion tachykarder herzrhythmusstörungen |
WO2004050177A1 (de) * | 2002-12-02 | 2004-06-17 | Biotronik Gmbh & Co. Kg | Biventrikulärer herzschrittmacher zur kardialen resynchronisationstherapie |
EP1586348A1 (de) * | 2004-04-14 | 2005-10-19 | Biotronik GmbH & Co. KG | Elektrotherapiegerät |
US7191003B2 (en) | 2001-01-17 | 2007-03-13 | Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Stimulation arrangement with stimulation success monitoring |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5792198A (en) * | 1996-04-30 | 1998-08-11 | Nappholz; Tibor A. | Auto adaptation of RR interval in implantable pacemaker |
US5959529A (en) * | 1997-03-07 | 1999-09-28 | Kail, Iv; Karl A. | Reprogrammable remote sensor monitoring system |
US6664893B1 (en) * | 2001-04-23 | 2003-12-16 | Cardionet, Inc. | Method for controlling access to medical monitoring device service |
US6694177B2 (en) | 2001-04-23 | 2004-02-17 | Cardionet, Inc. | Control of data transmission between a remote monitoring unit and a central unit |
US6801137B2 (en) | 2001-04-23 | 2004-10-05 | Cardionet, Inc. | Bidirectional communication between a sensor unit and a monitor unit in patient monitoring |
US20050119580A1 (en) * | 2001-04-23 | 2005-06-02 | Eveland Doug C. | Controlling access to a medical monitoring system |
US6665385B2 (en) | 2001-04-23 | 2003-12-16 | Cardionet, Inc. | Medical monitoring system having multipath communications capability |
DE10125359B4 (de) * | 2001-05-23 | 2005-07-28 | Osypka Medical Gmbh | Wechselstromquelle zur Erzeugung eines durch den Körper zu sendenden Wechselstroms und Verfahren zur Erzeugung eines stabilen Wechselstroms |
US7822470B2 (en) * | 2001-10-11 | 2010-10-26 | Osypka Medical Gmbh | Method for determining the left-ventricular ejection time TLVE of a heart of a subject |
US7062323B2 (en) * | 2001-10-19 | 2006-06-13 | Cardiac Pacemakers, Inc. | Maximum atrial tracking rate for cardiac rhythm management system |
US6860000B2 (en) | 2002-02-15 | 2005-03-01 | E.I. Du Pont De Nemours And Company | Method to embed thick film components |
US6957107B2 (en) * | 2002-03-13 | 2005-10-18 | Cardionet, Inc. | Method and apparatus for monitoring and communicating with an implanted medical device |
US7986994B2 (en) | 2002-12-04 | 2011-07-26 | Medtronic, Inc. | Method and apparatus for detecting change in intrathoracic electrical impedance |
US7647106B2 (en) * | 2003-04-23 | 2010-01-12 | Medtronic, Inc. | Detection of vasovagal syncope |
US20040243192A1 (en) * | 2003-06-02 | 2004-12-02 | Hepp Dennis G. | Physiologic stimulator tuning apparatus and method |
DE10332820B4 (de) * | 2003-07-18 | 2006-07-20 | Osypka Medical Gmbh | Vorrichtung zum potentialgetrennten Umwandeln einer ersten Spannung in eine zweite Spannung zum Messen von Impedanzen und Admittanzen an biologischen Geweben |
DE602005004282T2 (de) | 2005-08-17 | 2008-11-27 | Osypka Medical Gmbh | Digitale Demodulationsvorrichtung und -verfahren zur Messung der elektrischen Bioimpedanz oder Bioadmittanz |
US8948868B2 (en) * | 2006-10-31 | 2015-02-03 | Medtronic, Inc. | Methods and apparatus for manually suspending intrathoracic impedance fluid status measurements |
US7869864B2 (en) * | 2007-07-09 | 2011-01-11 | Dynacardia, Inc. | Methods, systems and devices for detecting and diagnosing heart diseases and disorders |
WO2010077246A1 (en) | 2008-12-31 | 2010-07-08 | Dynacardia, Inc. | Methods, systems and devices for detecting and diagnosing heart diseases and disorders |
US8649864B2 (en) * | 2007-10-16 | 2014-02-11 | Biotronik Crm Patent Ag | Implantable heart stimulator providing long term cardiac monitoring with automatic notification |
US20090287120A1 (en) | 2007-12-18 | 2009-11-19 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Circulatory monitoring systems and methods |
