EP0644996A1 - Fluid cooling process and plant, especially for natural gas liquefaction - Google Patents
Fluid cooling process and plant, especially for natural gas liquefactionInfo
- Publication number
- EP0644996A1 EP0644996A1 EP94913137A EP94913137A EP0644996A1 EP 0644996 A1 EP0644996 A1 EP 0644996A1 EP 94913137 A EP94913137 A EP 94913137A EP 94913137 A EP94913137 A EP 94913137A EP 0644996 A1 EP0644996 A1 EP 0644996A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- natural gas
- stage
- liquid
- cooling
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 19
- 238000000034 method Methods 0.000 title claims abstract description 19
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 76
- 238000001816 cooling Methods 0.000 title claims description 33
- 239000003345 natural gas Substances 0.000 title claims description 31
- 238000004821 distillation Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 22
- 239000007791 liquid phase Substances 0.000 claims abstract description 11
- 239000002826 coolant Substances 0.000 claims abstract description 7
- 239000007788 liquid Substances 0.000 claims description 39
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 34
- 239000007789 gas Substances 0.000 claims description 33
- 238000009434 installation Methods 0.000 claims description 29
- 230000006835 compression Effects 0.000 claims description 28
- 238000007906 compression Methods 0.000 claims description 28
- 239000003949 liquefied natural gas Substances 0.000 claims description 20
- 239000003507 refrigerant Substances 0.000 claims description 18
- 229910052757 nitrogen Inorganic materials 0.000 claims description 17
- 238000005057 refrigeration Methods 0.000 claims description 11
- 239000012808 vapor phase Substances 0.000 claims description 10
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 4
- 239000000470 constituent Substances 0.000 claims description 2
- 238000009834 vaporization Methods 0.000 claims description 2
- 230000008016 vaporization Effects 0.000 claims description 2
- 239000012071 phase Substances 0.000 abstract description 10
- 238000010992 reflux Methods 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 6
- 229930195733 hydrocarbon Natural products 0.000 description 6
- 150000002430 hydrocarbons Chemical class 0.000 description 6
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 5
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- 239000001294 propane Substances 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- -1 among others Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000110 cooling liquid Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- LWSYSCQGRROTHV-UHFFFAOYSA-N ethane;propane Chemical compound CC.CCC LWSYSCQGRROTHV-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000013526 supercooled liquid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0257—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0212—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/023—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the combustion as fuels, i.e. integration with the fuel gas system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0238—Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0281—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
- F25J1/0283—Gas turbine as the prime mechanical driver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0291—Refrigerant compression by combined gas compression and liquid pumping
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0296—Removal of the heat of compression, e.g. within an inter- or afterstage-cooler against an ambient heat sink
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/74—Refluxing the column with at least a part of the partially condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/78—Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/64—Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/68—Separating water or hydrates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/60—Integration in an installation using hydrocarbons, e.g. for fuel purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/34—Details about subcooling of liquids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S62/00—Refrigeration
- Y10S62/902—Apparatus
- Y10S62/903—Heat exchange structure
Definitions
- the present invention relates to the cooling of fluids, and applies in particular to the liquefaction of natural gas. It relates firstly to a process for cooling a fluid, in particular for liquefying natural gas, of the integral incorporated cascade type, in which a refrigerant mixture composed of constituents of different volatilities is compressed in at least two stages and, after at least each of the intermediate stages of compression, the mixture is partially condensed, at least some of the condensed fractions as well as the high pressure gas fraction being cooled, expanded, brought into heat exchange relationship with the fluid to be cooled and then compressed again .
- the pressures discussed below are absolute pressures.
- the refrigerant mixture consists of a certain number of fluids including, among others, nitrogen, hydrocarbons such as methane, ethylene, ethane, propane, butane, pentane, etc.
- the mixture is compressed, liquefied and then sub-cooled at the high pressure of the cycle which is generally between 20 and 50 bars.
- This liquefaction can be carried out in one or more stages with separation of the condensed liquid at each stage.
- the liquid or liquids obtained are, after their sub-cooling, expanded at the low pressure of the cycle, generally between 1.5 and 6 bars, and vaporized in counter-current of the natural gas to be liquefied and of the cycle gas to be cooled.
- the refrigerant mixture After reheating near room temperature, the refrigerant mixture is again compressed until the high pressure of the cycle.
- a fluid capable of condensing at room temperature at the high pressure of the cycle that is to say between ambient temperature (generally of the order of + 30 to + 40 ° C in regions producing natural gas) and an intermediate temperature of the order of - 20 to -40 ° C.
- the object of the invention is to eliminate the separate refrigeration cycle, and therefore to use a single compressor unit, that is to say a refrigeration cycle known as "with integral incorporated cascade", so as to make it possible to obtain both relatively specific process energy and relatively low investment.
