EP0642620A1 - Process and device for erecting concrete walls by means of braced shutterings. - Google Patents
Process and device for erecting concrete walls by means of braced shutterings.Info
- Publication number
- EP0642620A1 EP0642620A1 EP93912708A EP93912708A EP0642620A1 EP 0642620 A1 EP0642620 A1 EP 0642620A1 EP 93912708 A EP93912708 A EP 93912708A EP 93912708 A EP93912708 A EP 93912708A EP 0642620 A1 EP0642620 A1 EP 0642620A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pipe
- pipe spreader
- holes
- concrete
- sleeve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 36
- 238000009416 shuttering Methods 0.000 title abstract description 8
- 238000007789 sealing Methods 0.000 claims abstract description 40
- 239000000463 material Substances 0.000 claims abstract description 39
- 238000009415 formwork Methods 0.000 claims description 40
- 238000002347 injection Methods 0.000 claims description 35
- 239000007924 injection Substances 0.000 claims description 35
- 238000004382 potting Methods 0.000 claims description 21
- 238000005253 cladding Methods 0.000 claims description 12
- 239000011111 cardboard Substances 0.000 claims description 5
- 239000011087 paperboard Substances 0.000 claims description 5
- 239000013013 elastic material Substances 0.000 claims description 4
- 238000004873 anchoring Methods 0.000 claims description 3
- 239000004033 plastic Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims 1
- 239000001913 cellulose Substances 0.000 claims 1
- 238000005266 casting Methods 0.000 abstract 2
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000011440 grout Substances 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- 239000003566 sealing material Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000006004 Quartz sand Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002522 swelling effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/66—Sealings
- E04B1/68—Sealings of joints, e.g. expansion joints
- E04B1/6816—Porous tubular seals for injecting sealing material
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G17/00—Connecting or other auxiliary members for forms, falsework structures, or shutterings
- E04G17/06—Tying means; Spacers ; Devices for extracting or inserting wall ties
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G17/00—Connecting or other auxiliary members for forms, falsework structures, or shutterings
- E04G17/06—Tying means; Spacers ; Devices for extracting or inserting wall ties
- E04G17/0644—Plug means for tie-holes
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G17/00—Connecting or other auxiliary members for forms, falsework structures, or shutterings
- E04G17/06—Tying means; Spacers ; Devices for extracting or inserting wall ties
- E04G17/065—Tying means, the tensional elements of which are threaded to enable their fastening or tensioning
- E04G17/0651—One-piece elements
- E04G17/0652—One-piece elements fully recoverable
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0203—Arrangements for filling cracks or cavities in building constructions
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G23/00—Working measures on existing buildings
- E04G23/02—Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
- E04G23/0203—Arrangements for filling cracks or cavities in building constructions
- E04G23/0211—Arrangements for filling cracks or cavities in building constructions using injection
Definitions
- the invention relates to a method for erecting concrete walls using braced formwork according to the preamble of claim 1.
- the invention also relates to a device for carrying out the method.
- the generic method is used to erect concrete walls.
- the formwork panels are arranged parallel to each other with a distance corresponding to the thickness of the concrete wall to be erected.
- Tension anchors are used for fixing and bracing the formwork panels, whereby tubes, so-called pipe spreaders, are used as formwork spacers and counter anchor elements, which are penetrated by the tension anchors and are supported by so-called k ⁇ -shaped dents on the inside of the formwork panels.
- the formwork panels are braced against one another with screw elements that can be screwed onto the ends of the tension anchors outside the formwork, such as large-sized wing screws.
- the formwork arrangement prepared in this way is then poured on site with concrete.
- the formwork panels are removed by first unscrewing the screw elements on the prestressing anchors and then pulling the prestressing anchors out of the pipes or pipe struts.
- the conical dents are still removed from the pipe ends, while the pipe spreads remain as lost parts within the concrete wall, which is thus perforated several times throughout due to the pipe spreads left behind.
- These wall passages are filled with grouting material, for example with special swelling grout. Filling is conventionally carried out by closing the pipe spreader at one end with a cover, while the potting material is introduced from the other pipe side using a filling syringe. The end cover has a perforation so that displaced air can escape through the filling.
- the inventor has recognized that when the space between the formwork panels is filled with liquid concrete and when the concrete subsequently hardens, cavities and / or cracks form in the adjacent area of the casing of the pipe struts, which can extend to the outer surfaces of the concrete wall erected or expand over time into the outer surfaces, so that the watertightness of the erected concrete wall cannot be guaranteed.
