[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0553175B1 - Dry transformer or choke coil and process for making it - Google Patents

Dry transformer or choke coil and process for making it Download PDF

Info

Publication number
EP0553175B1
EP0553175B1 EP91918142A EP91918142A EP0553175B1 EP 0553175 B1 EP0553175 B1 EP 0553175B1 EP 91918142 A EP91918142 A EP 91918142A EP 91918142 A EP91918142 A EP 91918142A EP 0553175 B1 EP0553175 B1 EP 0553175B1
Authority
EP
European Patent Office
Prior art keywords
winding
dry
ceramic material
type transformer
reactance coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91918142A
Other languages
German (de)
French (fr)
Other versions
EP0553175A1 (en
Inventor
Theodor Rendenbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Patent GmbH
Original Assignee
ABB Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Patent GmbH filed Critical ABB Patent GmbH
Publication of EP0553175A1 publication Critical patent/EP0553175A1/en
Application granted granted Critical
Publication of EP0553175B1 publication Critical patent/EP0553175B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/12Insulating of windings
    • H01F41/127Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/327Encapsulating or impregnating
    • H01F2027/328Dry-type transformer with encapsulated foil winding, e.g. windings coaxially arranged on core legs with spacers for cooling and with three phases

Definitions

  • the invention relates to a dry type transformer or an inductor, to a method for producing the winding of a dry type transformer or an inductor, to a method for producing a dry type transformer or an inductor, and to the use of ceramic material as insulation.
  • dry-type transformers and dry choke coils are increasingly being used as distribution transformers or choke coils instead of conventional liquid-insulated devices, particularly because of the fire risks posed by liquid-insulated devices and the danger to soil and groundwater from liquids in the event of leaks or transport accidents.
  • plastics For electrical insulation of the winding wires and layers, for external insulation and to protect the windings of dry-type transformers and dry choke coils against moisture and dirt, plastics are used, such as. B. epoxy, polyester, polyurethane or silicone resins. Cast resin transformers in which one or more windings are completely enclosed with an insulating material have proven to be particularly suitable. These cast resin transformers are therefore completely protected against the effects of moisture and pollution.
  • the plastics used for the electrical insulation of the dry transformers and dry choke coils also have certain disadvantages. In this way, these plastics can burn and develop smoke and toxic combustion gases in the event of a fire, which can endanger people and prevent extinguishing work.
  • the plastics used age due to oxidation and hydrolysis.
  • the chemical decomposition of the plastics is greatly accelerated at relatively high temperatures, which are in the range of the operating temperatures of transformers and choke coils.
  • the mechanical and dielectric properties of the plastics used deteriorate significantly at these temperatures. At even higher temperatures, the plastics are thermally decomposed.
  • Epoxy resins which are mainly used because of their overall best property profile, are disadvantageously not resistant to UV light.
  • the plastics used are sensitive to leakage currents, so that outdoor installation is only possible with complex protective housings. These protective housings are cost-intensive and disadvantageous due to the increase in weight and size of the transformers or the choke coils.
  • the invention has for its object to provide a dry transformer or a dry inductor, which are provided with an environmentally friendly, aging-resistant insulation and protective material with favorable fire behavior. Furthermore, methods for producing a dry transformer or a dry choke coil and their winding are to be mentioned. In addition, appropriate uses of ceramic material dry transformers and dry inductors should be mentioned.
  • a preferred solution with regard to the method for producing the winding of a dry-type transformer or a choke coil is that the inner lateral surface of the winding is first produced by fiber rovings with a mixture of a strongly alkaline solution with sodium and / or potassium and / or Calcium and / or lithium ions and a powder of silicate and aluminum are soaked and wound on a mold that the winding conductors are then wound up and further insulation is applied, and that preferably the winding thus prepared is subsequently heated to a temperature of 70 to 100 ° C is heated to harden the ceramic material.
  • the curing can alternatively also be carried out at room temperatures or temperatures higher than 100 ° C.
  • winding process it is also possible to cast at least one winding in the mold with said mixture or, after winding with winding conductors and necessary further insulation, to soak them in a plunge pool and then to carry out the hardening process. It is also possible to impregnate fiber rovings with said mixture and onto it Winding to wrap. In this way, several windings of a transformer can be separated or isolated together. It is also possible to insulate the winding wires and layers with synthetic resin and the outer sheath with ceramic material.
