[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0762174B1 - Device for linear illumination of sheet material, e.g. bank notes or securities - Google Patents

Device for linear illumination of sheet material, e.g. bank notes or securities Download PDF

Info

Publication number
EP0762174B1
EP0762174B1 EP96114254A EP96114254A EP0762174B1 EP 0762174 B1 EP0762174 B1 EP 0762174B1 EP 96114254 A EP96114254 A EP 96114254A EP 96114254 A EP96114254 A EP 96114254A EP 0762174 B1 EP0762174 B1 EP 0762174B1
Authority
EP
European Patent Office
Prior art keywords
mirror
light
sheet material
light source
segments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96114254A
Other languages
German (de)
French (fr)
Other versions
EP0762174A2 (en
EP0762174A3 (en
Inventor
Wolfgang Deckenbach
Gerhard Dr. Stenzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Giesecke and Devrient GmbH
Original Assignee
Giesecke and Devrient GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giesecke and Devrient GmbH filed Critical Giesecke and Devrient GmbH
Publication of EP0762174A2 publication Critical patent/EP0762174A2/en
Publication of EP0762174A3 publication Critical patent/EP0762174A3/en
Application granted granted Critical
Publication of EP0762174B1 publication Critical patent/EP0762174B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/005Reflectors for light sources with an elongated shape to cooperate with linear light sources
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • G07D7/121Apparatus characterised by sensor details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/08Optical design with elliptical curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/09Optical design with a combination of different curvatures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0019Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors)
    • G02B19/0023Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having reflective surfaces only (e.g. louvre systems, systems with multiple planar reflectors) at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar

Definitions

  • the invention relates to a device for linear Illumination of sheet material, such as. B. banknotes or Securities.
  • the sheet material is used for the optical processing of sheet material generally entered into a processing system.
  • this has a transport system and at least an optical sensor.
  • the transport system serves the sheet material over a fixed predetermined To lead safely through the processing system.
  • the actual optical processing happens when that Transport system for the sheet material through the optical sensor transported.
  • the optical sensor system instructs other at least one lighting device that the sheet material in a certain wavelength range illuminated.
  • the remitted or transmitted from the leaf material Light is emitted by one or more detector systems detected.
  • the detected light is converted into signals implemented, which then evaluated in the processing system become.
  • EP-0 021 093 B shows a linear lighting device with a reflection device that the shape of a segment of one with transparent material filled cylinder with an elliptical base.
  • the Radiation coming from the light source first by means of light guides over a transparent surface in a first Focus line of the reflection device coupled into this. After that, the radiation at the elliptical Surface on a second line of focus of the reflection device reflected.
  • An emission of radiation Allowing from the reflection device is one Exit surface provided, which is designed such that the radiation reflected on the elliptical surface passes through this starting surface as vertically as possible.
  • the sheet material is in the second focus line of the Reflection means.
  • the reflection unit is placed directly on the sheet material, so that reflection device and sheet material touch.
  • the disadvantage of this lighting device is that only small proportions of those emitted by the light source Radiation can be coupled into the light guide.
  • the Light emitted by the light source can therefore only be used relatively small shares are used for lighting, so that only a low illuminance is achieved becomes.
  • the reflection device on the Sheet material put on so that it shows signs of wear due to abrasion on the reflection device and to contaminate the reflection device by the dust created by abrasion from the sheet material can.
  • the lighting device exists here from a mirror segment of a cylindrical mirror with an elliptical base, the two focus lines having. In addition, are on the elliptical bases level mirror attached to the mirror segment.
  • Light source two light bulbs are used here, their Filaments in the first focal line of the mirror segment are attached.
  • the sheet material is in the second focus line of the Mirror segment and is by the on the mirror segment radiation partially focused on the second focus line illuminated.
  • a disadvantage of this lighting device is that the mirror element shown here only a small proportion reflecting the radiation emitted by the light bulbs. Furthermore, the incandescent lamps create one large heat generation, so that the lighting device must be continuously cooled to ensure trouble-free To ensure operation.
  • the object of the invention is a device for linear illumination of Propose sheet material in the case of the light source emitted light on a line with as little loss as possible is focused in order to achieve the highest possible illuminance to ensure.
  • the attack is said to be of heat loss during light generation can be avoided.
  • the basic idea of the invention is essentially as lighting several mirror segments of cylindrical mirrors with an elliptical base and provide two focus lines each.
  • the mirror elements are arranged so that both the first and the second focus lines of all mirror segments each coincide in a first or second common focus line.
  • the first common focus line is a light source formed by light emitting diodes is provided, which emits cold light. The emitted light will then by reflection on the mirror segments on that in the second common focus line sheet material located focused.
  • An advantage of the invention is that mirror segments described by the light source emitted radiation largely focused on the sheet material becomes.
  • the heat loss generated during light generation is so low kept as possible so that no interference from Heat loss occur.
  • two mirror elements with the same elliptical base intended.
  • the mirror segments are mirror-symmetrical arranged to the plane through the first Focus line and the large axis of the ellipse spanned becomes.
  • the distance of the edge of the sheet material facing Mirror segments become parallel from the first focus line measured to the major axis of the ellipse and chosen so that the distance is less than or equal to the distance of the focus lines is.
  • the distance from the sheet material facing away Edges of the mirror segments are from the vertex of the Ellipse measured parallel to the major axis and chosen so that the largest possible proportion of the Light source emitted light on the mirror segments is reflected. These edges can also be in the Touch the vertex of the ellipse.
  • Another development of the invention consists in To provide detectors that emitted from the light source Monitor light for changes.
  • Fig. 1 shows the schematic diagram of a preferred embodiment the invention.
  • the sheet material 10 is here by means of a linear lighting 20 illuminated.
  • the Sheet material is in a focal line F1 of the linear lighting 20 and is from one here Transport device, not shown, in one direction T transported perpendicular to the focal line F1.
  • the linear lighting 20 consists of a Light source 21 that emits cold light.
  • the light source 21 is in a focus line F2 of the lighting 20 appropriate.
  • the light emitted is reflected by two mirror segments 22 and 22 'of the lighting 20 partially on the focus line F1 focuses.
  • the mirror segments 22 and 22 ' are each segments of a cylindrical mirror with the same elliptical footprint, two each Have focus lines F1 and F2.
  • the mirror segments 22 and 22 ' are arranged so that both the first and also the second focus lines of the mirror segments 22 and 22 'in the first common focus line F1 and the second common focus line F2 of the lighting 20 coincide.
  • the light emitted by the light source 21 can be in a reflected portion 100 and a direct portion Split 110.
  • the reflected portion 100 is before Illumination of the sheet material on the mirror segments 22 or 22 'reflected.
  • the direct portion 110 hits without Reflection on the leaf material.
  • the direct portion 110 can optionally by means of an optical system 23 onto the focus line F1 to be focused.
  • a row is suitable as the light source 21, for example of light emitting diodes. Because of their small spatial LEDs can expand approximately as point light sources are viewed exactly in the focus line F2 are attached and from the mirror segments 22nd and 22 'or the optical device 23 also exactly a point of the focus line F1 can be mapped. Figure loss due to the spatial extent of the Light source 21 can be avoided as far as possible. The LEDs are as possible within the row attached close together, so that a quasi uniform Illumination of the focus line F1 is reached.
  • the one Short pulse generated light flashes have a higher Intensity on than in the continuous operation of the LEDs.
  • the light 120 reflected by the sheet material or the transmitted one Light 130 is detected by means of detectors.
  • detectors there are only two detectors here 30 and 40 shown.
  • Each of these detectors 30, 40 has an optical system 32 and 42, among other things that the remitted light 120 or the transmitted Light 130 partially onto a light receiver 31 or 41 focused.
  • the light receiver 31 or 41 converts the incoming light into signals which are then transmitted from a processing unit, not shown here can be edited.
  • CCD arrays are suitable as light receivers 31 or photodiodes.
  • the photodiodes can either arranged individually or in groups.
  • FIG. 2 shows the special geometric properties of the mirror segments 22 and 22 '.
  • the elliptical base area of the mirror segments is defined by the length of the major axis 2a and the length of the minor axis 2b.
  • the mirror segments 22 and 22 ' are mirror-symmetrical to the plane spanned by the focus line F2 and the large axis of the ellipse 2a.
  • the width B of the mirror segments 22 and 22 ' is preferred greater than or equal to the width of the sheet material selected.
  • the distance L of the edge facing the sheet material of the mirror segments 22 and 22 ' is from the focus line F2 measured parallel to the major axis 2a. The distance L is chosen smaller than the distance 2c of the focus lines, so that the mirror segments 22 and 22 'and do not touch the sheet material 10 guided in the focus line F1.
  • That of the light source 21 in the angular range 0 ° ⁇ ⁇ emitted light portion corresponds to the direct portion 110.
  • the light emitted in the other angular ranges the light source 21 is from the mirror segments 22 and 22 'reflects and forms the reflected portion 100.
  • With known radiation characteristics of the light source can be calculated what proportion of the emitted Light from the light source 21 from the mirror segments 22 and 22 'is reflected depending on the distance L.
  • FIG. 4 shows a schematic diagram of a first embodiment with different mirror segments 22 and 22 '.
  • the mirror segments 22 and 22 ' Segments of a cylindrical mirror with the same elliptical Floor space.
  • edges of the mirror segments facing the sheet material are different, so that no mirror symmetry between the mirror elements 22 and 22 '.
  • Farther was the distance l or l 'of the sheet material facing away Edges of the mirror segments selected differently.
  • the Distance l or l ' is in each case from the apex S or S 'of the ellipse parallel to the major axis of the ellipse 2a measured.
  • Both the distance l and the distance l ' are preferably selected such that, for a predetermined distance L or L', the largest possible proportion of the light emitted by the light source 21 is reflected on the mirror segments 22 or 22 '.
  • the distances l and l 'must preferably be selected to be smaller than a maximum distance l max .
  • the distance l max depends on the angular range ⁇ into which the light source 21 emits its light and on the length of the major axis a and the minor axis b.
  • the distance l or l ' is chosen to be smaller than l max , certain areas of the associated mirror segment are not illuminated. If the distance l or l 'is chosen to be greater than l max , the greatest possible proportion of the light emitted by the light source 21 is not reflected for a predetermined distance L or L'.
  • FIG. 5 shows a second embodiment with different mirror segments 22 and 22 '.
  • the distances l and L or l 'and L' are selected differently, but also the length of the major axis a or a 'and that of the minor axis b or b'.
  • the ratios of the lengths a and b or a 'and b' of the mirror segments 22 and 22 ' are, however, chosen so that the distance 2c between the two focus lines F1 and F2 is the same for both mirror segments 22 and 22'.
  • FIGS. 4 and 5 can be advantageous if, for example, from construction Establish a preferred embodiment not possible.
  • the light source 21 only emits into a small one Angular range ⁇ ⁇ , so if necessary, the outside this angular range and therefore not illuminated Areas of the mirror segments 22 and 22 'are omitted or be designed differently.
  • Fig. 6 shows the principle of operation of the preferred Embodiment with an optical system.
  • 6a shows the preferred embodiment with L ⁇ c, in which the reflected portion 100 of the light source 21 emitted light focused on the focus line F1.
  • the percentage R 84% of the reflected Light used to illuminate the banknote.
  • Fig. 6c shows how the direct portion 110 by means of a Development of the first embodiment by a optical system 23 is focused on the sheet material.
  • Fig. 6d is the development of the invention by optical system 23 again with the direct portion 110 and the reflected portion 100. Through the additional focus of the direct portion 110 will now the light emitted by the light source 21 completely focused on the sheet material.
  • Fig. 7 shows an embodiment of the invention, at the additional filter in the beam path of the lighting or polarizers 25 are provided. These are used the light emitted by the light source 21 in front of the Change the lighting of the leaf material in the desired way. For example, it can be monochromatized using filters and / or polarized by polarizers become.
  • filter or polisers 33 are provided which in the light Desired way before registration by the light receiver 31 change.
  • Fig. 8 shows an embodiment in which the of the light source emits light before illuminating the Good sheets by means of at least one flat mirror 24 is redirected. This changes the spatial Location of the focal line F1.
  • Such a measure can, for example then make sense if from structural engineering Establish an installation in the manner described above and Way is not possible.
  • the flat mirror 24 is chosen to be semi-transparent, so it is possible that the light remitted by the sheet material from a detector 30 through the semi-transparent mirror can be detected through. This possibility is of particular interest if the leaf material 10 illuminated vertically and at the same time that vertically Remitted light can be detected by the detector 30 should.
  • the dichroic Has properties are about those that occur with a semi-transparent mirror Keeping losses low is still possible semi-transparent mirror to use, the dichroic Has properties. Such a mirror reflects almost in a first wavelength range completely while a second wavelength range is almost completely transmitted. Now choose that light illuminating the leaf material within the first Wavelength range and the remitted from the sheet material Light within a second wavelength range, see above the losses that occur can be almost completely avoided become.
  • a change in wavelength between the illuminated Light and the remitted light can for example by fluorescent substances or similar additions of the Leaves are caused.
  • Fig. 9 shows an embodiment in which in the Focus line F2 at least one detector 26 is provided which detects the remitted light 120.
  • the remitted Light 120 can both from the sheet material 10 and be generated by a background 11 and then of the mirror segments 22 and 22 'and of the optical System 23 focused on the focus line F2.
  • the background 11 of the lighting 20 during the Absence of the sheet material 10 is illuminated and can be compared the detector 26, for example, a white or have reflecting surface, so that the intensity of the returned light is as large as possible there.
  • the intensity of the background 11 remitted light 120 detected can Measured values can be compared with reference values. By this comparison can change in the of the Light source 21 emitted light can be determined.
  • the detector 26 can determine that of the background 11 and that of the leaf material reflected light 120 there is generally a difference in intensity. This can be determined by the detector 26 and for the detection of the beginning of leaf material or sheet end can be used. The detector 26 can thus also the function of a light barrier in parallel take.
  • the Area of the background 11 opposite the detector 26 can also be chosen darker than the sheet material. hereby however, the intensity of the reflected light becomes 120 lower.
  • both the changes in that emitted by the light source 21 Light as well as the detection of the sheet material 10 be optimized.
  • Fig. 10 shows an embodiment in which the of the light source 21 emitted light by means of a semi-transparent or dichroic mirror 24 in front of Illumination of the sheet material 10 is deflected so that the position of the focus line F1 changed.
  • a mirror 24 however, this type transmits a portion 140 of the light hitting him 110,120.
  • This portion 140 is in a focal line F1 'that focusses the focal line F1 in corresponds to their original location.
  • at least one detector 27 is now attached, which detects the transmitted portion 140.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
  • Projection-Type Copiers In General (AREA)