- the present invention has for its object to provide a method for erecting concrete walls by means of formwork of the type mentioned, with which the clamping points are made watertight.
- a simple, functionally reliable device for carrying out the method is to be created.
- the process according to the invention creates voids or cracks between the pipe jacket and the concrete wall material during the filling of the pipe struts, so that the clamping area of the concrete wall is reliably sealed watertight.
- the conventional method only the pipe itself was sealed. The leak in the outer area of the jacket of the pipe was not recognized at all. By filling the interior of the pipe, however, the seal to the lost pipes of adjacent cracks and cavities in the concrete walls could not be sealed.
- the invention achieves the watertightness of concrete walls in this disturbed area.
- a pipe spreader or a clamping point pipe is used, which is provided with passages in the jacket, which with a z. B. outside on the tube cuff from a z. B. are covered by resilient material.
- the pipe according to the invention can be used like a conventional pipe spreader together with the tension anchor, since liquid concrete filled between the shuttering plates cannot penetrate into the holes or openings formed in the pipe jacket due to the sleeve.
- the openings are preferably formed at least in the longitudinal center region of the tubular jacket.
- the tubes are uniformly continuous or have inner walls.
- the sleeve sealing or covering the pipe breakthroughs can consist of a material which resists the liquid concrete until it has hardened.
- the following is therefore suitable as a sleeve material: Paper or cardboard, these preferably being impregnated to withstand moisture or provided with a water-permeable outer layer.
- a preferred device for carrying out the according to the method using the z. B. perforated tube as a tube spreader with an applied sleeve comprises an insertable into the tube spreader injection device in the manner of a so-called.
- Packer which has an injection tube, the jacket of which is provided with injection openings or injection nozzles.
- the injection tube is sealed on both sides.
- the packer is sealed and clamped radially on both sides to create a sealed injection area in the pipe spreader, for example with rubber sleeves on the injection pipe.
- Swelling grout is usually a mixture of Potland cement, finely graded quartz sand and reactive chemical additives that provide the desired swelling effect.
- the method according to the invention and the pipe spreader according to the invention are used for the injection of a sealing medium into a sealing device for sealing a joint formed between two concreting sections.
- a sealing device is described for example in EP-A1-0 418 699. It is a passage as an injection path for a body forming a sealing medium in the joint area on the concrete surface of the one concreting section, from which, after the second concreting section has been erected, the sealing medium is injected into the body, defects in the concrete in the Joint area emerges between the two concreting work.
- the bodies are channel-shaped structures, as described in EP-A1-0 418 699, or porous hoses according to CH-PS 600 077, which according to DE-GM 83 35 231 can have support bodies in the form of a screw spring, or according to DE-GM 86 08 396 can be a sealing device in the form of an injection hose, which on the one hand eliminates the disadvantage of positioning the hose by means of tabs provided on the hose body and on the other hand have a predetermined breaking point in the longitudinal direction of the hose-like body, through which the sealing medium is to escape into the concrete.
- the sealing medium is usually pressed directly into the beginning or end of the hose.
- the start and end of the hose must be freely accessible from the outside after the concreting measures have been completed in the joint area.
- EP-A1-0 418 699 proposes drilling the channel described in this document after the second concrete section has hardened and stripped through a hole in the hardened concrete and through the hole the sealing medium into the interior of the sealing device to press.
- the channel should be equipped with a larger target hollow body at the locations where the bore is to be drilled, so that the drilling of the bore can be carried out more easily and the channel can be hit more safely.
- the method for loading sealing materials of this type with sealing material is simplified in that the pipe spreads already located in the concrete wall are used for this purpose. It is therefore no longer necessary to drill the concrete from the outside or to create special facilities so that the end or the beginning of an injection hose or injection channel is led outside.
- Fig. 1 shows a cross section through a formwork construction for the construction of a concrete wall using a preferred embodiment of the spreader pipe according to the invention
- Fig. 2. is a perspective view of the pipe spreader of
- Fig. 1; 3 shows a cross section through a concrete wall in the area of the tensioning point after the casing has been knocked off, with a packer arranged in the pipe spreader for supplying potting material;
- FIG. 4 shows a perspective illustration of an expanded embodiment of the pipe spreader according to the invention
- FIG. 5 shows a cross section through a formwork structure for erecting a concrete wall using the pipe strut shown in FIG. 4, which is connected to an injection system;
- FIG. 6 shows a cross section through the concrete wall erected with the formwork structure according to FIG. 5 after the formwork has been knocked off;
- FIG. 7 shows a preferred embodiment of an injection packer for feeding potting material into the pipe spreader according to the invention.
