[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0561740B1 - Verfahren zum Betreiben eines Dieselmotors und Dieselmotor - Google Patents

Verfahren zum Betreiben eines Dieselmotors und Dieselmotor Download PDF

Info

Publication number
EP0561740B1
EP0561740B1 EP93810182A EP93810182A EP0561740B1 EP 0561740 B1 EP0561740 B1 EP 0561740B1 EP 93810182 A EP93810182 A EP 93810182A EP 93810182 A EP93810182 A EP 93810182A EP 0561740 B1 EP0561740 B1 EP 0561740B1
Authority
EP
European Patent Office
Prior art keywords
pressure
injection
fuel
combustion
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP93810182A
Other languages
English (en)
French (fr)
Other versions
EP0561740A1 (de
Inventor
Lars Thorbjörn Collin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lars Collin Consult AB
Original Assignee
Lars Collin Consult AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4197819&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0561740(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Lars Collin Consult AB filed Critical Lars Collin Consult AB
Priority to EP95116260A priority Critical patent/EP0698729A1/de
Publication of EP0561740A1 publication Critical patent/EP0561740A1/de
Application granted granted Critical
Publication of EP0561740B1 publication Critical patent/EP0561740B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • F02B3/08Methods of operating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • a large number of methods and devices for injecting and igniting diesel fuel in an internal combustion engine are known and customary.
  • the fuel is brought to a certain injection pressure by means of a pump and the injection valve is opened at the same time.
  • the valve like the injection pump, can be actuated by a device synchronized with the engine.
  • Design variants are also common in which the valve opens automatically as a function of the fuel pressure as soon as a certain pressure value is exceeded.
  • injection valves are opened by the injection pump at the beginning of the pressure build-up and closed again after the pressure has dropped.
  • the opening value is usually around 20% or 30% of the maximum working pressure of the fuel pump.
  • TDC top dead center
  • Such motors have good efficiency.
  • parameters that ensure good efficiency are often suitable for producing bad emission values (especially NO x ). This includes, for example, temperature, excess oxygen during combustion, combustion pressure and combustion duration.
  • the invention has for its object to avoid the disadvantages of the known, in particular to create a method of the type mentioned that reduces the pollutant emission of NO x with high efficiency.
  • the invention provides for the fuel to be injected into the combustion chamber only when the fuel pressure has reached at least 75% and advantageously between about 80% and 90% of its maximum injection pressure. This shortens the injection time, better distribution of the fuel in smaller droplets and thereby faster gasification of the fuel. This in turn leads to homogeneous conditions in the combustion chamber and guarantees even combustion.
  • the combustible mixture is generated in a much shorter period of time.
  • the delay for pre-combustion reactions between the hydrocarbons and the oxygen is also shortened and the combustion is optimized. Significant improvement can already be achieved if the valve is only opened when the fuel pressure has reached at least 80% of its maximum injection pressure.
  • fuel is supplied to the combustion chamber 2 of a schematically illustrated diesel engine through an injection valve 1.
  • the injection valve 1 is opened by a control arrangement 3 at the desired point in time of the combustion cycle.
  • the injection valve 1 is supplied with fuel by a pump 4, the pump 4 also being controlled as a function of the crankshaft angle or the respective point in time of the engine cycle.
  • the fuel pressure generated by the pump 4 is a maximum of about 1000 to 1500 atm (atmospheres).