  • the object is achieved with respect to the method for producing a dry transformer or a dry inductor alternatively by the features characterized in claim 20 or 21, according to which the windings are separated or together or at least one winding together with an iron core in a form with a mixture of a strong alkaline solution with sodium and / or potassium and / or calcium and / or lithium ions and a powder of silicate and aluminum or alternatively the windings are separated or together or the entire active part is soaked in a plunge pool with said mixture.
  • the ceramic material is then hardened at room temperatures or temperatures of 70 to 100 ° C.
  • the ceramic material depending on the composition, has a temperature resistance between 700 ° C. and 1200 ° C. and is not degraded by oxidation and hydrolysis. It is therefore possible to increase the operating temperatures of transformers and choke coils compared to the previous state of the art.
  • the ceramic material is non-flammable and therefore offers the greatest advantages in all cases in which transformers or choke coils pose fire risks. It is even advantageously possible to continue to operate the transformers and choke coils for a certain time after being involved in a fire due to the very high temperature resistance of the ceramic material, in order to maintain the electrical energy supply in a dangerous situation.
  • Ceramic material is an environmentally friendly material, from which no hazardous substances are released even after the end of its useful life when it is landfilled.
  • Ceramic material is resistant to leakage current and UV light so that it can be used outdoors when the devices are installed outdoors, without the need to use expensive protective housings.
  • the shrinkage during hardening and the thermal expansion can be kept very low, which means that components with high dimensional accuracy can be produced, as well as shrinkage stresses and cavities are avoided, which prevents partial discharges during operation.
  • the relatively low hardening temperatures and the relatively short hardening times save energy costs during production.
  • the aforementioned high temperature resistance makes it possible to completely encapsulate the winding and the core, even in the case of transformers or choke coils of higher powers, and to reduce the cooling surface. This optimizes the protection of the winding and core parts against harmful environmental influences - especially moisture.
  • the relatively high thermal conductivity that can be achieved, depending on the composition of the ceramic material is also favorable, because this reduces the build-up of high internal temperatures and temperature differences during operation.
  • FIG. 1.1 shows a dry transformer part and in FIG. 1.2 a variant of a choke coil part each with a winding insulated with ceramic material.
  • An iron core 1, a first winding 2 and a second winding 4 can be seen in FIG. 1.1.
  • 1.2 shows an iron core 11 with air gaps 12 and a choke coil winding 13, the so-called air gaps 12 being formed with a non-ferromagnetic material.
  • the outer lateral surfaces of the first winding 2 and the winding 13 are insulated with ceramic material 3.
  • This outer insulation is preferably produced according to the roving winding process, in the case of glass fiber rovings or rovings of other fiber materials are soaked with the solution described below and contains a powder of silicate and aluminum and are wound onto the spools. This is followed by the curing process described below at room temperature or elevated temperature. It is possible to insulate the outer lateral surface of the second winding 4 with ceramic material in the same way as the outer surface of the winding 2. It is also possible to use ceramic material for the so-called air gaps 12, the material being reinforced by mixing in glass fibers can.
  • FIG. 2 shows a dry transformer part with a winding completely encapsulated in ceramic material.
  • An iron core 1, a first winding 2, a second winding 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing the first winding 2.
  • the winding 2 is brought into an appropriately designed shape and cast with the solution described below, containing a powder of silicate and aluminum.
  • this variant can also be applied to dry choke coils, in which case air gaps in the iron core 11 and only one winding 13 are provided.
  • the casting process can be carried out using a vacuum. This is followed by the curing process described in more detail below at room temperature or elevated temperature. It is possible to completely encapsulate the outer surface of the second winding 4 with ceramic material in the same way as the outer surface of the first winding 2. The same method can also be applied to the winding 13 of a choke coil.
  • the inner lateral surface 5 (FIG. 2) is first produced in accordance with the roving winding process, in which the glass fiber rovings or other fiber rovings are impregnated with the strongly alkaline solution described below and containing a powder of silicate and aluminum and to a suitable shape be wrapped.
  • the winding conductors and necessary further insulations are wound onto the inner surface thus created, the further insulations also being produced using the roving winding method.
  • Either the fiber rovings are soaked with the strongly alkaline solution described below, containing a powder of silicate and aluminum, or alternatively with a liquid plastic material (synthetic resin).
  • the outer insulation is produced, in the same way as shown above in the description of FIG. 1. This is followed by the hardening process described below. The same method can be applied to the winding 13 of a choke coil.
  • the winding of a dry transformer or a choke coil is immersed in a plunge pool after the winding of the winding conductors and necessary further insulation contains the strongly alkaline solution described below, including the powder made of silicate and aluminum.