- the invention relates to a cooling process of the aforementioned type, characterized in that the gas from the penultimate is distilled compression stage in a distillation apparatus, the head of which is cooled with a liquid having a temperature significantly below ambient temperature, in order to form on the one hand the condensate of this penultimate stage, and on the other hand a vapor phase which is sent at the last stage of compression.
- the "ambient temperature” will be defined as the thermodynamic reference temperature corresponding to the temperature of the cooling fluid (notably water) available on the site and used in the cycle, increased by the temperature difference that the it is fixed, by construction, at the outlet of the refrigerating machines (compressors, exchangers ). In practice, this difference is around 3 to 10 ° C, and preferably of the order of 5 to 8 ⁇ C.
- the cooling temperature of the head of the distillation apparatus (corresponding substantially to the temperature of the "liquid” acting for this purpose) will be between approximately 0 and 20 “C, and generally between 5 and 15 “C, for an” ambient temperature "(or inlet temperature in the exchange line) of the order of 15 to 45 ° C., and generally between 30 and 40 ° C.
- the head vapor of the distillation apparatus is cooled and partially condensed by heat exchange with at least the said expanded fractions, and the head of the distillation apparatus is cooled with the liquid phase thus obtained;
- At least part of the condensate from the first compression stage is pumped up to the outlet pressure from the second compression stage, and it is mixed with the gas from this second compression stage;
- a primary denitrogenation of the natural gas is carried out under its treatment pressure in an auxiliary column, part of the liquefied natural gas which has undergone is expanded to an intermediate pressure this primary denitrogenization, the liquid thus expanded is vaporized by cooling the head of the auxiliary column, which produces a combustible gas under intermediate pressure, this combustible gas is sent to a gas turbine driving the compressor, and the rest of the liquefied natural gas having undergone the primary denitrogenation as well as the overhead vapor of the auxiliary column in a denitrogenation column final under low pressure producing in tanks the nitrogenous liquefied natural gas intended to be stored.
- the subject of the invention is also an installation for cooling a fluid, in particular for liquefying natural gas, intended for the implementation of such a process.
- This installation of the type comprising a refrigeration circuit with integral incorporated cascade in which a refrigerant mixture circulates and which comprises a compressor with at least two stages, at least the intermediate stages of which are each provided with a refrigerant and a heat exchange line, is characterized in that it comprises a distillation apparatus supplied by the penultimate stage of the compressor and whose head is connected to the suction of the last stage of the compressor, and means for cooling the head of the apparatus distillation by means of a liquid having a temperature markedly below ambient temperature.
- the heat exchange line consists of two plate exchangers in series, in particular of the same length, connected to each other by end domes and optionally welded together end to end.
- FIG. 1 schematically shows a natural gas liquefaction installation according to the invention
- FIG. 5 shows schematically a variant of the cold part of the installation of Figure 1 or Figure 2;
- FIG. 6 is a partial schematic view of another alternative installation according to the invention.
- the natural gas liquefaction installation represented in FIG. 1 essentially comprises: a single cycle compressor 1 with three stages 1A, 1B and 1C, each stage discharging, via a respective pipe 2A, 2B and 2C, into a respective refrigerant 3A , 3B and 3C cooled with sea water, this water typically having a temperature of the order of + 25 to + 35 "C; a pump 4; a distillation column 5 having a few theoretical plates; separator pots 6B, 6C, the top of which communicates respectively with the suction of stages 1B and 1C; a heat exchange line 7 comprising two exchangers in series, namely a "hot” exchanger 8 and a "cold” exchanger 9; an intermediate separator pot 10 ; an auxiliary coolant circuit 11; an auxiliary heat exchanger 12; a denitrogenation column 13; and a liquefied natural gas (LNG) storage 14.
- LNG lique
- the outlet of the refrigerant 3A opens into the separator 6, the bottom of which is connected to the suction of the pump 4, while the latter flows back into the pipe 2B.
- the outlet of the refrigerant 3B communicates with the tank of the column 5, and the bottom of the separator 6C is connected by gravity, via a siphon 15 and an adjustment valve 16, to the head of the column 5.
- the exchangers 8, 9 are parallelepipedic exchangers with aluminum plates possibly brazed, with counter-current circulation of the fluids in heat exchange relation, and have the same length. They each include the passages necessary to ensure the operation which will be described below.
- the refrigerant mixture consisting of C1 to C5 hydrocarbons and nitrogen, leaves the top (hot end) of the exchanger 8 in the gaseous state and arrives via a line 17 at the suction of the first stage of compressor 1A .
