EP0596830A1 - Plasma spray gun - Google Patents
Plasma spray gun Download PDFInfo
- Publication number
- EP0596830A1 EP0596830A1 EP93810729A EP93810729A EP0596830A1 EP 0596830 A1 EP0596830 A1 EP 0596830A1 EP 93810729 A EP93810729 A EP 93810729A EP 93810729 A EP93810729 A EP 93810729A EP 0596830 A1 EP0596830 A1 EP 0596830A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- anode
- channel
- cathode
- arrangement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3484—Convergent-divergent nozzles
Definitions
- the present invention relates to a plasma spraying device with an indirect plasmatron for spraying powdery material, in particular for coating workpiece surfaces.
- plasma sprayers For spraying powdery material in the molten state, plasma sprayers are used which work with an indirect plasmatron, i.e. a plasma generator with an electrically non-current-carrying plasma jet flowing out of a nozzle.
- an indirect plasmatron i.e. a plasma generator with an electrically non-current-carrying plasma jet flowing out of a nozzle.
- the plasma is generated by an arc and passed through a plasma channel to an outflow nozzle, a distinction being made between devices with a short arc and those with a long arc.
- Foot migrations can be particularly pronounced in plasma cartridges that work with a short arc, a pin-shaped cathode being immersed in a one-piece, nozzle-shaped anode (for example in accordance with DE-GM 1 932 150), since anode nozzles with an axial extension with this electrode arrangement have both axial and peripheral Migration of the arc base can occur.
- At least axial foot point hikes can also be expected in a similar plasma spraying device according to DE 33 12 232, which has several cathodes instead of one.
- an axial base point migration results from the fact that an arc burning between a cathode and a nozzle-shaped anode is drawn out under the influence of the plasma flow to a point of the anode furthest from the cathode, then tears off at this point and at one of the Cathode at the closest point of the anode again starts.
- this process is repeated more or less periodically with a repetition frequency in the order of several kilohertz.
- the voltage changes associated with the changes in length of the arc can lead to strong power fluctuations (up to approximately ⁇ 30%) and corresponding intensity fluctuations in the free plasma beam.
- the spray material supplied to the plasma jet is treated very unevenly.
- the radial temperature profile of the free plasma jet also runs asymmetrically, i.e. that the hot core of the plasma jet experiences a certain deflection from the longitudinal axis of the plasma cartridge.
- This effect is further supported by the fact that the plasma flowing out of the anode nozzle at the base of the arc, i.e. at an eccentric point in the arrangement, is additionally heated.
- Such a deflection of the plasma core is particularly serious in connection with a peripheral migration of the base of the arc. This creates a kind of precession movement of the plasma jet, which usually runs irregularly and also results in an uneven thermal treatment of the spray material when the spray material is supplied externally from a stationary supply device.
- a plasma spraying device the plasmatron of which works with a long arc and, for example according to EP 0 249 238 A2, one with an anode ring and has a number of annular, electrically isolated neutrodes formed from each other.
- a plasmatron of this type still shows a pronounced peripheral migration of the arc base at the ring-shaped anode, provided the arc starts from a single cathode, as is the case, for example, with the plasma spraying device according to EP 0 249 238 A2.
- the situation is similar to that of the example of a short-arc plasma platrons described above. In this case too, the result is an uneven treatment of the spray material supplied from the side.
- the plasma spraying device shown in longitudinal section has three rod-shaped cathodes 1, which run parallel to one another and are evenly distributed in a circle around the central longitudinal axis 2 of the device, furthermore an annular anode 3 distanced from the cathodes 1 and a plasma guide channel 4 extending from the cathodes 1 to the anode 3.
- the plasma guide channel 4 is isolated from one another by a number of annular, electrically insulated Neutrodes 6 to 12 and the annular anode 3 are formed.
- the cathode rods 1 are anchored in a cathode support 13 made of insulating material.
- a sleeve-shaped anode carrier 14 made of insulating material, which surrounds the neutrodes 6 to 12 and the anode 3.
- the whole is held together by three metal sleeves 15, 16 and 17, the first sleeve 15 being screwed to the end on the end face and the second sleeve 16 being screwed to the first circumference, while the third sleeve 17 is loosely anchored on the one hand to the second sleeve 16 and on the other hand is screwed circumferentially to the anode carrier 14.
- the third sleeve 17 also presses with an inwardly directed flange 18 against the anode ring 3 and thus holds the elements forming the plasma guide channel 4 together, the neutrode 6 closest to the cathodes being supported on an inner collar 19 of the anode carrier 4.
- the free ends of the cathode rods 1 carry cathode pins 20, which are made of an electrically and thermally particularly conductive and also high-melting material, for example tungsten.
- the cathode pins 20 are eccentric to the respective one Axis of the cathode rods 1 is arranged so that their longitudinal axes are closer to the central longitudinal axis 2 than those of the cathode rods 1.
- a central insulating body 21 made of high-melting, in particular glass-ceramic material, from which the cathode pins 20 are made, is attached to the cathode carrier 13 on the side facing the plasma guide channel 4 protrude into the cavity 22 of the inlet nozzle formed by the first neutrode 6.
- the exposed part of the outer lateral surface of the insulating body 21 is located radially opposite a part of the nozzle wall and forms with this wall part an annular channel 23 for the inlet of the plasma gas into the nozzle cavity 22.
- the plasma gas PG is fed through a transverse channel 26 provided in the cathode carrier 13, which transitions into a longitudinal channel 27, from which the plasma gas reaches an annular space 28 and from there into the annular channel 23.
- a distributor ring 29 is provided on the insulating body 20 and has a plurality of through bores 30 which connect the annular space 28 to the annular channel 23.
- the elements forming the plasma guide channel 4, namely the anode 3 and the neutrodes 6 to 12, are electrically insulated from one another by ring disks 31 made of insulating material, for example boron nitride, and are connected to one another in a gastight manner by means of sealing rings 32.