  • fiber mats, fiber fabrics or similar fiber materials can be applied here before the impregnation process.
  • the impregnation process can preferably be carried out under vacuum in order to avoid air pockets.
  • the curing process described below follows the impregnation process.
  • FIG. 3 shows a dry transformer part with a first winding completely encapsulated in ceramic material and a second winding encapsulated together with the iron core.
  • An iron core 1, a first winding 2, a second winding 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing both the winding 2 and the winding 4 together with the iron core 1.
  • the second winding 4 is omitted and the iron core 1 is designed with so-called air gaps.
  • the encapsulation is carried out as described in FIG. 2, the iron core being brought together with the winding 4 into an appropriately designed shape in order to carry out the casting process, preferably using a vacuum.
  • the second winding 4 can be isolated and encapsulated according to one of the further methods described in FIGS. 1 and 2, the iron core outer surface denoted by numeral 6 in FIG. 3 serving as a form for forming the inner jacket surface 5.
  • FIG. 4 shows a dry transformer part with windings which together are completely encapsulated in ceramic material.
  • An iron core 1 and two windings 2 and 4 with ceramic material 3 can be seen, the ceramic material 3 completely enclosing both windings.
  • the encapsulation is carried out according to a method described in FIG. 2, the windings 2, 4 either being brought together into a correspondingly shaped form and potted or soaked together in the immersion process or co-processed in the roving winding process - preferably using a vacuum.
  • FIG. 5 shows a dry transformer part with two windings encapsulated with the iron core together with ceramic material.
  • An iron core 1, windings 2 and 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing both the windings 2 and 4 and the iron core.
  • the encapsulation is carried out either by the casting process, in which the iron core is brought into an appropriately designed shape together with all the windings, or by the impregnation process, in which the iron core is immersed in a drinking basin together with all the windings. Both methods are described in Figure 2 and are preferably carried out under vacuum.
  • FIG. 6 shows a dry transformer winding part or choke coil winding part with layer insulation and encapsulation made of ceramic material.
  • the winding conductors 7, the outer insulation or encapsulation 8 and the inner layer insulation 9 (inner winding insulation layers) can be seen.
  • the inner winding insulation layers 9, like the outer insulation 8, are produced using a method described in FIGS. 1 to 5 with ceramic material.
  • FIG. 7 shows a dry transformer winding part or choke coil winding part with layer and wire insulation made of ceramic material.
  • the winding conductors 7 and the insulation 10 made of ceramic material can be seen. It is clarified that not only the inner winding layers g according to FIG. 6, but also the insulation from winding conductor to winding conductor can be produced with a ceramic material using a method described in FIGS. 1 to 5.
  • FIGS. 6 and 7 show winding conductors 7 with a round cross section. Alternatively, winding conductors with a rectangular cross section can be used.
  • the ceramic material used is an alumino-silicate-based ceramic material with a silicon-aluminum atom ratio, preferably between 2 and 4 (equilibrium ratio 2.07 to 4.14).
  • a fine powder of aluminum and silicate is placed in a strongly alkaline solution that contains sodium, potassium, calcium or lithium ions or a combination of all these elements.
  • the grain sizes used are preferably between 0.25 ⁇ m and 1 ⁇ m.
  • the solution is one Liquid with a viscosity between approx. 500 and 300 mPas.
  • the heating up period is essentially determined by the dimension of the component, the material being able to cure in principle at different temperature gradients.
  • the curing time for 0.1 mm thick films at 70 ° C is approx. 30 min, for 1 cm thick blocks at the same temperature approx. 3 hours. Hardening is also possible at room temperature, but the time required for this is on the order of days, again depending on the geometry.
  • the reaction produces water as a condensation product, which is removed from the material by heating for several hours at temperatures above 50 ° C. This drying is an important time factor, as it is much slower than hardening, especially for large components.
  • the heating speed also plays an important role here, since if the heating is too fast, cracks may occur in the material.
  • the resulting ceramic material has ceramic properties regarding high temperature strength, chemical stability, hardness, fracture toughness and electrical properties.
  • the material properties - in particular the mechanical strength - can also be influenced by reinforcing the ceramic material with various fiber materials or fillers. In particular, glass fibers and / or mineral fillers can be used.
  • Ceramic material can be completely sealed with a ceramic-like glaze on its surface or with a thin coating of another water-impermeable material. Liquids with favorable dielectric properties such as. B. a silicone-containing emulsion, for impregnating the ceramic material and thus to increase the dielectric strength of the material, and a silicone-containing lacquer for the outer coating of the material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulating Of Coils (AREA)