- first intermediate pressure PI typically of the order of 8 to 12 bars
- second intermediate pressure P2 typically of the order of 14 to 20 bars
- the liquid in the bottom of the column 5 constitutes a first cooling liquid, suitable for ensuring most of the cooling of the hot exchanger 8.
- this liquid is introduced laterally, via an inlet box 18, into the part upper side of this exchanger, sub-cooled in passages 19 to the cold end of the exchanger, at around -20 to -40 ° C., released laterally via an outlet box 20, expanded at the low pressure of the cycle, which is typically of the order of 2.5 to 3.5 bars, in an expansion valve 21, and reintroduced in two-phase form at the cold end of the same exchanger via a side box 22 and an appropriate distribution device, to be vaporized in the low pressure passages 23 of the exchanger.
- the overhead vapor of column 5 is cooled and partially condensed in passages 24 of exchanger 8 to an intermediate temperature significantly lower than ambient temperature, for example up to + 5 to + 10 "C, then introduced in the pot 6C.
- the liquid phase returns to reflux by gravity, via the siphon 15 and the valve 16, at the head of the column 5, while the vapor phase is compressed at the high pressure of the cycle, typically of the order of 40 bars, in 1C, then brought back to + 30 to + 40 , 'C in 3 C.
- This vapor phase is then cooled from the hot end to the cold end of the exchanger 8 in high pressure passages 25, and separated into two phases in 10.
- the refrigeration of the exchanger 9 is obtained by means of the high pressure fluid, as follows.
- the liquid collected at 10 is sub-cooled in the hot part of the exchanger 9, in passages 27, then taken out of the exchanger, expanded at low pressure in an expansion valve 28, reintroduced into the exchanger and vaporized in the hot part of the low pressure passages 29 thereof.
- the vapor phase from separator 10 is cooled, condensed and sub-cooled from the hot end to the cold end of the exchanger 9, and the liquid thus obtained is expanded at low pressure in an expansion valve 30, and reintroduced at the cold end of the exchanger to be vaporized in the cold part of the low pressure passages 29 and then combined with the expanded fluid at 28.
- the treated natural gas, arriving at around + 20 ⁇ C, after drying, via a pipe 31, is introduced laterally into the exchanger 8 and cooled to the cold end of the latter in passages 32.
- natural gas is sent to an apparatus 33 for removing C2 to C5 hydrocarbons, and the remaining mixture, consisting essentially of methane and nitrogen, with a small amount of ethane and propane, is divided into two streams: a first stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the auxiliary exchanger 12 and then expanded to 1.2 bar in an expansion valve 34, and a second stream, cooled, liquefied and sub-cooled from the hot end to the cold end of the exchanger 9 in passages 35, sub-cooled again by about 8 to 10 "C in a coil 36 forming the column reboiler
- the tank liquid in this column constitutes the nitrogenous LNG produced by the installation and is sent to storage.
- the exchanger 12 and is sent via a line 38 to the "fuel gas” network to be burned or used in a gas turbine of the installation serving to drive the compressor 1.
- the hottest part of 1'ttingur 8 can be used for cooling from + 40 to + 20 * 'C about a suitable liquid, in particular pentane, circulated through the passages 40 by a pump 1'ttingur 41 and used to refrigerate another part of the installation, for example raw natural gas intended to be dried before its treatment in the liquefaction installation.
- This circulation of liquid constitutes the above-mentioned refrigerant circuit 11.
- suction of the compressor stage 1C at a relatively cold temperature is favorable to the performance thereof.
- the cutoff at around - 20 to - 40 ° C between the two exchangers also corresponds to heat exchange surfaces of the same order above and below this cutoff, so that two exchangers can be used 8 and 9 of maximum length under conditions of optimal thermal performance, and a single separator pot 10, with the abovementioned cut-off, for the high pressure fluid. It is understood that the control of the temperature and the pressure (+ 5 to + 10 ° C, 14 to 20 bars) of the coolant at the head of the column 5 makes it possible to obtain a single-phase gas both at the outlet of the 3C refrigerant and at the outlet (at 42) from the cold exchanger 9 (- 20 ° C to - 40 "C, 2.5 to 3.5 bars).
- n exchangers 8 are mounted in parallel, and n exchangers 9 in parallel.
- the installation shown in FIG. 2 differs from that of FIG. 1 only by the addition, between the compression stages IB and 1C, of another intermediate compression stage 1D, as well as by the method of cooling the liquid. reflux from column 5.
- the outlet of the refrigerant 3B opens into a separator pot 6D, the vapor phase of which feeds the stage 1D. The discharge of this is cooled by a 3D coolant and then introduced at the base of the column 5.