- the plasma guide channel 4 has a constriction zone 33 in the region near the cathode and widens after this Constriction zone 33 towards the anode 3 to a diameter which is at least 1.5 times as large as the channel diameter at the narrowest point of the constriction zone 33. After this expansion, the plasma guide channel 4 extends cylindrically to its anode-side end.
- the anode 3 is composed of an outer ring 34, for example of copper, and an inner ring 35 of an electrically and thermally particularly conductive and also high-melting material, for example tungsten.
- the neutrode 6 closest to the cathode rods 1 extends over the entire constriction zone 33, so that the channel wall 52 unites beyond the narrowest point of the constriction zone has a steady course.
- the parts directly exposed to the arc and plasma heat are largely water-cooled.
- various cavities for the circulation of the cooling water KW are provided in the cathode holder 13, in the cathode rods 1 and in the anode holder 14.
- the cathode holder 13 has three annular spaces 36, 37 and 38, which are connected to connecting lines 39, 40 and 41, respectively, and the anode holder 14 has an annular space 42 in the area of the anode 3 and one surrounding all neutrodes in the area of the neutrodes 6 to 12 Cavity 43 on.
- Cooling water KW is supplied via the connecting lines 39 and 41.
- the cooling water of the connecting line 39 first passes through a longitudinal channel 44 to the annular space 42 surrounding the most thermally stressed anode 3.
- the cooling water flows through the cavity 43 of the lateral surface of the neutrodes 6 to 12 back through a longitudinal channel 45 into the annular space 37
- Connection line 41 flows into an annular space 38 and from this into a cavity 46 of the cathode rods 1, which is divided by a cylindrical partition 47.
- the cooling water also arrives from the cathode rods 1 into the annular space 37, from which it flows out via the connecting line 40.
- the approximate course of the individual arcs 50 (two visible) is also indicated schematically in the figure. Their anode-side base points are distributed evenly over the inner circumference of the anode ring 3. Furthermore, the beginning section of the free plasma jet PS emerging axially symmetrically from the plasma channel 4 is indicated by dashed lines.
- the supply of the spray material, for example metal powder, into the free plasma jet PS takes place with the aid of a ring arrangement 51 made of temperature-resistant material placed on the anode-side metal sleeve 17, which is provided with channels 52 in the form of radial bores, to which the spray material SM is supplied with a carrier gas via connecting lines 53 is fed.
- a ring arrangement 51 made of temperature-resistant material placed on the anode-side metal sleeve 17, which is provided with channels 52 in the form of radial bores, to which the spray material SM is supplied with a carrier gas via connecting lines 53 is fed.
- two radial bores are diametrically opposite one another.
- a ring arrangement with only one channel 52 or one with more than two, for example three, channels can also be present be in the latter case, the channels are preferably arranged evenly distributed over the circumference of the ring assembly 51.
- the channels are preferably arranged evenly distributed over the circumference of the ring assembly 51.
- the spray material SM on the anode side in the free plasma jet PS it may be expedient not only to provide the spray material SM on the anode side in the free plasma jet PS, but also to provide spray material at the cathode-side end of the plasma cartridge.
- an axial guide tube can be provided which passes through the cathode holder 13 and the insulating body 21 centrally.
- the entire arc energy that is to say not only the energy portion which passes from the arc into the free plasma jet, can be used in a known manner to melt the spray material.
- the plasmatron could be operated simultaneously or alternately with anode-side and cathode-side supply of spray material.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Plasma Technology (AREA)
- Coating By Spraying Or Casting (AREA)
- Nozzles (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Electrostatic Spraying Apparatus (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Plasmaspritzgerät mit indirektem Plasmatron zum Versprühen von pulverförmigem Material, insbesondere zum Beschichten von Werkstückoberflächen.The present invention relates to a plasma spraying device with an indirect plasmatron for spraying powdery material, in particular for coating workpiece surfaces.
Zum Versprühen von pulverförmigem Material in schmelzflüssigem Zustand sind Plasmasspritzgeräte im Gebrauch, welche mit einem indirekten Plasmatron arbeiten, d.h. einem Plasmaerzeuger mit einem aus einer Düse ausströmenden, elektrisch nicht stromführenden Plasmastrahl. In der Regel wird das Plasma durch einen Lichtbogen erzeugt und durch einen Plasmakanal zu einer Ausströmdüse geleitet, wobei man unterscheidet zwischen Geräten mit Kurzlichtbogen und solchen mit Langlichtbogen.For spraying powdery material in the molten state, plasma sprayers are used which work with an indirect plasmatron, i.e. a plasma generator with an electrically non-current-carrying plasma jet flowing out of a nozzle. As a rule, the plasma is generated by an arc and passed through a plasma channel to an outflow nozzle, a distinction being made between devices with a short arc and those with a long arc.
Herkömmliche Plasmaspritzgeräte mit indirektem Plasmatron haben vielfach den Nachteil, dass der freie Plasmastrahl hinsichtlich seiner Wärmeintensität und der Lage seines radialen Temperaturprofils nicht genügend stabil ist, so dass das dem Plasmastrahl zugeführte Spritzmaterial thermisch ungleichmässig behandelt wird und infolgedessen die mit dem versprühten Material erzeugten Schichten nicht die erwünschte Regelmässigkeit aufweisen.Conventional plasma sprayers with indirect plasma matron often have the disadvantage that the free plasma jet is not sufficiently stable with regard to its heat intensity and the position of its radial temperature profile, so that the spray material supplied to the plasma jet is treated thermally unevenly and consequently the layers generated with the sprayed material do not have the desired regularity.
