[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0644390B1 - Gas compression process and assembly - Google Patents

Gas compression process and assembly Download PDF

Info

Publication number
EP0644390B1
EP0644390B1 EP94402025A EP94402025A EP0644390B1 EP 0644390 B1 EP0644390 B1 EP 0644390B1 EP 94402025 A EP94402025 A EP 94402025A EP 94402025 A EP94402025 A EP 94402025A EP 0644390 B1 EP0644390 B1 EP 0644390B1
Authority
EP
European Patent Office
Prior art keywords
water
air
make
heat exchange
installation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402025A
Other languages
German (de)
French (fr)
Other versions
EP0644390A1 (en
Inventor
Alain Guillard
Bernard Saulnier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9451074&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0644390(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP0644390A1 publication Critical patent/EP0644390A1/en
Application granted granted Critical
Publication of EP0644390B1 publication Critical patent/EP0644390B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04157Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/30Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
    • F25J2205/34Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/04Compressor cooling arrangement, e.g. inter- or after-stage cooling or condensate removal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/90Cooling towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/912External refrigeration system

Definitions

  • the present invention relates to a method of compressing a gas, of the type in which a water-cooling appliance is supplied with make-up air with cooling water from a gas-compression appliance . It applies in particular to the various compression devices that comprise air distillation installations.
  • each intermediate stage comprises an intermediate heat exchanger, called “inter-stage refrigerant”, and the last stage comprises a heat exchanger known as “final refrigerant”.
  • inter-stage refrigerant an intermediate heat exchanger
  • final refrigerant a heat exchanger known as "final refrigerant”.
  • this appliance Due to the evaporation of part of the water in the refrigeration appliance and the need to carry out deconcentration purges of the circuit, this appliance is supplied with a make-up water flow, which comes from usually from a water table.
  • the water treated by the refrigeration unit is at a temperature that varies with the seasons, depending on the temperature of the atmospheric air. At least in the hot season, it generally does not allow the temperature of the air coming from the top stage of the compressor to be lowered below +25 to + 30 ° C.
  • a refrigeration unit or other auxiliary cooling device is mounted between the final refrigerant and the adsorption device, in order to lower the temperature. compressed air, typically below + 15 ° C.
  • Air distillation installations generally include other compression devices, also cooled by water from the aforementioned circuit: an air blower mounted downstream of the main compressor, generally coupled to an expansion turbine of air, and / or a cycle nitrogen compressor, These compression devices generally discharge into cryogenic cooling exchangers, and it would be advantageous to precool further the gas they discharge, for example to increase the production of liquid.
  • the object of the invention is to make it possible to lower the temperature of the compressed gas without having to use a refrigeration unit or other auxiliary device, and this in a particularly economical manner.
  • the subject of the invention is a method of compressing a gas, of the aforementioned type, characterized in that, at least when the make-up water is cooler than the water treated by the refrigeration, the make-up water is put in heat exchange relation with the gas discharged by the last stage of the compression apparatus, then the make-up water is sent into the refrigeration apparatus.
  • the invention also relates to a gas compression assembly intended for the implementation of such a method.
  • This assembly of the type comprising a compression apparatus associated with a water cooling circuit comprising an air refrigeration apparatus for return water, and a supply line for the water refrigeration apparatus make-up, is characterized in that the make-up water supply line passes through a heat exchanger mounted on the discharge line of the last stage of the compression appliance, before reaching the refrigeration appliance.
  • the make-up water supply line comprises a selective bypass at the terminals of said heat exchanger, and means are provided for selectively supplying this exchanger with water processed by the refrigeration unit.
  • FIG. 1 shows the main air compressor 1 of an air distillation installation, which may also be of a conventional type, for example with a double distillation column.
  • Compressor 1 has three stages 2 to 4 and is associated with four indirect and counter-current type heat exchangers.
  • a water cooling circuit associated with the compressor 1 comprises: a pipe 9 for the supply of chilled water, equipped with a circulation pump 10 and from which three branches 11 to 13 start, which lead respectively to the cold end of the exchangers 5 to 7; a pipe 14 for returning hot water, to which three pipes 15 to 17 terminate respectively starting from the hot end of the exchangers 5 to 7; and a cooling tower 18 supplied at the head by line 14 and supplying at its base line 9.
  • Tower 18 has at its base an atmospheric air inlet 19 and at its top an outlet 20 for heated and humidified air. It also comprises at its base a purge line 21 provided with a valve 22, and it is equipped with a member 23 for ascending circulation of the refrigerant air.
  • a supply water supply pipe 24 connected, via a pump or a water tower (not shown), to a groundwater table.
  • This pipe first passes through the exchanger 8, from its cold end to its hot end, then is connected to the tower 18. It further comprises a by-pass 25, provided with a valve 26, at the terminals of the exchanger 8.
  • the pipe 9, after its diversion 13, is extended by a section 27 fitted with a valve 28 and ending at a point 29 of the pipe 24 near the cold end of the exchanger 8.
  • Another valve 30 is provided in line 24 between bypass 25 and point 29.
  • make-up water drawn from a groundwater table is all year round at a relatively stable temperature, for example between +5 and + 15 ° C.
  • a relatively stable temperature for example between +5 and + 15 ° C.
  • the atmospheric air may be cold enough for the water treated in 18 to be cooled below + 15 ° C, and more precisely to a temperature at least as low as that of the water d 'extra.
  • the valve 30 is closed and the valves 26 and 28 are opened.
  • the make-up water then directly feeds the tower 18, and it is the circulation water coming from the latter that feeds the exchanger 8 .
  • FIG. 2 differs from that of FIG. 1 only by the combination of the exchangers 7 and 8 in a single exchanger 7A, supplied by the pipe 24.
  • the compressed air at 4 is directly cooled by the make-up water, before this is sent to the tower 18.
  • the air leaving the exchanger 7A is then directly sent to the apparatus 31 for purification by adsorption, as previously.
  • the bypass 25 makes it possible, as explained above, to send the make-up water directly to the tower 18 and to cool the exchanger 7A by means of the water circulating in the pipe. 9.
  • the variant of the Figure 2 requires a relatively large flow of make-up water to cool the exchanger 7A. If this flow is in excess of the needs of tower 18, we can either increase the purge flow at 21, or send to the sewer, or otherwise evacuate from the installation, the excess make-up water in upstream of tower 18, as shown in dashed line at 32. This remark is also valid for the variant of Figure 1.
  • the cooling of a compressed gas by the make-up water of an air cooling tower in one or the other form of implementation described above, can also be applied to the others. compressors for air distillation installations. In fact, in the case of an air blower or a nitrogen compressor of the refrigeration cycle, this cooling mode makes it possible economically to lower the temperature of the compressed gas substantially before it enters the line. the following cryogenic heat exchange. This allows for example to increase the production of liquid.
  • the inlet temperature of the compressed gas is thus regulated in the heat exchange line which follows. This applies in particular to the case where, in Figure 1, there would be provided, in addition to the exchanger 8 or another pre-cooling device mounted in place of this exchanger, a water-cooled heat exchanger d 'backup, mounted between the outlet of the cleaning device 31 and the hot end of the main heat exchange line of the air distillation installation.
  • Tower 18 can be specifically associated with the compressors to be cooled, or it can be used at the same time to cool cooling water from other devices on the site, for example an arc furnace supplied with oxygen by the installation air distillation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