- Fig. 1 shows the detail of a formwork for erecting a concrete wall before filling in liquid concrete.
- the formwork has two formwork panels 1 and 2, which are equipped with anchors and are held at the same distance from one another.
- the anchors each have a clamping anchor 3, z. B. in the form of a threaded steel rod at the end.
- the dents 5, 5a which are supported over their entire surface on the inner surfaces of the shuttering panels 1 and 2, extend with the other ends into the pipe struts 4 and have through bores which are penetrated by the tension anchor 3, the also the pipe spreader 4 and a hole in the formwork panels 1, 2 interspersed.
- the anchoring is braced using wing screws 6 and 7, which are screwed onto the threads provided on the end of the tension anchor 3 and act on the formwork panels 1 and 2 via large washers 8 and 9.
- the formwork so tensioned is conventionally poured out with liquid concrete.
- the shuttering plates 1 and 2 are knocked off, with the tensioning anchor 3 being removed beforehand together with the tensioning screws 6, 7 and the washers 8, 9.
- the dents 5 and 5a are then pulled out of the concrete wall 20; the pipes 4 remain as lost parts within the concrete wall 20.
- the finished concrete wall 20 is shown in the area of a lost pipe spreader 4 in FIG. 3.
- the tube wall of the clamping point tube or the tube spreader 4 is in particular in its longitudinal center region with a plurality of passages z. B. perforated in the form of holes 11.
- the holes 11 are covered with a sleeve 12 which is pulled onto the longitudinal central region of the tensioning tube 4 and has a length which ensures that all the passages 11 are closed. Due to the use of the sleeve 12, the pipe struts 4 can be installed and used in a conventional manner, because the sleeve reliably prevents liquid concrete from penetrating into the passages 11.
- an injection device in the manner of a packer 10 is introduced into the pipe 4.
- the injection device has a tube 13, in the tube jacket openings in the form of z.
- holes 15 are introduced and the outer diameter is smaller than the inner diameter of the lost tube 4, so that an annular cylindrical space 13a is formed between the packer tube 13 and the lost tube 4.
- the packer 10 is inserted with its tube 13 into the sleeve area of the tube spreader 4.
- the end of the packer tube 13 is through circular disks 13b completed, the diameter of which corresponds to the inside diameter of the lost tube 4. Outside on the disks 13b z.
- cylindrical sealing plug 16 made of an elastic material.
- One sealing plug 16 has a central passage which is aligned with a passage in the adjacent disk 13b, a hose 14 being connected to the passage of the sealing plug 16.
- the two sealing plugs 16 are expandable in the radial direction for bracing against the inner wall of the tube 4.
- the sealing plugs 16 are configured, for example, like a balloon, and compressed air can be fed to them, not shown, so that the sealing balloon is clamped in the radial direction against the inner wall of the tube.
- the two sealing plugs 16 can be cylindrical sealing disks which are acted upon by an axially acting compression device, the sealing disk material compressed in the axial direction evading in the radial direction and thus being braced against the inner wall of the tube 4. In any case, an end-side sealing of the pipe struts 4 is achieved by the compressed sealing plugs 16.
- Potting material is fed into the pipe 13 under pressure via the hose line 14. Potting material passes through the holes 15 to the holes 11 of the pipe spreader 4 and through the holes 11, as shown by arrows in FIG. 3, under and out of the sleeve 12 into cracks and cavities in the concrete wall 20 which occur during filling and hardening of the liquid concrete in the area between this and the jacket of the tube 4, so that this critical area is reliably sealed.
- the packer 10 is pulled out of the pipe 4 after the sealing plugs 16 have been relaxed, and the pipe interior is z. B. filled with an injection packer known per se with potting material, so that the bed wall in the area of the pipe spreader 4 is completely sealed.
- the sleeve 12 expediently has at least one valve slot 12a, preferably a plurality of valve slots 12a, which are preferably not arranged over a hole 11 (FIG. 2).
- a plurality of slits 12a are preferably introduced in series along an axially parallel surface line of the sleeve 12, which extends in the longitudinal direction. If - as shown - several holes 11 z. B.
- the slots 12a are arranged in series along a longitudinal line of the tube 4, then the slots 12a are arranged on another offset longitudinal line in the sleeve 12, wherein the slots 12a are preferably not on the same circumferential line as the openings 11, but preferably exactly between two adjacent circumferential lines of the holes 11, the slots 12a also being arranged distributed over a circumferential line.
- FIG. 4 shows a modified embodiment of the pipe struts 4 shown in FIG. 2.
