[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0583836B1 - Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen - Google Patents

Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen Download PDF

Info

Publication number
EP0583836B1
EP0583836B1 EP93202395A EP93202395A EP0583836B1 EP 0583836 B1 EP0583836 B1 EP 0583836B1 EP 93202395 A EP93202395 A EP 93202395A EP 93202395 A EP93202395 A EP 93202395A EP 0583836 B1 EP0583836 B1 EP 0583836B1
Authority
EP
European Patent Office
Prior art keywords
process according
catalyst
hydrocarbon
hydroconversion
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93202395A
Other languages
English (en)
French (fr)
Other versions
EP0583836B2 (de
EP0583836A1 (de
Inventor
Jacobus Eilers
Sytze Abel Posthuma
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shell Internationale Research Maatschappij BV
Original Assignee
Shell Internationale Research Maatschappij BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8210862&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0583836(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shell Internationale Research Maatschappij BV filed Critical Shell Internationale Research Maatschappij BV
Priority to EP93202395A priority Critical patent/EP0583836B2/de
Publication of EP0583836A1 publication Critical patent/EP0583836A1/de
Publication of EP0583836B1 publication Critical patent/EP0583836B1/de
Application granted granted Critical
Publication of EP0583836B2 publication Critical patent/EP0583836B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps

Definitions

  • mishtha is a reference to hydrocarbons or hydrocarbon mixtures having a boiling point or boiling point range substantially corresponding to that of the naphtha (sometimes referred to as the gasoline) fractions obtained during the conventional atmospheric distillation of crude oil.
  • the following fractions are consecutively recovered from the crude oil: one or more naphtha fractions boiling in the range of from 30 to 220 °C, one or more kerosine fractions boiling in the range of from 120 to 300 °C and one or more gasoil fractions boiling in the range of from 170 to 370 °C.
  • hydrocarbon fuel is to be taken as a reference to either one of or a mixture of naphtha and middle distillates.
  • US-A-4,478,955 discloses a process scheme comprising contacting the effluent of a Fischer-Tropsch synthesis process with hydrogen in the presence of a suitable hydrogenation catalyst.
  • the effluent of the Fischer-Tropsch synthesis is described in US-A-4,478,955 as comprising predominantly olefins and carboxylic acids.
  • useful fuel components comprising alkanes, alcohols and esters are produced.
  • the present invention provides a process for the preparation of hydrocarbon fuels comprising the steps of:
  • the hydrocarbons prepared in the first stage, stage (a), of the process of the present invention are subjected to a hydroconversion in two separate and distinct stages.
  • the olefinic and oxygen-containing compounds are hydrogenated.
  • the operating conditions of the first hydroconversion stage are selected so as to substantially prevent hydrocracking and/or hydroisomerisation reactions from occurring.
  • stage (c) the desired hydrocarbon fuels are prepared by subjecting at least a part of the product of the first hydroconversion stage to a second hydroconversion treatment, in which the high molecular weight paraffinic hydrocarbons are hydroisomerised and hydrocracked.
  • water is formed as a product of the hydrogenation of the oxygen-containing hydrocarbons. It has been found that water produced during this reaction adversely affects certain hydroconversion catalysts, leading to a reduction in catalyst performance.
  • milder operating conditions are required in the second hydroconversion stage to achieve the desired degree of hydrocracking and hydroisomerisation than required in the single hydroconversion stage of the prior art process. This results in an improved lifetime of the hydroconversion catalyst and, most surprisingly, leads to a markedly improved product.
  • the process of the present invention most surprisingly exhibits an improved selectivity to valuable hydrocarbon fuels, in particular gasoil, compared with the processes of the prior art.
  • substantially paraffinic when used in connection with hydrocarbon products or hydrocarbon fuels refers to a hydrocarbon mixture comprising at least 70 %wt paraffins, preferably at least 80 %wt paraffins.
  • Hydrocarbon fuels produced by the process of this invention typically comprise at least 90 %wt paraffins, more typically at least 95 %wt paraffins.
  • a feed comprising a mixture of carbon monoxide and hydrogen is contacted at elevated temperature and pressure with a catalyst active in the synthesis of paraffinic hydrocarbons.
  • Suitable processes for the preparation of the mixture of carbon monoxide and hydrogen are well known in the art and include such processes as the partial oxidation of methane, typically in the form of natural gas, and the steam reforming of methane.
  • the relative amounts of carbon monoxide and hydrogen present in the feed may vary over a wide range and may be selected according to the precise catalyst and process operating conditions being employed.
  • the feed contacting the catalyst comprises carbon monoxide and hydrogen in a hydrogen/carbon monoxide molar ratio of below 2.5, preferably below 1.75. More preferably, the hydrogen/carbon monoxide ratio is in the range of from 0.4 to 1.5, especially from 0.9 to 1.3.
  • Unconverted carbon monoxide and hydrogen may be separated from the synthesis product and recycled to the inlet of the synthesis reactor.
  • the catalyst comprises, as the catalytically active component, a metal from Group VIII of the Periodic Table of Elements.
  • a metal from Group VIII include ruthenium, iron, cobalt and nickel.
  • a catalyst comprising cobalt as the catalytically active metal is preferred.
  • the catalytically active metal is preferably supported on a porous carrier.
  • the porous carrier may be selected from any suitable refractory metal oxide or silicate or mixture thereof. Particular examples of preferred carriers include silica, alumina, titania, zirconia and mixtures thereof. Carriers comprising silica and/or alumina are especially preferred.
  • the catalytically active metal may be applied to the carrier by any of the techniques known in the art, for example comulling, impregnation or precipitation. Impregnation is a particularly preferred technique, in which the carrier is contacted with a compound of the catalytically active metal in the presence of a liquid, most conveniently in the form of a solution of the metal compound.
  • the compound of the active metal may be inorganic or organic, with inorganic compounds being preferred, in particular nitrates.
  • the liquid employed may also be either organic or inorganic. Water is a most convenient liquid.
  • the amount of catalytically active metal present on the carrier is typically in the range of from 1 to 100 parts by weight, preferably 10 to 50 parts by weight, per 100 parts by weight of carrier material.
  • the catalytically active metal may be present in the catalyst together with one or more metal promoters or co-catalysts.
  • the promoters may be present as metals or as the metal oxide, depending upon the particular promoter concerned. Suitable metal oxide promoters include oxides of metals from Groups IIA, IIIB, IVB, VB or VIB of the Periodic Table, oxides of the lanthanides and/or the actinides.
  • the catalyst comprises an oxide of an element in Group IVB of the Periodic Table, in particular titanium or zirconium. Catalysts comprising zirconium are especially preferred.
  • the promoter if present in the catalyst, is typically present in an amount of from 1 to 60 parts by weight, preferably from 2 to 40 parts by weight, per 100 parts by weight of carrier material.
  • the hydrocarbon synthesis is conducted under conditions of elevated temperature and pressure. Typically, the synthesis is effected at a temperature in the range of from 125 to 300 °C, preferably from 175 to 250 °C.
  • the reaction pressure is typically in the range of from 5 to 100 bar, preferably from 12 to 50 bar.
  • the synthesis may be conducted using a variety of reactor types and reaction regimes, for example in a fixed bed regime, a slurry phase regime or an ebullating bed regime.
  • the hydrocarbon product of the synthesis stage is subjected to a two-stage hydroconversion treatment in stages (b) and (c) of the process of the present invention.
  • the entire effluent of the synthesis stage may be led directly to the first hydroconversion stage.
  • the low molecular weight products of the synthesis stage in particular the C 4 - fraction, for example methane, ethane and propane, may also be removed prior to the hydroconversion treatment.
  • the separation is conveniently effected using distillation techniques well known in the art.
  • the hydrocarbon product is contacted with hydrogen in the presence of a hydrogenation catalyst.
  • a hydrogenation catalyst Suitable catalysts for use in this stage are known in the art.
  • the catalyst comprises as catalytically active component one or more metals selected from Groups VIB and VIII of the Periodic Table of Elements, in particular one or more metals selected from molybdenum, tungsten, cobalt, nickel, ruthenium, iridium, osmium, platinum and palladium.
  • the catalyst comprises on or more metals selected from nickel, platinum and palladium as the catalytically active component.
  • a particularly suitable catalyst comprises nickel as a catalytically active component.
  • Catalysts for use in the first hydroconversion stage typically comprise a refractory metal oxide or silicate as a carrier.
  • Suitable carrier materials include silica, alumina, silica-alumina, zirconia, titania and mixtures thereof.
  • Preferred carrier materials for inclusion in the catalyst for use in the process of this invention are silica, alumina and silica-alumina.
  • Suitable catalysts for use in the first hydroconversion stage of the process of this invention are available commercially, or may be prepared by methods well known in the art, for example the methods discussed hereinbefore with reference to the preparation of the hydrocarbon synthesis catalyst.
  • the hydrocarbon product leaving the first hydroconversion stage substantially consists of high molecular weight, paraffinic hydrocarbons having a boiling point range above that of the middle distillates. At least a part of this hydrocarbon product is subjected to a second hydroconversion in stage (c) of the process of this invention, to yield the desired hydrocarbon fuel product. If desired, the entire effluent of the first hydroconversion stage may be led directly to the second hydroconversion stage. However, it is preferred to separate the low molecular weight hydrocarbons, especially the C 4 -fraction, from the higher molecular weight hydrocarbons prior to the second hydroconversion stage. The separation may be conveniently achieved using distillation techniques well known in the art. At least a part of the remaining C 5 + fraction of the hydrocarbon product is then used as feed for the second hydroconversion stage.
  • the catalyst comprises as catalytically active component one or more metals selected from Groups VIB and VIII of the Periodic Table of Elements, in particular one or more metals selected from molybdenum, tungsten, cobalt, nickel, ruthenium, iridium, osmium, platinum and palladium.
  • the catalyst comprises one or more metals selected from nickel, platinum and palladium as the catalytically active component. Catalysts comprising platinum as the catalytically active component have been found to be particularly suitable for use in the second hydroconversion stage.
  • Catalysts for use in the second hydroconversion stage typically comprise a refractory metal oxide or silicate as a carrier.
  • the carrier material may be amorphous or crystalline. Suitable carrier materials include silica, alumina, silica-alumina, zirconia, titania and mixtures thereof.
  • the carrier may comprise one or more zeolites, either alone or in combination with one or more of the aforementioned carrier materials.
  • Preferred carrier materials for inclusion in the catalyst for use in the process of this invention are silica, alumina and silica-alumina.
  • a particularly preferred catalyst comprises platinum supported on a silica-alumina carrier.
  • the catalyst may comprise the catalytically active component in an amount of from 0.05 to 80 parts by weight, preferably from 0.1 to 70 parts by weight, per 100 parts by weight of carrier material.
  • the amount of catalytically active metal present in the catalyst will vary according to the specific metal concerned.
  • a particularly preferred catalyst for use in the second hydroconversion stage comprises platinum in an amount in the range of from 0.05 to 2 parts by weight, more preferably from 0.1 to 1 parts by weight, per 100 parts by weight of carrier material.
  • Suitable catalysts for use in the second hydroconversion stage of the process of this invention are available commercially, or may be prepared by methods well known in the art, for example the methods discussed hereinbefore with reference to the preparation of the hydrocarbon synthesis catalyst.
  • the hydrocarbon product of the first hydroconversion stage is contacted with hydrogen in the presence of the catalyst at elevated temperature and pressure.
  • the temperatures necessary to yield the hydrocarbon fuels will lie in the range of from 175 to 400 °C, preferably from 250 to 375 °C.
  • the pressure typically applied ranges from 10 to 250 bars, more preferably from 25 to 250 bars.
  • Hydrogen may be supplied at a gas hourly space velocity of from 100 to 10000 Nl/l/hr, preferably from 500 to 5000 Nl/l/hr.
  • the hydrocarbon feed may be provided at a weight hourly space velocity of from 0.1 to 5 kg/l/hr, preferably from 0.25 to 2 kg/l/hr.
  • the ratio of hydrogen to hydrocarbon feed may range from 100 to 5000 Nl/kg and is preferably from 250 to 2500 Nl/kg.
  • the degree of hydrocracking and isomerisation occurring in the second hydroconversion stage may be measured by determining the degree of conversion of the fraction boiling above 370 °C, as hereinbefore defined.
  • the second hydroconversion stage is operated at a conversion of at least 40%.
  • the hydrogen required for the operation of both the first and the second hydroconversion stages may be generated by processes well known in the art, for example by the steam reforming of a refinery fuel gas.
  • the hydrocarbon fuel produced in the second hydroconversion stage will typically comprise hydrocarbons having boiling points lying in a number of different fuel fractions, for example the naphtha, kerosine and gasoil fractions discussed hereinbefore. Separation of the hydrocarbon fuel into the appropriate fractions may be conveniently achieved using distillation techniques well known in the art.
  • Example 1(C)(i) hereabove A sample of the catalyst prepared as described in Example 1(C)(i) hereabove was loaded into a reaction vessel.
  • the C 5 + hydrocarbon product of the hydrocarbon synthesis stage was fed to the reaction vessel at a weight hourly space velocity of 1.103 kg/l/hr and a pressure of 31 bars.
  • Hydrogen was supplied to the reaction vessel at a gas hourly space velocity of 660 Nl/l/hr (that is a hydrogen to hydrocarbon ratio of 596 Nl/kg).
  • a liquid recycle rate of 0.23 kg/l/hr was applied.
  • a conversion of 55% (as defined in Example 1(B) (ii) hereabove) was achieved at an operating temperature of 338 °C.
  • the effluent of the reaction vessel was collected and separated by means of distillation into a number of fractions.
  • the properties of a gasoil fraction boiling in the temperature range of from 170 to 340 °C recovered from the effluent are given in Table 1.
  • Example 1(C)(i) hereabove A sample of the catalyst prepared as described in Example 1(C)(i) hereabove was loaded into a reaction vessel.
  • the C 5 + hydrocarbon product of the hydrocarbon synthesis stage was fed to the reaction vessel at a weight hourly space velocity of 1.01 kg/l/hr and a pressure of 31.4 bars.
  • Hydrogen was supplied to the reaction vessel at a gas hourly space velocity of 660 Nl/l/hr (that is a hydrogen to hydrocarbon ratio of 655 Nl/kg).
  • a liquid recycle rate of 0.13 kg/l/hr was applied.
  • a conversion of 39% (as defined in Example 1(B) (ii) hereabove) was achieved at an operating temperature of 334 °C.
  • the effluent of the reaction vessel was collected and separated by means of distillation into a number of fractions.
  • the selectivity of the second hydroconversion stage to a gasoil fraction boiling in the temperature range of from 220 to 370 °C was 40%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Claims (20)