La présente invention est relative à un procédé de compression d'un gaz, du type dans lequel on alimente en eau d'appoint un appareil de réfrigération à l'air de l'eau de refroidissement d'un appareil de compression d'un gaz. Elle s'applique en particulier aux divers appareils de compression que comportent les installations de distillation d'air.The present invention relates to a method of compressing a gas, of the type in which a water-cooling appliance is supplied with make-up air with cooling water from a gas-compression appliance . It applies in particular to the various compression devices that comprise air distillation installations.

Dans les installations de distillation d'air, l'air atmosphérique est comprimé vers 6 bars absolus par un compresseur à plusieurs étages. Chaque étage intermédiaire comporte un échangeur de chaleur intermédiaire, dit "réfrigérant inter-étages", et le dernier étage comporte un échangeur de chaleur dit "réfrigérant final". Ces échangeurs sont généralement alimentés par de l'eau qui provient de l'appareil de réfrigération à l'air, lequel traite l'eau de retour des échangeurs.In air distillation systems, atmospheric air is compressed to 6 bar absolute by a multistage compressor. Each intermediate stage comprises an intermediate heat exchanger, called "inter-stage refrigerant", and the last stage comprises a heat exchanger known as "final refrigerant". These exchangers are generally supplied with water which comes from the air refrigeration unit, which treats the water returning from the exchangers.

Du fait de l'évaporation d'une partie de l'eau dans l'appareil de réfrigération et de la nécessité d'effectuer des purges de déconcentration du circuit, on alimente cet appareil avec un débit d'eau d'appoint, qui provient généralement d'une nappe phréatique.Due to the evaporation of part of the water in the refrigeration appliance and the need to carry out deconcentration purges of the circuit, this appliance is supplied with a make-up water flow, which comes from usually from a water table.

L'eau traitée par l'appareil de réfrigération se trouve à une température variable suivant les saisons, fonction de la température de l'air atmosphérique. En saison chaude au moins, elle ne permet généralement pas d'abaisser la température de l'air issu du dernier étage du compresseur au-dessous de +25 à +30°C. Pour optimiser l'appareil d'épuration par adsorption en réduisant la quantité d'absorbant nécessaire, on monte entre le réfrigérant final et l'appareil d'adsorption un groupe frigorifique, ou un autre appareil auxiliaire de refroidissement, afin d'abaisser la température de l'air comprimé, typiquement au-dessous de +15°C.The water treated by the refrigeration unit is at a temperature that varies with the seasons, depending on the temperature of the atmospheric air. At least in the hot season, it generally does not allow the temperature of the air coming from the top stage of the compressor to be lowered below +25 to + 30 ° C. To optimize the adsorption purification device by reducing the amount of absorbent required, a refrigeration unit or other auxiliary cooling device is mounted between the final refrigerant and the adsorption device, in order to lower the temperature. compressed air, typically below + 15 ° C.