- the use of these pipe struts 40 according to the invention is shown in FIGS. 5 and 6.
- a radially projecting pipe socket 41 is attached to the pipe 40, passing through the sleeve 12, which has a smaller diameter than the pipe 40, is firmly connected to it and opens into it.
- Fig. 5 shows in cross-section a formwork for erecting a concrete wall
- the upper part of the formwork shown corresponds to that shown in Fig. 1 with two formwork panels 1 and 2, between the formwork panels 1 and 2 arranged pipe spreader 4, the dents 5 and 5a supported on the inside of the shuttering plates 1 and 2 and penetrated by a tension anchor 3, on the ends of which wing screws 6 and 7 are screwed on, which engage on the outside of the shuttering plates 1 and 2 via washers 8 and 9.
- the pipe spreader 40 shown in FIG. 4 with connecting piece 41 is installed at a certain point, the Pipe 40 is supported in the same way via dents 5 and 5a on the inner sides of the formwork panels 1 and 2.
- the tensioning anchors 3, the wing screws 6, 7 and the washers 8 and 9 serve as tensioning means, as in the anchoring arrangement with the pipe spreader 4.
- a hose 42 is attached to the pipe connection 41 projecting downward from the pipe 40, which connects to an injection channel 43 known from EP-A1-0 418 699 sealing device 43a is connected, which is U-shaped in cross section, parallel to the formwork panels 1 and 2 z.
- B. extends in its entire length and stands with its side walls on a concrete slab 44. Instead of the channel 43, other identical injection routes known per se can also be connected to the pipe socket 41 in the same way.
- FIG. 6 shows the concrete wall 20 which has arisen after concrete has been poured into the formwork shown in FIG. 5, after the concrete has hardened and after the formwork panels 1 and 2 have been knocked off, after the tensioning anchors 3 together with the tensioning screws 6, 7 and the washers 8 and 9 and the dents 5 and 5a have been removed.
- the upper pipe 4, the lower pipe 40, the connecting hose 42 and the injection channel 43 remain as lost parts in the concrete wall 20.
- sealing medium is introduced via the slots or openings in the tubes 4 and 40 into cavities and cracks outside the tubes 4 and 40, respectively.
- the measures for sealing the clamping points with potting material correspond to the measures described above with reference to FIGS. 1 to 3.
- sealing medium or Potting material which is introduced into the pipe 40 in the manner described above, not only exits through the openings 11 or 12a in the pipe 40 into cavities or cracks which are present in the concrete wall 20 adjacent to the pipe 40, but rather the sealing medium reaches via the pipe socket 41 and the connecting hose 42 also the injection channel 43, which is completely filled with the pressurized potting material or sealing medium, which emerge via the free longitudinal edges of the channel 43 into the joint area 45 and optionally into cracks or cavities May, which are present between the concrete wall 20 and the outer area of the injection channel 43.
- FIG. 7 shows a further embodiment of a packer 50 for use in pipe spreaders according to the invention, of which the pipe spreaders 4 is shown in FIG. 7, into which the front part of the packer 50 is inserted and which is seated in a concrete wall 20 (not shown) .
- the packer 50 has a nozzle tube 51 which extends over approximately two thirds of the packer 50 and has external thread sections 52 and 52a at the end, of which the nozzle-side threaded section 52 extends approximately over a third of the nozzle tube 51.
- a nozzle head screw 53 has a through hole 54 with the same diameter as the inside diameter of the tube 51.
- a blind hole 53 a coaxial with the through hole 54 in the nozzle head screw 53 is provided with an internal thread with which the screw 53 is screwed onto the end of the threaded section 52 is screwed on.
- a sealing ring 52a is inserted between the annular bottom of the blind hole 53a and an annular end face of the threaded section 52.
- the position of the screw 53 on the threaded section 52 is secured by a lock nut 57, which is seated with its internal thread on the nozzle pipe threaded section 52 and acts with its one end face on the adjacent end face of the nozzle head screw 53.
- the nozzle head screw 53 also has in one piece a smaller diameter cylindrical socket 53b, which is provided with an external thread 53c.
- a valve coupling 55 is screwed onto the thread 53c with an internal thread and is provided on the outside at its free end with a profile contour 56 for the connection of a hose coupling, not shown.
- the tight fit of the coupling 55 on the thread 53c is ensured by a Teflon tape which sits between the threads which are in engagement with one another.
- a conical coil spring 59 is arranged coaxially to the longitudinal center of the nozzle tube 51.