Abstract

The device has a segment (22) of a cylindrical mirror with an elliptical base surface and two focus lines and a light source (21) mounted on the first focus line of the mirror segment. The light emitted from the source is partially focussed onto the sheet material, which is arranged on the second focus line, by reflection at the mirror segment. There is at least one further mirror segment (22') of a cylindrical mirror with an elliptical base surface and two focus lines (F1,F2). The mirror segments (22,22') are arranged so that the first and second focus lines of all mirror segments are coincident in a first or second common focus line.

Description

Die Erfindung betrifft eine Vorrichtung zur linienförmigen Beleuchtung von Blattgut, wie z. B. Banknoten oder Wertpapieren.The invention relates to a device for linear Illumination of sheet material, such as. B. banknotes or Securities.

Zur optischen Bearbeitung von Blattgut wird das Blattgut im allgemeinen in eine Bearbeitungsanlage eingegeben. Diese weist unter anderem ein Transportsystem und mindestens einen optischen Sensor auf. Das Transportsystem dient dazu, das Blattgut über einen fest vorgegebenen Weg sicher durch die Bearbeitungsanlage zu führen. Die eigentliche optische Bearbeitung geschieht, wenn das Transportsystem das Blattgut durch den optischen Sensor transportiert. Das optische Sensorsystem weist unter anderem mindestens eine Beleuchtungsvorrichtung auf, die das Blattgut in einem bestimmten Wellenlängenbereich beleuchtet. Das vom Blattgut remittierte bzw. transmittierte Licht wird von einem oder mehreren Detektorsystemen detektiert. Das detektierte Licht wird in Signale umgesetzt, die dann in der Bearbeitungsanlage ausgewertet werden.The sheet material is used for the optical processing of sheet material generally entered into a processing system. Among other things, this has a transport system and at least an optical sensor. The transport system serves the sheet material over a fixed predetermined To lead safely through the processing system. The actual optical processing happens when that Transport system for the sheet material through the optical sensor transported. The optical sensor system instructs other at least one lighting device that the sheet material in a certain wavelength range illuminated. The remitted or transmitted from the leaf material Light is emitted by one or more detector systems detected. The detected light is converted into signals implemented, which then evaluated in the processing system become.

Die EP-0 021 093 B zeigt eine linienförmige Beleuchtungsvorrichtung mit einer Reflexionseinrichtung, die die Form eines Segments eines mit transparentem Material gefüllten Zylinders mit elliptischer Grundfläche aufweist. Zur Beleuchtung des Blattguts wird die von der Lichtquelle kommende Strahlung zunächst mittels Lichtleiter über eine durchsichtige Fläche in einer ersten Fokuslinie der Reflexionseinrichtung in diese eingekoppelt. Danach wird die Strahlung an der elliptischen Oberfläche auf eine zweite Fokuslinie der Reflexionseinrichtung reflektiert. Um einen Austritt der Strahlung aus der Reflexionseinrichtung zu ermöglichen, ist eine Austrittsfläche vorgesehen, die so ausgebildet ist, daß die an der elliptischen Oberfläche reflektierte Strahlung möglichst senkrecht durch diese Ausgangsfläche hindurchtritt. EP-0 021 093 B shows a linear lighting device with a reflection device that the shape of a segment of one with transparent material filled cylinder with an elliptical base. To illuminate the leaf material, the Radiation coming from the light source first by means of light guides over a transparent surface in a first Focus line of the reflection device coupled into this. After that, the radiation at the elliptical Surface on a second line of focus of the reflection device reflected. An emission of radiation Allowing from the reflection device is one Exit surface provided, which is designed such that the radiation reflected on the elliptical surface passes through this starting surface as vertically as possible.