Les installations de distillation d'air comportent généralement d'autres appareils de compression, eux aussi refroidis par de l'eau provenant du circuit précité : un surpresseur d'air monté en aval du compresseur principal, généralement couplé à une turbine de détente d'air, et/ou un compresseur d'azote de cycle, Ces appareils de compression refoulent généralement dans des échangeurs de refroidissement cryogénique, et il serait intéressant de prérefroidir de manière plus poussée le gaz qu'ils refoulent, par exemple pour augmenter la production de liquide.Air distillation installations generally include other compression devices, also cooled by water from the aforementioned circuit: an air blower mounted downstream of the main compressor, generally coupled to an expansion turbine of air, and / or a cycle nitrogen compressor, These compression devices generally discharge into cryogenic cooling exchangers, and it would be advantageous to precool further the gas they discharge, for example to increase the production of liquid.

Or, dans ces appareils de compression comme pour le compresseur d'air principal, l'abaissement de la température du gaz comprimé, en saison chaude au moins, au-dessous de 25°C environ, nécessite l'utilisation d'un groupe frigorifique ou d'un autre appareil auxiliaire, dont le coût d'acquisition et de maintenance n'est pas négligeable.However, in these compression devices as for the main air compressor, lowering the temperature of the compressed gas, in hot season at least, below about 25 ° C, requires the use of a refrigeration unit or another auxiliary device, the cost of acquisition and maintenance of which is not negligible.

L'invention a pour but de permettre d'abaisser la température du gaz comprimé sans avoir recours à un groupe frigorifique ou autre appareil auxiliaire, et ce de manière particulièrement économique.The object of the invention is to make it possible to lower the temperature of the compressed gas without having to use a refrigeration unit or other auxiliary device, and this in a particularly economical manner.

A cet effet, l'invention a pour objet un procédé de compression d'un gaz, du type précité, caractérisé en ce que, au moins lorsque l'eau d'appoint est plus froide que l'eau traitée par l'appareil de réfrigération, on met l'eau d'appoint en relation d'échange thermique avec le gaz refoulé par le dernier étage de l'appareil de compression, puis on envoie l'eau d'appoint dans l'appareil de réfrigération.To this end, the subject of the invention is a method of compressing a gas, of the aforementioned type, characterized in that, at least when the make-up water is cooler than the water treated by the refrigeration, the make-up water is put in heat exchange relation with the gas discharged by the last stage of the compression apparatus, then the make-up water is sent into the refrigeration apparatus.

Ce procédé peut comporter une ou plusieurs des caractéristiques suivantes :

  • on met le gaz refoulé par le dernier étage de l'appareil de compression en relation d'échange thermique d'abord avec de l'eau traitée par l'appareil de réfrigération, puis avec l'eau d'appoint;
  • on met le gaz refoulé par le dernier étage de l'appareil de compression directement en relation d'échange thermique avec l'eau d'appoint;
  • l'appareil de compression est le compresseur d'air principal d'une installation de distillation d'air, l'air refroidi par l'échange thermique avec l'eau d'appoint étant directement envoyé à un appareil d'épuration d'air par adsorption ou à la ligne d'échange thermique principale de cette installation;
  • l'appareil de compression est un surpresseur d'air d'une installation de distillation d'air, l'air refroidi par l'échange thermique avec l'eau d'appoint étant envoyé au bout chaud de la ligne d'échange thermique principale de cette installation;
  • l'appareil de compression est un compresseur d'azote de cycle d'une installation de distillation d'air, l'azote refroidi par l'échange thermique avec l'eau d'appoint étant envoyé au bout chaud d'un échangeur thermique de liquéfaction d'azote de cette installation;
  • on utilise, pour ledit échange thermique, un débit d'eau d'appoint excédentaire par rapport aux besoins de l'appareil de réfrigération, et on compense l'excès d'eau d'appoint par purge de cet appareil et/ou par évacuation d'eau d'appoint en amont de cet appareil.
This process can include one or more of the following characteristics:
  • the gas discharged by the last stage of the compression apparatus is put in heat exchange relation first with water treated by the apparatus refrigeration, then with make-up water;
  • the gas discharged from the last stage of the compression apparatus is placed directly in heat exchange relation with the make-up water;
  • the compression device is the main air compressor of an air distillation installation, the air cooled by the heat exchange with the make-up water being directly sent to an air cleaning device by adsorption or at the main heat exchange line of this installation;
  • the compression device is an air booster from an air distillation installation, the air cooled by heat exchange with make-up water being sent to the hot end of the main heat exchange line of this facility;
  • the compression device is a cycle nitrogen compressor of an air distillation installation, the nitrogen cooled by the heat exchange with the make-up water being sent to the hot end of a heat exchanger of nitrogen liquefaction from this facility;
  • a surplus make-up water flow is used for said heat exchange compared to the needs of the refrigeration appliance, and the excess make-up water is compensated for by purging this appliance and / or by evacuation make-up water upstream of this appliance.