- the spring 59 is supported with its larger diameter end on an annular disc 60 which is inserted into an annular groove in the inner wall of the coupling 55; the smaller-diameter other end of the spring 59 biases a ball 61, which closes the inlet of the coupling 55 as a valve under spring tension.
- first tensioning hose 65 which is made of an elastic material, e.g. B. is made of plastic and sits on the outer surface of the nozzle tube 51.
- a second identical tensioning hose 66 is also axially spaced from the first tensioning hose 65 on the nozzle tube 51 in front of the thread 52a.
- a further cladding tube section 67 is arranged on the nozzle tube 51, which defines the distance between the two hoses 65 and 66 and has holes 68 in the jacket, which are expediently aligned with holes 69 which are arranged in the nozzle tube 51.
- a cylindrical cap 70 is screwed onto the thread 52a of the nozzle tube 51, its annular end edge 71 abutting against the annular end edge of the second tensioning hose 66 adjacent to this edge and closing the passage 51a of the nozzle tube 51.
- the injection packer 50 is identical to an injection packer known per se, except for the parts of the cladding tube section 67, the second tensioning hose 66 and the cap 70, which are used for filling pipe struts. It is arranged with its axially spaced tensioning hoses 65 and 66 within the tube struts 4 such that the holes 11 of the tube struts 4 are arranged in the area between the two tensioning tubes 65 and 66.
- the outer diameter of the cladding tube section 67 is smaller than the inner diameter of the pipe spreader 4, so that an annular cylindrical space 72 is formed which is sealed by the tensioning hoses 65 and 66.
- the tensioning hoses 65 and 66 are compressed by displacing the tensioning nut 62 in the axial direction, thicken themselves in the radial direction and are pressed against the inner wall of the tube spreader 4. During this rotary movement of the clamping nut 62, the cap 70 forms a counter bearing for the movement of the cladding tubes 64 and 67 and the clamping hoses 65, 66. The translatory movement of the cladding tubes 64 and 67 on the nozzle tube 51 brings about the compression of the two clamping hoses 65, 66 which also seals the intermediate space 72.
- Potting material is fed into the injection packer 50 under pressure via the valve coupling 55; the potting material passes through the passages 54 and 51a and the holes 69 and 68 into the intermediate space 72 and from there passes through the holes 11 of the pipe struts 4 into cracks and cavities in the concrete wall 20, not shown
- pipe spreaders 4, 40 which have a connecting piece 41, in order to fill several adjacent pipe spreaders 4, 40 at the same time in one operation with the injection packer inserted into a pipe spreading device, the connecting pieces of the adjacent pipe spreaders 4, 40 40 are connected to one another via hoses and / or pipes and the dent openings of the adjacent pipe spreaders 4, 40 are blocked.
- a sealing device 43 can also be loaded with a corresponding connection.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Electromagnetism (AREA)
- Physics & Mathematics (AREA)
- Forms Removed On Construction Sites Or Auxiliary Members Thereof (AREA)
- Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
- Moulds, Cores, Or Mandrels (AREA)
- Conveying And Assembling Of Building Elements In Situ (AREA)
- Load-Bearing And Curtain Walls (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Rod-Shaped Construction Members (AREA)
- Working Measures On Existing Buildindgs (AREA)
Abstract
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP96105665A EP0725195B1 (en) | 1992-05-13 | 1993-05-13 | Process for erecting concrete walls by means of braced shutterings |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4215731 | 1992-05-13 | ||
DE4215731A DE4215731A1 (en) | 1992-05-13 | 1992-05-13 | Process for erecting concrete walls using formwork, and device and means for carrying out this process |
PCT/EP1993/001199 WO1993023640A1 (en) | 1992-05-13 | 1993-05-13 | Process and device for erecting concrete walls by means of braced shutterings |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96105665.2 Division-Into | 1993-05-13 | ||