  1. Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen, welches die folgenden Stufen umfaßt:
    a) Inberührungbringen eines Gemisches aus Kohlenmonoxid und Wasserstoff mit einem Kohlenwasserstoffsynthesekatalysator bei erhöhter Temperatur und erhöhtem Druck zur Ausbildung eines im wesentlichen paraffinischen Kohlenwasserstoffproduktes, das wenigstens 70 Gew.-% Paraffine enthält;
    b) Inberührungbringen des so erhaltenen Kohlenwasserstoffproduktes mit Wasserstoff in Anwesenheit eines Hydrokonversionskatalysators unter solchen Bedingungen, daß die Umwandlung, definiert als Gewichtsprozent der Fraktion der Kohlenwasserstoffprodukteinspeisung, die über 370°C siedet, welche während der Hydrokonversion zu einer unter 370°C siedenden Fraktion umgewandelt wird, unter 20% liegt; und
    c) Inberührungbringen wenigstens eines Teiles des Kohlenwasserstoffproduktes aus Stufe b) mit Wasserstoff in Anwesenheit eines Hydrokonversionskatalysators unter solchen Bedingungen, daß ein Hydrocracken und Isomerisieren des Produktes eintritt, um einen im wesentlichen paraffinischen Kohlenwasserstoffbrennstoff zu ergeben, der wenigstens 70 Gew.-% Paraffine enthält.
  2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, daß das mit dem Katalysator in Stufe (a) in Berührung kommende Gemisch aus Kohlenmonoxid und Wasserstoff ein Wasserstoff/Kohlenmonoxid-Verhältnis von kleiner als 2,5, vorzugsweise kleiner als 1,75, stärker bevorzugt von 0,4 bis 1,5 aufweist.
  3. Verfahren nach Anspruch 1 oder 2 daurch gekennzeichnet, daß der Kohlenwasserstoffsynthesekatalysator in Stufe (a) als katalytisch aktives Metall Ruthenium, Eisen, Nickel oder Kobalt, vorzugsweise Kobalt enthält.
  4. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Kohlenwasserstoffsynthesekatalysator in Stufe (a) einen Träger umfaßt, vorzugsweise ausgewählt unter Siliziumdioxid, Aluminiumoxid, Titanoxid, Zirkonoxid und Gemischen hievon, am meisten bevorzugt Siliziumdioxid oder Aluminiumoxid.
  5. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Kohlenwasserstoffsynthesekatalysator in Stufe (a) als Promotor ein Oxid eines aus der Gruppe IVB des Periodensystems der Elemente ausgewählten Metalles, vorzugsweise Titan oder Zirkon, enthält.
  6. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Gemisch aus Kohlenmonoxid und Wasserstoff mit dem Katalysator in Stufe (a) bei einer Temperatur von 125 bis 300 °C, vorzugsweise von 175 bis 250°C in Kontakt gebracht wird.
  7. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß das Gemisch aus Kohlenmonoxid und Kohlenwasserstoff mit dem Katalysator in Stufe (a) bei einem Druck von 5 bis 100 bar, vorzugsweise von 12 bis 50 bar in Kontakt gebracht wird.
  8. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Hydrokonversionskatalysator von Stufe (b) als katalytisch aktives Metall Molybdän, Wolfram, Kobalt, Nickel, Ruthenium, Iridium, Osmium, Platin oder Palladium enthält, vorzugsweise eines oder mehrere von Nickel, Platin und Palladium.
  9. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Hydrokonversionskatalysator von Stufe (b) einen Träger enthält, vorzugsweise ausgewählt unter Siliziumdioxid, Aluminiumoxid, Siliziumdioxid-Aluminiumoxid, Titanoxid, Zirkonoxid und Gemischen hievon, vorzugsweise Siliziumdioxid, Aluminiumoxid oder Siliziumdioxid-Aluminiumoxid.
  10. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (b) das Kohlenwasserstoffprodukt bei einer Temperatur von 100 bis 300°C, vorzugsweise von 150 bis 275°C mit dem Hydrokonversionskatalysator in Kontakt gebracht wird.
  11. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (b) das Kohlenwasserstoffprodukt bei einem Druck von 5 bis 150 bar, vorzugsweise 10 bis 50 bar mit dem Hydrokonversionskatalysator in Kontakt gebracht wird.
  12. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (b) der Wasserstoff mit einer Gas-Raumgeschwindigkeit von 100 bis 10.000 Nl/l/h, vorzugsweise von 250 bis 5.000 Nl/l/h zugeführt wird.
  13. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (b) die Umwandlung unter 10%, stärker bevorzugt unter 5% gehalten wird.
  14. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Hydrokonversionskatalysator von Stufe (c) als katalytisch aktives Metall Molybdän, Wolfram, Kobalt, Nickel, Ruthenium, Iridium, Osmium, Platin oder Palladium enthält, vorzugsweise eines oder mehrere von Nickel, Platin und Palladium.
  15. Verfahren nach einem der vorstehenden Ansprüche dadurch gekennzeichnet, daß der Hydrokonversionskatalysator von Stufe (c) einen Träger umfaßt, vorzugsweise ausgewählt unter Siliziumdioxid, Aluminiumoxid, Siliziumdioxid-Aluminiumoxid, Titanoxid, Zirkonoxid und Gemischen hievon, vorzugsweise Siliziumdioxid, Aluminiumoxid oder Siliziumdioxid-Aluminiumoxid.
  16. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (c) das Kohlenwasserstoffprodukt bei einer Temperatur von 175 bis 400°C, vorzugsweise von 250 bis 375°C mit dem Hydrokonversionskatalysator in Kontakt gebracht wird.
  17. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (c) das Kohlenwasserstoffprodukt bei einem Druck von 10 bis 250 bar, vorzugsweise von 25 bis 250 bar mit dem Hydrokonversionskatalysator in Kontakt gebracht wird.
  18. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (c) der Wasserstoff mit einer Raumgeschwindigkeit von 100 bis 10.000 Nl/l/h, vorzugsweise von 500 bis 5.000 Nl/l/h zugeführt wird.
  19. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß in Stufe (c) die Umwandlung auf wenigstens 40 % gehalten wird.
  20. Verfahren nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß die leichten Komponenten, vorzugsweise die C4 --Komponenten, aus dem Produkt aus der Kohlenwasserstoffsynthesestufe (a), der Hydrokonversionsstufe (b) oder aus beiden abgetrennt werden.
EP93202395A 1992-08-18 1993-08-16 Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen Expired - Lifetime EP0583836B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP93202395A EP0583836B2 (de) 1992-08-18 1993-08-16 Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP92202537 1992-08-18
EP92202537 1992-08-18
EP93202395A EP0583836B2 (de) 1992-08-18 1993-08-16 Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen

Publications (3)

Publication Number Publication Date
EP0583836A1 EP0583836A1 (de) 1994-02-23
EP0583836B1 true EP0583836B1 (de) 1997-10-29
EP0583836B2 EP0583836B2 (de) 2002-02-13

Family

ID=8210862

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93202395A Expired - Lifetime EP0583836B2 (de) 1992-08-18 1993-08-16 Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen

Country Status (13)

Country Link
EP (1) EP0583836B2 (de)
JP (1) JP3522797B2 (de)
AU (1) AU666960B2 (de)
CA (1) CA2104158C (de)
DE (1) DE69314879T3 (de)
DK (1) DK0583836T4 (de)
DZ (1) DZ1708A1 (de)
ES (1) ES2110051T5 (de)
MY (1) MY108862A (de)
NO (1) NO305288B1 (de)
NZ (1) NZ248415A (de)
RU (1) RU2101324C1 (de)
ZA (1) ZA935964B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132964A2 (en) 2005-06-03 2006-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil contraining same
WO2007133554A2 (en) 2006-05-09 2007-11-22 Exxonmobil Research And Engineering Company Lubricating oil composition
WO2008002425A1 (en) 2006-06-23 2008-01-03 Exxonmobil Research And Engineering Company Lubricating compositions
EP2581436A1 (de) 2011-10-14 2013-04-17 IFP Energies nouvelles Herstellungsverfahren von Mitteldestillaten aus einer Mischung einer aus erneuerbaren Energiequellen stammenden Charge und einem Paraffin-Abfallprodukt
EP2586851A1 (de) 2011-10-27 2013-05-01 IFP Energies nouvelles Herstellungsverfahren von Mitteldestillaten, bei dem die aus dem Fischer-Tropsch-Verfahren hervorgegangene Charge und der Wasserstofffluss eine begrenzte Menge von Sauerstoff enthalten
US8771385B2 (en) 2008-12-29 2014-07-08 Shell Oil Company Fuel compositions
US8968427B2 (en) 2010-12-24 2015-03-03 Shell Oil Company Blending fuels