L'invention a également pour objet un ensemble de compression d'un gaz destiné à la mise en oeuvre d'un tel procédé. Cet ensemble, du type comprenant un appareil de compression associé à un circuit de refroidissement à l'eau comprenant un appareil de réfrigération à l'air de l'eau de retour, et une conduite d'alimentation de l'appareil de réfrigération en eau d'appoint, est caractérisé en ce que la conduite d'alimentation en eau d'appoint passe par un échangeur de chaleur monté sur la conduite de refoulement du dernier étage de l'appareil de compression, avant d'atteindre l'appareil de réfrigération.The invention also relates to a gas compression assembly intended for the implementation of such a method. This assembly, of the type comprising a compression apparatus associated with a water cooling circuit comprising an air refrigeration apparatus for return water, and a supply line for the water refrigeration apparatus make-up, is characterized in that the make-up water supply line passes through a heat exchanger mounted on the discharge line of the last stage of the compression appliance, before reaching the refrigeration appliance.

Dans un mode de réalisation de cet ensemble de compression, la conduite d'alimentation en eau d'appoint comporte un by-pass sélectif aux bornes dudit échangeur de chaleur, et il est prévu des moyens pour alimenter sélectivement cet échangeur avec de l'eau traitée par l'appareil de réfrigération.In one embodiment of this compression assembly, the make-up water supply line comprises a selective bypass at the terminals of said heat exchanger, and means are provided for selectively supplying this exchanger with water processed by the refrigeration unit.

Des exemples de mise en oeuvre de l'invention vont maintenant être décrits en regard du dessin annexé, sur lequel :

  • la Figure 1 représente schématiquement un ensemble de compression d'air conforme à l'invention; et
  • la Figure 2 est une vue analogue d'une variante.
Examples of implementation of the invention will now be described with reference to the attached drawing, in which:
  • Figure 1 schematically shows an air compression assembly according to the invention; and
  • Figure 2 is a similar view of a variant.

On a représenté à la Figure 1 le compresseur principal d'air 1 d'une installation de distillation d'air, qui peut être par ailleurs d'un type classique, par exemple à double colonne de distillation.FIG. 1 shows the main air compressor 1 of an air distillation installation, which may also be of a conventional type, for example with a double distillation column.

Le compresseur 1 comporte trois étages 2 à 4 et est associé à quatre échangeurs de chaleur de type indirect et à contre-courant. Un premier réfrigérant inter-étages 5, un second réfrigérant inter-étages 6, un réfrigérant "final" 7, et un échangeur de chaleur de prérefroidissement 8.Compressor 1 has three stages 2 to 4 and is associated with four indirect and counter-current type heat exchangers. A first inter-stage refrigerant 5, a second inter-stage refrigerant 6, a "final" refrigerant 7, and a precooling heat exchanger 8.

Un circuit de refroidissement à l'eau associé au compresseur 1 comprend : une conduite 9 d'amenée d'eau réfrigérée, équipée d'une pompe de circulation 10 et d'où partent trois dérivations 11 à 13 qui aboutissent respectivement au bout froid des échangeurs 5 à 7; une conduite 14 de retour d'eau chaude, à laquelle aboutissent trois conduites 15 à 17 partant respectivement du bout chaud des échangeurs 5 à 7; et une tour de réfrigération 18 alimentée en tête par la conduite 14 et alimentant à sa base la conduite 9.A water cooling circuit associated with the compressor 1 comprises: a pipe 9 for the supply of chilled water, equipped with a circulation pump 10 and from which three branches 11 to 13 start, which lead respectively to the cold end of the exchangers 5 to 7; a pipe 14 for returning hot water, to which three pipes 15 to 17 terminate respectively starting from the hot end of the exchangers 5 to 7; and a cooling tower 18 supplied at the head by line 14 and supplying at its base line 9.

La tour 18 comporte à sa base une entrée d'air atmosphérique 19 et à son sommet une sortie 20 d'air réchauffé et humidifié. Elle comporte également à sa base une conduite de purge 21 munie d'une vanne 22, et elle est équipée d'un organe 23 de mise en circulation ascendante de l'air réfrigérant.Tower 18 has at its base an atmospheric air inlet 19 and at its top an outlet 20 for heated and humidified air. It also comprises at its base a purge line 21 provided with a valve 22, and it is equipped with a member 23 for ascending circulation of the refrigerant air.

Le circuit décrit ci-dessus est complété par une conduite 24 d'alimentation en eau d'appoint, reliée, via une pompe ou un château d'eau (non représenté), à une nappe phréatique. Cette conduite traverse d'abord l'échangeur 8, de son bout froid à son bout chaud, puis est reliée à la tour 18. Elle comporte de plus un by-pass 25, muni d'une vanne 26, aux bornes de l'échangeur 8. La conduite 9, après sa dérivation 13, se prolonge par un tronçon 27 équipé d'une vanne 28 et aboutissant à un point 29 de la conduite 24 voisin du bout froid de l'échangeur 8. Une autre vanne 30 est prévue dans la conduite 24 entre le by-pass 25 et le point 29.The circuit described above is completed by a supply water supply pipe 24, connected, via a pump or a water tower (not shown), to a groundwater table. This pipe first passes through the exchanger 8, from its cold end to its hot end, then is connected to the tower 18. It further comprises a by-pass 25, provided with a valve 26, at the terminals of the exchanger 8. The pipe 9, after its diversion 13, is extended by a section 27 fitted with a valve 28 and ending at a point 29 of the pipe 24 near the cold end of the exchanger 8. Another valve 30 is provided in line 24 between bypass 25 and point 29.