Der Grund für diese Unregelmässigkeit des Plasmastrahls liegt bei diesen Geräten einerseits in der Instabilität des Lichtbogens, welche verschiedene Ursachen haben kann. Eine wesentliche Rolle spielt dabei der Umstand, dass der Fusspunkt des an den Elektroden ansetzenden Lichtbogens unter gewissen Voraussetzungen eine Wanderbewegung ausführt. Andererseits kann in Verbindung mit einer Fusspunktwanderung auch der im allgemeinen asymmetrische Verlauf des Lichtbogens bezüglich der Längsachse des Plasmatrons eine Ungleichmässigkeit der thermischen Behandlung des Spritzmaterials bewirken.The reason for this irregularity of the plasma beam in these devices lies on the one hand in the instability of the arc, which can have various causes. The fact that the base of the arc attached to the electrodes moves under certain conditions plays an important role. On the other hand, in connection with a base point migration, the generally asymmetrical course of the arc with respect to the longitudinal axis of the plasmatron can also cause an uneven thermal treatment of the spray material.
Besonders ausgeprägt können Fusspunktwanderungen bei Plasmatrons sein, welche mit einem Kurzlichtbogen arbeiten, wobei eine stiftförmige Kathode in eine einteilige, düsenförmige Anode eintaucht (z.B. gemäss DE-GM 1 932 150), da an Anodendüsen mit achsialer Ausdehnung bei dieser Elektrodenanordnung sowohl achsiale als auch periphere Wanderungen des Lichtbogenfusspunktes auftreten können. Zumindest achsiale Fusspunktwanderungen sind auch bei einem ähnlichen Plasmaspritzgerät nach der DE 33 12 232 zu erwarten, welches statt einer mehrere Kathoden aufweist.Foot migrations can be particularly pronounced in plasma cartridges that work with a short arc, a pin-shaped cathode being immersed in a one-piece, nozzle-shaped anode (for example in accordance with DE-GM 1 932 150), since anode nozzles with an axial extension with this electrode arrangement have both axial and peripheral Migration of the arc base can occur. At least axial foot point hikes can also be expected in a similar plasma spraying device according to
Eine achsiale Fusspunktwanderung entsteht prinzipiell dadurch, dass ein zwischen einer Kathode und einer düsenförmigen Anode brennender Lichtbogen unter dem Einfluss der Plasmaströmung bis an eine von der Kathode am weitesten entfernte Stelle der Anode in die Länge gezogen wird, dann an dieser Stelle abreisst und an einer der Kathode am nächsten liegenden Stelle der Anode wieder ansetzt. Erfahrungsgemäss wiederholt sich dieser Vorgang mehr oder weniger periodisch mit einer Wiederholungsfrequenz in der Grössenordnung von mehreren Kilohertz. Die mit den Längenänderungen des Lichtbogens einhergehenden Spannungsänderungen können zu starken Leistungsschwankungen (bis etwa ± 30%) und entsprechenden Intensitätsschwankungen im freien Plasmastrahl führen. Dadurch wird das dem Plasmastrahl zugeführte Spritzmaterial sehr ungleichmässig behandelt.In principle, an axial base point migration results from the fact that an arc burning between a cathode and a nozzle-shaped anode is drawn out under the influence of the plasma flow to a point of the anode furthest from the cathode, then tears off at this point and at one of the Cathode at the closest point of the anode again starts. Experience has shown that this process is repeated more or less periodically with a repetition frequency in the order of several kilohertz. The voltage changes associated with the changes in length of the arc can lead to strong power fluctuations (up to approximately ± 30%) and corresponding intensity fluctuations in the free plasma beam. As a result, the spray material supplied to the plasma jet is treated very unevenly.
Die Asymmetrie des Lichtbogens hat zur Folge, dass auch das radiale Temperaturprofil des freien Plasmastrahls asymmetrisch verläuft, d.h. dass der heisse Kern des Plasmastrahls eine gewisse Auslenkung aus der Längsachse des Plasmatrons erfährt. Diese Wirkung wird noch unterstützt durch den Umstand, dass das aus der Anodendüse abströmende Plasma am Fusspunkt des Lichtbogens, d.h. an einer exzentrischen Stelle der Anordnung, zusätzlich aufgeheizt wird. Besonders gravierend ist eine derartige Auslenkung des Plasmakerns in Verbindung mit einer peripheren Fusspunktwanderung des Lichtbogens. Dadurch entsteht eine Art Präzessionsbewegung des Plasmastrahls, welche meist unregelmässig verläuft und bei externer Zufuhr des Spritzmaterials aus einer ortsfesten Zufuhreinrichtung ebenfalls eine ungleichmässige thermische Behandlung des Spritzmaterials zur Folge hat.As a result of the asymmetry of the arc, the radial temperature profile of the free plasma jet also runs asymmetrically, i.e. that the hot core of the plasma jet experiences a certain deflection from the longitudinal axis of the plasma cartridge. This effect is further supported by the fact that the plasma flowing out of the anode nozzle at the base of the arc, i.e. at an eccentric point in the arrangement, is additionally heated. Such a deflection of the plasma core is particularly serious in connection with a peripheral migration of the base of the arc. This creates a kind of precession movement of the plasma jet, which usually runs irregularly and also results in an uneven thermal treatment of the spray material when the spray material is supplied externally from a stationary supply device.