Das Blattgut befindet sich in der zweiten Fokuslinie der Reflexionseinrichtung. Zur Beleuchtung des Blattguts wird die Reflexionseinheit direkt auf das Blattgut aufgesetzt, so daß sich Reflexionseinrichtung und Blattgut berühren.The sheet material is in the second focus line of the Reflection means. For illuminating the sheet material the reflection unit is placed directly on the sheet material, so that reflection device and sheet material touch.

Nachteil dieser Beleuchtungsvorrichtung ist es, daß nur geringe Anteile der von der Lichtquelle emittierten Strahlung in den Lichtleiter eingekoppelt werden. Das von der Lichtquelle emittierte Licht kann somit nur zu relativ geringen Anteilen zur Beleuchtung genutzt werden, so daß nur eine geringe Beleuchtungsstärke erreicht wird. Ferner wird die Reflexionseinrichtung auf das Blattgut aufgesetzt, so daß es durch Abrieb zu Verschleißerscheinungen an der Reflexionseinrichtung und zur Verschmutzung der Reflexionseinrichtung durch den durch Abrieb vom Blattgut entstehenden Staub kommen kann.The disadvantage of this lighting device is that only small proportions of those emitted by the light source Radiation can be coupled into the light guide. The Light emitted by the light source can therefore only be used relatively small shares are used for lighting, so that only a low illuminance is achieved becomes. Furthermore, the reflection device on the Sheet material put on, so that it shows signs of wear due to abrasion on the reflection device and to contaminate the reflection device by the dust created by abrasion from the sheet material can.

Eine weitere linienförmige Beleuchtungsvorrichtung zeigt die EP-0 251 240 A2. Die Beleuchtungsvorrichtung besteht hier aus einem Spiegelsegment eines zylindrischen Spiegels mit elliptischer Grundfläche, das zwei Fokuslinien aufweist. Zusätzlich sind an den elliptischen Grundflächen des Spiegelsegments ebene Spiegel angebracht. Als Lichtquelle werden hier zwei Glühlampen benutzt, deren Glühwendeln in der ersten Fokuslinie des Spiegelsegments angebracht sind.Another linear lighting device shows EP-0 251 240 A2. The lighting device exists here from a mirror segment of a cylindrical mirror with an elliptical base, the two focus lines having. In addition, are on the elliptical bases level mirror attached to the mirror segment. As Light source, two light bulbs are used here, their Filaments in the first focal line of the mirror segment are attached.

Das Blattgut befindet sich in der zweiten Fokuslinie des Spiegelsegments und wird durch die am Spiegelsegment teilweise auf die zweite Fokuslinie fokussierte Strahlung beleuchtet. The sheet material is in the second focus line of the Mirror segment and is by the on the mirror segment radiation partially focused on the second focus line illuminated.

Ein Nachteil dieser Beleuchtungsvorrichtung ist es, daß das hier gezeigte Spiegelelement nur einen geringen Anteil der von den Glühlampen emittierten Strahlung reflektiert. Weiterhin entsteht durch die Glühlampen eine große Wärmeentwicklung, so daß die Beleuchtungsvorrichtung kontinuierlich gekühlt werden muß, um einen störungsfreien Betrieb gewährleisten zu können.A disadvantage of this lighting device is that the mirror element shown here only a small proportion reflecting the radiation emitted by the light bulbs. Furthermore, the incandescent lamps create one large heat generation, so that the lighting device must be continuously cooled to ensure trouble-free To ensure operation.

Aus US 4,422,100 ist es bekannt, eine linienförmige Beleuchtungsvorrichtung mit einem Spiegel zu realisieren, der aus zwei Spiegelsegmenten besteht. Die Spiegelsegmente sind Segmente eines zylindrischen Spiegels mit elliptischer Grundfläche, die zwei Fokuslinien aufweisen, welche durch die Anordnung der Spiegelsegmente in einer ersten bzw. einer zweiten gemeinsamen Fokuslinie zusammenfallen. In der ersten Fokuslinie ist dabei eine Lichtquelle angeordnet, in der zweiten Fokuslinie befindet sich das zu beleuchtende Blattgut. Da eine hohe Beleuchtungsintensität am zu beleuchtenden Blattgut gewünscht ist, wird eine Lichtquelle mit großer Lichtintensität, beispielsweise eine Halogenlampe verwendet. Um die störende Wärmestrahlung nicht an den Ort der zweiten Fokuslinie, d.h. an das zu beleuchtende Blattgut, gelangen zu lassen, werden Hitzefilter eingesetzt.From US 4,422,100 it is known to use a linear lighting device to realize a mirror that consists of two mirror segments. The mirror segments are segments of a cylindrical mirror with an elliptical base, which have two focus lines, which are due to the arrangement of the mirror segments coincide in a first or a second common focus line. In the A light source is arranged in the first focus line, in the second focus line is the sheet material to be illuminated. Because a high lighting intensity at sheet material to be illuminated is desired, a light source with high light intensity, For example, a halogen lamp is used. To the distracting Heat radiation not to the location of the second focus line, i.e. to the one to be illuminated Sheets are used to allow leaf material to get through, heat filters.

Ausgehend davon liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zur linienförmigen Beleuchtung von Blattgut vorzuschlagen, bei der das von der Lichtquelle emittierte Licht möglichst verlustfrei auf eine Linie fokussiert wird, um so eine möglichst hohe Beleuchtungsstärke zu gewährleisten. Gleichzeitig soll der Anfall von Verlustwärme bei der Lichterzeugung vermieden werden.Proceeding from this, the object of the invention is a device for linear illumination of Propose sheet material in the case of the light source emitted light on a line with as little loss as possible is focused in order to achieve the highest possible illuminance to ensure. At the same time, the attack is said to be of heat loss during light generation can be avoided.

Diese Aufgabe wird durch die Merkmale des Hauptanspruchs gelöst.This task is characterized by the features of the main claim solved.

Der Grundgedanke der Erfindung besteht im wesentlichen darin, als Beleuchtung mehrere Spiegelsegmente zylindrischer Spiegel mit elliptischer Grundfläche und jeweils zwei Fokuslinien vorzusehen. Die Spiegelelemente werden so angeordnet, daß sowohl die ersten als auch die zweiten Fokuslinien aller Spiegelsegmente jeweils in einer ersten bzw. zweiten gemeinsamen Fokuslinie zusammenfallen. In der ersten gemeinsamen Fokuslinie wird eine Lichtquelle , die von Leuchtdioden gebildet wird, vorgesehen, die kaltes Licht emittiert. Das emittierte Licht wird dann durch Reflexion an den Spiegelsegmenten auf das in der zweiten gemeinsamen Fokuslinie befindliche Blattgut fokussiert.The basic idea of the invention is essentially as lighting several mirror segments of cylindrical mirrors with an elliptical base and provide two focus lines each. The mirror elements are arranged so that both the first and the second focus lines of all mirror segments each coincide in a first or second common focus line. In the The first common focus line is a light source formed by light emitting diodes is provided, which emits cold light. The emitted light will then by reflection on the mirror segments on that in the second common focus line sheet material located focused.

Ein Vorteil der Erfindung ist es, daß durch die beschriebenen Spiegelsegmente die von der Lichtquelle emittierte Strahlung weitestgehend auf das Blattgut fokussiert wird.An advantage of the invention is that mirror segments described by the light source emitted radiation largely focused on the sheet material becomes.

Durch die Verwendung einer kalten Lichtquelle wird die bei der Lichterzeugung entstehende Verlustwärme so gering wie möglich gehalten, so daß keine Störungen durch Verlustwärme auftreten.By using a cold light source, the heat loss generated during light generation is so low kept as possible so that no interference from Heat loss occur.

In einer bevorzugten Ausführungsform der Erfindung sind zwei Spiegelelemente mit gleicher elliptischer Grundfläche vorgesehen. Die Spiegelsegmente sind spiegelsymmetrisch zu der Ebene angeordnet, die durch die erste Fokuslinie und die große Achse der Ellipse aufgespannt wird. Der Abstand der dem Blattgut zugewandten Kante der Spiegelsegmente wird von der ersten Fokuslinie parallel zur großen Achse der Ellipse gemessen und so gewählt, daß der Abstand kleiner oder gleich dem Abstand der Fokuslinien ist. Der Abstand der dem Blattgut abgewandten Kanten der Spiegelsegmente wird vom Scheitelpunkt der Ellipse parallel zur großen Achse gemessen und so gewählt, daß ein möglichst großer Anteil des von der Lichtquelle emittierten Lichts an den Spiegelsegmenten reflektiert wird. Diese Kanten können sich auch im Scheitelpunkt der Ellipse berühren.In a preferred embodiment of the invention two mirror elements with the same elliptical base intended. The mirror segments are mirror-symmetrical arranged to the plane through the first Focus line and the large axis of the ellipse spanned becomes. The distance of the edge of the sheet material facing Mirror segments become parallel from the first focus line measured to the major axis of the ellipse and chosen so that the distance is less than or equal to the distance of the focus lines is. The distance from the sheet material facing away Edges of the mirror segments are from the vertex of the Ellipse measured parallel to the major axis and chosen so that the largest possible proportion of the Light source emitted light on the mirror segments is reflected. These edges can also be in the Touch the vertex of the ellipse.