En saison chaude, l'air atmosphérique, à +25 à +30°C par exemple, ne permet pas à la tour 18 de réfrigérer l'eau, suivant l'hygrométrie de l'air, au-dessous de +25 à +35°C environ. L'air comprimé sort donc de l'échangeur 7 vers +30 à +40°C.In hot season, atmospheric air, at +25 to + 30 ° C for example, does not allow tower 18 to refrigerate the water, depending on the air humidity, below +25 to + 35 ° C approximately. The compressed air therefore leaves the exchanger 7 towards +30 to + 40 ° C.

En revanche, l'eau d'appoint soutirée d'une nappe phréatique est toute l'année à une température relativement stable, par exemple comprise entre +5 et +15°C. En circulant d'abord dans l'échangeur 8, elle abaisse donc la température de l'air comprimé jusqu'à +10 à +20°C, ce qui est favorable pour sa dessication-décarbonation par adsorption et permet, au prix d'un simple échangeur de chaleur 8, d'éviter l'utilisation d'un groupe frigorifique ou autre appareil de prérefroidissement en aval de l'échangeur 7. L'air sortant de l'échangeur 8 est ainsi directement envoyé dans l'appareil 31 d'épuration par adsorption.On the other hand, make-up water drawn from a groundwater table is all year round at a relatively stable temperature, for example between +5 and + 15 ° C. By first circulating in the exchanger 8, it therefore lowers the temperature of the compressed air up to +10 to + 20 ° C, which is favorable for its desiccation-decarbonation by adsorption and allows, at the cost of a simple heat exchanger 8, to avoid the use of a refrigeration unit or other precooling device downstream of the exchanger 7. The air leaving the exchanger 8 is thus directly sent into the device 31 d purification by adsorption.

L'eau d'appoint ressort de l'échangeur 8 vers +15 à +25°C et alimente ensuite la tour 18, pour compenser l'évaporation d'eau dans celle-ci ainsi que le débit de purge soutiré en 21.Make-up water comes out of the exchanger 8 towards +15 at + 25 ° C and then feeds the tower 18, to compensate for the evaporation of water therein as well as the purge flow withdrawn at 21.

Il est à noter que l'élévation de température de l'eau d'appoint, par rapport à une solution classique dans laquelle elle alimenterait directement la tour 18, a une influence négligeable sur les performances de cette tour, car son débit ne représente que quelques % du débit total d'eau réfrigérée.It should be noted that the rise in temperature of the make-up water, compared with a conventional solution in which it would directly supply tower 18, has a negligible influence on the performance of this tower, because its flow rate represents only a few% of the total flow of chilled water.

En saison froide, l'air atmosphérique peut être suffisamment froid pour que l'eau traitée en 18 soit refroidie au-dessous de +15°C, et plus précisément jusqu'à une température au moins aussi basse que celle de l'eau d'appoint. Dans ce cas, on ferme la vanne 30 et on ouvre les vannes 26 et 28. L'eau d'appoint alimente alors directement la tour 18, et c'est l'eau de circulation issue de cette dernière qui alimente l'échangeur 8.In the cold season, the atmospheric air may be cold enough for the water treated in 18 to be cooled below + 15 ° C, and more precisely to a temperature at least as low as that of the water d 'extra. In this case, the valve 30 is closed and the valves 26 and 28 are opened. The make-up water then directly feeds the tower 18, and it is the circulation water coming from the latter that feeds the exchanger 8 .

En variante, on pourrait d'ailleurs se passer du tronçon de conduite 27, puisque, dans un tel cas, l'échangeur 7 fonctionne dans les mêmes conditions que l'échangeur 8.As a variant, one could also do without the pipe section 27, since, in such a case, the exchanger 7 operates under the same conditions as the exchanger 8.

La variante de la Figure 2 ne diffère de celle de la Figure 1 que par la réunion des échangeurs 7 et 8 en un seul échangeur 7A, alimenté par la conduite 24. Ainsi, en période chaude, l'air comprimé en 4 est directement refroidi par l'eau d'appoint, avant que celle-ci soit envoyée à la tour 18. L'air sortant de l'échangeur 7A est ensuite directement envoyé à l'appareil 31 d'épuration par adsorption, comme précédemment. Bien entendu, en période froide, le by-pass 25 permet, comme expliqué plus haut, d'envoyer directement l'eau d'appoint à la tour 18 et de refroidir l'échangeur 7A au moyen de l'eau circulant dans la conduite 9.The variant of FIG. 2 differs from that of FIG. 1 only by the combination of the exchangers 7 and 8 in a single exchanger 7A, supplied by the pipe 24. Thus, in hot periods, the compressed air at 4 is directly cooled by the make-up water, before this is sent to the tower 18. The air leaving the exchanger 7A is then directly sent to the apparatus 31 for purification by adsorption, as previously. Of course, in cold periods, the bypass 25 makes it possible, as explained above, to send the make-up water directly to the tower 18 and to cool the exchanger 7A by means of the water circulating in the pipe. 9.