- the liquid in the pot 6D constitutes an additional coolant, sub-cooled in additional passages 45 provided in the hot part of the exchanger 8, taken out of it, expanded at low pressure in an expansion valve 46 and reintroduced into the exchanger to be vaporized in the intermediate part of the low pressure passages 23. Furthermore, the overhead vapor from column 5 is sent directly to the suction of the last compression stage 1C, and the high pressure fluid is sent to the base of a dephlegmator 47 cooled by trickling seawater around vertical tubes 48.
- FIG 3 shows an embodiment of a heat exchanger which can be used as an intermediate refrigerant 3B.
- This exchanger comprises a calender 50 in which a certain number of vertical tubes 51 open at their two ends extend between an upper plate 52 and a lower plate 53. Between these plates, and outside the tubes, are mounted a certain number of horizontal baffles 54.
- the cooling water arrives by a lower pipe 55 on the plate 52, circulates upwards in the tubes 51 and is evacuated by an upper pipe 56.
- the two-phase mixture conveyed by line 2B enters laterally into the grille under the plate 52 and descends along the baffles, then exits via the outlet pipe 57 of the exchanger, located a little above the plate 53.
- FIG. 4 represents another alternative arrangement of the column of distillation 5.
- the column overhead vapor is heated by a few degrees Celsius in an auxiliary heat exchanger 58, then sent to the suction of the last compression stage 1C.
- the high pressure fluid, after cooling and partial condensation in 3C around + 30 to + 40 "C, is separated into two phases in a separator pot 59.
- the vapor from this pot constitutes the high pressure refrigerant, while the liquid phase , after sub-cooling a few degrees Celsius in the exchanger 58, is expanded in an expansion valve 49 as in FIG. 2 and then introduced under reflux at the top of the column 5. It is understood that this variant can be applied to a installation with either three or four stages of compression, and subcooling 58 is optional.
- the nitrogen removal column 13 must operate at around 1.15 bar or 1.2 bar, and consequently the nitrogen-free LNG leaving the tank of this column must be expanded to atmospheric pressure at storage inlet 14, which produces flash gas.
- This gas, as well as the gas resulting from the heat inputs into the storage 14, must therefore be taken up and compressed by an auxiliary compressor to be distributed to the "fuel gas" network.
- Figure 5 shows an arrangement which makes it possible to omit this auxiliary compressor, in the case where the LNG leaving the exchanger 9 contains a few% of nitrogen.
- the LNG leaving the exchanger 9 is sub-cooled in the coil 36 of the column 13 and again sub-cooled in an auxiliary heat exchanger 60. The liquid is then expanded to 1.2 bar in the valve.
- expansion 37 and the turbine 39 then divided into two streams: a stream which is vaporized in an exchanger 60 and then introduced at an intermediate level into the column 13, and a stream which is sent at reflux at the head of the latter.
- the bottom liquid of column 13, which is LNG without nitrogen, is then, for each storage, divided into two streams, one of which is sub-cooled in the exchanger 60 while the other passes through a bypass 61 to adjust the degree of overall sub-cooling, the circulation of the liquid being ensured by a pump 62.
- the part of the natural gas coming from the apparatus 33 which is treated in the exchanger 12 n ' is cooled there only to an intermediate temperature TI, then is introduced into the tank of the column 63, via a pipe 65, while the rest of this natural gas is cooled in the exchanger 9 only to a temperature intermediate T2 lower than TI then introduced at an intermediate level of the same column, via a pipe 66.
- the condenser 64 is cooled by expanding part of the column tank liquid to around 25 bars in an expansion valve 67.
- the gas resulting from this vaporization has the same composition as the column tank liquid, that is that is to say has a low nitrogen content, and therefore constitutes a combustible gas at 25 bars which can be directly used, via a pipe 68, in the gas turbine 69.
- the remainder of the bottom liquid of the column 63 is, after sub-cooling partly in the cold part of the exchanger 9 and in the coil 36 of the column 13, and partly in the cold part of the exchanger 12, expanded at 37, respectively at 70, and introduced at an intermediate level of column 13.
- the overhead vapor of column 63 containing 30 to 35% of nitrogen, is cooled and condensed in the cold part of the exchanger 9 , sub-cooled in that of the exchanger 12, and, after expansion in an expansion valve 71, introduced under reflux at the top of the column 13.
- the nitrogen enrichment of the column 13 washing liquid thus obtained has the consequence that the nitrogen vapor of this column is sufficient poor in methane, for example contains 10 to 15% of methane, to be put into the atmosphere via line 38 after heating in 12.