  • the injection valve 1 While in conventional diesel engines the injection valve opens at the beginning of the pressure build-up by the pump 4 (at the latest at 200-300 atm), it is provided according to the invention that the injection valve 1 only opens at the time T1 when the fuel pressure applied to the injection valve is already about 1000 atm, ie has reached approximately 83% of the maximum pressure of approximately 1200 atm. Due to the high pressure, the diesel fuel is injected into the combustion chamber 2 at an extraordinarily high speed and above all with the smallest droplet diameter, so that the combustion process is optimized and, above all, shortened. The injection valve 1 closes again at T2, the fuel pressure still being approximately 900-950 atm, ie over 70% of the maximum pressure. This ensures that large drops of fuel are not injected in the closing phase, which can impair the combustion process in this phase.
  • the pressure increase in the combustion chamber of an engine operated according to the invention takes place continuously until the time of ignition and gradually flattens out.
  • the ignition point tz is relatively late, so that the expansion of the ignited gas cloud falls into the engine's expansion phase. This ensures that there is no significant increase in pressure after ignition, which avoids additional heating due to pressure increase during combustion. In this way, pollutant emissions, especially the NO x content in the exhaust gas, can be drastically reduced in an optimal way.
  • the compression pressure of the engine must be increased to a value that enables late ignition and gas expansion in the engine's expansion phase.
  • Figure 4 shows a comparative test on a conventional diesel engine.
  • the engine was operated at various speed / load ratios 1 to 8 and the NO x emissions were measured and plotted in grams of NO x / kWh.
  • the top curve shows Test 1, in which the engine is unchanged was operated.
  • the opening pressure of the injection valve is 280 atm; the injection begins to build up at 20 ° before TDC and the compression ratio is 1:13.
  • the injection pressure is still at 280 atm; Now, however, the injection only begins to build up at 14 ° before TDC and inject in the TDC area. This shifts the timing of the ignition so that the combustion falls into the engine's expansion phase. In this test, there is no increase in pressure in the cylinder after ignition.
  • the compression ratio is 1:18.
  • the NO x emissions can be reduced to about half the value in the simplest way and without major changes to the engine. Only an insignificant, in practice negligible increase in consumption was observed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • High-Pressure Fuel Injection Pump Control (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Verfahren und Vorrichtungen zum Einspritzen und Zünden von Dieseltreibstoff in einen Verbrennungsmotor sind in Vielzahl bekannt und gebräuchlich. In der Praxis wird dabei der Treibstoff mittels einer Pumpe auf einen bestimmten Einspritzdruck gebracht und gleichzeitig das Einspritzventil geöffnet. Das Ventil kann dabei ebenso wie die Einspritzpumpe durch eine mit dem Motor synchronisierte Einrichtung betätigt werden. Es sind auch Ausführungsvarianten gebräuchlich, bei denen das Ventil in Abhängigkeit vom Treibstoffdruck automatisch öffnet, sobald ein bestimmter Druckwert überschritten wird.
  • In der Praxis werden Einspritzventile heute zu Beginn des Druckaufbaus durch die Einspritzpumpe geöffnet und nach Absinken des Drucks wieder geschlossen. Bei druckgesteuerten Ventilen liegt der Oeffnungswert in der Regel bei etwa 20% oder 30% des maximalen Arbeitsdrucks der Treibstoffpumpe.
  • Das Luft-Treibstoff-Gemisch wird sodann im Zylinder weiter komprimiert und kommt dann zur Zündung. Bei bekannten Motoren baut sich dabei unmittelbar nach dem oberen Totpunkt (OT) des Kolbens im Zylinder ein Verbrennungsdruck auf, der wenigstens das 1,5 bis 2-fache des Kompressionsdrucks des Motors beträgt.
  • Derartige Motoren weisen einen guten Wirkungsgrad auf. Auf der anderen Seite sind Parameter, die guten Wirkungsgrad gewährleisten, häufig geeignet, schlechte Emissionswerte (vor allem NOx) hervorzurufen. Dazu gehört z.B. Temperatur, Sauerstoffüberschuss bei der Verbrennung, Verbrennungsdruck und Verbrennungsdauer.
  • Um NOx Erzeugung zu reduzieren, sind verschiedene Methoden bekannt:
  • Es wurde vorgeschlagen, Auspuffgase zu rezirkulieren, um die O₂ Konzentration und damit die Maximal-Temperatur zu reduzieren; es wurde vorgeschlagen, in die Ansaugluft Wasser zu sprühen, um die Kompressions-Temperatur zu reduzieren und die O₂ Konzentration zu verringern. Es wurde auch schon vorgeschlagen, den Zeitpunkt der Einspritzung zu verzögern, um im Motorzyklus die Zeit für die NOx Bildung zu verringern.