US8636670B2 (en) | 2008-05-13 | 2014-01-28 | The Invention Science Fund I, Llc | Circulatory monitoring systems and methods |
US9717896B2 (en) | 2007-12-18 | 2017-08-01 | Gearbox, Llc | Treatment indications informed by a priori implant information |
US20090318773A1 (en) * | 2008-06-24 | 2009-12-24 | Searete Llc, A Limited Liability Corporation Of The State Of Delaware | Involuntary-response-dependent consequences |
US9713701B2 (en) | 2008-07-31 | 2017-07-25 | Medtronic, Inc. | Using multiple diagnostic parameters for predicting heart failure events |
US8255046B2 (en) * | 2008-07-31 | 2012-08-28 | Medtronic, Inc. | Detecting worsening heart failure based on impedance measurements |
US8130095B2 (en) * | 2008-08-27 | 2012-03-06 | The Invention Science Fund I, Llc | Health-related signaling via wearable items |
US8284046B2 (en) | 2008-08-27 | 2012-10-09 | The Invention Science Fund I, Llc | Health-related signaling via wearable items |
US20100056873A1 (en) * | 2008-08-27 | 2010-03-04 | Allen Paul G | Health-related signaling via wearable items |
US8094009B2 (en) * | 2008-08-27 | 2012-01-10 | The Invention Science Fund I, Llc | Health-related signaling via wearable items |
US8125331B2 (en) * | 2008-08-27 | 2012-02-28 | The Invention Science Fund I, Llc | Health-related signaling via wearable items |
US8632473B2 (en) * | 2009-01-30 | 2014-01-21 | Medtronic, Inc. | Detecting worsening heart failure based on fluid accumulation with respiratory confirmation |
US8271072B2 (en) * | 2009-10-30 | 2012-09-18 | Medtronic, Inc. | Detecting worsening heart failure |
US10445846B2 (en) | 2011-04-14 | 2019-10-15 | Elwha Llc | Cost-effective resource apportionment technologies suitable for facilitating therapies |
US9626650B2 (en) | 2011-04-14 | 2017-04-18 | Elwha Llc | Cost-effective resource apportionment technologies suitable for facilitating therapies |
WO2013142097A1 (en) | 2012-03-19 | 2013-09-26 | Dynacardia, Inc. | Methods, systems and devices for detecting and diagnosing diabetic diseases and disorders |
US10952686B2 (en) | 2016-08-02 | 2021-03-23 | Medtronic, Inc. | Mobile application to prompt physical action to measure physiologic response in implantable device |
US11717186B2 (en) | 2019-08-27 | 2023-08-08 | Medtronic, Inc. | Body stability measurement |
US11602313B2 (en) | 2020-07-28 | 2023-03-14 | Medtronic, Inc. | Determining a fall risk responsive to detecting body position movements |
WO2024104800A1 (en) | 2022-11-16 | 2024-05-23 | Biotronik Se & Co. Kg | Implantable medical stimulation device for performing a cardiac pacing in a patient |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5074302A (en) * | 1989-01-25 | 1991-12-24 | Siemens-Pacesetter, Inc. | Self-adjusting rate-responsive pacemaker and method thereof |
DE4111505A1 (de) * | 1991-04-09 | 1992-10-15 | Roland Heinze | Anordnung zur ermittlung eines nicht pulsbezogenen informationsanteils in einem kardialen informationssignal |
EP0576114A2 (de) * | 1992-06-22 | 1993-12-29 | Telectronics N.V. | Taktempfindlicher Herzschrittmacher mit Vielparameter |
EP0616819A2 (de) * | 1988-02-17 | 1994-09-28 | Stuart Charles Webb | Taktempfindlicher Herzschrittmacher |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5190035A (en) * | 1981-06-18 | 1993-03-02 | Cardiac Pacemakers, Inc. | Biomedical method and apparatus for controlling the administration of therapy to a patient in response to changes in physiological demand |
US4535774A (en) * | 1983-06-30 | 1985-08-20 | Medtronic, Inc. | Stroke volume controlled pacer |
DE3419439C1 (de) | 1984-05-24 | 1985-11-21 | Eckhard Dr. 8000 München Alt | Belastungsabhaengig frequenzvariabler Herzschrittmacher |
US4856522A (en) | 1988-01-29 | 1989-08-15 | Telectronics N.V. | Rate-responsive, distributed-rate pacemaker |