Bessere Verhältnisse erzielt man in dieser Beziehung mit einem Plasmaspritzgerät, dessen Plasmatron mit Langlichtbogen arbeitet und, z.B. gemäss der EP 0 249 238 A2, einen durch einen Anodenring und eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden gebildeten Plasmakanal aufweist. Durch die Kaskadierung des Plasmakanals, d.h. durch die der Anode vorgesetzten Neutroden, wird eine achsiale Wanderung des anodischen Lichtbogenfusspunktes vermieden. Hingegen zeigt sich bei einem derartigen Plasmatron immer noch eine ausgeprägte periphere Wanderung des Lichtbogenfusspunktes an der ringförmigen Anode, sofern der Lichtbogen von einer einzigen Kathode ausgeht, wie das z.B. bei dem Plasmaspritzgerät nach der EP 0 249 238 A2 der Fall ist. In dieser Hinsicht liegen daher ähnliche Verhältnisse vor wie bei dem zuvor beschriebenen Beispiel eines Kurzlichtbogen-Plasmatrons. Auch in diesem Fall ist also eine ungleichmässige Behandlung des seitlich zugeführten Spritzmaterials die Folge.In this respect, better conditions are achieved with a plasma spraying device, the plasmatron of which works with a long arc and, for example according to EP 0 249 238 A2, one with an anode ring and has a number of annular, electrically isolated neutrodes formed from each other. The cascading of the plasma channel, ie the neutrodes placed in front of the anode, avoids an axial migration of the anodic arc base. On the other hand, a plasmatron of this type still shows a pronounced peripheral migration of the arc base at the ring-shaped anode, provided the arc starts from a single cathode, as is the case, for example, with the plasma spraying device according to EP 0 249 238 A2. In this respect, the situation is similar to that of the example of a short-arc plasma platrons described above. In this case too, the result is an uneven treatment of the spray material supplied from the side.
Es ist demnach die Aufgabe der Erfindung, ein Plasmaspritzgerät zu schaffen, das unter Vermeidung der genannten Nachteile einen stabilen freien Plasmastrahl erzeugt und damit sicherstellt, dass das diesem von aussen zugeführte Spritzmaterial gleichmässig aufbereitet wird.It is therefore the object of the invention to provide a plasma spraying device which, while avoiding the disadvantages mentioned, generates a stable free plasma jet and thus ensures that the spraying material supplied to it from the outside is processed uniformly.
Diese Aufgabe wird gemäss der Erfindung durch die Kombination der Merkmale a) bis d) im Kennzeichen des Anspruchs 1 gelöst.This object is achieved according to the invention by the combination of features a) to d) in the characterizing part of
Besondere Ausführungsformen und vorteilhafte Weiterbildungen des Erfindungsgegenstandes sind in den abhängigen Ansprüchen 2-9 definiert.Particular embodiments and advantageous developments of the subject matter of the invention are defined in the dependent claims 2-9.
Beobachtungen über den Lichtbogenverlauf in einem derartigen Plasmatron liessen erkennen, dass bei einer Kathodenanordnung mit mehreren Kathoden die von den einzelnen Kathoden ausgehenden Lichtbögen sich nicht etwa zu einem einzigen Lichtbogen vereinigen und in einem gemeinsamen, zu peripheren Wanderungen neigendem Fusspunkt am Anodenring enden, sondern dass sich von allen Kathoden her diskrete Lichtbögen ausbilden, welche am Anodenring diskrete Fusspunkte haben. Diese Anodenfusspunkte wandern nicht peripher dem Anodenring entlang, sondern liegen örtlich fest; sie können allenfalls, z.B. bei wirbelförmiger Strömung des Plasmagases, gegenüber den betreffenden Kathodenfusspunkten etwas versetzt sein. Von besonderer Bedeutung ist dabei die weitere Feststellung, dass sich der beobachtete Lichtbogenverlauf auch dann nicht ändert, wenn das Plasmatron einen engen oder stellenweise verengten Plasmakanal aufweist.Observations of the course of the arc in such a plasmatron showed that in the case of a cathode arrangement with a plurality of cathodes, the arcs emanating from the individual cathodes do not unite to form a single arc and end in a common base point on the anode ring, which tends towards peripheral migration, but rather that form discrete arcs from all cathodes, which have discrete base points on the anode ring. These anode base points do not migrate peripherally along the anode ring, but are locally fixed; at most, e.g. in the case of a vortex-shaped flow of the plasma gas, be somewhat offset from the relevant cathode base points. Of particular importance is the further determination that the observed arc path does not change even if the plasmatron has a narrow or locally narrowed plasma channel.
Auf diese Weise werden also auf der ganzen Lichbogenstrecke stabile Verhältnisse erzielt, was zu einem räumlich und zeitlich stabilen freien Plasmastrahl und dementsprechend zu einem gleichförmigen Energieaustausch mit dem seitlich in den Plasmastrahl eingeführten Spritzmaterial führt.In this way, stable conditions are achieved over the entire arc path, which leads to a spatially and temporally stable free plasma jet and accordingly to a uniform energy exchange with the spray material introduced laterally into the plasma jet.
In der beigefügten Zeichnung ist ein Ausführungsbeispiel eines gemäss der Erfindung aufgebauten Plasmaspritzgerätes dargestellt.In the accompanying drawing, an embodiment of a plasma spray device constructed according to the invention is shown.