  • Aus der US-A-4,883,032, die den nächstkommenden Stand der Technik bildet, ist es bekannt, hohe Kompressionsdrücke für Dieselmotoren anzuwenden und die Mischung des Luft-Treibstoff-Gemisches zu beschleunigen. Ausserdem soll der Dieselkraftstoff mit einem relativ hohen Druck von gleich oder grösser 1100 bar (16 x 10³ psi) durch speziell festgelegte Einspritzöffnungen eingespritzt werden. Die Zündung wird dabei auf TDC 2° bis 5° festgelegt. Dabei wird aber ein relativ grosser Druckanstieg nach dem Einsetzen der Verbrennung zugelassen, wie sich insbesondere aus Abbildung 7 ergibt.
  • Alle diese bekannten Verfahren sind einerseits aufwendig und erfordern zusätzliche Vorrichtungen und können andererseits den Wirkungsgrad des Motors reduzieren.
  • Der Erfindung liegt die Aufgabe zugrunde, die Nachteile des Bekannten zu vermeiden, insbesondere also ein Verfahren der eingangs genannten Art zu schaffen, das bei hohem Wirkungsgrad die Schadstoffemission von NOx verringert.
  • Erfindungsgemäss wird diese Aufgabe in erster Linie gemäss den Patentansprüchen gelöst.
  • Durch die erfindungsgemässen Massnahmen wird eine Mehrzahl von Parametern des Verbrennungsvorgangs in vorteilhafter Weise verändert:
  • Durch die Begrenzung des Druckanstiegs während der Verbrennung wird erreicht, dass während der Verbrennung kein druckbedingter zusätzlicher Temperaturanstieg bzw. eine Temperaturüberhöhung stattfindet, wodurch vor allem die Erzeugung von NOx wesentlich verringert wird. Statt eines scharfen Druck- und Temperaturanstiegs bei Beginn der Energiefreigabe erfolgt ein kontrollierter Verbrennungsvorgang im Zylinder, der durch gleichzeitige Volumenvergrösserung bei Absenkung des Kolbens eine etwa konstante oder vorteilhafter Weise sogar leicht abfallende Druckkurve ermöglicht. Dies bedingt höhere Verdichtung des Motors, wobei sich vor allem Verdichtungsverhältnisse von 1:16 bis 1:20, vorzugsweise 1:18 bis 1:20 und/oder eine Verdichtung auf 175 oder 180 bar bewährt haben. Der Motor wird dabei auf diese hohen Verdichtungswerte verdichtet und es wird in der Expansionsphase der Zündvorgang herbeigeführt.
  • Gleichzeitig ist erfindungsgemäss vorgesehen, den Treibstoff erst in den Verbrennungsraum einzuspritzen, wenn der Treibstoffdruck wenigstens 75% und vorteilhaft zwischen etwa 80% und 90% seines maximalen Einspritzdrucks erreicht hat. Dies bewirkt eine Verkürzung der Einspritzdauer, bessere Verteilung des Treibstoffs in kleineren Tröpfchen und dadurch eine schnellere Vergasung des Treibstoffs. Dies wiederum führt zu homogenen Verhältnissen im Brennraum und gewährleistet gleichmässige Verbrennung. Das verbrennbare Gemisch wird in einer wesentlich kürzeren Zeitspanne erzeugt. Ausserdem wird die Verzögerung für Vorverbrennungs-Reaktionen zwischen den Kohlenwasserstoffen und dem Sauerstoff verkürzt und die Verbrennung optimiert. Wesentliche Verbesserung lässt sich dabei bereits erreichen, wenn das Ventil erst geöffnet wird, wenn der Treibstoff-Druck wenigstens 80% seines maximalen Einspritzdrucks erreicht hat.
  • Die Erfindung ist im folgenden in Ausführungsbeispielen anhand der Zeichnungen näher erläutert. Es zeigen:
  • Figur 1
    die schematische Darstellung eines Ausschnitts aus einem Verbrennungsmotor,
    Figur 2
    den Verlauf der Ventilöffnung in Abhängigkeit vom Treibstoffdruck,
    Figur 3
    die schematische Darstellung des Druckverlaufs im Verbrennungsraum des Dieselmotors zum Zeitpunkt der Zündung und
    Figur 4
    ein Diagramm mit Vergleichswerten von NOx-Anteil im Abgas eines Verbrennungsmotors bei verschiedenen Betriebsbedingungen.
  • Wie in Figur 1 schematisch dargestellt ist, wird durch ein Einspritzventil 1 Treibstoff dem Verbrennungsraum 2 eines schematisch dargestellten Dieselmotors zugeführt. Das Einspritzventil 1 wird durch eine Steueranordnung 3 im gewünschten Zeitpunkt des Verbrennungszyklus geöffnet. Das Einspritzventil 1 wird von einer Pumpe 4 mit Treibstoff versorgt, wobei die Pumpe 4 ebenfalls in Abhängigkeit vom Kurbelwellen-Winkel bzw. vom jeweiligen Zeitpunkt des Motor-Zyklus gesteuert wird. Der durch die Pumpe 4 erzeugte Treibstoffdruck beträgt maximal etwa 1000 bis 1500 atm (Atmosphären).
  • (Der Maximaldruck schwankt bei verschiedenen Motorentypen von ca. 200 atm bis 1700 atm. In gleicher Weise kann die Anstiegscharakteristik der Treibstoff-Druckkurve variieren.)