US4911362A (en) * | 1989-02-28 | 1990-03-27 | David Delich | Method and apparatus for making carbon dioxide snow |
FR2671013B1 (fr) * | 1990-12-27 | 1996-09-13 | Ela Medical Sa | Stimulateur cardiaque a frequence de stimulation asservie. |
US5423870A (en) * | 1993-11-22 | 1995-06-13 | Cardiac Pacemakers, Inc. | Rate responsive cardiac pacemaker |
-
1996
- 1996-03-04 DE DE19609382A patent/DE19609382A1/de not_active Ceased
-
1997
- 1997-03-04 US US08/810,024 patent/US6263243B1/en not_active Expired - Lifetime
- 1997-03-04 EP EP97250057A patent/EP0793976B1/de not_active Expired - Lifetime
- 1997-03-04 DE DE59711759T patent/DE59711759D1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0616819A2 (de) * | 1988-02-17 | 1994-09-28 | Stuart Charles Webb | Taktempfindlicher Herzschrittmacher |
US5074302A (en) * | 1989-01-25 | 1991-12-24 | Siemens-Pacesetter, Inc. | Self-adjusting rate-responsive pacemaker and method thereof |
DE4111505A1 (de) * | 1991-04-09 | 1992-10-15 | Roland Heinze | Anordnung zur ermittlung eines nicht pulsbezogenen informationsanteils in einem kardialen informationssignal |
EP0576114A2 (de) * | 1992-06-22 | 1993-12-29 | Telectronics N.V. | Taktempfindlicher Herzschrittmacher mit Vielparameter |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6154674A (en) * | 1998-01-29 | 2000-11-28 | Biotronik Mess-Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Self-calibrating adaptive-rate cardiac pacemaker |
DE19859653A1 (de) * | 1998-12-15 | 2000-06-21 | Biotronik Mess & Therapieg | Selbstkalibrierender ratenadaptiver Herzschrittmacher |
US6463325B1 (en) | 1998-12-15 | 2002-10-08 | Biotronki Mess-Und Therapeigerate Gmbh & Co. Ingenieurburo Berlin | Self-calibrating rate-adaptive cardiac pacemaker |
EP1062974A2 (de) * | 1999-06-23 | 2000-12-27 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Verfahren zur Bestimmung eines variablen Steuer-Parameters eines medizinischen Geräteimplantates |
EP1062974A3 (de) * | 1999-06-23 | 2003-04-23 | BIOTRONIK Mess- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin | Verfahren zur Bestimmung eines variablen Steuer-Parameters eines medizinischen Geräteimplantates |
WO2001060451A1 (de) * | 2000-02-17 | 2001-08-23 | BIOTRONIK MESS- UND THERAPIEGERäTE GMBH & CO. INGENIEURBüRO BERLIN | Vorrichtung zur detektion tachykarder herzrhythmusstörungen |
DE10008324A1 (de) * | 2000-02-17 | 2001-08-23 | Biotronik Mess & Therapieg | Vorrichtung zur Detektion tachykarder Herzrhythmusstörungen |
US6961614B2 (en) | 2000-02-17 | 2005-11-01 | Kaye Gerry C | Device for detecting tachycardiac rhythm disturbances |
US7191003B2 (en) | 2001-01-17 | 2007-03-13 | Biotronik Mess- Und Therapiegeraete Gmbh & Co. Ingenieurbuero Berlin | Stimulation arrangement with stimulation success monitoring |
WO2004050177A1 (de) * | 2002-12-02 | 2004-06-17 | Biotronik Gmbh & Co. Kg | Biventrikulärer herzschrittmacher zur kardialen resynchronisationstherapie |
US7330759B2 (en) | 2002-12-02 | 2008-02-12 | Biotronik Gmbh & Co. | Biventricular cardiac pacemaker for cardiac resynchronisation therapy |
EP1586348A1 (de) * | 2004-04-14 | 2005-10-19 | Biotronik GmbH & Co. KG | Elektrotherapiegerät |
Also Published As
Publication number | Publication date |
---|---|
DE59711759D1 (de) | 2004-08-12 |
US6263243B1 (en) | 2001-07-17 |
EP0793976B1 (de) | 2004-07-07 |
EP0793976A3 (de) | 1998-11-25 |
DE19609382A1 (de) | 1997-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0793976B1 (de) | Ratenadaptiver Herzschrittmacher | |
DE69729819T2 (de) | Selbstanpassung von RR Zeitintervallen bei implantierbaren Herzschrittmachern | |
EP0255899B1 (de) | Frequenzadaptierender Herzschrittmacher | |
DE69105139T2 (de) | Herzschrittmacher mit optimierter stimulierungsfrequenzan- passung. | |