Wird der Abstand der dem Blattgut zugewandten Kanten der Spiegelsegmente geringfügig kleiner als der Abstand der Fokuslinien gewählt, so kann eine Fokussierung von über 95 % des von der Lichtquelle emittierten Lichts erreicht werden. Weiterhin wird dadurch ein Berühren der Spiegelelemente mit dem Blattgut verhindert, so daß ein Verschleiß der Spiegelsegmente bzw. eine Staubentwicklung durch Abrieb vom Blattgut vermieden wird.Is the distance between the edges of the sheet material facing the Mirror segments slightly smaller than the distance of the Focus lines selected, so a focus of over 95% of the light emitted by the light source is reached become. This also touches the mirror elements prevented with the sheet material, so that wear of the mirror segments or a dust development is avoided by abrasion from the sheet material.

In einer Weiterbildung der Erfindung kann eine vollständige Fokussierung des von der Lichtquelle emittierten Lichts dadurch erreicht werden, indem die nicht vom In a further development of the invention, a complete Focusing on what is emitted by the light source Light can be achieved by not using the

Spiegelsegment reflektierten Anteile durch ein zusätzliches optisches System auf die zweite gemeinsame Fokuslinie fokussiert werden.Mirror segment reflected by an additional part optical system on the second common focus line be focused.

Eine andere Weiterbildung der Erfindung besteht darin, Detektoren vorzusehen, die das von der Lichtquelle emittierte Licht auf Veränderungen überwachen.Another development of the invention consists in To provide detectors that emitted from the light source Monitor light for changes.

Weitere Merkmale der Erfindung ergeben sich aus den Unteransprüchen. Nachfolgend werden einige Ausführungsbeispiele der Erfindung anhand der Figuren beschrieben. Es zeigen:

Fig. 1
Prinzipskizze einer bevorzugten Ausführungsform mit Spiegelsegmenten und optischem System,
Fig. 2
geometrische Grundlagen zur Beschreibung der bevorzugten Ausführungsform,
Fig. 3
Veranschaulichung der Verhältnisse von direktem und reflektiertem Licht,
Fig. 4
Prinzipskizze einer ersten Ausführungsform mit unterschiedlichen Spiegelsegmenten,
Fig. 5
Prinzipskizze einer zweiten Ausführungsform mit unterschiedlichen Spiegelsegmenten,
Fig. 6
Funktionsprinzip der bevorzugten Ausführungsform mit optischem System,
Fig. 7
Prinzipskizze einer Ausführungsform mit Filtern bzw. Polarisatoren,
Fig. 8
Prinzipskizze einer Ausführungsform mit ebenen Spiegeln,
Fig. 9
Prinzipskizze einer Ausführungsform mit Detektoren,
Fig. 10
Prinzipskizze einer Ausführungsform mit Detektoren und ebenen Spiegeln.
Further features of the invention emerge from the subclaims. Some exemplary embodiments of the invention are described below with reference to the figures. Show it:
Fig. 1
Schematic diagram of a preferred embodiment with mirror segments and optical system,
Fig. 2
geometric basics for describing the preferred embodiment,
Fig. 3
Illustration of the relationship between direct and reflected light,
Fig. 4
Schematic diagram of a first embodiment with different mirror segments,
Fig. 5
Schematic diagram of a second embodiment with different mirror segments,
Fig. 6
Principle of operation of the preferred embodiment with optical system,
Fig. 7
Schematic diagram of an embodiment with filters or polarizers,
Fig. 8
Schematic diagram of an embodiment with plane mirrors,
Fig. 9
Schematic diagram of an embodiment with detectors,
Fig. 10
Schematic diagram of an embodiment with detectors and flat mirrors.

Fig. 1 zeigt die Prinzipskizze einer bevorzugten Ausführungsform der Erfindung. Das Blattgut 10 wird hier mittels einer linienförmigen Beleuchtung 20 beleuchtet. Das Blattgut befindet sich in einer Fokuslinie F1 der linienförmigen Beleuchtung 20 und wird von einer hier nicht dargestellten Transportvorrichtung in einer Richtung T senkrecht zur Fokuslinie F1 transportiert.Fig. 1 shows the schematic diagram of a preferred embodiment the invention. The sheet material 10 is here by means of a linear lighting 20 illuminated. The Sheet material is in a focal line F1 of the linear lighting 20 and is from one here Transport device, not shown, in one direction T transported perpendicular to the focal line F1.

Die linienförmige Beleuchtung 20 besteht aus einer Lichtquelle 21, die kaltes Licht emittiert. Die Lichtquelle 21 ist in einer Fokuslinie F2 der Beleuchtung 20 angebracht.The linear lighting 20 consists of a Light source 21 that emits cold light. The light source 21 is in a focus line F2 of the lighting 20 appropriate.

Das emittierte Licht wird durch Reflexion an zwei Spiegelsegmenten 22 und 22' der Beleuchtung 20 teilweise auf die Fokuslinie F1 fokussiert. Die Spiegelsegmente 22 und 22' sind jeweils Segemente eines zylindrischen Spiegels mit gleicher elliptischer Grundfläche, die jeweils zwei Fokuslinien F1 und F2 aufweisen. Die Spiegelsegmente 22 und 22' sind so angeordnet, daß sowohl die ersten als auch die zweiten Fokuslinien der Spiegelsegmente 22 und 22' jeweils in der ersten gemeinsamen Fokuslinie F1 und der zweiten gemeinsamen Fokuslinie F2 der Beleuchtung 20 zusammenfallen.The light emitted is reflected by two mirror segments 22 and 22 'of the lighting 20 partially on the focus line F1 focuses. The mirror segments 22 and 22 'are each segments of a cylindrical mirror with the same elliptical footprint, two each Have focus lines F1 and F2. The mirror segments 22 and 22 'are arranged so that both the first and also the second focus lines of the mirror segments 22 and 22 'in the first common focus line F1 and the second common focus line F2 of the lighting 20 coincide.

Das von der Lichtquelle 21 emittierte Licht läßt sich in einen reflektierten Anteil 100 und einen direkten Anteil 110 aufteilen. Der reflektierte Anteil 100 wird vor der Beleuchtung des Blattguts an den Spiegelsegmenten 22 bzw. 22' reflektiert. Der direkte Anteil 110 trifft ohne Reflexion auf das Blattgut. Der direkte Anteil 110 kann optional mittels eines optischen Systems 23 auf die Fokuslinie F1 fokussiert werden.The light emitted by the light source 21 can be in a reflected portion 100 and a direct portion Split 110. The reflected portion 100 is before Illumination of the sheet material on the mirror segments 22 or 22 'reflected. The direct portion 110 hits without Reflection on the leaf material. The direct portion 110 can optionally by means of an optical system 23 onto the focus line F1 to be focused.

Als Lichtquelle 21 eignet sich beispielsweise eine Reihe von Leuchtdioden. Aufgrund ihrer geringen räumlichen Ausdehnung können Leuchtdioden näherungsweise als Punktlichtquellen angesehen werden, die exakt in der Fokuslinie F2 angebracht sind und von den Spiegelsegmenten 22 und 22' bzw. der optischen Einrichtung 23 auch exakt auf einen Punkt der Fokuslinie F1 abgebildet werden. Abbildungsverluste aufgrund der räumlichen Ausdehnung der Lichtquelle 21 können so weitestgehend vermieden werden. Die Leuchtdioden werden innerhalb der Reihe möglichst dicht aneinander angebracht, so daß eine quasi gleichmäßige Beleuchtung der Fokuslinie F1 erreicht wird.A row is suitable as the light source 21, for example of light emitting diodes. Because of their small spatial LEDs can expand approximately as point light sources are viewed exactly in the focus line F2 are attached and from the mirror segments 22nd and 22 'or the optical device 23 also exactly a point of the focus line F1 can be mapped. Figure loss due to the spatial extent of the Light source 21 can be avoided as far as possible. The LEDs are as possible within the row attached close together, so that a quasi uniform Illumination of the focus line F1 is reached.

Zur weiteren Erhöhung der Lichtausbeute der Leuchtdioden können diese gepulst betrieben werden. Die durch einen kurzen Puls erzeugten Lichtblitze weisen eine höhere Intensität auf als im Dauerbetrieb der Leuchtdioden.To further increase the light output of the LEDs can be operated pulsed. The one Short pulse generated light flashes have a higher Intensity on than in the continuous operation of the LEDs.