EP96105665A Division EP0725195B1 (en) | 1992-05-13 | 1993-05-13 | Process for erecting concrete walls by means of braced shutterings |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0642620A1 true EP0642620A1 (en) | 1995-03-15 |
EP0642620B1 EP0642620B1 (en) | 1996-12-11 |
Family
ID=6458742
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96105665A Expired - Lifetime EP0725195B1 (en) | 1992-05-13 | 1993-05-13 | Process for erecting concrete walls by means of braced shutterings |
EP93912708A Expired - Lifetime EP0642620B1 (en) | 1992-05-13 | 1993-05-13 | Process, tubular spreader and device for erecting concrete walls by means of braced shutterings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96105665A Expired - Lifetime EP0725195B1 (en) | 1992-05-13 | 1993-05-13 | Process for erecting concrete walls by means of braced shutterings |
Country Status (18)
Country | Link |
---|---|
US (2) | US5914137A (en) |
EP (2) | EP0725195B1 (en) |
AT (2) | ATE146249T1 (en) |
CA (1) | CA2134473C (en) |
CZ (1) | CZ282654B6 (en) |
DE (3) | DE4215731A1 (en) |
DK (2) | DK0725195T3 (en) |
ES (2) | ES2149400T3 (en) |
FI (1) | FI104844B (en) |
GE (1) | GEP20012563B (en) |
HU (1) | HU219269B (en) |
MD (1) | MD1885C2 (en) |
NO (2) | NO302583B1 (en) |
PL (2) | PL171625B1 (en) |
RU (2) | RU2102568C1 (en) |
SK (1) | SK280036B6 (en) |
UA (1) | UA27895C2 (en) |
WO (1) | WO1993023640A1 (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4215731A1 (en) * | 1992-05-13 | 1993-11-18 | Rene P Schmid | Process for erecting concrete walls using formwork, and device and means for carrying out this process |
DE19515816C1 (en) * | 1995-04-29 | 1997-02-13 | Gerd Dipl Ing Pleyers | Device for carrying out a borehole injection process |
DE19837055C2 (en) * | 1998-08-17 | 2003-01-16 | Koester Bauchemie Gmbh | Injection device and method for sealing components located in the ground |
KR100367676B1 (en) * | 2000-04-27 | 2003-01-24 | 주식회사 래미안엔지니어링 | Packer for grouting of concrete structure and the grouting method using with that |
US6526721B1 (en) * | 2000-05-26 | 2003-03-04 | Brian D. Nash | Fluid-impervious barrier/keyway form support apparatus, system and related method |
KR100441935B1 (en) * | 2001-06-07 | 2004-07-30 | 한광모 | Devices of holding concrete form tie for water proof grouting |
NO333274B1 (en) * | 2005-11-03 | 2013-04-29 | John A Simonsen | Spacer bars for joining a stop railing's opposite side sections. |
US8475499B2 (en) * | 2006-07-14 | 2013-07-02 | DePuy Synthes Products, LLC. | Rod to rod connectors and methods of adjusting the length of a spinal rod construct |
US20090056258A1 (en) * | 2007-08-28 | 2009-03-05 | Currier Donald W | Forming Apparatus and System |
DE102008008570A1 (en) * | 2008-02-11 | 2009-08-13 | Rehau Ag + Co | Arrangement for producing a connection possibility, in particular for a sprinkler on a concrete or reinforced concrete floor, and method therefor |
ITVI20100233A1 (en) * | 2010-08-11 | 2012-02-12 | Legnotre Ind Spa | MODULAR SYSTEM FOR THE COMPOSITION OF A FORMWORK PANEL |
MD4161C1 (en) * | 2011-01-10 | 2012-10-31 | Николае Попеску | Process for erection of cast-in-situ building, complex of cast-in-situ buildings and production tooling for realization thereof |
US9033302B2 (en) * | 2011-08-03 | 2015-05-19 | Composite Technologies Corporation | Taper-ended form tie |
US9771728B2 (en) * | 2012-05-23 | 2017-09-26 | Dennard Charles Gilpin | Device for forming a void in a concrete foundation |
CA2909909C (en) * | 2013-02-21 | 2020-10-27 | Laing O'rourke Australia Pty Limited | Method for casting a construction element |
DE102013206576A1 (en) * | 2013-04-12 | 2014-10-16 | Peri Gmbh | sealing plug |
CN103334501B (en) * | 2013-06-26 | 2014-10-08 | 青岛建安建设集团有限公司 | Seepage prevention construction method for bolt holes in exterior walls of buildings |
DE102014224971A1 (en) | 2014-12-05 | 2016-06-09 | Peri Gmbh | Sealing plug for closing an anchor hole of a concrete wall |
DE102015212466A1 (en) | 2015-07-03 | 2017-01-05 | Peri Gmbh | closing element |
CN105298121B (en) * | 2015-09-30 | 2018-08-07 | 深圳市广胜达建设有限公司 | Aluminum alloy mould plate system connection built-in fitting |
ITUB20160199A1 (en) * | 2016-01-14 | 2017-07-14 | Flex House Srl | SPACER ELEMENT FOR CASSERO TO LOSE FOR THE CONSTRUCTION OF WALLS AND DRAINAGE TO LOSE INCORPORATING SUCH SPACER ELEMENT |