Das im Längsschnitt gezeigte Plasmaspritzgerät besitzt drei stabförmige Kathoden 1, welche parallel zueinander verlaufen und im Kreis um die zentrale Längsachse 2 des Gerätes gleichmässig verteilt angeordnet sind, ferner eine von den Kathoden 1 distanzierte ringförmige Anode 3 und einen von den Kathoden 1 zur Anode 3 sich erstreckenden Plasmaführungskanal 4. Der Plasmaführungskanal 4 ist durch eine Anzahl ringförmiger, voneinander elektrisch isolierter Neutroden 6 bis 12 und die ringförmige Anode 3 gebildet.The plasma spraying device shown in longitudinal section has three rod-
Die Kathodenstäbe 1 sind in einem Kathodenträger 13 aus Isoliermaterial verankert. An diesen schliesst sich ein hülsenförmiger Anodenträger 14 aus Isoliermaterial an, der die Neutroden 6 bis 12 und die Anode 3 umgibt. Das Ganze wird zusammengehalten durch drei Metallhülsen 15, 16 und 17, wobei die erste Hülse 15 mit dem Kathodenträger 13 stirnseitig und die zweite Hülse 16 mit der ersten umfänglich verschraubt ist, während die dritte Hülse 17 einerseits an der zweiten Hülse 16 lose verankert und andererseits mit dem Anodenträger 14 umfänglich verschraubt ist. Die dritte Hülse 17 drückt ausserdem mit einem nach innen gerichteten Flanschrand 18 gegen den Anodenring 3 und hält damit die den Plasmaführungskanal 4 bildenden Elemente zusammen, wobei sich die den Kathoden am nächsten liegende Neutrode 6 an einem Innenbund 19 des Anodenträgers 4 abstützt.The
Die Kathodenstäbe 1 tragen an ihren freien Enden Kathodenstifte 20, welche aus einem elektrisch und thermisch besonders gut leitenden und zudem hochschmelzenden Material, z.B. Wolfram, bestehen. Dabei sind die Kathodenstifte 20 derart exzentrisch zur jeweiligen Achse der Kathodenstäbe 1 angeordnet, dass deren Längsachsen der zentralen Längsachse 2 näher liegen als diejenigen der Kathodenstäbe 1. An den Kathodenträger 13 ist auf der dem Plasmaführungskanal 4 zugewandten Seite ein zentraler Isolierkörper 21 aus hochschmelzendem, insbesondere glaskeramischem Material angesetzt, aus dem die Kathodenstifte 20 heraus in den Hohlraum 22 der durch die erste Neutrode 6 gebildeten Einlaufdüse ragen. Der freiliegende Teil der äusseren Mantelfläche des Isolierkörpers 21 liegt einem Teil der Düsenwandung radial gegenüber und bildet mit diesem Wandungsteil einen Ringkanal 23 für den Einlass des Plasmagases in den Düsenhohlraum 22.The free ends of the
Das Plasmagas PG wird durch einen im Kathodenträger 13 vorgesehenen Querkanal 26 zugeführt, welcher in einen Längskanal 27 übergeht, aus dem das Plasmagas in einen Ringraum 28 und von da in den Ringkanal 23 gelangt. Zur Erzielung einer möglichst laminaren Einströmung des Plasmagases in den Düsenhohlraum 22 ist ein auf dem Isolierkörper 20 sitzender Verteilerring 29 mit einer Mehrzahl von Durchgangsbohrungen 30 vorgesehen, welche den Ringraum 28 mit dem Ringkanal 23 verbinden.The plasma gas PG is fed through a
Die den Plasmaführungskanal 4 bildenden Elemente, nämlich die Anode 3 und die Neutroden 6 bis 12, sind durch Ringscheiben 31 aus Isoliermaterial, z.B. Bornitrid, gegeneinander elektrisch isoliert und durch Dichtungsringe 32 gasdicht miteinander verbunden. Der Plasmaführungskanal 4 weist im kathodennahen Bereich eine Einschnürungszone 33 auf und erweitert sich im Anschluss an diese Einschnürungszone 33 zur Anode 3 hin auf einen Durchmesser, welcher mindestens 1,5-mal so gross ist wie der Kanaldurchmesser an der engsten Stelle der Einschnürungszone 33. Nach dieser Erweiterung verläuft der Plasmaführungskanal 4 zylindrisch bis an sein anodenseitiges-Ende. Während die Neutroden 6 bis 12 z.B. aus Kupfer bestehen, ist die Anode 3 aus einem Aussenring 34, z.B. aus Kupfer, und einem Innenring 35 aus einem elektrisch und thermisch besonders gut leitenden und zudem hochschmelzenden Material, z.B. Wolfram, aufgebaut.The elements forming the
Um die Plasmaströmung, insbesondere im Düsenbereich, nicht durch Spalte in der Wandung des Plasmaführungskanals 4 zu behindern, erstreckt sich die den Kathodenstäben 1 am nächsten liegende Neutrode 6 über die ganze Einschnürungszone 33, damit die Kanalwandung 52 bis über die engste Stelle der Einschnürungszone hinaus einen stetigen Verlauf aufweist.In order not to impede the plasma flow, in particular in the nozzle area, by gaps in the wall of the
Die der Lichtbogen- und Plasmawärme unmittelbar ausgesetzten Teile sind weitgehend wassergekühlt. Zu diesem Zweck sind im Kathodenhalter 13, in den Kathodenstäben 1 und im Anodenhalter 14 verschiedene Hohlräume für die Zirkulation des Kühlwassers KW vorgesehen. Der Kathodenhalter 13 weist drei Ringräume 36, 37 und 38 auf, die mit Anschlussleitungen 39, 40 bzw. 41 verbunden sind, und der Anodenhalter 14 weist im Bereich der Anode 3 einen Ringraum 42 und im Bereich der Neutroden 6 bis 12 einen alle Neutroden umgebenden Hohlraum 43 auf. Kühlwasser KW wird über die Anschlussleitungen 39 und 41 zugeführt. Das Kühlwasser der Anschlussleitung 39 gelangt durch einen Längskanal 44 zunächst zu dem die thermisch am stärksten belastete Anode 3 umgebenden Ringraum 42. Von da strömt das Kühlwasser durch den Hohlraum 43 der Mantelfläche der Neutroden 6 bis 12 entlang zurück durch einen Längskanal 45 in den Ringraum 37. Das Kühlwasser der Anschlussleitung 41 fliesst in einen Ringraum 38 und aus diesem in je einen Hohlraum 46 der Kathodenstäbe 1, welcher durch eine zylindrische Trennwand 47 unterteilt ist. Aus den Kathodenstäben 1 gelangt das Kühlwasser schliesslich ebenfalls in den Ringraum 37, aus dem es über die Anschlussleitung 40 abfliesst.The parts directly exposed to the arc and plasma heat are largely water-cooled. For this purpose, various cavities for the circulation of the cooling water KW are provided in the
