EP0661447B1 - Dieselmotor mit direkter Kraftstoffeinspritzung - Google Patents
Dieselmotor mit direkter Kraftstoffeinspritzung Download PDFInfo
- Publication number
- EP0661447B1 EP0661447B1 EP94120612A EP94120612A EP0661447B1 EP 0661447 B1 EP0661447 B1 EP 0661447B1 EP 94120612 A EP94120612 A EP 94120612A EP 94120612 A EP94120612 A EP 94120612A EP 0661447 B1 EP0661447 B1 EP 0661447B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- bores
- small
- nozzle
- diesel engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002347 injection Methods 0.000 title claims description 164
- 239000007924 injection Substances 0.000 title claims description 164
- 239000000446 fuel Substances 0.000 title claims description 29
- 238000002485 combustion reaction Methods 0.000 claims description 28
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000004071 soot Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000000889 atomisation Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 231100000719 pollutant Toxicity 0.000 description 2
- 230000035508 accumulation Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
- F02M61/1826—Discharge orifices having different sizes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M61/00—Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
- F02M61/16—Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
- F02M61/18—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
- F02M61/1806—Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the invention relates to a diesel engine with direct fuel injection with the in the preamble of claim 1 mentioned generic features.
- the Bore spacing is chosen so that the individual injection jets even with strong Drift cannot overlap.
- An injection nozzle of this type is known from EP 0 246 373 B1 and therein as an assembly described an entire fuel injector.
- this known injection nozzle a total of three injection openings at equal distances from one another laterally on the circumference of the nozzle body.
- the three injection openings are opened or closed and so regulates the amount of fuel to be injected.
- the specified injection pressure is the maximum amount of fuel that can be injected through the entire fuel Cross-sectional area of the three injection openings of the same size are defined.
- the above described overlap of the predetermined by the injection openings and from Combustion air vortices are blown by the angular distance of each Avoided 120 °.
- This known injection nozzle is due to its structural and functional so far explained Properties with the disadvantages that differ from the few, each Diameter-equal opening areas of the injection openings a relatively small Total opening area and thus result in relatively long injection times. Furthermore, the Air utilization during the combustion process of this swirl process with the usual three to five Injection openings small.
- Each of the three to five is there conventional nozzle holes replaced by at least two replacement holes, the Cross-sectional sum essentially the cross-section of the replaced conventional Corresponds to the nozzle bore.
- These replacement holes are each arranged in pairs so that their resulting beam direction with the beam direction of the conventionally designed Injection hole matches, but the core zones of their jet cones do not overlap. This will improve fuel atomization and therefore better Air utilization achieved at lower speeds and low swirl, with increasing swirl However, the core zones of the injection jets also overlap, resulting in soot formation Has.
- a two-stage multi-hole injection nozzle is known, as in swirl-free jet injection process is used.
- the flow rate and shape are the Injection bores matched to one another in such a way that the best possible jet atomization is achieved for shorter ignition delay times. Even a small swirl would cause the injection jets blow into each other and so lead to disadvantageous soot formation.
- the invention is based on the problem with an injection nozzle of the type mentioned Shorter injection times and / or improved air utilization with a simultaneous reduction To allow soot emissions.
- the invention is based on a generic Injection nozzle given by the features of claim 1.
- each pair of injection jets has a large combustion chamber sector up to that adjacent injection jet pair available, in which the fuel due to a strong Air swirls can be blown away.
- the overall cross-sectional area thus increased enables a significantly larger area Fuel flow than with conventional injectors, so that with conventional Injection pressure ratios the intended amount of fuel in a much shorter Duration than previously can be injected into the combustion chamber.
- This shorter injection period creates the advantage of a shorter burning time, which makes the effective specific Fuel consumption can be reduced.
- Another significant advantage of the configuration of the injection openings according to the invention is that this achieved even distribution of the fuel into the air, resulting in a more homogeneous mixing and a much better result Air utilization in the cylinder leads.
- the combination of small and large has an effect here Injection orifices are particularly advantageous because you can use constant injection pressure with small Injection openings generally achieve a finer atomization than with large openings.
- the axes of the large and small Injection openings each lie on different concentric conical shells, the Opening angles are different.
- injection ratios of an otherwise not shown are schematic Internal combustion engine shown. Opposite the piston, the injector 4 is coaxial with Piston center axis 5 arranged and not together with their nozzle holder in the drawing screwed into the cylinder head. Contrary to that shown here The coaxial arrangement of the injection nozzle is also any other placement of the nozzle in the cylinder possible without affecting the advantages achieved by the invention.