  • Der Verlauf des Treibstoff-Drucks ist in Figur 2 dargestellt. Während bei herkömmlichen Dieselmotoren das Einspritzventil zu Beginn des Druckaufbaus durch die Pumpe 4 öffnet (spätestens bei 200 - 300 atm), ist erfindungsgemäss vorgesehen, dass das Einspritzventil 1 erst zum Zeitpunkt T1 öffnet, wenn der am Einspritzventil anliegende Treibstoffdruck bereits etwa 1000 atm, d.h. etwa 83 % des Maximaldrucks von ca. 1200 atm erreicht hat. Durch den hohen Druck wird der Dieseltreibstoff mit ausserordentlich hoher Geschwindigkeit und vor allem mit kleinstem Tröpfchendurchmesser in den Verbrennungsraum 2 eingespritzt, so dass der Verbrennungsablauf optimiert und vor allem auch verkürzt wird. Das Einspritzventil 1 schliesst wieder bei T2, wobei der Treibstoffdruck immer noch ca. 900 - 950 atm, also über 70 % des Maximaldrucks beträgt. Dies gewährleistet, dass nicht in der Schliessphase noch grosse Treibstoff-Tropfen eingespritzt werden, welchen den Verbrennungsablauf in dieser Phase beeinträchtigen können.
  • Unabhängig vom spezifischen Maximaldruck eines bestimmten Motor-Typs wird durch die relative Anhebung des Drucks während der Einspritzphase das Schadstoffverhalten des Motors verbessert.
  • Aus Figur 3 ist ersichtlich, dass der Druckanstieg im Verbrennungsraum eines erfindungsgemäss betriebenen Motors bis zum Zeitpunkt der Zündung kontinuierlich erfolgt und allmählich abflacht. Der Zündzeitpunkt tz ist relativ spät, so dass die Expansion der gezündeten Gaswolke in die Expansionsphase des Motors fällt. Dadurch wird erreicht, dass nach der Zündung kein wesentlicher Druckanstieg erfolgt, wodurch zusätzliche Erhitzung durch Druckzunahme während der Verbrennung vermieden wird. Auf diese Weise lässt sich optimal einfach der Schadstoffausstoss, vor allem der NOx-Anteil im Abgas drastisch reduzieren. Dies lässt sich mit einfachen Mitteln erreichen: der Kompressionsdruck des Motors muss auf einen Wert erhöht werden, der die späte Zündung und die Gasausdehnung in der Expansionsphase des Motors ermöglicht. Es müssten also lediglich die wichtigsten Verbrennungsparameter, wie Kompressionsdruck, Einspritzung des Treibstoffs und Zündung derart gesteuert werden, dass der Gesamtdruck im Zylinder bestehend aus Kompressionsdruck und Verbrennungsdruck den maximalen Kompressionsdruck nicht wesentlich übersteigt, dass also keine weitere Druckzunahme nach der Zündung erfolgt. Ein leichter Anstieg, z.B. um 10% lässt sich dabei manchmal nicht vermeiden. Besonders optimal ist es aber, wenn vom Zeitpunkt der Zündung an der Druck im Verbrennungsraum nicht mehr ansteigt sondern möglichst sogar etwas abfällt, wie dies im Diagramm gemäss Figur 3 gezeigt ist.
  • Figur 4 zeigt einen Vergleichstest an einem konventionellen Dieselmotor. Der Motor wurde bei verschiedenen Drehzahl/Lastverhältnissen 1 bis 8 betrieben und dabei wurde der NOx-Ausstoss in Gramm NOx/kWh gemessen und aufgetragen. Die oberste Kurve zeigt den Test 1, bei dem der Motor ohne Veränderung betrieben wurde. Der Oeffnungsdruck des Einspritzventils beträgt dabei 280 atm; die Einspritzung beginnt bei 20° vor OT Druck aufzubauen und das Verdichtungsverhältnis beträgt 1:13.
  • Beim zweiten Test wurden die ersten beiden Parameter gleichgelassen und lediglich das Verdichtungsverhältnis auf 1:16 erhöht. Ersichtlicherweise ist dabei bereits eine Abnahme des NOx-Gehalts zu verzeichnen.
  • Beim dritten Test ist der Einspritzdruck immer noch bei 280 atm; jetzt beginnt jedoch die Einspritzung erst bei 14° vor OT Druck aufzubauen und im Bereich von OT einzuspritzen. Dadurch wird der Zeitpunkt der Zündung so verschoben, dass die Verbrennung in die Expansionsphase des Motors fällt. Bei diesem Test findet keine Druckzunahme im Zylinder nach der Zündung statt. Das Verdichtungsverhältnis beträgt 1:18.
  • Beim untersten und letzten Test wurde der Zeitpunkt der Einspritzung und das Verdichtungsverhältnis des Tests 3 übernommen. Der Oeffnungsdruck des Ventils wurde aber auf 900 atm angehoben, was ersichtlicherweise noch einmal eine Absenkung des NOx-Ausstosses bewirkt.
  • Wie das Diagramm gemäss Figur 4 ergibt, lässt sich auf einfachste Weise und ohne grosse Aenderungen am Motor eine Reduzierung des NOx-Ausstosses auf etwa den halben Wert erreichen. Dabei wurde nur ein unwesentlicher, in der Praxis zu vernachlässigender Anstieg des Verbrauchs beobachtet.