In die Figur ist auch der ungefähre Verlauf der einzelnen Lichtbögen 50 (zwei sichtbar) schematisch angedeutet. Deren anodenseitige Fusspunkte verteilen sich gleichmässig über den inneren Umfang des Anodenrings 3. Ferner ist mit gestrichelten Linien der Anfangsabschnitt des aus dem Plasmakanal 4 achsialsymmetrisch austretenden freien Plasmastrahls PS angedeutet.The approximate course of the individual arcs 50 (two visible) is also indicated schematically in the figure. Their anode-side base points are distributed evenly over the inner circumference of the
Die Zufuhr des Spritzmaterials, z.B. Metallpulver, in den freien Plasmastrahl PS erfolgt mit Hilfe einer auf die anodenseitige Metallhülse 17 aufgesetzten Ringanordnung 51 aus temperaturbeständigem Material, welche mit Kanälen 52 in Form von Radialbohrungen versehen ist, denen das Spritzmaterial SM mit einem Trägergas über Anschlussleitungen 53 zugeführt wird. Im vorliegenden Beispiel liegen zwei Radialbohrungen einander diametral gegenüber. Es kann jedoch auch eine Ringanordnung mit nur einem Kanal 52 oder eine solche mit mehr als zwei, z.B. drei Kanälen vorhanden sein, wobei im letzteren Fall die Kanäle vorzugsweise gleichmässig über den Umfang der Ringanordnung 51 verteilt angeordnet sind. Ferner besteht die Möglichkeit, die Kanäle jeweils in einer Achsialebene der Ringanordnung 51 schräg anzuordnen, und zwar können diese in bezug auf die Richtung des Plasmastrahls PS sowohl nach vorne als nach hinten gerichtet sein.The supply of the spray material, for example metal powder, into the free plasma jet PS takes place with the aid of a
Unter Umständen kann es zweckmässig sein, ausser der anodenseitigen Zufuhr des Spritzmaterials SM in den freien Plasmastrahl PS auch eine Zufuhr von Spritzmaterial am kathodenseitigen Ende des Plasmatrons vorzusehen. Zu diesem Zweck kann ein achsiales Führungsrohr vorgesehen sein, welches den Kathodenhalter 13 und den Isolierkörper 21 zentral durchsetzt. Bei der kathodenseitigen Zufuhr lässt sich in bekannter Weise die gesamte Lichtbogenenergie, also nicht nur der aus dem Lichtbogen in den freien Plasmastrahl übergehende Energieanteil, zum Aufschmelzen des Spritzmaterials ausnützen. Im Hinblick auf die genannten Energieverhältnisse und die hohe Energiedichte im Kathodenraum erscheint es zweckmässig, hochschmelzendes Spritzmaterial kathodenseitig und leichtschmelzendes Spritzmaterial anodenseitig zuzuführen. Unter diesen Umständen könnte das Plasmatron gleichzeitig oder wechselweise mit anodenseitiger und kathodenseitiger Zufuhr von Spritzmaterial betrieben werden.Under certain circumstances, it may be expedient not only to provide the spray material SM on the anode side in the free plasma jet PS, but also to provide spray material at the cathode-side end of the plasma cartridge. For this purpose, an axial guide tube can be provided which passes through the
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE9215133U | 1992-11-06 | ||
DE9215133U DE9215133U1 (en) | 1992-11-06 | 1992-11-06 | Plasma sprayer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0596830A1 true EP0596830A1 (en) | 1994-05-11 |
EP0596830B1 EP0596830B1 (en) | 1996-05-08 |
Family
ID=6885751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP93810729A Expired - Lifetime EP0596830B1 (en) | 1992-11-06 | 1993-10-18 | Plasma spray gun |
Country Status (6)
Country | Link |
---|---|
US (1) | US5406046A (en) |
EP (1) | EP0596830B1 (en) |
JP (1) | JP3287373B2 (en) |
AT (1) | ATE137905T1 (en) |
CA (1) | CA2102284C (en) |
DE (2) | DE9215133U1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19610015C2 (en) * | 1996-03-14 | 1999-12-02 | Hoechst Ag | Thermal application process for thin ceramic layers and device for application |
DE102011114406A1 (en) | 2011-09-26 | 2013-03-28 | Klaus Landes | Plasma spraying equipment for coating surfaces of workpiece, has anode assembly comprising set of anodes arranged along axial direction of plasma channel, where arc is divided on plasma channel |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE9215133U1 (en) * | 1992-11-06 | 1993-01-28 | Plasma-Technik Ag, Wohlen | Plasma sprayer |
US5514848A (en) * | 1994-10-14 | 1996-05-07 | The University Of British Columbia | Plasma torch electrode structure |
DE19540587A1 (en) * | 1995-10-31 | 1997-05-07 | Bosch Gmbh Robert | Plasma torch |
US6213049B1 (en) | 1997-06-26 | 2001-04-10 | General Electric Company | Nozzle-injector for arc plasma deposition apparatus |
FR2779316B1 (en) * | 1998-05-29 | 2000-08-25 | Aerospatiale | COLD GAS MIXING DEVICE AT THE PLASMA TORCH |
US7662468B2 (en) * | 2000-10-06 | 2010-02-16 | Brock Usa, Llc | Composite materials made from pretreated, adhesive coated beads |
US6669106B2 (en) | 2001-07-26 | 2003-12-30 | Duran Technologies, Inc. | Axial feedstock injector with single splitting arm |
SE523135C2 (en) * | 2002-09-17 | 2004-03-30 | Smatri Ab | Plasma spraying device |
SE525927C2 (en) * | 2002-09-18 | 2005-05-31 | Volvo Aero Corp | Thermal sprayer used in aero space constructions, has frame element projecting in flame injection direction from end piece, and partly surrounding flame zone extending from end piece |
US7557324B2 (en) * | 2002-09-18 | 2009-07-07 | Volvo Aero Corporation | Backstream-preventing thermal spraying device |