Families Citing this family (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811297A (en) * 1986-12-16 1989-03-07 Fujitsu Limited Boundary-free semiconductor memory device
DE69511130T2 (de) * 1994-02-08 2000-01-20 Shell Internationale Research Maatschappij B.V., Den Haag/S'gravenhage Verfahren zur Herstellung von Basisschmieröl
EP0668342B1 (de) * 1994-02-08 1999-08-04 Shell Internationale Researchmaatschappij B.V. Verfahren zur Herstellung von Basisschmieröl
US5689031A (en) 1995-10-17 1997-11-18 Exxon Research & Engineering Company Synthetic diesel fuel and process for its production
US6043288A (en) * 1998-02-13 2000-03-28 Exxon Research And Engineering Co. Gas conversion using synthesis gas produced hydrogen for catalyst rejuvenation and hydrocarbon conversion
IT1301801B1 (it) * 1998-06-25 2000-07-07 Agip Petroli Procedimento per la preparazione di idrocarburi da gas di sintesi
FR2799202B1 (fr) 1999-09-30 2002-04-26 Inst Francais Du Petrole Procede de production d'essences a indice d'octane ameliore
EP1101813B1 (de) * 1999-11-19 2014-03-19 ENI S.p.A. Verfahren zur Herstellung von Mitteldestillaten aus geradkettigen Paraffinen
US6497812B1 (en) 1999-12-22 2002-12-24 Chevron U.S.A. Inc. Conversion of C1-C3 alkanes and fischer-tropsch products to normal alpha olefins and other liquid hydrocarbons
US6776898B1 (en) 2000-04-04 2004-08-17 Exxonmobil Research And Engineering Company Process for softening fischer-tropsch wax with mild hydrotreating
US6695965B1 (en) * 2000-04-04 2004-02-24 Exxonmobil Research And Engineering Company Process for adjusting the hardness of Fischer-Tropsch wax by blending
US6908543B1 (en) * 2000-10-23 2005-06-21 Chevron U.S.A. Inc. Method for retarding fouling of feed heaters in refinery processing
US6635171B2 (en) 2001-01-11 2003-10-21 Chevron U.S.A. Inc. Process for upgrading of Fischer-Tropsch products
US6858127B2 (en) 2001-03-05 2005-02-22 Shell Oil Company Process for the preparation of middle distillates
US6515032B2 (en) 2001-05-11 2003-02-04 Chevron U.S.A. Inc. Co-hydroprocessing of fischer-tropsch products and natural gas well condensate
FR2826971B1 (fr) * 2001-07-06 2003-09-26 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
FR2826972B1 (fr) 2001-07-06 2007-03-23 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent produit par le procede fischer-tropsch
FR2826973B1 (fr) * 2001-07-06 2005-09-09 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de 2 fractions issues de charges provenant du procede fischer-tropsch
FR2826974B1 (fr) 2001-07-06 2007-03-23 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage en 2 etapes de charges issues du procede fischer-tropsch
US6709569B2 (en) 2001-12-21 2004-03-23 Chevron U.S.A. Inc. Methods for pre-conditioning fischer-tropsch light products preceding upgrading
US6863802B2 (en) 2002-01-31 2005-03-08 Chevron U.S.A. Upgrading fischer-Tropsch and petroleum-derived naphthas and distillates
JP4748939B2 (ja) * 2002-01-31 2011-08-17 シェブロン ユー.エス.エー. インコーポレイテッド フィッシャー・トロプシュおよび石油由来のナフサおよび留出物のアップグレード化
US7033552B2 (en) 2002-01-31 2006-04-25 Chevron U.S.A. Inc. Upgrading Fischer-Tropsch and petroleum-derived naphthas and distillates
US7704375B2 (en) 2002-07-19 2010-04-27 Shell Oil Company Process for reducing corrosion in a condensing boiler burning liquid fuel
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
EP1530611B1 (de) 2002-08-12 2013-12-04 ExxonMobil Chemical Patents Inc. Plastifizierte polyolefinzusammensetzungen
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
MY140297A (en) 2002-10-18 2009-12-31 Shell Int Research A fuel composition comprising a base fuel, a fischer-tropsch derived gas oil and an oxygenate
AR041930A1 (es) 2002-11-13 2005-06-01 Shell Int Research Composiciones de combustible diesel
FR2850393B1 (fr) * 2003-01-27 2005-03-04 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch
US20040159582A1 (en) * 2003-02-18 2004-08-19 Simmons Christopher A. Process for producing premium fischer-tropsch diesel and lube base oils
US6939999B2 (en) 2003-02-24 2005-09-06 Syntroleum Corporation Integrated Fischer-Tropsch process with improved alcohol processing capability
US7151163B2 (en) 2003-04-28 2006-12-19 Sequoia Pharmaceuticals, Inc. Antiviral agents for the treatment, control and prevention of infections by coronaviruses
US8022108B2 (en) * 2003-07-02 2011-09-20 Chevron U.S.A. Inc. Acid treatment of a fischer-tropsch derived hydrocarbon stream
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
US6982355B2 (en) 2003-08-25 2006-01-03 Syntroleum Corporation Integrated Fischer-Tropsch process for production of linear and branched alcohols and olefins
EP1664248B1 (de) 2003-09-03 2011-12-21 Shell Internationale Research Maatschappij B.V. Kraftstoffzusammensetzungen
EP1664249B1 (de) 2003-09-17 2012-11-28 Shell Internationale Research Maatschappij B.V. Aus erdöl und der fischer-tropsch-synthese gewonnene kerosinmischung
AR047565A1 (es) 2003-12-01 2006-01-25 Shell Int Research Aumento de potencia t de rendimiento en terminos de aceleracion de composiciones de combustible diesel
US7354507B2 (en) 2004-03-17 2008-04-08 Conocophillips Company Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons
US8158841B2 (en) 2004-03-25 2012-04-17 Japan Oil, Gas And Metals National Corporation Hydrotreating method
WO2007034555A1 (ja) * 2005-09-22 2007-03-29 Japan Oil, Gas And Metals National Corporation 水素化処理方法
US20060016722A1 (en) * 2004-07-08 2006-01-26 Conocophillips Company Synthetic hydrocarbon products
US7345211B2 (en) 2004-07-08 2008-03-18 Conocophillips Company Synthetic hydrocarbon products
MY140997A (en) 2004-07-22 2010-02-12 Shell Int Research Process for the removal of cos from a synthesis gas stream comprising h2s and cos
JP2008516033A (ja) 2004-10-08 2008-05-15 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 炭素含有供給原料からの低級オレフィンの製造方法
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
EP1859158B1 (de) 2005-03-01 2012-03-14 Shell Internationale Research Maatschappij B.V. Reformierung von gtl-kraftstoff für schiffsanwendungen