Das vom Blattgut remittierte Licht 120 bzw. das transmittierte Licht 130 wird mittels Detektoren erfaßt. Der Übersichtlichkeit halber sind hier lediglich zwei Detektoren 30 und 40 dargestellt. Jeder dieser Detektoren 30, 40 weist unter anderem ein optisches System 32 bzw. 42 auf, das das remittierte Licht 120 bzw. das transmittierte Licht 130 teilweise auf einen Lichtempfänger 31 bzw. 41 fokussiert. Der Lichtempfänger 31 bzw. 41 wandelt das ankommende Licht in Signale um, die dann von einer hier nicht dargestellten Einheit der Bearbeitungsanlage bearbeitet werden können. The light 120 reflected by the sheet material or the transmitted one Light 130 is detected by means of detectors. The For the sake of clarity, there are only two detectors here 30 and 40 shown. Each of these detectors 30, 40 has an optical system 32 and 42, among other things that the remitted light 120 or the transmitted Light 130 partially onto a light receiver 31 or 41 focused. The light receiver 31 or 41 converts the incoming light into signals which are then transmitted from a processing unit, not shown here can be edited.

Als Lichtempfänger 31 eignen sich beispielsweise CCD-Arrays oder Photodioden. Die Photodioden können entweder einzeln oder in Gruppen angeordnet werden.CCD arrays, for example, are suitable as light receivers 31 or photodiodes. The photodiodes can either arranged individually or in groups.

Die speziellen geometrischen Eigenschaften der Spiegelsegmente 22 und 22' zeigt die Fig. 2. Die elliptische Grundfläche der Spiegelsegmente wird durch die Länge der großen Achse 2a und die Länge der kleinen Achse 2b definiert. Der Abstand 2c der beiden gemeinsamen Fokuslinien F1 und F2 ergibt sich mit c = (a2 - b2)1/2. Die Spiegelsegmente 22 und 22' sind spiegelsymmetrisch zu der Ebene, die durch die Fokuslinie F2 und die große Achse der Ellipse 2a aufgespannt wird.FIG. 2 shows the special geometric properties of the mirror segments 22 and 22 '. The elliptical base area of the mirror segments is defined by the length of the major axis 2a and the length of the minor axis 2b. The distance 2c between the two common focus lines F1 and F2 results with c = (a 2 - b 2 ) 1/2 . The mirror segments 22 and 22 'are mirror-symmetrical to the plane spanned by the focus line F2 and the large axis of the ellipse 2a.

Die Breite B der Spiegelsegmente 22 und 22' wird vorzugsweise größer oder gleich der Breite des Blattguts gewählt. Der Abstand L der dem Blattgut zugewandten Kante der Spiegelsegmente 22 und 22' wird von der Fokuslinie F2 parallel zur großen Achse 2a gemessen. Der Abstand L wird kleiner dem Abstand 2c der Fokuslinien gewählt, so daß sich die Spiegelsegmente 22 und 22' und das in der Fokuslinie F1 geführte Blattgut 10 nicht berühren.The width B of the mirror segments 22 and 22 'is preferred greater than or equal to the width of the sheet material selected. The distance L of the edge facing the sheet material of the mirror segments 22 and 22 'is from the focus line F2 measured parallel to the major axis 2a. The distance L is chosen smaller than the distance 2c of the focus lines, so that the mirror segments 22 and 22 'and do not touch the sheet material 10 guided in the focus line F1.

Abhängig vom Abstand L ergibt sich ein Öffnungswinkel α. Dieser läßt sich mit Hilfe der Exzentrizität e = c/a der Ellipse analytisch bestimmen. Es ergibt sich α(L) = arccos (L/(a + e(L-c)).Depending on the distance L, an opening angle α results. This can be done with the help of the eccentricity e = c / a Determine ellipse analytically. The result is α (L) = arccos (L / (a + e (L-c)).

Der von der Lichtquelle 21 in den Winkelbereich 0° ± α emittierte Lichtanteil entspricht dem direkten Anteil 110. Das in die anderen Winkelbereiche emittierte Licht der Lichtquelle 21 wird von den Spiegelsegmenten 22 und 22' reflektiert und bildet den reflektierten Anteil 100. Bei bekannter Abstrahlcharakteristik der Lichtquelle läßt sich berechnen, welcher Anteil des emittierten Lichts der Lichtquelle 21 von den Spiegelsegmenten 22 und 22' abhängig vom Abstand L reflektiert wird.That of the light source 21 in the angular range 0 ° ± α emitted light portion corresponds to the direct portion 110. The light emitted in the other angular ranges the light source 21 is from the mirror segments 22 and 22 'reflects and forms the reflected portion 100. With known radiation characteristics of the light source can be calculated what proportion of the emitted Light from the light source 21 from the mirror segments 22 and 22 'is reflected depending on the distance L.

In der Fig. 3 sind drei Spiegelsegmente 22 mit unterschiedlichen Abständen L dargestellt. Der zum entsprechenden Abstand L berechnete Öffnungswinkel α ist angegeben. Geht man von einer Lichtquelle 21 aus, die ihr Licht gleichmäßig verteilt in einen Winkelbereich 0° ± δ emittiert, so läßt sich aus dem Öffnungswinkel α der prozentuale Anteil D des direkten Lichts 110 mittels der Relation D = α/δ berechnen.3 are three mirror segments 22 with different ones Distances L shown. The corresponding one Distance L calculated opening angle α is given. Assuming a light source 21, you Light evenly distributed in an angular range of 0 ° ± δ emitted, it can be from the opening angle α percentage D of the direct light 110 by means of the Calculate relation D = α / δ.

Es zeigt sich, daß für die bevorzugte Ausführungsform der Erfindung mit L ~ c und einem Winkelbereich ± δ mit δ = 90° ein prozentualer Anteil D von ca. 16 % direktem Licht 110 ergibt. Der prozentuale Anteil R des reflektierten Lichts 100 ergibt sich zu R = 100 % - D, also in diesem Fall zu 84 %.It turns out that for the preferred embodiment of the invention with L ~ c and an angular range ± δ with δ = 90 ° a percentage D of about 16% direct Light 110 results. The percentage R of the reflected Light 100 results in R = 100% - D, i.e. in in this case 84%.

Die Fig. 4 zeigt eine Prinzipskizze einer ersten Ausführungsform mit unterschiedlichen Spiegelsegmenten 22 und 22'. Auch hier sind, wie schon in der bevorzugten Ausführungsform ausgeführt, die Spiegelsegmente 22 und 22' Segmente eines zylindrischen Spiegels mit gleicher elliptischer Grundfläche. Der Abstand L bzw. L' der dem Blattgut zugewandten Kanten der Spiegelsegmente ist jedoch unterschiedlich, so daß keine Spiegelsymmetrie zwischen den Spiegelelementen 22 und 22' besteht. Weiterhin wurde der Abstand l bzw. l' der dem Blattgut abgewandten Kanten der Spiegelsegmente unterschiedlich gewählt. Der Abstand l bzw. l' wird jeweils vom Scheitelpunkt S bzw. S' der Ellipse parallel zur großen Achse der Ellipse 2a gemessen.4 shows a schematic diagram of a first embodiment with different mirror segments 22 and 22 '. Here too, as in the preferred embodiment executed, the mirror segments 22 and 22 ' Segments of a cylindrical mirror with the same elliptical Floor space. The distance L or L 'of the However, edges of the mirror segments facing the sheet material are different, so that no mirror symmetry between the mirror elements 22 and 22 '. Farther was the distance l or l 'of the sheet material facing away Edges of the mirror segments selected differently. The Distance l or l 'is in each case from the apex S or S 'of the ellipse parallel to the major axis of the ellipse 2a measured.

Vorzugsweise wird sowohl der Abstand l als auch der Abstand l' so gewählt, daß bei vorgegebenem Abstand L bzw. L' ein möglichst großer Anteil des von der Lichtquelle 21 emittierten Lichts an den Spiegelsegmenten 22 bzw. 22' reflektiert wird. Die Abstände l bzw. l' müssen hierzu bevorzugt kleiner als ein maximaler Abstand lmax gewählt werden. Der Abstand lmax hängt von dem Winkelbereich δ ab, in den die Lichtquelle 21 ihr Licht emittiert sowie von der Länge der großen Achse a und der kleinen Achse b. Der Abstand lmax ergibt sich zu lmax = a (a-c) (1 + cos δ) / (a-c cos δ) für 0° ≤ δ ≤ 180°. Wird der Abstand l bzw. l' kleiner als lmax gewählt, so werden bestimmte Bereiche des zugehörigen Spiegelsegments nicht beleuchtet. Wird der Abstand l bzw. l' größer als lmax gewählt, so wird bei vorgegebenem Abstand L bzw. L' nicht der größtmögliche Anteil des von der Lichtquelle 21 emittierten Lichts reflektiert.Both the distance l and the distance l 'are preferably selected such that, for a predetermined distance L or L', the largest possible proportion of the light emitted by the light source 21 is reflected on the mirror segments 22 or 22 '. For this purpose, the distances l and l 'must preferably be selected to be smaller than a maximum distance l max . The distance l max depends on the angular range δ into which the light source 21 emits its light and on the length of the major axis a and the minor axis b. The distance l max results in l max = a (ac) (1 + cos δ) / (ac cos δ) for 0 ° ≤ δ ≤ 180 °. If the distance l or l 'is chosen to be smaller than l max , certain areas of the associated mirror segment are not illuminated. If the distance l or l 'is chosen to be greater than l max , the greatest possible proportion of the light emitted by the light source 21 is not reflected for a predetermined distance L or L'.