US7244477B2 (en) * | 2003-08-20 | 2007-07-17 | Brock Usa, Llc | Multi-layered sports playing field with a water draining, padding layer |
US20050089678A1 (en) * | 2003-08-20 | 2005-04-28 | Mead Steven R. | Multi-layered floorig composite including an acoustic underlayment |
US7759599B2 (en) * | 2005-04-29 | 2010-07-20 | Sulzer Metco (Us), Inc. | Interchangeable plasma nozzle interface |
SE529058C2 (en) | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasma generating device, plasma surgical device, use of a plasma surgical device and method for forming a plasma |
SE529053C2 (en) * | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasma generating device, plasma surgical device and use of a plasma surgical device |
SE529056C2 (en) * | 2005-07-08 | 2007-04-17 | Plasma Surgical Invest Ltd | Plasma generating device, plasma surgical device and use of a plasma surgical device |
WO2007065252A1 (en) * | 2005-12-06 | 2007-06-14 | Lucian Bogdan Delcea | Plasma spray nozzle system |
US7928338B2 (en) * | 2007-02-02 | 2011-04-19 | Plasma Surgical Investments Ltd. | Plasma spraying device and method |
US7589473B2 (en) * | 2007-08-06 | 2009-09-15 | Plasma Surgical Investments, Ltd. | Pulsed plasma device and method for generating pulsed plasma |
EP2557902B1 (en) * | 2007-08-06 | 2016-11-23 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
US8735766B2 (en) * | 2007-08-06 | 2014-05-27 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
FR2943209B1 (en) | 2009-03-12 | 2013-03-08 | Saint Gobain Ct Recherches | PLASMA TORCH WITH LATERAL INJECTOR |
US9315888B2 (en) | 2009-09-01 | 2016-04-19 | General Electric Company | Nozzle insert for thermal spray gun apparatus |
US8237079B2 (en) * | 2009-09-01 | 2012-08-07 | General Electric Company | Adjustable plasma spray gun |
FR2952786B1 (en) | 2009-11-17 | 2012-06-08 | Centre Nat Rech Scient | PLASMA TORCH AND METHOD OF STABILIZING A PLASMA TORCH |
US8613742B2 (en) * | 2010-01-29 | 2013-12-24 | Plasma Surgical Investments Limited | Methods of sealing vessels using plasma |
US9089319B2 (en) | 2010-07-22 | 2015-07-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
EP2535437A1 (en) | 2011-06-16 | 2012-12-19 | RH Optronic ApS | A method for plasma-coating of rolls and a plasma-coated roll |
CN104203477A (en) * | 2012-02-28 | 2014-12-10 | 苏舍美特科(美国)公司 | Extended cascade plasma gun |
US9272360B2 (en) | 2013-03-12 | 2016-03-01 | General Electric Company | Universal plasma extension gun |
CH712835A1 (en) * | 2016-08-26 | 2018-02-28 | Amt Ag | Plasma injector. |
CN110315178A (en) * | 2019-07-03 | 2019-10-11 | 阳江市高功率激光应用实验室有限公司 | Welding gun structure and cladding system with the welding gun structure |
CA3191050A1 (en) | 2020-08-28 | 2022-03-03 | Nikolay Suslov | Systems, methods, and devices for generating predominantly radially expanded plasma flow |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524962A (en) * | 1967-06-02 | 1970-08-18 | Air Reduction | Aspirating plasma torch nozzle |
FR2171469A5 (en) * | 1972-02-01 | 1973-09-21 | Air Liquide | |
FR2341247A1 (en) * | 1976-02-16 | 1977-09-09 | Muller Niklaus | PLASMA ARC TORCH |
US4122292A (en) * | 1976-09-13 | 1978-10-24 | Viktor Nikolaevich Karinsky | Electric arc heating vacuum apparatus |
EP0500491A1 (en) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasma spray gun for spraying powdered or gaseous materials |
EP0500492A1 (en) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasma spray gun for spraying powdered or gaseous materials |
DE9215133U1 (en) * | 1992-11-06 | 1993-01-28 | Plasma-Technik Ag, Wohlen | Plasma sprayer |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE789373A (en) * | 1971-10-22 | 1973-01-15 | Europ De Soc | PLASMA GUN BODY |
US3707615A (en) * | 1971-11-12 | 1972-12-26 | Metco Inc | Nozzle for a plasma generator |
US3839618A (en) * | 1972-01-03 | 1974-10-01 | Geotel Inc | Method and apparatus for effecting high-energy dynamic coating of substrates |
CH597925A5 (en) * | 1975-12-01 | 1978-04-14 | Alusuisse | |
NL7600738A (en) * | 1976-01-23 | 1977-07-26 | Plasmainvent Ag | DEVICE FOR PLASMA SYRINGES. |
DD143545A1 (en) * | 1979-05-16 | 1980-08-27 | Erhard Hayess | KUEHLKANAL FOR CASCADE BOXES AND CASCADE PLASMATRONS |
SE448509B (en) * | 1982-02-15 | 1987-02-23 | Ceskoslovenska Akademie Ved | PROCEDURE FOR STABILIZING LOW TEMPERATURE PLASMA IN A LIGHT BAG BURNER AND SCIENT STABILIZED PLASMA BURNER |
US4818837A (en) * | 1984-09-27 | 1989-04-04 | Regents Of The University Of Minnesota | Multiple arc plasma device with continuous gas jet |
US4780591A (en) * | 1986-06-13 | 1988-10-25 | The Perkin-Elmer Corporation | Plasma gun with adjustable cathode |
DE3642375A1 (en) * | 1986-12-11 | 1988-06-23 | Castolin Sa | METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER |
US4788408A (en) * | 1987-05-08 | 1988-11-29 | The Perkin-Elmer Corporation | Arc device with adjustable cathode |
US5043548A (en) * | 1989-02-08 | 1991-08-27 | General Electric Company | Axial flow laser plasma spraying |
US5008511C1 (en) * | 1990-06-26 | 2001-03-20 | Univ British Columbia | Plasma torch with axial reactant feed |
-
1992
- 1992-11-06 DE DE9215133U patent/DE9215133U1/en not_active Expired - Lifetime
-
1993
- 1993-10-18 EP EP93810729A patent/EP0596830B1/en not_active Expired - Lifetime
- 1993-10-18 AT AT93810729T patent/ATE137905T1/en not_active IP Right Cessation
- 1993-10-18 DE DE59302504T patent/DE59302504D1/en not_active Expired - Lifetime
- 1993-10-28 US US08/144,685 patent/US5406046A/en not_active Expired - Lifetime