- a fraction of the natural gas to be treated conveyed by the pipe 31 can be cooled in the hot part of the exchanger 12 before being sent to the device 33.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9304276A FR2703762B1 (en) | 1993-04-09 | 1993-04-09 | Method and installation for cooling a fluid, in particular for liquefying natural gas. |
FR9304276 | 1993-04-09 | ||
PCT/FR1994/000380 WO1994024500A1 (en) | 1993-04-09 | 1994-04-05 | Fluid cooling process and plant, especially for natural gas liquefaction |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0644996A1 true EP0644996A1 (en) | 1995-03-29 |
EP0644996B1 EP0644996B1 (en) | 1998-12-23 |
Family
ID=9445963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94913137A Expired - Lifetime EP0644996B1 (en) | 1993-04-09 | 1994-04-05 | Gas cooling process and plant, especially for natural gas liquefaction |
Country Status (13)
Country | Link |
---|---|
US (2) | US5535594A (en) |
EP (1) | EP0644996B1 (en) |
JP (1) | JP3559283B2 (en) |
AT (1) | ATE175019T1 (en) |
CA (1) | CA2136755C (en) |
DE (1) | DE69415454T2 (en) |
DZ (1) | DZ1768A1 (en) |
ES (1) | ES2125448T3 (en) |
FR (1) | FR2703762B1 (en) |
HK (1) | HK1012700A1 (en) |
NO (1) | NO308969B1 (en) |
RU (1) | RU2121637C1 (en) |
WO (1) | WO1994024500A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9441877B2 (en) | 2010-03-17 | 2016-09-13 | Chart Inc. | Integrated pre-cooled mixed refrigerant system and method |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0723125B1 (en) * | 1994-12-09 | 2001-10-24 | Kabushiki Kaisha Kobe Seiko Sho | Gas liquefying method and plant |
MY118329A (en) * | 1995-04-18 | 2004-10-30 | Shell Int Research | Cooling a fluid stream |
US5657643A (en) * | 1996-02-28 | 1997-08-19 | The Pritchard Corporation | Closed loop single mixed refrigerant process |
FR2751059B1 (en) * | 1996-07-12 | 1998-09-25 | Gaz De France | IMPROVED COOLING PROCESS AND INSTALLATION, PARTICULARLY FOR LIQUEFACTION OF NATURAL GAS |
US5755114A (en) * | 1997-01-06 | 1998-05-26 | Abb Randall Corporation | Use of a turboexpander cycle in liquefied natural gas process |
DE19722490C1 (en) * | 1997-05-28 | 1998-07-02 | Linde Ag | Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption |
GB9712304D0 (en) * | 1997-06-12 | 1997-08-13 | Costain Oil Gas & Process Limi | Refrigeration cycle using a mixed refrigerant |
US6044902A (en) * | 1997-08-20 | 2000-04-04 | Praxair Technology, Inc. | Heat exchange unit for a cryogenic air separation system |
TW421704B (en) * | 1998-11-18 | 2001-02-11 | Shell Internattonale Res Mij B | Plant for liquefying natural gas |
MY117548A (en) | 1998-12-18 | 2004-07-31 | Exxon Production Research Co | Dual multi-component refrigeration cycles for liquefaction of natural gas |
US7310971B2 (en) * | 2004-10-25 | 2007-12-25 | Conocophillips Company | LNG system employing optimized heat exchangers to provide liquid reflux stream |
TW480325B (en) * | 1999-12-01 | 2002-03-21 | Shell Int Research | Plant for liquefying natural gas |
FR2807826B1 (en) | 2000-04-13 | 2002-06-14 | Air Liquide | BATH TYPE CONDENSER VAPORIZER |
US6564578B1 (en) | 2002-01-18 | 2003-05-20 | Bp Corporation North America Inc. | Self-refrigerated LNG process |
US6705113B2 (en) | 2002-04-11 | 2004-03-16 | Abb Lummus Global Inc. | Olefin plant refrigeration system |
US6637237B1 (en) * | 2002-04-11 | 2003-10-28 | Abb Lummus Global Inc. | Olefin plant refrigeration system |
US6978638B2 (en) * | 2003-05-22 | 2005-12-27 | Air Products And Chemicals, Inc. | Nitrogen rejection from condensed natural gas |
US7287294B2 (en) * | 2003-10-24 | 2007-10-30 | Harry Miller Co., Inc. | Method of making an expandable shoe |
US7266976B2 (en) * | 2004-10-25 | 2007-09-11 | Conocophillips Company | Vertical heat exchanger configuration for LNG facility |
PL1861478T3 (en) | 2005-03-16 | 2012-07-31 | Fuelcor Llc | Systems and methods for production of synthetic hydrocarbon compounds |
EP1715267A1 (en) * | 2005-04-22 | 2006-10-25 | Air Products And Chemicals, Inc. | Dual stage nitrogen rejection from liquefied natural gas |
US7415840B2 (en) * | 2005-11-18 | 2008-08-26 | Conocophillips Company | Optimized LNG system with liquid expander |
KR101383081B1 (en) | 2006-05-15 | 2014-04-08 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | Method and apparatus for liquefying a hydrocarbon stream |