Die Fig. 5 zeigt eine zweite Ausführungsform mit unterschiedlichen Spiegelsegmenten 22 bzw. 22'. In dieser Ausführungsform sind nicht nur die Abstände l und L bzw. l' und L' unterschiedlich gewählt, sondern auch die Länge der großen Achse a bzw. a' und die der kleinen Achse b bzw. b'. Die Verhältnisse der Längen a und b bzw. a' und b' der Spiegelsegmente 22 bzw. 22' sind jedoch so gewählt, daß der Abstand 2c der beiden Fokuslinien F1 und F2 bei beiden Spiegelsegmenten 22 und 22' gleich ist. Die Spiegelsegmente 22 und 22' sind so angeordnet, daß ihre Fokuslinien jeweils in einer gemeinsamen Fokuslinie F1 bzw. F2 zusammenfallen. Bedingt durch die unterschiedlichen Längen a und a' bzw. b und b' ergeben sich nun für jedes Spiegelsegment 22 bzw. 22' verschiedene Abstände lmax bzw. l'max.5 shows a second embodiment with different mirror segments 22 and 22 '. In this embodiment, not only the distances l and L or l 'and L' are selected differently, but also the length of the major axis a or a 'and that of the minor axis b or b'. The ratios of the lengths a and b or a 'and b' of the mirror segments 22 and 22 'are, however, chosen so that the distance 2c between the two focus lines F1 and F2 is the same for both mirror segments 22 and 22'. The mirror segments 22 and 22 'are arranged such that their focus lines coincide in a common focus line F1 and F2, respectively. Due to the different lengths a and a 'or b and b', there are different distances l max or l ' max for each mirror segment 22 or 22'.

Die in Fig. 4 und Fig. 5 gezeigten Ausführungsformen können vorteilhaft sein, wenn beispielsweise aus bautechnischen Gründen ein Einbau einer bevorzugten Ausführungsform nicht möglich ist. Die Parameter der Spiegelsegmente 22 und 22' können, wie oben beschrieben, modifiziert werden, so daß abhängig von den bautechnischen Gründen eine größtmögliche Fokussierung des von der Lichtquelle 21 emittierten Lichts in der gemeinsamen Fokuslinie F1 erreicht wird.The embodiments shown in FIGS. 4 and 5 can be advantageous if, for example, from construction Establish a preferred embodiment not possible. The parameters of the mirror segments 22 and 22 'can be modified as described above be so that depending on the structural Reasons the greatest possible focus of the Light source 21 emitted light in the common Focus line F1 is reached.

Emittiert die Lichtquelle 21 lediglich in einen kleinen Winkelbereich ± δ, so können bei Bedarf die außerhalb dieses Winkelbereichs liegenden und somit nicht beleuchteten Bereiche der Spiegelsegmente 22 und 22' weggelassen oder anders ausgestaltet werden.The light source 21 only emits into a small one Angular range ± δ, so if necessary, the outside this angular range and therefore not illuminated Areas of the mirror segments 22 and 22 'are omitted or be designed differently.

Die Fig. 6 zeigt das Funktionsprinzip der bevorzugten Ausführungsform mit einem optischen System. Die Fig. 6a zeigt die bevorzugte Ausführungsform mit L ~ c, bei der der reflektierte Anteil 100 des von der Lichtquelle 21 emittierten Lichts auf die Fokuslinie F1 fokussiert. Hier wird der prozentuale Anteil R = 84 % des reflektierten Lichts zur Beleuchtung der Banknote genutzt.Fig. 6 shows the principle of operation of the preferred Embodiment with an optical system. 6a shows the preferred embodiment with L ~ c, in which the reflected portion 100 of the light source 21 emitted light focused on the focus line F1. Here the percentage R = 84% of the reflected Light used to illuminate the banknote.

Die Fig. 6b zeigt den direkten Anteil 110 des von der Lichtquelle 21 emittierten Lichts. Wie man sieht, wird dieser nicht auf das Blattgut fokussiert, so daß sich ein Verlust des prozentualen Anteil D des direkten Lichts 110 von 16 % ergibt.6b shows the direct portion 110 of the Light source 21 emitted light. As you can see, this does not focus on the sheet material, so that a loss of the direct D percentage Light 110 results in 16%.

Fig. 6c zeigt, wie der direkte Anteil 110 mittels einer Weiterbildung der ersten Ausführungsform durch ein optisches System 23 auf das Blattgut fokussiert wird.Fig. 6c shows how the direct portion 110 by means of a Development of the first embodiment by a optical system 23 is focused on the sheet material.

In Fig. 6d ist die Weiterbildung der Erfindung durch das optische System 23 nochmals mit dem direkten Anteil 110 und dem reflektierten Anteil 100 dargestellt. Durch die zusätzliche Fokussierung des direkten Anteils 110 wird nun das von der Lichtquelle 21 emittierte Licht vollständig auf das Blattgut fokussiert.In Fig. 6d is the development of the invention by optical system 23 again with the direct portion 110 and the reflected portion 100. Through the additional focus of the direct portion 110 will now the light emitted by the light source 21 completely focused on the sheet material.

Die Fig. 7 zeigt eine Ausführungsform der Erfindung, bei der im Strahlengang der Beleuchtung zusätzlich Filter bzw. Polarisatoren 25 vorgesehen sind. Diese dienen dazu, das von der Lichtquelle 21 emittierte Licht vor der Beleuchtung des Blattguts in gewünschter Weise zu verändern. Beispielsweise kann es mit Hilfe von Filtern monochromatisiert und/oder durch Polarisatoren polarisiert werden. Selbstverständlich können auch in den Detektoren, hier durch den Detektor 30 repräsentiert, Filter bzw. Polisatoren 33 vorgesehen werden, die das Licht in gewünschter Weise vor der Registrierung durch den Lichtempfänger 31 verändern.Fig. 7 shows an embodiment of the invention, at the additional filter in the beam path of the lighting or polarizers 25 are provided. These are used the light emitted by the light source 21 in front of the Change the lighting of the leaf material in the desired way. For example, it can be monochromatized using filters and / or polarized by polarizers become. Of course, in the detectors, represented here by the detector 30, filter or polisers 33 are provided which in the light Desired way before registration by the light receiver 31 change.

Die Fig. 8 zeigt eine Ausführungsform, bei der das von der Lichtquelle emittierte Licht vor der Beleuchtung des Blattgutes mittels mindestens eines ebenen Spiegels 24 umgelenkt wird. Hierdurch verändert sich die räumliche Lage der Fokuslinie F1. Eine solche Maßnahme kann beispielsweise dann sinnvoll sein, wenn aus bautechnischen Gründen ein Einbau in der vorher beschriebenen Art und Weise nicht möglich ist.Fig. 8 shows an embodiment in which the of the light source emits light before illuminating the Good sheets by means of at least one flat mirror 24 is redirected. This changes the spatial Location of the focal line F1. Such a measure can, for example then make sense if from structural engineering Establish an installation in the manner described above and Way is not possible.

Wird der ebene Spiegel 24 halbdurchlässig gewählt, so ist es möglich, daß das vom Blattgut remittierte Licht von einem Detektor 30 durch den halbdurchlässigen Spiegel hindurch detektiert werden kann. Diese Möglichkeit ist insbesondere dann von Interesse, wenn das Blattgut 10 senkrecht beleuchtet und gleichzeitig das senkrecht remittierte Licht vom Detektor 30 detektiert werden soll.If the flat mirror 24 is chosen to be semi-transparent, so it is possible that the light remitted by the sheet material from a detector 30 through the semi-transparent mirror can be detected through. This possibility is of particular interest if the leaf material 10 illuminated vertically and at the same time that vertically Remitted light can be detected by the detector 30 should.

Um die bei einem halbdurchlässigen Spiegel auftretenden Verluste gering zu halten ist es weiterhin möglich, einen halbdurchlässigen Spiegel zu verwenden, der dichroitische Eigenschaften aufweist. Ein solcher Spiegel reflektiert in einem ersten Wellenlängenbereich nahezu vollständig, während ein zweiter Wellenlängenbereich nahezu vollständig transmittiert wird. Wählt man nun das das Blattgut beleuchtende Licht innerhalb des ersten Wellenlängenbereichs und das vom Blattgut remittierte Licht innerhalb eines zweiten Wellenlängenbereichs, so können die auftretenden Verluste nahezu vollständig vermieden werden.About those that occur with a semi-transparent mirror Keeping losses low is still possible semi-transparent mirror to use, the dichroic Has properties. Such a mirror reflects almost in a first wavelength range completely while a second wavelength range is almost completely transmitted. Now choose that light illuminating the leaf material within the first Wavelength range and the remitted from the sheet material Light within a second wavelength range, see above the losses that occur can be almost completely avoided become.

Ein Wechsel der Wellenlänge zwischen dem beleuchteten Licht und dem remittierten Licht kann beispielsweise durch Fluoreszenzstoffe oder ähnlichen Beigaben des Blattguts hervorgerufen werden.A change in wavelength between the illuminated Light and the remitted light can for example by fluorescent substances or similar additions of the Leaves are caused.