- the piston 1 has a piston recess 2, which does not necessarily have to have the shape shown, but in any shape depending on the desired flow conditions can be.
- the piston 1 is in its top dead center position (TDC), in which the Upper piston edge 14 is so far in the direction of the injector 4 that it at least partially protrudes into the piston recess 2.
- the injection nozzle 4 which is designed here as a blind hole nozzle, is at a distance from Injection nozzle tip distributed over a circumferential line as injection bores 8, 9, 15, 16 trained injection openings.
- the injection bores 8, 9, 15, 16, more precisely the mouth openings of these Injection bores 8, 9, 15, 16 lie on the common circumferential line, while the Center lines 10, 17 of the large injection bores 8, 15 lie on a conical surface 6 and the center lines 11, 18 of the small injection bores 9, 16 lie on a conical surface 7.
- the opening angle ⁇ 1 of this conical outer surface 6 is chosen larger than that Opening angle ⁇ 2 of the surface of the cone 7.
- the emerging injection jets are in Direction directed to the piston recess 2 when the piston is in its top dead center position located as shown in Figure 1.
- FIGS. 2a and 2b each show an embodiment of the injection nozzle 4 according to the invention shown as a section along the section line II-II in Figure 1, with the holes simplified in are shown lying on one level.
- These figures show the respective arrangement of the mouths of the injection bores 8, 9, 15, 16 on the common circumferential line of the injection nozzle 4.
- the injection bores 8, 9, 15, 16 are each as fine bores in the injector tip manufactured.
- the shape of the injection bores 8, 9, 15, 16 is, however, not mandatory on the Training as a bore is restricted, but other shapes and forms can be used be provided, which are suitable for generating desired inlet flow conditions.
- the diameter of the large injection bores 8 and small injection bores 9 are dimensioned so that due to the intended Injection pressure through the individual injection bores 8, 9, 15, 16 forming fuel flow can each form an injection jet 22, 23, as shown in FIG. 4.
- FIG. 3 shows an injection pattern as is the case with conventional injection nozzles each have the same size injection openings, here 6 pieces.
- the inflowing Combustion air was previously rotated using a corresponding inflow channel offset that an air vortex forms in the combustion chamber. This by means of the so-called swirl channel Special inflow channel with a large swirl of air is usually centralized by introduced into the combustion chamber at the top. The inflowing air pulls the fuel with it and thereby blows the injection jets 21 and 22, 23 away from those in FIGS. 3 and 4 injection lobes shown.
- the diameters of these injection bores are chosen so that the individual blows Injection jets 21 do not overlap each other. However, as can be clearly seen from FIG. 3, Areas are formed in the areas between two adjacent injection jets 21, in which no fuel is mixed with air. The air present in these areas is therefore also not used in the combustion. This is where the invention begins and provides that seen in the swirl direction, the small injection bore 9 or 16 adjacent to the large one Injection bore 8 and 15, and that the circumferential angular distance 12 and 19 of the small Injection bore 9 or 16 of the large injection bore 8 or 15 is smaller than or equal to half the circumferential angular distance 13 or 20 of the large injection bores 8 or 15 among themselves. As a result, as shown with the injection pattern of FIG.
- the injection pattern shown in FIG. 4 is achieved, for example, with an injection nozzle, such as it is shown in Figure 2a.
- an injection nozzle such as it is shown in Figure 2a.
- Figure 2a For embodiments in which a particularly strong air swirl is provided in the combustion chamber, brings the embodiment shown in Figure 2b Injection nozzle according to the invention further improvement.
- the large injection bores and the small injection bores in pairs evenly over the entire circumference of the injector 4 is arranged distributed. Due to the small angular distance 19 the center lines 17 and 18 of this pair of openings, the smaller
- Injection jet deflected in the slipstream of the large injection jet without the lobe-shaped injection jets overlap.
- this pair of injection jets has one compared to the larger combustion chamber sector shown in FIG. 4, in which the fuel can be blown away without interfering with the neighboring one Injection jet pair mixed.
- the injection nozzle according to the invention thus enables the combustion air in the combustion chamber to be used much more extensively.
- the injection nozzle according to the invention has a considerably enlarged total cross-sectional area of the injection openings, which means that the amount of fuel required in each case can be injected into the combustion chamber in a significantly shorter time t E.
- This larger mass flow, or also flow rate v ⁇ , is depicted in FIG. 5 as a function of time over an overall injection process.
- curve 26 represents the inflow rate of a conventional injection nozzle
- curve 27 represents the injection rate, as is possible with the injection nozzle according to the invention.