EP2074364B1 (en) * | 2006-09-22 | 2018-08-29 | Shell International Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
US9273899B2 (en) * | 2006-10-11 | 2016-03-01 | Shell Oil Company | Method and apparatus for cooling a hydrocarbon stream |
US20090071190A1 (en) * | 2007-03-26 | 2009-03-19 | Richard Potthoff | Closed cycle mixed refrigerant systems |
AU2008277656B2 (en) * | 2007-07-19 | 2011-11-03 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for recovering and fractionating a mixed hydrocarbon feed stream |
US20090139263A1 (en) * | 2007-12-04 | 2009-06-04 | Air Products And Chemicals, Inc. | Thermosyphon reboiler for the denitrogenation of liquid natural gas |
US10539363B2 (en) | 2008-02-14 | 2020-01-21 | Shell Oil Company | Method and apparatus for cooling a hydrocarbon stream |
US20100175425A1 (en) * | 2009-01-14 | 2010-07-15 | Walther Susan T | Methods and apparatus for liquefaction of natural gas and products therefrom |
DE102010011052A1 (en) * | 2010-03-11 | 2011-09-15 | Linde Aktiengesellschaft | Process for liquefying a hydrocarbon-rich fraction |
EP2369279A1 (en) | 2010-03-12 | 2011-09-28 | Ph-th Consulting AG | Method for cooling or liquefying a hydrocarbon-rich flow and assembly for carrying out the method |
KR101341798B1 (en) * | 2012-08-10 | 2013-12-17 | 한국과학기술원 | Natural gas liquefaction system |
US11428463B2 (en) | 2013-03-15 | 2022-08-30 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
PE20160913A1 (en) | 2013-03-15 | 2016-09-01 | Chart Energy And Chemicals Inc | MIXED REFRIGERANT SYSTEM AND METHOD |
US11408673B2 (en) | 2013-03-15 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
RU2525285C1 (en) * | 2013-07-09 | 2014-08-10 | Андрей Владиславович Курочкин | Device for cooling and separation of liquid hydrocarbons released during gas compression |
CN104048478B (en) * | 2014-06-23 | 2016-03-30 | 浙江大川空分设备有限公司 | The equipment of high extraction and the dirty nitrogen purification nitrogen of low energy consumption and extracting method thereof |
CA2855383C (en) | 2014-06-27 | 2015-06-23 | Rtj Technologies Inc. | Method and arrangement for producing liquefied methane gas (lmg) from various gas sources |
US9759480B2 (en) | 2014-10-10 | 2017-09-12 | Air Products And Chemicals, Inc. | Refrigerant recovery in natural gas liquefaction processes |
AR105277A1 (en) | 2015-07-08 | 2017-09-20 | Chart Energy & Chemicals Inc | MIXED REFRIGERATION SYSTEM AND METHOD |
US9816752B2 (en) * | 2015-07-22 | 2017-11-14 | Butts Properties, Ltd. | System and method for separating wide variations in methane and nitrogen |
CA2903679C (en) | 2015-09-11 | 2016-08-16 | Charles Tremblay | Method and system to control the methane mass flow rate for the production of liquefied methane gas (lmg) |
FR3045798A1 (en) | 2015-12-17 | 2017-06-23 | Engie | HYBRID PROCESS FOR THE LIQUEFACTION OF A COMBUSTIBLE GAS AND INSTALLATION FOR ITS IMPLEMENTATION |
FR3045797A1 (en) * | 2015-12-17 | 2017-06-23 | Engie | PROCESS FOR THE LIQUEFACTION OF NATURAL GAS USING A REFRIGERANT MIXTURE CYCLING WITH DISTILLER COLUMN WITH REFRIGERANT |
US10323880B2 (en) | 2016-09-27 | 2019-06-18 | Air Products And Chemicals, Inc. | Mixed refrigerant cooling process and system |
GB201718485D0 (en) | 2017-11-08 | 2017-12-20 | Triple Red Ltd | Water purification device |
US11187467B2 (en) | 2019-10-08 | 2021-11-30 | Air Products And Chemicals, Inc. | Heat exchange system and method of assembly |
US11378333B2 (en) | 2019-12-13 | 2022-07-05 | Bcck Holding Company | System and method for separating methane and nitrogen with reduced horsepower demands |
US11650009B2 (en) | 2019-12-13 | 2023-05-16 | Bcck Holding Company | System and method for separating methane and nitrogen with reduced horsepower demands |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1939114B2 (en) * | 1969-08-01 | 1979-01-25 | Linde Ag, 6200 Wiesbaden | Liquefaction process for gases and gas mixtures, in particular for natural gas |
FR2292203A1 (en) * | 1974-11-21 | 1976-06-18 | Technip Cie | METHOD AND INSTALLATION FOR LIQUEFACTION OF A LOW BOILING POINT GAS |
FR2471567B1 (en) * | 1979-12-12 | 1986-11-28 | Technip Cie | METHOD AND SYSTEM FOR COOLING A LOW TEMPERATURE COOLING FLUID |
FR2471566B1 (en) * | 1979-12-12 | 1986-09-05 | Technip Cie | METHOD AND SYSTEM FOR LIQUEFACTION OF A LOW-BOILING GAS |