Comme on le comprend, la variante de la Figure 2 nécessite un débit relativement important d'eau d'appoint pour refroidir l'échangeur 7A. Si ce débit est excédentaire par rapport aux besoins de la tour 18, on peut soit augmenter le débit de purge en 21, soit envoyer à l'égout, ou évacuer autrement de l'installation, l'excédant d'eau d'appoint en amont de la tour 18, comme illustré en trait mixte en 32. Cette remarque est également valable pour la variante de la Figure 1.As can be understood, the variant of the Figure 2 requires a relatively large flow of make-up water to cool the exchanger 7A. If this flow is in excess of the needs of tower 18, we can either increase the purge flow at 21, or send to the sewer, or otherwise evacuate from the installation, the excess make-up water in upstream of tower 18, as shown in dashed line at 32. This remark is also valid for the variant of Figure 1.

Le refroidissement d'un gaz comprimé par l'eau d'appoint d'une tour de réfrigération à l'air, sous l'une ou l'autre forme de mise en oeuvre décrite ci-dessus, peut s'appliquer également aux autres appareils de compression des installations de distillation d'air. En effet, dans le cas d'un surpresseur d'air ou d'un compresseur d'azote de cycle frigorifique, ce mode de refroidissement permet de façon économique d'abaisser de façon substantielle la température du gaz comprimé avant son entrée dans la ligne d'échange thermique cryogénique qui suit. Ceci permet par exemple d'augmenter la production de liquide.The cooling of a compressed gas by the make-up water of an air cooling tower, in one or the other form of implementation described above, can also be applied to the others. compressors for air distillation installations. In fact, in the case of an air blower or a nitrogen compressor of the refrigeration cycle, this cooling mode makes it possible economically to lower the temperature of the compressed gas substantially before it enters the line. the following cryogenic heat exchange. This allows for example to increase the production of liquid.

De plus, dans tous les cas, on régularise ainsi la température d'entrée du gaz comprimé dans la ligne d'échange thermique qui suit. Ceci s'applique notamment au cas où, sur la Figure 1, on prévoirait, en supplément de l'échangeur 8 ou d'un autre appareil de préréfrigération monté à la place de cet échangeur, un échangeur de chaleur refroidi par l'eau d'appoint, monté entre la sortie de l'appareil d'épuration 31 et le bout chaud de la ligne d'échange thermique principale de l'installation de distillation d'air.In addition, in all cases, the inlet temperature of the compressed gas is thus regulated in the heat exchange line which follows. This applies in particular to the case where, in Figure 1, there would be provided, in addition to the exchanger 8 or another pre-cooling device mounted in place of this exchanger, a water-cooled heat exchanger d 'backup, mounted between the outlet of the cleaning device 31 and the hot end of the main heat exchange line of the air distillation installation.

La tour 18 peut être spécifiquement associée aux compresseurs à refroidir, ou bien elle peut servir en même temps à réfrigérer de l'eau de refroidissement d'autres appareils du site, par exemple d'un four à arc alimenté en oxygène par l'installation de distillation d'air.Tower 18 can be specifically associated with the compressors to be cooled, or it can be used at the same time to cool cooling water from other devices on the site, for example an arc furnace supplied with oxygen by the installation air distillation.

Claims (14)

  1. Process for compressing a gas, of the type in which make-up water is supplied to an air refrigeration apparatus (18), for the cooling water of a gas compression apparatus (1), characterized in that, at least when the make-up water is colder than the water treated by the refrigeration apparatus (18), the make-up water is put into a heat exchange relationship (in 8; 7A) with gas delivered by the final stage (4) of the compression apparatus (1), and the make-up water is then conveyed to the refrigeration apparatus (18).
  2. Process according to claim 1, characterized in that the gas delivered by the final stage (4) of the compression apparatus (1) is put into a heat exchange relationship first of all (in 7) with water treated by the refrigeration apparatus (18) and then (in 8) with the make-up water.
  3. Process according to claim 1, characterized in that the gas delivered by the final stage (4) of the compression apparatus (1) is put directly into a heat exchange relationship (in 7A) with the make-up water.
  4. Process according to any of claims 1 to 3, characterized in that the compression apparatus (1) is the main air compressor of an air distillation installation, the air cooled by heat exchange with the make-up water (in 8; 7A) being directly conveyed to an apparatus (31) for purifying air by adsorption or to the main heat exchange line of this installation.
  5. Process according to any of claims 1 to 3, characterized in that the compression apparatus is an air pressure booster of a distillation installation, the air cooled by heat exchange with the make-up water being conveyed to the warm end of the main heat exchange line of this installation.
  6. Process according to any of claims 1 to 3, characterized in that the compression apparatus is a nitrogen compressor of the cycle of an air distillation installation, nitrogen cooled by heat exchange with the make-up water being conveyed to the warm end of a nitrogen liquefaction heat exchanger of this installation.
  7. Process according to any of claims 1 to 6, characterized in that for the said heat exchange (in 8, 7A) a flow of make-up water is used in excess of the requirements of the refrigeration apparatus (18), and the excess make-up water is compensated for by purging (in 21) from this apparatus and/or by evacuating make-up water (in 32) upstream from this apparatus.
  8. Assembly for compressing a gas, of the type comprising a compression apparatus (1) associated with a water cooling circuit, comprising an apparatus (18) for cooling the return water with air, and a pipe (24) supplying the refrigeration apparatus with make-up water, characterized in that the pipe (24) supplying the make-up water passes through a heat exchanger (8; 7A) mounted on the supply pipe of the final stage of the compression apparatus (1), before reaching the refrigeration apparatus (18).
  9. Assembly according to claim 8, characterized in that it comprises a pre-heat exchanger (7) supplied by water treated by the refrigeration apparatus (18), mounted on the said supply pipe between the compression apparatus (1) and the said heat exchanger (8).
  10. Assembly according to claim 8, characterized in that the said heat exchanger (7A) is mounted directly on the delivery line of the final stage (4) of the compression apparatus (1).
  11. Assembly according to any of claims 8 to 10, characterized in that the pipe (24) supplying the make-up water comprises a selective by-pass (25) at the terminals of the said heat exchanger (8; 7A), and in that means (27, 28) are provided for selectively supplying this exchanger with water treated by the refrigeration apparatus (18).
  12. Assembly according to any of claims 8 to 11, characterized in that the compression apparatus (1) is the main air compressor of an air distillation installation, the said heat exchanger (8; 7A) being positioned between this compressor and an apparatus (31) for purifying air from the installation by absorption or between this apparatus and the warm end of the main heat exchange line of the installation.
  13. Assembly according to any of claims 8 to 11, characterized in that the compression apparatus is an air pressure booster of an air distillation installation, the said heat exchanger being positioned between this air pressure booster and the warm end of the main heat exchange line of the air distillation installation.
  14. Assembly according to any of claims 8 to 11, characterized in that the compression apparatus is a nitrogen compressor of the cycle of an air distillation installation, the said heat exchanger being positioned between this nitrogen compressor and the warm end of a nitrogen liquefaction heat exchanger of this air distillation installation.
EP94402025A 1993-09-21 1994-09-12 Gas compression process and assembly Expired - Lifetime EP0644390B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9311232A FR2710370B1 (en) 1993-09-21 1993-09-21 Method and assembly for compressing a gas.
FR9311232 1993-09-21