Weitere nicht in den Figuren dargestellte Ausführungsformen der Erfindung ergeben sich dadurch, daß die Ausführungsform mit Lichtquelle 21 und Spiegelsegment 22 mit optischen Systemen 23 oder Filtern bzw. Polarisatoren 25 oder ebenen Spiegeln 24 in allen möglichen Varianten kombiniert wird.Further embodiments not shown in the figures the invention result from the fact that the embodiment with light source 21 and mirror segment 22 with optical systems 23 or filters or polarizers 25 or level mirrors 24 in all possible variants is combined.

In einer anderen Weiterbildung der Erfindung wird das von der Lichtquelle 21 emittierte Licht auf Veränderungen überwacht. Diese Veränderungen können beispielsweise durch Alterung oder durch Temperaturänderungen der Lichtquelle 21 verursacht werden.In another development of the invention light emitted from the light source 21 upon changes supervised. These changes can, for example due to aging or temperature changes the light source 21 are caused.

Die Fig. 9 zeigt eine Ausführungsform, bei der in der Fokuslinie F2 mindestens ein Detektor 26 vorgesehen wird, der das remittierte Licht 120 detektiert. Das remittierte Licht 120 kann sowohl vom Blattgut 10 als auch von einem Hintergrund 11 erzeugt werden und wird dann von den Spiegelsegmenten 22 und 22' sowie vom optischen System 23 auf die Fokuslinie F2 fokussiert. Der Hintergrund 11 wird der von der Beleuchtung 20 während der Abwesenheit des Blattgut 10 beleuchtet und kann gegenüber dem Detektor 26 beispielsweise eine weiße oder spiegelnde Fläche aufweisen, so daß die Intensität des remittierten Lichts dort möglichst groß ist.Fig. 9 shows an embodiment in which in the Focus line F2 at least one detector 26 is provided which detects the remitted light 120. The remitted Light 120 can both from the sheet material 10 and be generated by a background 11 and then of the mirror segments 22 and 22 'and of the optical System 23 focused on the focus line F2. The background 11 of the lighting 20 during the Absence of the sheet material 10 is illuminated and can be compared the detector 26, for example, a white or have reflecting surface, so that the intensity of the returned light is as large as possible there.

Wird beispielsweise die Intensität des vom Hintergrund 11 remittierten Lichts 120 detektiert, so können diese Meßwerte mit Referenzwerten verglichen werden. Durch diesen Vergleich können Veränderungen in dem von der Lichtquelle 21 emittierten Licht festgestellt werden.For example, the intensity of the background 11 remitted light 120 detected, they can Measured values can be compared with reference values. By this comparison can change in the of the Light source 21 emitted light can be determined.

Zwischen dem vom Hintergrund 11 und dem vom Blattgut reflektierten Licht 120 besteht im allgemeinen ein Intensitätsunterschied. Dieser kann vom Detektor 26 festgestellt werden und zur Detektion von Blattgutanfang bzw. Blattgutende genutzt werden. Der Detektor 26 kann somit auch parallel die Funktion einer Lichtschranke übernehmen.Between that of the background 11 and that of the leaf material reflected light 120 there is generally a difference in intensity. This can be determined by the detector 26 and for the detection of the beginning of leaf material or sheet end can be used. The detector 26 can thus also the function of a light barrier in parallel take.

Zur Verstärkung des Intensitätsunterschieds kann die Fläche des Hintergrunds 11 gegenüber dem Detektor 26 auch dunkler als das Blattgut gewählt werden. Hierdurch wird jedoch die Intensität des reflektierten Lichts 120 geringer.To increase the difference in intensity, the Area of the background 11 opposite the detector 26 can also be chosen darker than the sheet material. hereby however, the intensity of the reflected light becomes 120 lower.

Durch die Verwendung mehrerer Detektoren 26 können sowohl die Veränderungen des von der Lichtquelle 21 emittierten Lichts als auch die Detektion des Blattguts 10 optimiert werden.By using several detectors 26, both the changes in that emitted by the light source 21 Light as well as the detection of the sheet material 10 be optimized.

Wird als Lichtquelle 21 eine Reihe von Leuchtdioden verwendet, so können auch einige dieser Leuchtdioden so verschaltet werden, daß sie als Detektoren 26 genutzt werden können.If a series of light-emitting diodes is used as the light source 21, some of these LEDs can do the same are interconnected that they are used as detectors 26 can be.

Die Fig. 10 zeigt eine Ausführungsform, bei der das von der Lichtquelle 21 emittierte Licht mittels eines halbdurchlässigen oder dichroitischen Spiegels 24 vor der Beleuchtung des Blattguts 10 umgelenkt wird, so daß sich die Lage der Fokuslinie F1 verändert. Ein Spiegel 24 dieser Art transmittiert jedoch einen Anteil 140 des auf ihn treffenden Lichts 110,120. Dieser Anteil 140 wird in eine Fokuslinie F1' fokussiert, die der Fokuslinie F1 in ihrer ursprünglichen Lage entspricht. In dieser Fokuslinie F1' wird nun mindestens ein Detektor 27 angebracht, der den transmittierten Anteil 140 detektiert.Fig. 10 shows an embodiment in which the of the light source 21 emitted light by means of a semi-transparent or dichroic mirror 24 in front of Illumination of the sheet material 10 is deflected so that the position of the focus line F1 changed. A mirror 24 however, this type transmits a portion 140 of the light hitting him 110,120. This portion 140 is in a focal line F1 'that focusses the focal line F1 in corresponds to their original location. In this line of focus F1 ', at least one detector 27 is now attached, which detects the transmitted portion 140.

Durch einen Vergleich der detektierten Intensitäten des transmittierten Anteils 140 mit Referenzwerten, können Veränderungen in dem von der Lichtquelle 21 emittierten Licht festgestellt werden.By comparing the detected intensities of the transmitted portion 140 with reference values Changes in that emitted by the light source 21 Light can be detected.

Da bei dieser Ausführungsform die Fokussierung des remittierten Lichts 120 schon mittels der Spiegelsegmente 22 und 22' bzw. dem optischen Systems 23 geschieht, kann in den Detektoren 26 bzw. 27 auf ein entsprechendes optisches System verzichtet werden. Es können hier somit direkt Lichtempfänger verwendet werden.Since in this embodiment the focusing of the remitted Lichts 120 already by means of the mirror segments 22 and 22 'or the optical system 23 can happen in the detectors 26 and 27 to a corresponding optical System can be dispensed with. So here you can light receivers can be used directly.

Weiterhin ist es möglich diese Ausführungsformen miteinander und mit anderen Ausführungsformen der Erfindung in geeigneter Weise zu kombinieren.Furthermore, these embodiments are possible with one another and with other embodiments of the invention in to combine appropriately.

Claims (13)

  1. An apparatus for linear illumination of sheet material such as bank notes or papers of value, comprising
    a mirror segment of a cylindrical mirror with an elliptical base and having two focal lines, and
    a light source which is mounted in the first focal line of the mirror segment and whose emitted light is focused by reflection on the mirror segment partially onto the sheet material located in the second focal line of the mirror segment, and comprising
    at least one further mirror segment (22') of a cylindrical mirror with an elliptical base and two focal lines (F1, F2), the mirror segments (22, 22') being disposed such that both the first and the second focal lines of all mirror segments (22, 22') coincide in first and second common focal lines (F1, F2), respectively, and
    characterized in that
    the light source (21) is formed by light-emitting diodes mounted in the first focal line of the mirror segment and emitting cold light.
  2. An apparatus according to claim 1, characterized in that the elliptical bases of the mirror segments (22, 22') are equal.
  3. An apparatus according to claim 2, characterized in that the mirror segments (22, 22') are disposed mirror-symmetrically to the plane in which the two common focal lines (F1, F2) are located.
  4. An apparatus according to claim 1, characterized in that the edges of the mirror segments (22, 22') facing the sheet material have a distance (L, L') which is measured from the first focal line (F2) in the direction of the second focal line (F1) and is smaller than or equal to the distance (2c) of the focal lines.
  5. An apparatus according to claim 1, characterized in that the mirror segments (22, 22') have a width (B) which is greater than or equal to the width of the sheet material (10).
  6. An apparatus according to claim 1, characterized in that an optical system (23) is additionally provided for focusing onto the second focal line (F1) the portions (110) of the light emitted by the light source (21) not reflected by the mirror segments (22, 22').
  7. An apparatus according to claim 1, characterized in that the light source (21) has an array of light-emitting diodes.
  8. An apparatus according to claim 1, characterized in that filters and/or polarizers (25) are additionally provided for changing the light (100, 110) emitted by the light source before illumination of the sheet material (10).
  9. An apparatus according to claim 1, characterized in that at least one detector (26) is provided in the first focal line (F2) for detecting the radiation (120) diffusely reflected by the sheet material (10) and/or a background (11).
  10. An apparatus according to claim 1, characterized in that at least one plane mirror (24) is additionally provided for deflecting the light (100, 110) emitted by the light source (21) before illumination of the sheet material (10) so as to change the spatial position of the second focal line (F1).
  11. An apparatus according to claim 10, characterized in that at least one plane mirror (24) is semitransparent so that the light (120) diffusely reflected by the sheet material (10) can be detected by a detector (30) through the semitransparent mirror (24).
  12. An apparatus according to claim 11, characterized in that the semitransparent mirror (24) reflects a first wave range almost completely, while a second wave range is almost completely transmitted, and the light illuminating the sheet material (10) is within the first wave range and the light (120) diffusely reflected by the sheet material within the second wave range.
  13. An apparatus according to claim 11 or 12, characterized in that at least one detector (27) is provided in a focal line (F1') onto which the light (140) transmitted by the mirror (24) is focused.
EP96114254A 1995-09-06 1996-09-05 Device for linear illumination of sheet material, e.g. bank notes or securities Expired - Lifetime EP0762174B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19532877A DE19532877A1 (en) 1995-09-06 1995-09-06 Device for linear lighting of sheet material, such as. B. banknotes or securities
DE19532877 1995-09-06