DE602006020420D1 (de) 2005-04-11 2011-04-14 Shell Int Research Verfahren zum mischen eines aus mineralien gewonnenen und eines aus der fischer-tropsch-synthese gewonnenen produkts an bord eines schiffs
CN101218296B (zh) 2005-07-15 2010-12-08 埃克森美孚化学专利公司 弹性体组合物
FR2888584B1 (fr) 2005-07-18 2010-12-10 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage de charges issues du procede fischer-tropsch utilisant un lit de garde multifonctionnel
WO2007009987A1 (en) * 2005-07-20 2007-01-25 Shell Internationale Research Maatschappij B.V. Hydrocarbon synthesis process
JP5619356B2 (ja) 2005-08-22 2014-11-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap ディーゼル燃料及びディーゼルエンジンの操作法
US20070093398A1 (en) 2005-10-21 2007-04-26 Habeeb Jacob J Two-stroke lubricating oils
DK1979444T3 (en) 2005-12-22 2017-07-24 Shell Int Research PROCEDURE FOR PREPARING A FUEL COMPOSITION
CN101374759A (zh) 2006-01-18 2009-02-25 国际壳牌研究有限公司 从合成气物流中除去硫化羰和硫化氢的方法
AR059751A1 (es) 2006-03-10 2008-04-23 Shell Int Research Composiciones de combustible diesel
AR060143A1 (es) 2006-03-29 2008-05-28 Shell Int Research Proceso para preparar combustible de aviacion
JP4834438B2 (ja) * 2006-03-30 2011-12-14 Jx日鉱日石エネルギー株式会社 燃料基材の水素化精製方法
JP4886338B2 (ja) * 2006-03-31 2012-02-29 Jx日鉱日石エネルギー株式会社 ワックスの水素化分解方法及び燃料基材の製造方法
US8926716B2 (en) 2006-10-20 2015-01-06 Shell Oil Company Method of formulating a fuel composition
WO2008138861A1 (en) 2007-05-11 2008-11-20 Shell Internationale Research Maatschappij B.V. Fuel composition
FR2917419B1 (fr) 2007-06-12 2014-10-24 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
CN102899085B (zh) * 2007-09-28 2014-12-31 日本石油天然气·金属矿物资源机构 合成石脑油的制造方法
US8486876B2 (en) 2007-10-19 2013-07-16 Shell Oil Company Functional fluids for internal combustion engines
RU2489478C2 (ru) 2007-12-07 2013-08-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Смесевые продукты базовых масел
EP2075314A1 (de) 2007-12-11 2009-07-01 Shell Internationale Research Maatschappij B.V. Fettformulierungen
CN101910378B (zh) 2007-12-20 2013-10-23 国际壳牌研究有限公司 燃料组合物
JP2011508000A (ja) 2007-12-20 2011-03-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 燃料組成物
UA99499C2 (ru) * 2008-01-02 2012-08-27 Шелл Інтернаціонале Рісерч Маатшаппідж Б.В. Композиция жидкого топлива, способ ее получения и использования в двигателе внутреннего сгорания
EP2078743A1 (de) 2008-01-10 2009-07-15 Shell Internationale Researchmaatschappij B.V. Kraftstoffzusammensetzung
EP2078744A1 (de) 2008-01-10 2009-07-15 Shell Internationale Researchmaatschappij B.V. Kraftstoffzusammensetzungen
JP5483045B2 (ja) * 2008-06-20 2014-05-07 独立行政法人産業技術総合研究所 一酸化炭素と水素からの炭化水素の製造方法
EP2100946A1 (de) 2008-09-08 2009-09-16 Shell Internationale Researchmaatschappij B.V. Ölformulierungen
US9017429B2 (en) 2008-12-29 2015-04-28 Shell Oil Company Fuel compositions
EP2412787A4 (de) * 2009-03-27 2014-08-13 Japan Oil Gas & Metals Jogmec Verfahren zur herstellung von flüssigem brennstoff und system zur herstellung von flüssigem brennstoff
FR2944028B1 (fr) * 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch mettant en oeuvre une resine
FR2944027B1 (fr) 2009-04-03 2011-05-06 Inst Francais Du Petrole Procede de production de distillats moyens par hydroisomerisation et hydrocraquage d'une fraction lourde issue d'un effluent fischer-tropsch
US20120316288A1 (en) 2009-08-28 2012-12-13 David Ernest Giles Process oil composition
AU2010334792A1 (en) 2009-12-24 2012-07-12 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
AU2010338253A1 (en) 2009-12-29 2012-07-12 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
GB201000971D0 (en) * 2010-01-21 2010-03-10 Johnson Matthey Plc Process for the convertion of synthesis gas
JP5443206B2 (ja) * 2010-02-24 2014-03-19 独立行政法人石油天然ガス・金属鉱物資源機構 水素化分解方法
WO2011110551A1 (en) 2010-03-10 2011-09-15 Shell Internationale Research Maatschappij B.V. Method of reducing the toxicity of used lubricating compositions
DK2371931T3 (en) 2010-03-23 2014-02-24 Shell Int Research The fuel compositions comprising biodiesel and Fischer-Tropsch diesel
US9168515B2 (en) * 2011-04-02 2015-10-27 Wanhua Industrial Group Co., Ltd. High-selectivity catalyst for production of high-quality gasoline fractions from syngas and its preparation method
US20120304531A1 (en) 2011-05-30 2012-12-06 Shell Oil Company Liquid fuel compositions
WO2013034617A1 (en) 2011-09-06 2013-03-14 Shell Internationale Research Maatschappij B.V. Liquid fuel compositions
CA2793251C (en) 2011-10-25 2020-03-24 Shell Internationale Research Maatschappij B.V. Process to prepare jet fuels and its products
JP2015502445A (ja) 2011-12-22 2015-01-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap 高圧コンプレッサーの潤滑に関する改善
US20150114882A1 (en) * 2012-03-30 2015-04-30 Jx Nippon Oil & Energy Corporation Method for dewaxing hydrocarbon oil and method for producing lubricating-oil base oil
EP2738240A1 (de) 2012-11-30 2014-06-04 Schepers Handels- en domeinnamen B.V. Verwendung von Gas-to-Liquids-Gasöl in einer Lampenölzusammensetzung oder einem Feuerzeug
EP2935530B1 (de) 2012-12-20 2019-03-27 Shell International Research Maatschappij B.V. Fischer-tropsch-basierte kraftstoffzusammensetzungen
WO2014096234A1 (en) 2012-12-21 2014-06-26 Shell Internationale Research Maatschappij B.V. Liquid diesel fuel compositions containing organic sunscreen compounds
US9447356B2 (en) 2013-02-20 2016-09-20 Shell Oil Company Diesel fuel with improved ignition characteristics
US20150021231A1 (en) * 2013-07-22 2015-01-22 Greyrock Energy, Inc. Blends of synthetic diesel fuel and petroleum diesel fuel with improved performance characteristics
EP3060633A1 (de) 2013-10-24 2016-08-31 Shell Internationale Research Maatschappij B.V. Flüssigkraftstoffzusammensetzungen
FR3013357B1 (fr) 2013-11-18 2016-09-16 Total Marketing Services Procede de production de fluides hydrocarbures a basse teneur en aromatiques
JP6490693B2 (ja) 2013-12-16 2019-03-27 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Besloten Vennootshap 液体燃料組成物
EP2889361A1 (de) 2013-12-31 2015-07-01 Shell Internationale Research Maatschappij B.V. Dieselkraftstoffformulierung und Verwendung davon