Claims (3)

  1. Verfahren zum Betreiben eines Dieselmotors
    - mit einer Treibstoff-Einspritzanordnung mit einem Verdichtungsverhältnis von wenigstens 1:16 bis 1:20, vorzugsweise von etwa 1:18
    - und einer Einrichtung zum Steuern des Zeitpunkts der Einspritzung, bzw. der der Zündung und des Einspritzdrucks,
    - wobei der maximale Treibstoffdruck etwa 1.000 - 1.500 bar beträgt und der Treibstoff erst in den Verbrennungsraum eingespritzt wird, wenn der Treibstoffdruck wenigstens 75% seines maximalen Einspritzdrucks erreicht hat
    dadurch gekennzeichnet,
    - dass der Zylinderinhalt auf 175 oder 180 bar verdichtet wird, und
    - dass der Treibstoff im Zylinder bei einem Druck verbrannt wird, der den beim Einsetzen der Verbrennung bestehenden Druck nicht übersteigt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Treibstoff erst bei wenigstens 80% seines Maximaldrucks eingespritzt wird.
  3. Dieselmotor
    - mit einer Einspritzanordnung, mit einem Maximal-Treibstoffdruck von 1.000 - 1.500 bar
    - und mit wenigstens einer Einrichtung zum Steuern des Zeitpunktes der Einspritzung sowie des Einspritzdrucks,
    - wobei die Treibstoff-Einspritzanordnung zum Einspritzen des Treibstoffs nach Erreichen von wenigstens 75% des maximalen Einspritzdrucks ausgelegt ist,
    - und mit einem Verdichtungsverhältnis von wenigstens 1:16 bis 1:20, vorzugsweise von etwa 1:18
    dadurch gekennzeichnet,
    - dass der Kompressionsenddruck 175 oder 180 bar beträgt,
    - und dass die Einspritzung, bzw. die Zündung in einem solchen Zeitpunkt stattfindet, dass der Gesamtdruck im Zylinder den beim Einsetzen der Verbrennung bestehenden Druck nicht übersteigt.
EP93810182A 1992-03-20 1993-03-12 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor Revoked EP0561740B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP95116260A EP0698729A1 (de) 1992-03-20 1993-03-12 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH901/92 1992-03-20
CH90192 1992-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP95116260.1 Division-Into 1993-03-12