FR2540612A1 (en) * | 1983-02-08 | 1984-08-10 | Air Liquide | METHOD AND INSTALLATION FOR COOLING A FLUID, IN PARTICULAR A LIQUEFACTION OF NATURAL GAS |
US4809154A (en) * | 1986-07-10 | 1989-02-28 | Air Products And Chemicals, Inc. | Automated control system for a multicomponent refrigeration system |
GB9103622D0 (en) * | 1991-02-21 | 1991-04-10 | Ugland Eng | Unprocessed petroleum gas transport |
-
1993
- 1993-04-09 FR FR9304276A patent/FR2703762B1/en not_active Expired - Fee Related
-
1994
- 1994-04-02 DZ DZ940032A patent/DZ1768A1/en active
- 1994-04-05 DE DE69415454T patent/DE69415454T2/en not_active Expired - Lifetime
- 1994-04-05 CA CA002136755A patent/CA2136755C/en not_active Expired - Lifetime
- 1994-04-05 EP EP94913137A patent/EP0644996B1/en not_active Expired - Lifetime
- 1994-04-05 JP JP52281294A patent/JP3559283B2/en not_active Expired - Lifetime
- 1994-04-05 WO PCT/FR1994/000380 patent/WO1994024500A1/en active IP Right Grant
- 1994-04-05 AT AT94913137T patent/ATE175019T1/en not_active IP Right Cessation
- 1994-04-05 RU RU94046343A patent/RU2121637C1/en active
- 1994-04-05 ES ES94913137T patent/ES2125448T3/en not_active Expired - Lifetime
- 1994-04-05 US US08/347,365 patent/US5535594A/en not_active Expired - Lifetime
- 1994-12-06 NO NO944701A patent/NO308969B1/en not_active IP Right Cessation
-
1996
- 1996-05-10 US US08/644,484 patent/US5613373A/en not_active Expired - Lifetime
-
1998
- 1998-12-16 HK HK98113695A patent/HK1012700A1/en not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
See references of WO9424500A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9441877B2 (en) | 2010-03-17 | 2016-09-13 | Chart Inc. | Integrated pre-cooled mixed refrigerant system and method |
US10502483B2 (en) | 2010-03-17 | 2019-12-10 | Chart Energy & Chemicals, Inc. | Integrated pre-cooled mixed refrigerant system and method |
Also Published As
Publication number | Publication date |
---|---|
NO944701D0 (en) | 1994-12-06 |
DE69415454T2 (en) | 1999-05-06 |
HK1012700A1 (en) | 1999-08-06 |
JP3559283B2 (en) | 2004-08-25 |
AU669628B2 (en) | 1996-06-13 |
FR2703762B1 (en) | 1995-05-24 |
WO1994024500A1 (en) | 1994-10-27 |
CA2136755C (en) | 2005-06-14 |
ES2125448T3 (en) | 1999-03-01 |
RU94046343A (en) | 1996-11-10 |
AU6540494A (en) | 1994-11-08 |
NO308969B1 (en) | 2000-11-20 |
NO944701L (en) | 1994-12-06 |
US5535594A (en) | 1996-07-16 |
CA2136755A1 (en) | 1994-10-27 |
ATE175019T1 (en) | 1999-01-15 |
RU2121637C1 (en) | 1998-11-10 |
US5613373A (en) | 1997-03-25 |
DE69415454D1 (en) | 1999-02-04 |
JPH07507864A (en) | 1995-08-31 |
FR2703762A1 (en) | 1994-10-14 |
DZ1768A1 (en) | 2002-02-17 |
EP0644996B1 (en) | 1998-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0644996B1 (en) | Gas cooling process and plant, especially for natural gas liquefaction | |
EP1639062B1 (en) | Method and plant for simultaneous production of a natural gas for liquefaction and a liquid cut from natural gas | |
EP0687353B1 (en) | Method and apparatus for liquefying natural gas | |
EP0576314B1 (en) | Process and installation for the production of gaseous oxygen under pressure | |
EP0818661B1 (en) | Improved process and apparatus for cooling and liquefaction of natural gas | |
FR2772896A1 (en) | METHOD FOR THE LIQUEFACTION OF A GAS, PARTICULARLY A NATURAL GAS OR AIR COMPRISING A MEDIUM PRESSURE PURGE AND ITS APPLICATION | |
EP1118827B1 (en) | Partial liquifaction process for a hydrocarbon-rich fraction such as natural gas | |
FR2681859A1 (en) | PROCESS FOR THE LIQUEFACTION OF NATURAL GAS | |
JP2006504928A (en) | Motor driven compressor system for natural gas liquefaction | |
WO2002050483A1 (en) | Method for refrigerating liquefied gas and installation therefor | |
EP0504029A1 (en) | Process for the production of gaseous pressurised oxygen | |
EP0117793B1 (en) | Fluid cooling process and plant, in particular for liquefying natural gas | |
FR2739916A1 (en) | METHOD AND DEVICE FOR LIQUEFACTION AND TREATMENT OF NATURAL GAS | |
EP0605262B1 (en) | Process and apparatus for the production of gaseous oxygen under pressure | |
FR2829401A1 (en) | Fractionating a gas produced by pyrolysis of hydrocarbons, including hydrogen and hydrocarbons, in particular 1-4C hydrocarbons, water and CO2 | |
FR2764972A1 (en) | Liquefaction of natural gas using two stages and monophase refrigerant | |
FR2743140A1 (en) | METHOD AND DEVICE FOR TWO-STEP LIQUEFACTION OF A GAS MIXTURE SUCH AS A NATURAL GAS | |