- 1993-11-02 CA CA002102284A patent/CA2102284C/en not_active Expired - Lifetime
- 1993-11-05 JP JP27714093A patent/JP3287373B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3524962A (en) * | 1967-06-02 | 1970-08-18 | Air Reduction | Aspirating plasma torch nozzle |
FR2171469A5 (en) * | 1972-02-01 | 1973-09-21 | Air Liquide | |
FR2341247A1 (en) * | 1976-02-16 | 1977-09-09 | Muller Niklaus | PLASMA ARC TORCH |
US4122292A (en) * | 1976-09-13 | 1978-10-24 | Viktor Nikolaevich Karinsky | Electric arc heating vacuum apparatus |
EP0500491A1 (en) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasma spray gun for spraying powdered or gaseous materials |
EP0500492A1 (en) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasma spray gun for spraying powdered or gaseous materials |
DE9215133U1 (en) * | 1992-11-06 | 1993-01-28 | Plasma-Technik Ag, Wohlen | Plasma sprayer |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19610015C2 (en) * | 1996-03-14 | 1999-12-02 | Hoechst Ag | Thermal application process for thin ceramic layers and device for application |
DE102011114406A1 (en) | 2011-09-26 | 2013-03-28 | Klaus Landes | Plasma spraying equipment for coating surfaces of workpiece, has anode assembly comprising set of anodes arranged along axial direction of plasma channel, where arc is divided on plasma channel |
Also Published As
Publication number | Publication date |
---|---|
ATE137905T1 (en) | 1996-05-15 |
JPH06228730A (en) | 1994-08-16 |
DE9215133U1 (en) | 1993-01-28 |
JP3287373B2 (en) | 2002-06-04 |
CA2102284A1 (en) | 1994-05-07 |
CA2102284C (en) | 1999-03-30 |
DE59302504D1 (en) | 1996-06-13 |
EP0596830B1 (en) | 1996-05-08 |
US5406046A (en) | 1995-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0596830B1 (en) | Plasma spray gun | |
EP0500492B1 (en) | Plasma spray gun for spraying powdered or gaseous materials | |
DE4105408C1 (en) | ||
DE2164270C3 (en) | Plasma jet generator | |
DE68929313T2 (en) | Nozzle protection for plasma arc welding torches | |
DE69032704T2 (en) | Plasma arc torch with improved nozzle shield and step flow | |
DE19900128B4 (en) | Nozzle and nozzle arrangement for a burner head of a plasma spray gun | |
DE69018611T2 (en) | Device for igniting a plasma arc. | |
DE112006001797B4 (en) | Plasma gas distributor with integrated metering and flow passages | |
DE69203127T2 (en) | Process for treating a substrate surface, for example, by spraying a plasma flow and device for carrying out the process. | |
DE69325802T2 (en) | HIGH TEMPERATURE PLASMA SPRAY GUN | |
DE1515295B1 (en) | Device for applying thin layers of the material of a sputtering cathode to a support arranged perpendicular to an anode | |
EP0017201B1 (en) | Direct current plasma torch | |
DE3539982A1 (en) | ARC PLASMA TORCH | |
DE2654144A1 (en) | METHOD AND BURNER FOR MAINTAINING COAXIAL MULTI-LIGHT ARCHES | |
DE1764978C3 (en) | High frequency plasma generator | |
DE1440618B2 (en) | ||
DE2609178A1 (en) | PLASMA BURNER | |
AT4668U1 (en) | METHOD AND DEVICE FOR WELDING | |
EP0933982A2 (en) | Plasma generator device | |
DE2256050A1 (en) | PLASMA RADIATOR | |
WO1997016947A1 (en) | Plasma torch | |
DE19935468A1 (en) | Plasma spraying device | |
DE2334449C3 (en) | Device for stabilizing a liquid arc plasma torch | |
DE1440541B2 (en) | ELECTRIC PLASMA DEVICE FOR HEATING, CUTTING AND WELDING A WORKPIECE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
17P | Request for examination filed |
Effective date: 19940624 |
|
17Q | First examination report despatched |
Effective date: 19940502 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SULZER METCO AG |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960508 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19960508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960508 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960508 Ref country code: DK Effective date: 19960508 Ref country code: BE Effective date: 19960508 |
|
REF | Corresponds to: |
Ref document number: 137905 Country of ref document: AT Date of ref document: 19960515 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: 68279 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960513 |
|
REF | Corresponds to: |
Ref document number: 59302504 Country of ref document: DE Date of ref document: 19960613 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19960808 Ref country code: PT Effective date: 19960808 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Effective date: 19961018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19961031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19970306 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D Ref document number: 68279 Country of ref document: IE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Effective date: 19970430 |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: AEN Free format text: WEITERBEHANDLUNG GUTGEHEISSEN |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: SULZER MANAGEMENT AG |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20121023 Year of fee payment: 20 Ref country code: CH Payment date: 20121023 Year of fee payment: 20 Ref country code: FR Payment date: 20121031 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20121019 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59302504 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20131017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20131017 Ref country code: DE Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20131019 |