Publications (2)

Publication Number Publication Date
EP0644390A1 EP0644390A1 (en) 1995-03-22
EP0644390B1 true EP0644390B1 (en) 1996-10-23

Family

ID=9451074

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402025A Expired - Lifetime EP0644390B1 (en) 1993-09-21 1994-09-12 Gas compression process and assembly

Country Status (8)

Country Link
US (1) US5481880A (en)
EP (1) EP0644390B1 (en)
JP (1) JPH07167554A (en)
CN (1) CN1104617C (en)
CA (1) CA2132367A1 (en)
DE (1) DE69400794T2 (en)
ES (1) ES2094030T3 (en)
FR (1) FR2710370B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2815549B1 (en) * 2000-10-19 2003-01-03 Air Liquide INSTALLATION AND PROCEDURE FOR DISCHARGING RESIDUAL GASES FROM AIR DISTILLATION OR LIQUEFACTION UNITS
US20030033831A1 (en) * 2001-08-15 2003-02-20 Davies Brian M. System and method of cooling
US6912859B2 (en) * 2002-02-12 2005-07-05 Air Liquide Process And Construction, Inc. Method and apparatus for using a main air compressor to supplement a chill water system
WO2003091162A1 (en) * 2002-04-24 2003-11-06 Praxair Technology, Inc. Integrated energy recovery system
CN1847766A (en) * 2005-02-11 2006-10-18 林德股份公司 Process and apparatus for cooling a gas by direct heat exchange with a liquid refrigerant
BE1018598A3 (en) * 2010-01-25 2011-04-05 Atlas Copco Airpower Nv METHOD FOR RECYCLING ENRGIE.
US20120118004A1 (en) * 2010-11-12 2012-05-17 Exxonmobil Research And Engineering Company Adsorption chilling for compressing and transporting gases
FR2988166B1 (en) * 2012-03-13 2014-04-11 Air Liquide METHOD AND APPARATUS FOR CONDENSING CARBON DIOXIDE RICH CARBON DIOXIDE FLOW RATE
FR2989454A1 (en) * 2012-04-16 2013-10-18 Air Liquide COMPRESSION INSTALLATION OF A WET GASEOUS FLOW
CN103343740B (en) * 2013-05-27 2015-08-12 中国五环工程有限公司 The energy-saving method of carbon-dioxide gas compressor and system thereof
EP3124902A1 (en) * 2015-07-28 2017-02-01 Linde Aktiengesellschaft Air separation facility, operating method and control device
CN105758235B (en) * 2016-02-26 2018-05-08 国网上海市电力公司 A kind of hollow board-like air cooling compressor and its control method
DE102019102387A1 (en) 2019-01-30 2020-07-30 Gardner Denver Deutschland Gmbh Cooling arrangement and method for cooling an at least two-stage compressed air generator