Publications (2)

Publication Number Publication Date
EP0561740A1 EP0561740A1 (de) 1993-09-22
EP0561740B1 true EP0561740B1 (de) 1996-05-15

Family

ID=4197819

Family Applications (2)

Application Number Title Priority Date Filing Date
EP93810182A Revoked EP0561740B1 (de) 1992-03-20 1993-03-12 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor
EP95116260A Withdrawn EP0698729A1 (de) 1992-03-20 1993-03-12 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP95116260A Withdrawn EP0698729A1 (de) 1992-03-20 1993-03-12 Verfahren zum Betreiben eines Dieselmotors und Dieselmotor

Country Status (6)

Country Link
US (1) US5522359A (de)
EP (2) EP0561740B1 (de)
JP (1) JPH0642374A (de)
DE (1) DE59302555D1 (de)
DK (1) DK0561740T3 (de)
FI (1) FI931221A (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107224A1 (de) 2008-04-01 2009-10-07 Volkswagen AG Selbstzündende Brennkraftmaschine
DE102009043480A1 (de) 2009-09-30 2011-03-31 Volkswagen Ag Verbrennungsmotor mit Selbstzündung mit einem niedrigen geometrischen Verdichtungsverhältnis und einer Injektoreinrichtung
DE102009043479A1 (de) 2009-09-30 2011-03-31 Volkswagen Ag Verbrennungsmotor mit Selbstzündung und einem niedrigen geometrischen Verdichtungsverhältnis

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622446B2 (ja) * 1997-09-30 2005-02-23 日産自動車株式会社 ディーゼルエンジンの燃焼制御装置
US6557503B2 (en) * 2001-08-08 2003-05-06 General Electric Co. Method for lowering fuel consumption and nitrogen oxide emissions in two-stroke diesel engines
US7663283B2 (en) * 2003-02-05 2010-02-16 The Texas A & M University System Electric machine having a high-torque switched reluctance motor
US6935304B1 (en) 2004-03-17 2005-08-30 International Engine Intellectual Property Company, Llc Increasing the duration of peak combustion pressure in cylinders of a diesel engine using fuel injection control strategies

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125076A (en) * 1964-03-17 Constant pressure combustion autoignition engine
DE67207C (de) * 1892-09-01 1893-02-23 R. DIESEL in Berlin NW., Brücken-Allee 15. Vom 28. Fe-• bruar 1892 ab Arbeitsverfahren und ausführungsart für verbrennungskraftmaschinen
US2534322A (en) * 1949-11-22 1950-12-19 Diesel Power Inc Method of operating diesel-type internal-combustion engines
US4359025A (en) * 1979-12-10 1982-11-16 Stefan Zeliszkewycz Continuous flow fuel injector for internal combustion engines
DE3032656A1 (de) * 1980-08-29 1982-04-29 Willibald 8000 München Hiemer Brennkraft-hubkolbenmaschinen
US4674448A (en) * 1985-07-04 1987-06-23 Sulzer Brothers Limited Fuel injection system for a multi-cylinder reciprocating internal combustion engine
US4899699A (en) * 1988-03-09 1990-02-13 Chinese Petroleum Company Low pressure injection system for injecting fuel directly into cylinder of gasoline engine
US4883032A (en) * 1989-01-23 1989-11-28 Ford Motor Company In-cylinder control of particulates and nitric oxide for diesel engine
US4924828A (en) * 1989-02-24 1990-05-15 The Regents Of The University Of California Method and system for controlled combustion engines
US5012786A (en) * 1990-03-08 1991-05-07 Voss James R Diesel engine fuel injection system
US5265562A (en) * 1992-07-27 1993-11-30 Kruse Douglas C Internal combustion engine with limited temperature cycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.B. HEYWOOD,"INTERNATIONAL COMBUSTION ENGINE FUNDAMENTALS", 1988, MCGRAW-HILL BOOK COMPANY, NEW YORK, USA *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2107224A1 (de) 2008-04-01 2009-10-07 Volkswagen AG Selbstzündende Brennkraftmaschine
DE102008016600A1 (de) 2008-04-01 2009-10-08 Volkswagen Ag Selbstzündende Brennkraftmaschine
DE102009043480A1 (de) 2009-09-30 2011-03-31 Volkswagen Ag Verbrennungsmotor mit Selbstzündung mit einem niedrigen geometrischen Verdichtungsverhältnis und einer Injektoreinrichtung
DE102009043479A1 (de) 2009-09-30 2011-03-31 Volkswagen Ag Verbrennungsmotor mit Selbstzündung und einem niedrigen geometrischen Verdichtungsverhältnis