- the area enclosed under the respective curve 26, 27 and the time axis corresponds to the amount of fuel injected. If the injection nozzle is completely open after the PREMIX area, then the injection nozzle according to the invention enables the flow rate 27 to rise to a significantly higher maximum value than that of conventional nozzles. Furthermore, the injection process with the injection nozzle 4 according to the invention is completed significantly earlier t E than in the case of conventional injection nozzles t H due to its larger overall hole cross section. As a result of this comparison, the area center of gravity F E of the inflow rate of the nozzle according to the invention is clearly shifted forward by the distance s compared to the center of gravity F H of conventional nozzles.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Fuel-Injection Apparatus (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
- Fig. 1
- schematisch die Anordnung von Einspritzdüse und Kolben in einer Querschnittsdarstellung;
- Fig. 2a
- eine Horizontalschnittdarstellung durch die Düse entlang des Schnittverlaufs II-II in Fig. 1 gemäß eines ersten Ausführungsbeispiels der Erfindung;
- Fig. 2b
- einen Horizontalschnittverlauf durch die Düse entlang des Schnittverlaufs II-II in Fig. 1 gemäß eines zweiten Ausführungsbeispiels der Erfindung;
- Fig. 3
- das Einspritzmuster einer herkömmlichen Mehrlochdüse in Draufsicht;
- Fig. 4
- das Einspritzmuster eines Ausführungsbeispiels der erfindungsgemäßen Einspritzdüse in Draufsicht;
- Fig. 5
- die Darstellung der Einspritzrate über der Zeit im Vergleich zu herkömmlichen Einspritzraten.
Claims (5)
- Dieselmotor mit direkter Kraftstoffeinspritzung in eine mit Drall versetzte Verbrennungsluft im Brennraum (2), dem eine Einspritzdüse (4) zugeordnet ist, welche als Lochdüse ausgebildet ist und auf einer Düsenumfangslinie verteilt mehrere Mündungen von Einspritzöffnungen (8, 9; 15, 16) aufweist, wobei die Einspritzöffnungen (8, 9; 15, 16) jeweils paarweise gleichmäßig über die Düsenumfangslinie verteilt angeordnet sind, dadurch gekennzeichnet, daß eine abwechselnde Anordnung von großen und kleinen Einspritzöffnungen (8, 9; 15,16) vorgesehen ist, wobei die Durchmesser der Einspritzöffnungen (8, 9; 15, 16) so aufeinander abgestimmt sind, daß sich die Einspritzstrahlen aus den großen (8, 15) und kleinen (9, 16) Einspritzöffnungen im verwehten Zustand zu einem flächenmäßig ergänzenden Einspritzmuster komplettieren, ohne daß sie sich gegenseitig überlappen.
- Dieselmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Einspritzöffnungen als Einspritzbohrungen (8, 9, 15, 16) ausgebildet sind und die Mittellinien (10, 11; 17, 18) der großen Einspritzbohrungen (8; 15) und der kleinen Einspritzbohrungen (9; 16) auf einer gemeinsamen Kegelmantelfläche (6) liegen.
- Dieselmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Einspritzöffnungen als Einspritzbohrungen (8, 9; 15, 16) ausgebildet sind und die Mittellinien (10; 17) der großen Einspritzbohrungen (8; 15) auf einer ersten Kegelmantelfläche (6) und die Mittellinien (11; 18) der kleinen Einspritzbohrungen (16) auf einer zweiten Kegelmantelfläche (7) liegen, wobei der Öffnungswinkel (α1) der ersten Kegelmantelfläche (6) größer ist als der Öffnungswinkel (α2) der zweiten Kegelmantelfläche (7).
- Dieselmotor nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Mittellinien der kleinen Einspritzbohrungen (9) jeweils im halben Umfangswinkelabstand (12) des Umfangswinkelabstandes (13) der Mittellinien der benachbarten großen Einspritzbohrungen (8) angeordnet sind.