DE60301161T2 (de) | Vorrichtung zur Überwachung des Herzens und ein System beinhaltend eine solche Vorrichtung | |
DE3856192T2 (de) | Ratenadaptierender Herzschrittmacher | |
DE69832639T2 (de) | Implantierbares Herzschrittmachersystem | |
DE69427802T2 (de) | Verfahren zur automatischen Steuerung der Herzsignalschwellenwerte bei einer implantierbaren Vorrichtung | |
DE69329692T2 (de) | Herzrhythmus Steuereinrichtung mit automatischer Optimalisierung von Reizungsparametern | |
DE69732553T2 (de) | Herzschrittmacher mit verbesserter Erfassung von atrialer Fibrillation | |
DE69633957T2 (de) | Implantierbares Gerät zur Antitachykardierierung | |
DE3856343T2 (de) | Detektionsschaltung zur bestimmung des detektionsabstandes für implantierte elektromedizinische geräte | |
DE69936703T2 (de) | Herzratenvaribilität als inkikator für körperliche belastbarkeit | |
DE60025486T2 (de) | Anpassbare evozierte herzreaktionsmessvorrichtung für automatische erregungsbestätigung | |
DE69919787T2 (de) | Multi-Ort, parameter- gesteuerter, implantierbarer Herzschrittmacher / Defribrillator | |
DE69727063T2 (de) | Implantierbares gerät | |
EP0933095B1 (de) | Selbstkalibrierender ratenadaptiver Herzschrittmacher | |
DE3587786T2 (de) | Messung des herzschlagintervalls eines stimulierten herzes, sich anpassender herzschrittmacher und betriebsart. | |
DE60105989T2 (de) | Implantierbarer herzstimulator | |
DE60302089T2 (de) | Vorrichtung zur Überwachung des Herzens | |
EP0165566B1 (de) | Regelschaltung zur Anpassung der Stimulationsfrequenz eines Herzschrittmachers an die Belastung eines Patienten | |
DE69712502T2 (de) | Vorrichtung zur stimulation der herzfunktion | |
DE3885876T2 (de) | Herzschrittmacher mit einer Hysteresefunktion. | |
DE60216970T2 (de) | Implantierbare herzstimulationsvorrichtung sowie diese vorrichtung enthaltendes system | |
EP1108390B1 (de) | Vorrichtung zur Erkennung der Kreislaufwirkungen von Extrasystolen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL SE |
|
17P | Request for examination filed |
Effective date: 19990218 |
|
17Q | First examination report despatched |
Effective date: 20030317 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL SE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20040707 |
|
REF | Corresponds to: |
Ref document number: 59711759 Country of ref document: DE Date of ref document: 20040812 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20050408 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070319 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20070323 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20070326 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20070605 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20070321 Year of fee payment: 11 |
|
EUG | Se: european patent has lapsed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20080304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081001 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20081001 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20081125 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080304 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59711759 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59711759 Country of ref document: DE Owner name: BIOTRONIK SE & CO. KG, DE Free format text: FORMER OWNER: BIOTRONIK MESS- UND THERAPIEGERAETE GMBH & CO. INGENIEURBUERO BERLIN, 12359 BERLIN, DE Effective date: 20111219 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130408 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59711759 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59711759 Country of ref document: DE Effective date: 20141001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141001 |