Abstract

The invention relates to a dry transformer or a choke coil in which the winding conductors and/or winding layers and/or outer sheathing of at least one winding (2, 13) are insulated. Alternatively, at least one winding and the iron core (1, 11) with the windings (2, 13) can be entirely surrounded by ceramic resin (3). To produce the ceramic resin, a strong alkaline solution with sodium and/or potassium and/or calcium and/or lithium and a powder of silicate and aluminium is prepared. Alternatively, fibre rovings may be soaked in this solution and wound on the winding or the winding or the iron core with windings are put into a mould and this solution poured over it. This is followed by a curing process at a temperature of 70 to 100 °C. Curing may be followed by soaking in a fluid with good dielectric properties.

Description

Die Erfindung bezieht sich auf einen Trockentransformator bzw. eine Drosselspule, auf ein Verfahren zur Herstellung der Wicklung eines Trockentransformators bzw. einer Drosselspule, auf ein Verfahren zur Herstellung eines Trokkentransformators bzw. einer Drosselspule sowie auf die Verwendung von keramischem Material als Isolation.The invention relates to a dry type transformer or an inductor, to a method for producing the winding of a dry type transformer or an inductor, to a method for producing a dry type transformer or an inductor, and to the use of ceramic material as insulation.

In der elektrischen Energieversorgung werden als Verteilungstransformatoren bzw. Drosselspule zunehmend Trokkentransformatoren und Trockendrosselspulen anstelle von herkömmlichen flüssigkeitsisolierten Geräten eingesetzt, insbesondere wegen der von flüssigkeitsisolierten Geräten ausgehenden Brandgefahren und Gefährdung von Erdreich und Grundwasser durch Flüssigkeiten bei Undichtigkeiten oder Transportunfällen.In electrical energy supply, dry-type transformers and dry choke coils are increasingly being used as distribution transformers or choke coils instead of conventional liquid-insulated devices, particularly because of the fire risks posed by liquid-insulated devices and the danger to soil and groundwater from liquids in the event of leaks or transport accidents.

Zur elektrischen Isolation der Wicklungsdrähte und Wicklungslagen, zur äußeren Isolation und zum Schutz der Wicklungen von Trockentransformatoren und Trockendrosselspulen gegen Feuchtigkeit und Verschmutzung werden Kunststoffe eingesetzt, wie z. B. Epoxid-, Polyester-, Polyurethan- oder Silikonharze. Als besonders geeignet haben sich Gießharztransformatoren erwiesen, bei denen eine oder mehrere Wicklungen vollständig mit einem Isolierstoff umschlossen sind. Diese Gießharztransformatoren sind somit völlig gegen die Einflüsse von Feuchtigkeit und Verschmutzung geschützt.For electrical insulation of the winding wires and layers, for external insulation and to protect the windings of dry-type transformers and dry choke coils against moisture and dirt, plastics are used, such as. B. epoxy, polyester, polyurethane or silicone resins. Cast resin transformers in which one or more windings are completely enclosed with an insulating material have proven to be particularly suitable. These cast resin transformers are therefore completely protected against the effects of moisture and pollution.