MD1073Z (en) * | 2016-01-26 | 2017-04-30 | Григорий КАТАНОЙ | Device for plastering of building surfaces and pouring of screed coat under the floor |
MD1074Z (en) * | 2016-02-17 | 2017-04-30 | Григорий КАТАНОЙ | Device for plastering of building surfaces and pouring of screed coat under the floor |
MD1086Z (en) * | 2016-06-08 | 2017-05-31 | Григорий КАТАНОЙ | Device for plastering building surfaces |
DE102017108167A1 (en) * | 2017-04-18 | 2018-10-18 | Roland Wolf | Device for the subsequent stabilization of water-permeable joint chamber cracks in bridges, tunnels and buildings |
CN110593142A (en) * | 2019-09-21 | 2019-12-20 | 北京凯新浩达工程技术有限公司 | Bridge repairing method |
CN110808564B (en) * | 2019-11-08 | 2021-02-09 | 南京聚联输变电安装有限责任公司 | Concrete cable trench construction process |
CN113622559B (en) * | 2021-09-03 | 2022-02-18 | 耀华建设管理有限公司 | Civil building assembly type wall based on BIM and construction method thereof |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH600077A5 (en) * | 1976-04-06 | 1978-06-15 | Peter Kaufmann | Seal for gaps in concrete structures |
CH643623A5 (en) * | 1980-03-05 | 1984-06-15 | Aquarius Fuer Dichte Bauten Ag | HOSE-LIKE SEALING DEVICE FOR CONCRETE JOINTS. |
FR2532675A1 (en) * | 1982-09-02 | 1984-03-09 | Chandellier Antoine | Elements, devices and method for plugging the holes left in walls by formwork adjustment sheaths. |
DE8335231U1 (en) * | 1983-12-08 | 1984-03-08 | De Neef Chemie S.A. N.V., 3100 Heist o/d Berg | Concrete joint sealing device |
DE3512470C2 (en) * | 1985-04-04 | 1996-01-04 | Kunibert Ing Grad Koob | Injection hose for construction joints on concrete structures |
DE8904243U1 (en) * | 1989-04-06 | 1989-10-05 | Max Frank GmbH & Co KG, 8448 Leiblfing | Spacers |
DE8910744U1 (en) * | 1989-09-08 | 1991-01-17 | Schmidt, René P., Oberweningen | Sealing device for concrete joints |
DE3929848C3 (en) * | 1989-09-08 | 1997-07-17 | Pflieger Lieselotte | Injection hose for joints to be sealed in concrete structures |
US5257486A (en) * | 1991-04-23 | 1993-11-02 | Adhesives Technology Corporation 1987 | Nozzle for injecting a sealant into a crack |
US5171892A (en) * | 1991-07-02 | 1992-12-15 | E. I. Du Pont De Nemours And Company | Chiral phospholanes via chiral 1,4-diol cyclic sulfates |
DE4123067A1 (en) * | 1991-07-12 | 1993-01-14 | Betonbau Zubehoer Handel | METHOD FOR SEALING JOINTS ON CONSTRUCTIONS |
DE4215731A1 (en) * | 1992-05-13 | 1993-11-18 | Rene P Schmid | Process for erecting concrete walls using formwork, and device and means for carrying out this process |
-
1992
- 1992-05-13 DE DE4215731A patent/DE4215731A1/en not_active Withdrawn
-
1993
- 1993-05-13 SK SK1369-94A patent/SK280036B6/en unknown
- 1993-05-13 DE DE59304752T patent/DE59304752D1/en not_active Expired - Fee Related
- 1993-05-13 CA CA002134473A patent/CA2134473C/en not_active Expired - Fee Related
- 1993-05-13 HU HU9403080A patent/HU219269B/en not_active IP Right Cessation
- 1993-05-13 ES ES96105665T patent/ES2149400T3/en not_active Expired - Lifetime
- 1993-05-13 AT AT93912708T patent/ATE146249T1/en not_active IP Right Cessation
- 1993-05-13 RU RU94045978A patent/RU2102568C1/en not_active IP Right Cessation
- 1993-05-13 EP EP96105665A patent/EP0725195B1/en not_active Expired - Lifetime
- 1993-05-13 DK DK96105665T patent/DK0725195T3/en active
- 1993-05-13 MD MD96-0322A patent/MD1885C2/en not_active IP Right Cessation
- 1993-05-13 PL PL93305986A patent/PL171625B1/en not_active IP Right Cessation
- 1993-05-13 DE DE59310069T patent/DE59310069D1/en not_active Expired - Fee Related
- 1993-05-13 EP EP93912708A patent/EP0642620B1/en not_active Expired - Lifetime
- 1993-05-13 PL PL93316305A patent/PL172395B1/en not_active IP Right Cessation
- 1993-05-13 ES ES93912708T patent/ES2098040T3/en not_active Expired - Lifetime
- 1993-05-13 UA UA94119001A patent/UA27895C2/en unknown
- 1993-05-13 GE GEAP19932577A patent/GEP20012563B/en unknown
- 1993-05-13 DK DK93912708.0T patent/DK0642620T3/en active
- 1993-05-13 RU RU97100299A patent/RU2126480C1/en not_active IP Right Cessation
- 1993-05-13 AT AT96105665T patent/ATE194203T1/en not_active IP Right Cessation
- 1993-05-13 WO PCT/EP1993/001199 patent/WO1993023640A1/en active IP Right Grant
- 1993-05-13 CZ CZ942741A patent/CZ282654B6/en not_active IP Right Cessation
-
1994
- 1994-11-10 NO NO944279A patent/NO302583B1/en not_active Application Discontinuation