EP3129449B1 (de) 2014-04-08 2018-03-28 Shell International Research Maatschappij B.V. Dieseltreibstoff mit verbesserter zündcharakteristik
EP2949732B1 (de) 2014-05-28 2018-06-20 Shell International Research Maatschappij B.V. Verwendung einer oxanilid-verbindung in einer dieselkraftstoffzusammensetzung für den zweck der modifizierung der zündverzögerung und/oder der brenndauer
EP3218450B1 (de) 2014-11-12 2020-10-21 Shell International Research Maatschappij B.V. Verwendung einer kraftstoffzusammensetzung
EP3078728A1 (de) 2015-04-07 2016-10-12 Shell Internationale Research Maatschappij B.V. Viskositätsindexverbesserer für kraftstoffzusammensetzungen
EP3095842A1 (de) 2015-05-20 2016-11-23 Total Marketing Services Verfahren zur herstellung von biologisch abbaubaren kohlenwasserstoffflüssigkeiten auf basis von syngas
EP3298111B1 (de) 2015-05-22 2020-12-09 Shell International Research Maatschappij B.V. Kraftstoffzusammensetzung und deren verwendung
MY196080A (en) 2015-05-22 2023-03-14 Shell Int Research Fuel Composition and use Thereof
US10407637B2 (en) 2015-08-17 2019-09-10 Shell Oil Company Fuel composition
WO2017050777A1 (en) 2015-09-22 2017-03-30 Shell Internationale Research Maatschappij B.V. Fuel compositions
ES2834933T3 (es) 2015-11-11 2021-06-21 Shell Int Research Proceso de preparación de una composición de combustible diésel
DK3397734T3 (da) 2015-11-30 2020-10-19 Shell Int Research Brændstofsammensætning
EP3184612A1 (de) 2015-12-21 2017-06-28 Shell Internationale Research Maatschappij B.V. Verfahren zur herstellung einer dieselkraftstoffzusammensetzung
CN108603131B (zh) 2016-02-05 2022-01-21 国际壳牌研究有限公司 燃料组合物
US11359155B2 (en) 2016-05-23 2022-06-14 Shell Usa, Inc. Use of a wax anti-settling additive in automotive fuel compositions
EP3315592A1 (de) 2016-10-27 2018-05-02 Total Marketing Services Verwendung von biologisch abbaubaren kohlenwasserstoffflüssigkeiten als bohrflüssigkeiten
EP3315586A1 (de) 2016-10-27 2018-05-02 Total Marketing Services Verwendung von biologisch abbaubaren kohlenwasserstoffflüssigkeiten als wärmeübertragungsmedien
EP3315590A1 (de) 2016-10-27 2018-05-02 Total Marketing Services Verwendung von kohlenwasserstoffflüssigkeiten in elektrischen fahrzeugen
WO2018077976A1 (en) 2016-10-27 2018-05-03 Shell Internationale Research Maatschappij B.V. Process for preparing an automotive gasoil
EP3342842A1 (de) 2017-01-03 2018-07-04 Total Marketing Services Entwachsungs- und entaromatisierungsverfahren von kohlenwasserstoff in einem schlammreaktor
WO2018206729A1 (en) 2017-05-11 2018-11-15 Shell Internationale Research Maatschappij B.V. Process for preparing an automotive gas oil fraction
JP7170001B2 (ja) 2017-07-03 2022-11-11 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ パラフィン系ガス油の使用
RU2656601C1 (ru) * 2017-08-08 2018-06-06 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Способ получения синтетической нефти
WO2019201630A1 (en) 2018-04-20 2019-10-24 Shell Internationale Research Maatschappij B.V. Diesel fuel with improved ignition characteristics
JP7357016B2 (ja) 2018-07-02 2023-10-05 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 液体燃料組成物
WO2020070246A1 (en) 2018-10-05 2020-04-09 Shell Internationale Research Maatschappij B.V. Fuel compositions
CN113056541A (zh) 2018-11-26 2021-06-29 国际壳牌研究有限公司 燃料组合物
MX2021006634A (es) 2018-12-11 2021-07-07 Shell Int Research Uso y metodo para reducir sedimentos en motores de combustion interna de encendido por compresion.
JP2023513352A (ja) 2020-02-12 2023-03-30 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ パラフィン系ガス油の使用
WO2022084281A1 (en) 2020-10-20 2022-04-28 Shell Internationale Research Maatschappij B.V. Use of a diesel fuel composition
JP2023552633A (ja) 2020-12-11 2023-12-18 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ パラフィン系軽油の使用
CA3203137A1 (en) 2020-12-11 2022-06-16 Shell Internationale Research Maatschappij B.V. Use of a detergent additive
CN117222725A (zh) 2021-04-26 2023-12-12 国际壳牌研究有限公司 燃料组合物
JP2024515769A (ja) 2021-04-26 2024-04-10 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 燃料組成物
AU2022373846A1 (en) 2021-10-20 2024-04-04 Shell Internationale Research Maatschappij B.V. Aviation fuel composition
CN118103487A (zh) 2021-10-20 2024-05-28 国际壳牌研究有限公司 具有改善的氧化稳定性和润滑性的生物燃料共混物
WO2023174986A1 (en) 2022-03-17 2023-09-21 Shell Internationale Research Maatschappij B.V. Dual fuel engine system
WO2024040007A1 (en) 2022-08-15 2024-02-22 Energizer Auto, Inc. Surface treating formulation and method of making and using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080397A (en) * 1976-07-09 1978-03-21 Mobile Oil Corporation Method for upgrading synthetic oils boiling above gasoline boiling material
NL8003313A (nl) 1980-06-06 1982-01-04 Shell Int Research Werkwijze voor de bereiding van middeldestillaten.
US4423265A (en) * 1982-12-01 1983-12-27 Mobil Oil Corporation Process for snygas conversions to liquid hydrocarbon products
US4522939A (en) 1983-05-31 1985-06-11 Shell Oil Company Preparation of catalyst for producing middle distillates from syngas
IN161735B (de) 1983-09-12 1988-01-30 Shell Int Research
US4919786A (en) 1987-12-18 1990-04-24 Exxon Research And Engineering Company Process for the hydroisomerization of was to produce middle distillate products (OP-3403)
US4943672A (en) 1987-12-18 1990-07-24 Exxon Research And Engineering Company Process for the hydroisomerization of Fischer-Tropsch wax to produce lubricating oil (OP-3403)
US4992406A (en) * 1988-11-23 1991-02-12 Exxon Research And Engineering Company Titania-supported catalysts and their preparation for use in Fischer-Tropsch synthesis
US5028634A (en) * 1989-08-23 1991-07-02 Exxon Research & Engineering Company Two stage process for hydrocarbon synthesis
FR2676750B1 (fr) 1991-05-21 1993-08-13 Inst Francais Du Petrole Procede d'hydrocraquage de paraffines issue du procede fischer-tropsch a l'aide de catalyseurs a base de zeolithe h-y.
US5378348A (en) 1993-07-22 1995-01-03 Exxon Research And Engineering Company Distillate fuel production from Fischer-Tropsch wax