- Dieselmotor nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Umfangswinkelabstand (19) der Mittellinie der kleinen Einspritzbohrungen (16) von der Mittellinie der großen Einspritzbohrungen (15) kleiner ist, als der halbe Umfangswinkelabstand (20) der Mittellinien der benachbarten großen Einspritzbohrungen (15), und daß in Draufsicht in Drallrichtung gesehen jeweils die kleine Einspritzbohrung (16) benachbart vor der großen Einspritzbohrung (15) liegt, so daß jeweils der Einspritzstrahl (23) aus der kleinen Einspritzbohrung (16) im Windschatten des Einspritzstrahl (22) aus der großen Einspritzbohrung (16) abgelenkt wird, ohne daß sich die Einspritzstrahlen (22, 23) überlappen.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4344026A DE4344026C2 (de) | 1993-12-23 | 1993-12-23 | Einspritzdüse |
DE4344026 | 1993-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0661447A1 EP0661447A1 (de) | 1995-07-05 |
EP0661447B1 true EP0661447B1 (de) | 2000-10-18 |
Family
ID=6505891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94120612A Expired - Lifetime EP0661447B1 (de) | 1993-12-23 | 1994-12-23 | Dieselmotor mit direkter Kraftstoffeinspritzung |
Country Status (4)
Country | Link |
---|---|
US (1) | US5667145A (de) |
EP (1) | EP0661447B1 (de) |
JP (1) | JPH07208303A (de) |
DE (1) | DE4344026C2 (de) |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5608057A (en) * | 1994-08-31 | 1997-03-04 | Shin-Etsu Vinyl Acetate Co., Ltd. | N-(alpha-acyloxyethyl) compound and method for the preparation thereof |
TW325471B (en) * | 1994-08-31 | 1998-01-21 | Shinetsu Sakusan Vinyl Kk | Method for the preparation of an n-vinyl compound |
JP3473884B2 (ja) * | 1996-07-29 | 2003-12-08 | 三菱電機株式会社 | 燃料噴射弁 |
JPH10288131A (ja) * | 1997-04-11 | 1998-10-27 | Yanmar Diesel Engine Co Ltd | ディーゼル機関の噴射ノズル |
FR2769342B1 (fr) * | 1997-10-07 | 1999-11-26 | Renault | Injecteur pour moteur diesel a injection directe |
US6533954B2 (en) * | 2000-02-28 | 2003-03-18 | Parker-Hannifin Corporation | Integrated fluid injection air mixing system |
US6799733B1 (en) * | 2000-06-28 | 2004-10-05 | Siemens Automotive Corporation | Fuel injector having a modified seat for enhanced compressed natural gas jet mixing |
DE10122350B4 (de) * | 2001-05-09 | 2006-09-07 | Robert Bosch Gmbh | Brennstoffeinspritzsystem |
JP2003214297A (ja) * | 2002-01-24 | 2003-07-30 | Yanmar Co Ltd | ディーゼル機関の燃料噴射弁 |
DE102004008312A1 (de) * | 2004-02-20 | 2005-11-17 | Wankel Super Tec Gmbh | Kreiskolbenbrennkraftmaschine, ausgelegt für Dieselkraftstoff |
FR2876750B1 (fr) * | 2004-10-19 | 2010-09-17 | Renault Sas | Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse |
FR2877056A1 (fr) * | 2004-10-21 | 2006-04-28 | Renault Sas | Injecteur de carburant pour moteur a combustion interne comportant des trous d'injection de permeabilite differente |
DE102005059265A1 (de) * | 2005-12-12 | 2007-06-14 | Siemens Ag | Einspritzdüse |
US8011600B2 (en) * | 2006-12-19 | 2011-09-06 | The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency | Fuel injector nozzle |
EP2112348B1 (de) | 2008-04-23 | 2012-02-08 | Honda Motor Co., Ltd. | Direkteinspritzmotor |
DE102008045167A1 (de) | 2008-08-30 | 2009-05-07 | Daimler Ag | Kraftstoffinjektor mit länglich ausgebildeten Einspritzöffnungen, die von Erhebungen umgeben sind |
DE102008051365B4 (de) | 2008-10-15 | 2010-07-01 | L'orange Gmbh | Kraftstoff-Einspritzventil für Brennkraftmaschinen |
KR20120058151A (ko) * | 2010-11-29 | 2012-06-07 | 현대자동차주식회사 | 차량용 인젝터 |
US9546633B2 (en) * | 2012-03-30 | 2017-01-17 | Electro-Motive Diesel, Inc. | Nozzle for skewed fuel injection |
JP6154362B2 (ja) * | 2014-10-20 | 2017-06-28 | 株式会社Soken | 燃料噴射ノズル |
JP2019065777A (ja) * | 2017-10-02 | 2019-04-25 | いすゞ自動車株式会社 | 内燃機関の燃料噴射ノズル及び内燃機関 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH489708A (de) * | 1968-04-11 | 1970-04-30 | Sulzer Ag | Brennstoffdüse eines Brennstoffeinspritzventiles für eine Kolbenbrennkraftmaschine |
JPS5037921A (de) * | 1973-07-17 | 1975-04-09 | ||