- 1994-11-14 FI FI945366A patent/FI104844B/en not_active IP Right Cessation
-
1996
- 1996-12-19 US US08/769,883 patent/US5914137A/en not_active Expired - Fee Related
-
1997
- 1997-12-04 NO NO19975647A patent/NO311585B1/en not_active Application Discontinuation
-
1998
- 1998-11-24 US US09/199,022 patent/US6159399A/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO9323640A1 * |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0642620B1 (en) | Process, tubular spreader and device for erecting concrete walls by means of braced shutterings | |
EP0629750B1 (en) | Process for sealing of a joint by injection of a sealing medium | |
EP0546128B1 (en) | Injection pipe and process for setting a rock anchor | |
CH676495A5 (en) | ||
DE102008014700A1 (en) | Corrosion-protected self-drilling anchor and method for its production | |
DE1226516B (en) | Process for two-stage concreting of rock anchors and an anchor for this | |
DE2556493A1 (en) | Adhesively fixed wall anchor bolt - uses helical web to influence adhesive flow behind outer sealing ring | |
DE3339125C2 (en) | ||
CH600077A5 (en) | Seal for gaps in concrete structures | |
DE4127249C1 (en) | ||
EP0348870B1 (en) | Constructions composed of several precast reinforced-concrete elements for use in the prestressed concrete construction method | |
DE3838880C1 (en) | Method of producing a grouted anchor, and grouted anchor for carrying out the method | |
DE4220684C2 (en) | Method and device for renovating old masonry | |
DE3405976A1 (en) | Anchor for concrete formworks | |
CH564654A5 (en) | Ground anchor for bore mounting - has deformable body for making friction contact with borehole wall | |
DE3404074C2 (en) | ||
EP1672125B1 (en) | Apparatus and method for producing a foundation element | |
DE69912267T2 (en) | DEVICE FOR A ROCK WALL | |
EP0863353A2 (en) | Anchoring device | |
DE19632982A1 (en) | Injection hose for building sealant for sealing construction joints | |
DE4340253A1 (en) | Wall-cavity-filling tool | |
DE8600358U1 (en) | packer | |
DE2617758A1 (en) | Plastics filling through holes drilled in walls - uses temporary tubes inserted through elastically fitting plugs in hole mouths | |
DE3637853C1 (en) | Process for grouting cracks in a double-leaf masonry structure, and apparatus for carrying out the process | |
DE202010008496U1 (en) | Formwork spacers and formwork |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19940915 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19950926 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE |
|
DX | Miscellaneous (deleted) | ||
REF | Corresponds to: |
Ref document number: 146249 Country of ref document: AT Date of ref document: 19961215 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
REF | Corresponds to: |
Ref document number: 59304752 Country of ref document: DE Date of ref document: 19970123 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: TROESCH SCHEIDEGGER WERNER AG |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19970125 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2098040 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20050516 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20060512 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20060530 Year of fee payment: 14 Ref country code: SE Payment date: 20060530 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20060531 Year of fee payment: 14 Ref country code: IT Payment date: 20060531 Year of fee payment: 14 Ref country code: FR Payment date: 20060531 Year of fee payment: 14 Ref country code: DK Payment date: 20060531 Year of fee payment: 14 Ref country code: BE Payment date: 20060531 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060721 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20060728 Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20060516 |
|
BERE | Be: lapsed |
Owner name: *RASCOR SPEZIALBAU G.M.B.H. Effective date: 20070531 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20070513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071201 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20071201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070513 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070513 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070514 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070513 |