Die zur elektrischen Isolierung der Trockentransformatoren und Trockendrosselspulen verwendeten Kunststoffe haben jedoch auch gewisse Nachteile. So können diese Kunststoffe brennen und entwickeln im Brandfall Rauch und giftige Brandgase, die Menschen gefährden und Löscharbeiten behindern können. Die eingesetzten Kunststoffe altern infolge Oxidation und Hydrolyse. Die chemische Zersetzung der Kunststoffe wird bei relativ hohen Temperaturen, die im Bereich der Betriebstemperaturen von Transformatoren und Drosselspulen liegen, stark beschleunigt. Die mechanischen und dielektrischen Eigenschaften der verwendeten Kunststoffe werden bei diesen Temperaturen stark verschlechtert. Bei noch höheren Temperaturen werden die Kunststoffe thermisch zersetzt. Epoxidharze, die wegen ihres insgesamt besten Eigenschaftsbildes vorwiegend verwendet werden, sind in nachteiliger Weise unbeständig gegen UV-Licht. Ferner sind die verwendeten Kunststoffe empfindlich gegen Kriechströme, so daß eine Freiluftaufstellung nur mit aufwendigen Schutzgehäusen möglich ist. Diese Schutzgehäuse sind kostenintensiv und nachteilig infolge Gewichts- und Abmessungsvergrößerung der Transformatoren bzw. der Drosselspulen.However, the plastics used for the electrical insulation of the dry transformers and dry choke coils also have certain disadvantages. In this way, these plastics can burn and develop smoke and toxic combustion gases in the event of a fire, which can endanger people and prevent extinguishing work. The plastics used age due to oxidation and hydrolysis. The chemical decomposition of the plastics is greatly accelerated at relatively high temperatures, which are in the range of the operating temperatures of transformers and choke coils. The mechanical and dielectric properties of the plastics used deteriorate significantly at these temperatures. At even higher temperatures, the plastics are thermally decomposed. Epoxy resins, which are mainly used because of their overall best property profile, are disadvantageously not resistant to UV light. Furthermore, the plastics used are sensitive to leakage currents, so that outdoor installation is only possible with complex protective housings. These protective housings are cost-intensive and disadvantageous due to the increase in weight and size of the transformers or the choke coils.

Probleme ergeben sich auch durch eine mögliche Zerstörung der Kunststoffisolierung infolge Teilentladung. Die verwendeten Kunststoffe weisen nach der Härtung Schrumpfungen auf, die zu Lunkern und Schrumpfspannungen und späterer Rißbildung führen können, was Teilentladungen ermöglicht.Problems also arise from possible destruction of the plastic insulation as a result of partial discharge. After hardening, the plastics used show shrinkage, which can lead to cavities and shrinkage stresses and later crack formation, which enables partial discharges.

Bei der Deponierung von Kunststoffen nach Beendigung der Gebrauchsdauer können infolge der langsam fortschreitenden Zersetzung der Kunststoffe schädliche Zersetzungsprodukte in Erdreich und Grundwasser gelangen.When plastics are deposited at the end of their useful life, harmful decomposition products can get into the soil and groundwater as a result of the slowly progressing decomposition of the plastics.

Bei der Herstellung von Trockentransformatorspulen wie auch Drosselspulen werden Gießverfahren und Tränkverfahren eingesetzt, die zur Vermeidung von Lufteinschlüssen vielfach unter Vakuum durchgeführt werden, oder es wird das Roving-Wickelverfahren verwendet, bei dem Glasfaser-Rovings mit Epoxidharz getränkt und auf die einzelnen Wicklungslagen und/oder auf die Spulen gewickelt werden.In the manufacture of dry transformer coils and choke coils, casting processes and impregnation processes are used, which are often carried out under vacuum to avoid air pockets, or the roving winding process is used, in which glass fiber rovings are impregnated with epoxy resin and applied to the individual winding layers and / or be wound on the spools.

Der Erfindung liegt die Aufgabe zugrunde, einen Trockentransformator bzw. eine Trockendrosselspule anzugeben, die mit einem umweltfreundlichen, alterungsbeständigen Isolier- und Schutzmaterial mit günstigem Brandverhalten versehen sind. Ferner sollen Verfahren zur Herstellung eines Trockentransformators bzw. einer Trockendrosselspule sowie deren Wicklung angeführt werden. Darüberhinaus sollen zweckmäßige Verwendungen von keramischem Material Trockentransformatoren und Trockendrosselspulen genannt werden.The invention has for its object to provide a dry transformer or a dry inductor, which are provided with an environmentally friendly, aging-resistant insulation and protective material with favorable fire behavior. Furthermore, methods for producing a dry transformer or a dry choke coil and their winding are to be mentioned. In addition, appropriate uses of ceramic material dry transformers and dry inductors should be mentioned.

Diese Aufgabe wird bezüglich des Trockentransformators und der Drosselspule erfindungsgemäß alternativ durch die im Anspruch 1 gekennzeichneten Merkmale gelöst, wonach die Wicklungsleiter und/oder Wicklungsisolationslagen und/oder der Außenmantel mindestens einer Wicklung eines Trockentransformators bzw. einer Drosselspule mit keramischem Material isoliert sind.With regard to the dry-type transformer and the inductor, this object is alternatively achieved by the Characteristics solved in claim 1, according to which the winding conductors and / or winding insulation layers and / or the outer jacket of at least one winding of a dry transformer or a choke coil are insulated with ceramic material.