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132964A2 (en) 2005-06-03 2006-12-14 Exxonmobil Research And Engineering Company Ashless detergents and formulated lubricating oil contraining same
EP2363453A1 (de) 2005-06-03 2011-09-07 ExxonMobil Research and Engineering Company Aschefreie Detergentien und damit versehenes formuliertes Schmieröl
EP2366763A1 (de) 2005-06-03 2011-09-21 ExxonMobil Research and Engineering Company Aschefreie Detergentien und damit versehenes formuliertes Schmieröl
EP2366764A1 (de) 2005-06-03 2011-09-21 ExxonMobil Research and Engineering Company Aschefreie Detergentien und damit versehenes formuliertes Schmieröl
WO2007133554A2 (en) 2006-05-09 2007-11-22 Exxonmobil Research And Engineering Company Lubricating oil composition
WO2008002425A1 (en) 2006-06-23 2008-01-03 Exxonmobil Research And Engineering Company Lubricating compositions
US8771385B2 (en) 2008-12-29 2014-07-08 Shell Oil Company Fuel compositions
US8968427B2 (en) 2010-12-24 2015-03-03 Shell Oil Company Blending fuels
EP2581436A1 (de) 2011-10-14 2013-04-17 IFP Energies nouvelles Herstellungsverfahren von Mitteldestillaten aus einer Mischung einer aus erneuerbaren Energiequellen stammenden Charge und einem Paraffin-Abfallprodukt
EP2586851A1 (de) 2011-10-27 2013-05-01 IFP Energies nouvelles Herstellungsverfahren von Mitteldestillaten, bei dem die aus dem Fischer-Tropsch-Verfahren hervorgegangene Charge und der Wasserstofffluss eine begrenzte Menge von Sauerstoff enthalten