CA2154984A1 (en) | Method and apparatus for producing gaseous oxygen under pressure and variable flow | |
WO1985003072A1 (en) | Method and plant for recovery of the heavier hydrocarbons of a gas mixture | |
FR2723183A1 (en) | Process for the liquefaction of hydrogen | |
EP2417411B1 (en) | Refrigeration process and system for recovering cold from methane by refrigerants | |
FR2688052A1 (en) | Method and installation for producing pressurised gaseous oxygen and/or nitrogen by distillation of air | |
WO2005073651A1 (en) | Cryogenic distillation method and installation for air separation | |
FR2479846A1 (en) | REFRIGERATION PROCESS FOR THE RECOVERY OR FRACTIONATION OF A MIXTURE CONSISTING OF MAINLY BUTANE AND PROPANE, CONTENT IN RAW GAS, USING AN EXTERNAL MECHANICAL CYCLE | |
EP0611218A1 (en) | Process and installation for producing oxygen under pressure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19941129 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 19960321 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19981223 |
|
REF | Corresponds to: |
Ref document number: 175019 Country of ref document: AT Date of ref document: 19990115 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69415454 Country of ref document: DE Date of ref document: 19990204 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: FRENCH |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990128 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2125448 Country of ref document: ES Kind code of ref document: T3 |
|
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19990323 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19990430 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19990302 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19991031 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
NLT1 | Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1 |
Owner name: GDF SUEZ |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CJ Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: GDF SUEZ Effective date: 20110616 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69415454 Country of ref document: DE Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFTSGESELLSCHAFT, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 69415454 Country of ref document: DE Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE Effective date: 20111028 Ref country code: DE Ref legal event code: R081 Ref document number: 69415454 Country of ref document: DE Owner name: GDF SUEZ S.A., FR Free format text: FORMER OWNER: GAZ DE FRANCE, PARIS, FR Effective date: 20111028 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120317 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20120410 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20130326 Year of fee payment: 20 Ref country code: LU Payment date: 20130326 Year of fee payment: 20 Ref country code: IE Payment date: 20130328 Year of fee payment: 20 Ref country code: GB Payment date: 20130326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20130326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20130322 Year of fee payment: 20 Ref country code: BE Payment date: 20130322 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20130322 Year of fee payment: 20 Ref country code: PT Payment date: 20130401 Year of fee payment: 20 Ref country code: FR Payment date: 20130603 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69415454 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: MAXIMUM VALIDITY LIMIT REACHED Effective date: 20140405 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20140405 |
|
BE20 | Be: patent expired |
Owner name: S.A.*GDF SUEZ Effective date: 20140405 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20140404 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MK9A |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: MA Ref document number: 980403040 Country of ref document: GR Effective date: 20140406 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140404 Ref country code: IE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140405 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140415 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140408 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20140926 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20140406 |