Die Aufgabe bezüglich des Verfahrens zur Herstellung einer Wicklung eines Trockentransformators und einer Drosselspule wird alternativ durch die in den Ansprüchen 13, 17, 18 und 19 gekennzeichneten Merkmale gelöst.The object relating to the method for producing a winding of a dry transformer and a choke coil is alternatively achieved by the features characterized in claims 13, 17, 18 and 19.

Eine bevorzugte Lösung bezüglich des Verfahrens zur Herstellung der Wicklung eines Trockentransformators bzw. einer Drosselspule besteht darin, daß zunächst die innere Mantelfläche der Wicklung hergestellt wird, indem Faserrovings mit einer Mischung aus einer stark alkalischen Lösung mit Natrium- und/oder Kalium- und/oder Kalzium- und/oder Lithium-Ionen und einem Pulver aus Silikat und Aluminium getränkt und auf eine Form gewickelt werden, daß anschließend die Wicklungsleiter aufgewickelt und weitere Isolationen aufgebracht werden, und daß vorzugsweise nachfolgend die so vorbereitete Wicklung auf eine Temperatur von 70 bis 100°C zur Härtung des keramischen Materials aufgeheizt wird. Die Härtung kann alternativ auch bei Raumtemperaturen oder höheren Temperaturen als 100°C durchgeführt werden.A preferred solution with regard to the method for producing the winding of a dry-type transformer or a choke coil is that the inner lateral surface of the winding is first produced by fiber rovings with a mixture of a strongly alkaline solution with sodium and / or potassium and / or Calcium and / or lithium ions and a powder of silicate and aluminum are soaked and wound on a mold that the winding conductors are then wound up and further insulation is applied, and that preferably the winding thus prepared is subsequently heated to a temperature of 70 to 100 ° C is heated to harden the ceramic material. The curing can alternatively also be carried out at room temperatures or temperatures higher than 100 ° C.

Alternativ zum Wickelverfahren ist es auch möglich, mindestens eine in einer Form befindliche Wicklung mit der besagten Mischung zu vergießen oder nach dem Bewickeln mit Wicklungsleitern und notwendiger weitere Isolation in einem Tauchbecken zu tränken und anschließend den Härteprozeß durchzuführen. Ferner ist es auch möglich, Faserrovings mit der besagten Mischung zu tränken und auf die Wicklung zu wickeln. Es können so auch mehrere Wicklungen eines Transformators getrennt oder gemeinsam isoliert werden. Ferner ist es möglich, die Isolation der Wicklungsdrähte und Wicklungslagen mit Kunstharz auszuführen und die äußere Ummantelung mit keramischem Material.As an alternative to the winding process, it is also possible to cast at least one winding in the mold with said mixture or, after winding with winding conductors and necessary further insulation, to soak them in a plunge pool and then to carry out the hardening process. It is also possible to impregnate fiber rovings with said mixture and onto it Winding to wrap. In this way, several windings of a transformer can be separated or isolated together. It is also possible to insulate the winding wires and layers with synthetic resin and the outer sheath with ceramic material.

Die Aufgabe wird bezüglich des Verfahrens zur Herstellung eines Trockentransformators bzw. einer Trockendrosselspule alternativ durch die im Anspruch 20 oder 21 gekennzeichneten Merkmale gelöst, wonach die Wicklungen getrennt oder zusammen oder mindestens eine zusammen mit einem Eisenkern in einer Form befindlichen Wicklung mit einer Mischung aus einer stark alkalischen Lösung mit Natrium- und/oder Kalium- und/oder Kalzium- und/oder Lithium-Ionen und einem Pulver aus Silikat und Aluminium vergossen oder alternativ die Wicklungen getrennt oder zusammen oder der gesamte Aktivteil in einem Tauchbecken mit der besagten Mischung getränkt werden. Die Härtung des keramischen Materials erfolgt anschließend bei Raumtemperaturen oder Temperaturen von 70 bis 100°C.The object is achieved with respect to the method for producing a dry transformer or a dry inductor alternatively by the features characterized in claim 20 or 21, according to which the windings are separated or together or at least one winding together with an iron core in a form with a mixture of a strong alkaline solution with sodium and / or potassium and / or calcium and / or lithium ions and a powder of silicate and aluminum or alternatively the windings are separated or together or the entire active part is soaked in a plunge pool with said mixture. The ceramic material is then hardened at room temperatures or temperatures of 70 to 100 ° C.