CH665453A5 (de) * | 1985-01-11 | 1988-05-13 | Sulzer Ag | Zylinderdeckel fuer eine kolbenbrennkraftmaschine. |
ATA129885A (de) * | 1985-05-02 | 1987-02-15 | Steyr Daimler Puch Ag | Luftverdichtende hubkolben-brennkraftmaschine |
DE8521912U1 (de) * | 1985-07-30 | 1987-01-22 | Audi AG, 8070 Ingolstadt | Mehrloch-Einspritzdüse für eine Diesel-Brennkraftmaschine |
ATE73207T1 (de) * | 1986-05-22 | 1992-03-15 | Osamu Matsumura | Einspritzvorrichtung fuer kraftstoff. |
JPH0311152A (ja) * | 1989-06-09 | 1991-01-18 | Mitsubishi Heavy Ind Ltd | 燃料弁 |
JP2705339B2 (ja) * | 1991-02-26 | 1998-01-28 | 日産自動車株式会社 | 燃料噴射ノズル |
-
1993
- 1993-12-23 DE DE4344026A patent/DE4344026C2/de not_active Expired - Fee Related
-
1994
- 1994-12-22 JP JP6320603A patent/JPH07208303A/ja active Pending
- 1994-12-22 US US08/361,501 patent/US5667145A/en not_active Expired - Fee Related
- 1994-12-23 EP EP94120612A patent/EP0661447B1/de not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH07208303A (ja) | 1995-08-08 |
DE4344026A1 (de) | 1995-06-29 |
EP0661447A1 (de) | 1995-07-05 |
US5667145A (en) | 1997-09-16 |
DE4344026C2 (de) | 1997-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0661447B1 (de) | Dieselmotor mit direkter Kraftstoffeinspritzung | |
DE3808396C2 (de) | Kraftstoffeinspritzventil | |
DE10303859B4 (de) | Düsenbaugruppe zur Einspritzung und Verwirbelung von Kraftstoff | |
DE68904835T2 (de) | Kraftstoffeinspritzventil für Brennkraftmaschinen. | |
DE60115841T2 (de) | Direkteingespritzte brennkraftmaschine | |
DE19827219A1 (de) | Kraftstoffeinspritzventil für einen Verbrennungsmotor | |
DE3432663A1 (de) | Intermittierendes drall-einspritzventil | |
DE69214605T2 (de) | Brennkraftmaschine mit verdichtungszündung und direkter einspritzung | |
DE2815672A1 (de) | Brennstoffeinspritzvorrichtung | |
DE2909419A1 (de) | Brennkammer fuer brennkraftmaschinen mit direkter einspritzung | |
EP0807213B1 (de) | Strömungsleitkörper für eine gasturbinen-brennkammer | |
DE2850879A1 (de) | Mehrloch-einspritzduese fuer luftverdichtende brennkraftmaschinen | |
DE3718083A1 (de) | Brennraum an einer kolben-brennkraftmaschine | |
DE10020148A1 (de) | Kraftstoffeinspritzdüse | |
EP0207049B1 (de) | Luftverdichtende Hubkolben-Brennkraftmaschine | |
DE102007000731A1 (de) | Kraftstoffeinspritzdüse | |
DE3920315A1 (de) | Kraftstoffeinspritzduese | |
DE3943816C2 (de) | Otto-Brennkraftmaschine mit direkter Kraftstoffeinspritzung | |
DE10261181A1 (de) | Brennkraftmaschine mit Selbstzündung | |
DE972387C (de) | Kraftstoffeinspritzduese mit Drallwirkung | |
DE4136851A1 (de) | Dieselmotor kleinerer leistung | |
DE4205744C2 (de) | Brennkraftmaschinen-Brennstoffeinspritzdüse | |
DE1083084B (de) | Luftverdichtende Brennkraftmaschine mit Selbstzuendung | |
DE2840367A1 (de) | Luftverdichtende brennkraftmaschine mit indirekter einspritzung | |
DE942950C (de) | Selbstzuendende, luftverdichtende Brennkraftmaschine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941223 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): FR GB IT |
|
17Q | First examination report despatched |
Effective date: 19960221 |
|
RTI1 | Title (correction) |
Free format text: DIESEL ENGINE WITH DIRECT FUEL INJECTION |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): FR GB IT |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20001115 |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ROBERT BOSCH GMBH Effective date: 20010703 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PLCK | Communication despatched that opposition was rejected |
Free format text: ORIGINAL CODE: EPIDOSNREJ1 |
|
PLBN | Opposition rejected |
Free format text: ORIGINAL CODE: 0009273 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: OPPOSITION REJECTED |
|
27O | Opposition rejected |
Effective date: 20041026 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20071222 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20071218 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20071217 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20081223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20081223 |