Also Published As

Publication number Publication date
US5522359A (en) 1996-06-04
EP0698729A1 (de) 1996-02-28
FI931221A (fi) 1993-09-21
DK0561740T3 (da) 1996-09-30
JPH0642374A (ja) 1994-02-15
EP0561740A1 (de) 1993-09-22
DE59302555D1 (de) 1996-06-20
FI931221A0 (fi) 1993-03-19

Similar Documents

Publication Publication Date Title
DE19642653C5 (de) Verfahren zur Bildung eines zündfähigen Kraftstoff/Luft-Gemisches
DE602004012478T2 (de) Vorrichtung und Verfahren zur Steuerung von Mehrfachfacheinspritzung und variablen Ventilsteuerzeiten in einer direkteinspritzenden Brennkraftmaschine
EP0911511B1 (de) Verfahren zur Einspritzung von Kraftstoff in die Brennräume einer luftverdichtenden, selbstzündenden Brennkraftmaschine
EP1180211B1 (de) Verfahren zum einspritzen von kraftstoff und einspritzventil zur durchführung des verfahrens
DE10213025B4 (de) Selbstzündende Brennkraftmaschine
DE112006002990T5 (de) Verfahren und Vorrichtung zum Betreiben einer funkengezündeten Brennkraftmaschine mit Direkteinspritzung
EP1323908B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE2615643A1 (de) Verfahren zum betrieb einer fremdgezuendeten brennkraftmaschine und brennkraftmaschine zur durchfuehrung dieses verfahrens
DE19815266A1 (de) Verfahren zur Einspritzung von Kraftstoff in eine Brennkraftmaschine
EP0561740B1 (de) Verfahren zum Betreiben eines Dieselmotors und Dieselmotor
DE102020000353B4 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens
EP1055061B1 (de) Verfahren zur gemischbildung in einem brennraum eines verbrennungsmotors
EP0527362B2 (de) Verfahren und Vorrichtung zur Verminderung des Stickoxidausstosses von Verbrennungsmotoren
DE60224788T2 (de) Verfahren zum gesteueruten einspritzen von fluid in eine brennkraftmaschine
DE10321794A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE4135135A1 (de) Selbstzuendende hubkolbenbrennkraftmaschine
DE2009365A1 (de) Kraftstoff-Einspritzvorrichtung für eine Diesemaschine
EP1703112B1 (de) Verfahren zum Aufheizen eines Katalysators einer Brennkraft-maschine
DE1451640A1 (de) Verbrennungsraum fuer Verbrennungsmotoren
DE10033597C2 (de) Verfahren zum Betrieb eines Dieselmotors
DE10040117A1 (de) Verfahren zum Betrieb eines Dieselmotors
WO2013023833A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE10322014A1 (de) Verfahren zum Starten einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs
DE888331C (de) Mit innerer Gemischbildung arbeitende Kolbenverbrennungs-kraftmaschine mit Frischgasaufheizung durch das Abgas
AT526244B1 (de) Verfahren zum Betreiben einer fremdgezündeten Viertakt-Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT SE

17P Request for examination filed

Effective date: 19940214

17Q First examination report despatched

Effective date: 19940517

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

XX Miscellaneous (additional remarks)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT SE

REF Corresponds to:

Ref document number: 59302555

Country of ref document: DE

Date of ref document: 19960620

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960812

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: MAN B&W DIESEL AKTIENGESELLSCHAFT

Effective date: 19970210

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980225

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980227

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980324

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980325

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980526

Year of fee payment: 6

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19980519

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 980519