Publications (3)

Publication Number Publication Date
EP0762174A2 EP0762174A2 (en) 1997-03-12
EP0762174A3 EP0762174A3 (en) 1997-08-27
EP0762174B1 true EP0762174B1 (en) 2002-01-09

Family

ID=7771394

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96114254A Expired - Lifetime EP0762174B1 (en) 1995-09-06 1996-09-05 Device for linear illumination of sheet material, e.g. bank notes or securities

Country Status (3)

Country Link
EP (1) EP0762174B1 (en)
AT (1) ATE211829T1 (en)
DE (2) DE19532877A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2320478A1 (en) * 1998-02-05 1999-08-12 Studio Due Light Division S.R.L. Projector device with linear reflector
DE10000029A1 (en) * 2000-01-03 2001-07-05 Giesecke & Devrient Gmbh Illumination device for illuminating a flat object in the form of a strip
DE10019428C1 (en) * 2000-04-19 2002-01-24 Giesecke & Devrient Gmbh Illumination unit for banknote testing device, has light intensity of laser light source reduced by using optical fibre light guide for increasing light output surface area
DE10027726A1 (en) * 2000-06-03 2001-12-06 Bundesdruckerei Gmbh Sensor for the authenticity detection of signets on documents
DE10108075A1 (en) * 2001-02-20 2002-09-19 Oce Document Technologies Gmbh Device and method for linearly illuminating an object by means of LEDs and an elliptical mirror
DE10135828A1 (en) 2001-07-23 2003-02-06 Giesecke & Devrient Gmbh Laser lighting device for illuminating a strip or line-shaped area
EP1452010A2 (en) * 2001-11-23 2004-09-01 Oce Document Technologies Gmbh Device and method for scanning an original copy involving a lifting and rotational movement of a camera
WO2003085385A1 (en) * 2002-04-04 2003-10-16 Lla Instruments Gmbh Method and spectrometer for spectrometrically measuring the extinction, transmission, diffuse reflection or the reflection of samples
DE10216179A1 (en) * 2002-04-04 2003-10-23 Hartmut Lucht Spectrometric measurement of extinction, transmission, diffuse reflection or reflection involves acquiring reflected light, focusing onto inlet opening of spectrograph or optical cable inlet openings
DE102004014532B3 (en) 2004-03-23 2005-03-03 Koenig & Bauer Ag Optical system for generating illuminated shape on moving material has delay time, switch-on duration sum less than exposure duration; material speed-dependent off time follows exposure period until next exposure period
EP1727676B1 (en) 2004-03-23 2014-01-22 Koenig & Bauer Aktiengesellschaft Printing machines having at least one machine element that can be adjusted by a setting element
DE502005001514D1 (en) 2004-03-23 2007-10-31 Koenig & Bauer Ag Printing machine with an inline inspection system
DE102004014541B3 (en) * 2004-03-23 2005-05-04 Koenig & Bauer Ag Optical system e.g. for banknote checking device, inspection system or flat bed scanner, providing uniform intensity illumination strip on surface of moving material web
DE102004035786B4 (en) * 2004-03-23 2010-04-01 Koenig & Bauer Aktiengesellschaft Inline inspection systems
EP1582857A1 (en) * 2004-04-02 2005-10-05 Siemens Building Technologies AG Photoacoustic gas sensor comprising a light source with a reflector, and method for optimizing the reflector's contour
JP2007013913A (en) * 2005-05-30 2007-01-18 Toyota Industries Corp Lighting unit and original-reading apparatus
FR2890187B1 (en) * 2005-08-24 2008-02-22 Claranor Soc Par Actions Simpl CYLINDRICAL REFLECTOR ADAPTED TO LEFT SURFACES
DE102008016461A1 (en) * 2008-03-31 2009-10-01 Giesecke & Devrient Gmbh Lighting for a tester
DE102008028690A1 (en) 2008-06-17 2009-12-24 Giesecke & Devrient Gmbh Sensor device for the spectrally resolved detection of value documents and a method relating to them
DE102013008197A1 (en) * 2013-05-14 2014-11-20 Volkswagen Aktiengesellschaft Lighting device, in particular for a motor vehicle
CN107314343A (en) * 2016-04-26 2017-11-03 陈敬萍 Blinding free focuses on luminous and lighting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2090026A1 (en) * 1970-04-16 1972-01-14 African Explosives & Chem OPTICAL CAPACITOR FOR LIGHT SOURCE
DE2634241A1 (en) * 1975-10-06 1977-04-14 Ibm HIGHLY EFFECTIVE LIGHTING SYSTEM
JPS55124167A (en) * 1979-03-19 1980-09-25 Canon Inc Lighting device
US4287414A (en) * 1979-06-29 1981-09-01 International Business Machines Corp. Illumination and pick up apparatus
US4422100A (en) * 1982-03-08 1983-12-20 The Mead Corporation Document scanning apparatus
JPS59181527A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Lamp annealing method
JPS6195525A (en) * 1984-10-17 1986-05-14 Canon Inc Photo detection equipment
US4769718A (en) * 1986-01-07 1988-09-06 Ushio Denki Kabushiki Kaisha Image processing apparatus

Also Published As

Publication number Publication date
EP0762174A2 (en) 1997-03-12
EP0762174A3 (en) 1997-08-27
DE19532877A1 (en) 1997-03-13
DE59608551D1 (en) 2002-02-14
ATE211829T1 (en) 2002-01-15

Similar Documents

Publication Publication Date Title
EP0762174B1 (en) Device for linear illumination of sheet material, e.g. bank notes or securities
EP0279191B1 (en) Device for contactless measurement of remission
EP0824736B1 (en) Device and process for checking sheet articles such as bank notes or securities
EP0209860B1 (en) Apparatus for contactless reflection measurement
DE69411321T2 (en) Device for detecting fluorescence
EP2011755B1 (en) Device for linear illumination of a moving goods belt
EP2490185B1 (en) Device and method for optical examination of valuable documents
EP1655600B1 (en) Yarn sensor
DE4022020A1 (en) DEVICE AND METHOD FOR CHECKING DOCUMENTS
EP0154875A2 (en) Device for the determination of the diffuse surface reflection of a sample of small dimensions
DE102004014541B3 (en) Optical system e.g. for banknote checking device, inspection system or flat bed scanner, providing uniform intensity illumination strip on surface of moving material web
DE202005007089U1 (en) Sensor arrangement for optically detecting the edges of a product, e.g. to measure its width, comprises point light sources and a optical fiber arrangement that detects light reflected back from the product under-surface
EP2773928B1 (en) Sensor for verifying value documents
DE3242447A1 (en) Photoelectric textile web monitoring device
EP1859227B1 (en) Sensor assembly for optically detecting the edges of a product and width-measurement method
EP1279988B1 (en) Laser illumination device for illuminating a line or a strip-like area
EP0920680B1 (en) Device for optically detecting sheet material
DE1524368B2 (en) Device for scanning hole strips
DE3507445A1 (en) Method and device for optically determining the distance between a measuring device and selectable points on the surface of a device under test
DE19924133A1 (en) Lamp for producing a line of light with a specifiable intensity distribution along its length comprises reflectors whose position and/or surface curvature is adjustable relative to the light sources of the lamp
WO2001050081A2 (en) Illumination device for the strip-wise illumination of a flat article
DE10019428C1 (en) Illumination unit for banknote testing device, has light intensity of laser light source reduced by using optical fibre light guide for increasing light output surface area
DE102022134242A1 (en) Chromatic confocal measuring device
DE1524368C (en) Device for scanning hole strips
WO2024133388A1 (en) Chromatic confocal measuring apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT;LV;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: LT;LV;SI

17P Request for examination filed

Effective date: 19980226

17Q First examination report despatched

Effective date: 19990510

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

RIC1 Information provided on ipc code assigned before grant

Free format text: 7G 02B 17/00 A, 7F 21V 7/08 B, 7F 21V 7/00 B, 7H 04N 1/028 B, 7G 02B 19/00 B

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020109

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20020109

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020109

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020109

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020109

REF Corresponds to:

Ref document number: 211829

Country of ref document: AT

Date of ref document: 20020115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59608551

Country of ref document: DE

Date of ref document: 20020214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020409

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020409

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020409

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020730

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020905

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020905

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20020920

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020930

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: *GIESECKE & DEVRIENT G.M.B.H.

Effective date: 20020930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030401

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20041129

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050905