Also Published As

Publication number Publication date
ES2110051T3 (es) 1998-02-01
RU2101324C1 (ru) 1998-01-10
NO932905D0 (no) 1993-08-16
CA2104158A1 (en) 1994-02-19
DK0583836T4 (da) 2002-03-11
CA2104158C (en) 2005-11-15
DE69314879T3 (de) 2002-07-18
DE69314879D1 (de) 1997-12-04
DK0583836T3 (da) 1998-03-02
DZ1708A1 (fr) 2002-02-17
EP0583836B2 (de) 2002-02-13
ES2110051T5 (es) 2002-10-01
JPH06158058A (ja) 1994-06-07
AU4467693A (en) 1994-02-24
EP0583836A1 (de) 1994-02-23
NZ248415A (en) 1995-03-28
AU666960B2 (en) 1996-02-29
ZA935964B (en) 1994-03-15
MY108862A (en) 1996-11-30
JP3522797B2 (ja) 2004-04-26
NO932905L (no) 1994-02-21
NO305288B1 (no) 1999-05-03
DE69314879T2 (de) 1998-03-12

Similar Documents

Publication Publication Date Title
EP0583836B1 (de) Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen
EP0668342B1 (de) Verfahren zur Herstellung von Basisschmieröl
US5371308A (en) Process for the preparation of lower olefins
US5888376A (en) Conversion of fischer-tropsch light oil to jet fuel by countercurrent processing
EP0532118B1 (de) Verfahren zur Herstellung von Naphtha
EP0211593B1 (de) Verfahren zur Entfernung von polynuklearen aromatischen Kohlenwasserstoffverbindungen aus Mischungen von flüssigen Kohlenwasserstoffverbindungen
US5498821A (en) Carbon dioxide addition in hydrocracking/hydroisomerization processes to control methane production
JPH11189777A (ja) 移動床式水素化変換工程と水素化処理工程とを含む石油重留分変換法
EP1268712B1 (de) Weichmachungsverfahren für fischer-tropschwachsen durch hydrobehandlung unter milden bedingungen
EP0532116B1 (de) Verfahren zur Herstellung von Kohlenwasserstoffbrennstoffen
AU2001253862A1 (en) Process for softening fischer-tropsch wax with mild hydrotreating
US6245709B1 (en) Supported Ni-Cu hydroconversion catalyst
EP0070125B1 (de) Kristallines Siliciumdioxydzeolith enthaltender Katalysator und Kohlenwasserstoff-Hydroverfahren unter Verwendung des Katalysators
EP1442099B1 (de) Verfahren zur herstellung von olefinen.
ZA200600307B (en) Process for the oligomerization of olefins in Fischer-Tropsch derived feeds
EP0707057B1 (de) Addition von Kohlendioxid in Hydrokrack/Hydroisomerizierungsverfahren zur Kontrolierung der Methanherstellung
CA2141925C (en) Lubricating base oil preparation process
US6515033B2 (en) Methods for optimizing fischer-tropsch synthesis hydrocarbons in the distillate fuel range
EP1597339B1 (de) Verfahren zur herstellung von waschmitteln
EP0753563A1 (de) Hydroisomerisierungsverfahren für wachsenthaltende Kohlenwasserstoffeinsätze
US3773656A (en) Process for hydrocarbon cracking using a tungsten-rhenium catalyst

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE DK ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19940615

17Q First examination report despatched

Effective date: 19960205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE DK ES FR GB IT NL SE

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 69314879

Country of ref document: DE

Date of ref document: 19971204

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2110051

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: CHEVRON U.S.A. INC.

Effective date: 19980729

NLR1 Nl: opposition has been filed with the epo

Opponent name: CHEVRON U.S.A. INC.

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CHEVRON U.S.A. INC.

Effective date: 19980729

NLR1 Nl: opposition has been filed with the epo

Opponent name: CHEVRON U.S.A. INC.

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

27A Patent maintained in amended form

Effective date: 20020213

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): BE DE DK ES FR GB IT NL SE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T4

NLR2 Nl: decision of opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
ET3 Fr: translation filed ** decision concerning opposition
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20020809

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 20020513

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030610

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030626

Year of fee payment: 11

Ref country code: DK

Payment date: 20030626

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030723

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030811

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040817

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

BERE Be: lapsed

Owner name: *SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050429

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050816

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20040817

BERE Be: lapsed

Owner name: *SHELL INTERNATIONALE RESEARCH MAATSCHAPPIJ B.V.

Effective date: 20040831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080901

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080711

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090816