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2333748A (en) * 1941-06-25 1943-11-09 Hercules Powder Co Ltd Treatment of chlorine
US2708831A (en) * 1953-04-09 1955-05-24 Air Reduction Separation of air
NL108862C (en) * 1956-09-25 1900-01-01
US3094133A (en) * 1959-07-22 1963-06-18 Earl E Treanor Chemical feed and blowdown system
US3144316A (en) * 1960-05-31 1964-08-11 Union Carbide Corp Process and apparatus for liquefying low-boiling gases
GB1074550A (en) * 1964-09-04 1967-07-05 English Electric Co Ltd Water storage systems for closed steam turbine condensate cooling systems
US3677019A (en) * 1969-08-01 1972-07-18 Union Carbide Corp Gas liquefaction process and apparatus
US3722226A (en) * 1970-03-25 1973-03-27 Airco Inc Process gas forecooling system
US3851495A (en) * 1971-10-05 1974-12-03 Computer Sciences Corp Method and apparatus for preventing thermal pollution
FR2284848A1 (en) * 1974-09-12 1976-04-09 Cem Comp Electro Mec Cooling tower with upper and lower baths - and vertical heat exchange pipes around base between baths
US4054623A (en) * 1975-09-24 1977-10-18 Michael Ouska Cooling system
DE2550908A1 (en) * 1975-11-13 1977-05-18 Hochtemperatur Reaktorbau Gmbh High temp. reactor power plant with dry cooling tower - with further cooling by exchange with fresh water
US4315404A (en) * 1979-05-25 1982-02-16 Chicago Bridge & Iron Company Cooling system, for power generating plant, using split or partitioned heat exchanger
JPS5918395A (en) * 1982-07-23 1984-01-30 Toshiba Corp Cooling tower
JPS6093298A (en) * 1983-10-27 1985-05-25 Toshiba Corp Cooling equipment
JPS6470635A (en) * 1987-09-09 1989-03-16 Nec Corp Cooling water temperature control device
US5231835A (en) * 1992-06-05 1993-08-03 Praxair Technology, Inc. Liquefier process

Also Published As

Publication number Publication date
FR2710370A1 (en) 1995-03-31
CN1104617C (en) 2003-04-02
DE69400794T2 (en) 1997-02-27
FR2710370B1 (en) 1995-12-08
ES2094030T3 (en) 1997-01-01
US5481880A (en) 1996-01-09
CA2132367A1 (en) 1995-03-22
CN1104724A (en) 1995-07-05
JPH07167554A (en) 1995-07-04
DE69400794D1 (en) 1996-11-28
EP0644390A1 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
EP0644390B1 (en) Gas compression process and assembly
CA1146724A (en) Process and installation for the cryogenic separation of air and production of high pressure oxygen
EP0456575B1 (en) Process and apparatus for purifying, by adsorption, air to be distilled
FR2851330A1 (en) PROCESS AND PLANT FOR THE PRODUCTION IN A GASEOUS AND HIGH PRESSURE FORM OF AT LEAST ONE SELECTED FLUID AMONG OXYGEN, ARGON AND NITROGEN BY CRYOGENIC AIR DISTILLATION
EP0848220B1 (en) Method and plant for supplying an air gas at variable quantities
JP2020521098A (en) Apparatus and process for liquefying gas
EP2185873B1 (en) Method for cryogenic cooling a fluid such as helium for supplying a fluid consumer and corresponding equipment
EP0178207A1 (en) Process and installation for the cryogenic fractionation of gaseous feeds
EP0644996A1 (en) Fluid cooling process and plant, especially for natural gas liquefaction
EP0576314A1 (en) Process and installation for the production of gaseous oxygen under pressure
EP0606027B1 (en) Air distillation process and plant for producing at least a high pressure gaseous product and at least a liquid
EP0618415B1 (en) Process and installation for the production of gaseous oxygen and/or gaseous nitrogen under pressure by distillation of air
EP0718576A1 (en) Process for separating a gaseous mixture by cryogenic distillation
FR2805339A1 (en) PROCESS FOR THE PRODUCTION OF OXYGEN BY CRYOGENIC RECTIFICATION
EP0661505B1 (en) Process and installation for the liquefaction of a gas
EP0654643B1 (en) Process and installation for the distillation of air
FR2723184A1 (en) PROCESS AND PLANT FOR THE PRODUCTION OF GAS OXYGEN UNDER PRESSURE WITH VARIABLE FLOW RATE
FR2690982A1 (en) Impure oxygen@ large amt. prodn. avoiding large dia. low pressure column - by distn. of air using a double distn. column with medium and low pressure columns, avoiding extra distn. column mfr., utilising purificn. device, compressor and turbine
WO2013079856A1 (en) Nitrogen-heating method and device for regenerating an adsorption unit of an air separation unit
EP0914584B1 (en) Method and plant for producing an air gas with a variable flow rate
EP0952415A1 (en) Distillation process and apparatus for variable argon production
EP1219910A1 (en) Process for feeding air to at least one gas turbine unit and at least one air separation unit, and installation for carrying out the process
FR2652884A1 (en) METHOD AND INSTALLATION FOR REFRIGERATION USING A REFRIGERANT MIXTURE.
FR2685460A1 (en) Method and installation for producing gaseous oxygen under pressure by distillation of air
FR2827187A1 (en) Compressor(s) in air distillation unit supplies gas(es) to industrial unit which produces steam and are driven using steam from industrial unit and auxiliary source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960328

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69400794

Country of ref document: DE

Date of ref document: 19961128

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961122

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094030

Country of ref document: ES

Kind code of ref document: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: LINDE AKTIENGESELLSCHAFT

Effective date: 19970723

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19980406

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100923

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20101005

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100921

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100922

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100928

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110912

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120531

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69400794

Country of ref document: DE

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110912

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20130604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110913