Ferner wird erfindungsgemäß die Verwendung von keramischen Werkstoff als Isolier- und Schutzmaterial für die Wicklungen oder Wicklungen und Eisenkern von Trockentransformatoren bzw. von Trockendrosselspulen vorgeschlagen.Furthermore, the use of ceramic material as an insulating and protective material for the windings or windings and iron core of dry transformers or dry choke coils is proposed according to the invention.

Die mit der Erfindung erzielbaren Vorteile bestehen insbesondere darin, daß der keramische Werkstoff je nach Zusammensetzung eine Temperaturbeständigkeit zwischen 700°C und 1200°C aufweist und nicht durch Oxidation und Hydrolyse abgebaut wird. Deshalb ist es möglich, die Betriebstemperaturen von Transformatoren und Drosselspulen gegenüber dem bisherigen technischen Stand zu erhöhen.The advantages that can be achieved with the invention are, in particular, that the ceramic material, depending on the composition, has a temperature resistance between 700 ° C. and 1200 ° C. and is not degraded by oxidation and hydrolysis. It is therefore possible to increase the operating temperatures of transformers and choke coils compared to the previous state of the art.

Dadurch werden das Gewicht und die Abmessungen des Trockentransformators bzw. der Drosselspule vermindert, was für eine Vielzahl von Anwendungsfällen von großer Bedeutung ist, besonders bei Transformatoren und Drosselspulen für elektrisch betriebene Fahrzeuge, wie Lokomotiven, bei Ölbohrplattformen und bei der Montage auf Masten.This reduces the weight and dimensions of the dry-type transformer or choke coil, which is of great importance for a large number of applications, particularly in the case of transformers and choke coils for electrically operated vehicles, such as locomotives, on oil drilling platforms and when mounted on masts.

Der keramische Werkstoff ist unbrennbar und bietet deshalb in allen Fällen, in denen von Transformatoren bzw. Drosselspulen Brandgefahren ausgehen, größte Vorteile. Es ist sogar vorteilhaft möglich, die Transformatoren und Drosselspulen nach Einbezug in ein Brandgeschehen aufgrund der sehr hohen Temperaturbeständigkeit des keramischen Materials eine gewisse Zeit weiter zu betreiben, um somit die elektrische Energieversorgung in einer gefährlichen Situation aufrecht zu erhalten.The ceramic material is non-flammable and therefore offers the greatest advantages in all cases in which transformers or choke coils pose fire risks. It is even advantageously possible to continue to operate the transformers and choke coils for a certain time after being involved in a fire due to the very high temperature resistance of the ceramic material, in order to maintain the electrical energy supply in a dangerous situation.

Keramisches Material ist ein umweltfreundliches Material, von dem auch nach Beendigung der Gebrauchsdauer bei einer Deponierung keine gefährlichen Stoffe abgegeben werden.Ceramic material is an environmentally friendly material, from which no hazardous substances are released even after the end of its useful life when it is landfilled.

Keramisches Material ist kriechstromfest und UV-Lichtbeständig, so daß ein Einsatz bei Freiluftaufstellung der Geräte möglich ist, ohne daß dabei kostenintensive Schutzgehäuse verwendet werden müssen.Ceramic material is resistant to leakage current and UV light so that it can be used outdoors when the devices are installed outdoors, without the need to use expensive protective housings.

Je nach Zusammensetzung des keramischen Materials können die Schrumpfung bei der Härtung und die Wärmedehnung sehr gering gehalten werden, wodurch sich Bauteile mit hoher Maßgenauigkeit herstellen lassen, sowie Schrumpfspannungen und Lunkern vermieden werden, was Teilentladungen während des Betriebes verhindert.Depending on the composition of the ceramic material, the shrinkage during hardening and the thermal expansion can be kept very low, which means that components with high dimensional accuracy can be produced, as well as shrinkage stresses and cavities are avoided, which prevents partial discharges during operation.

Durch die relativ geringen Härtetemperaturen und die relativ kurzen Härtungszeiten werden Energiekosten bei der Herstellung eingespart.The relatively low hardening temperatures and the relatively short hardening times save energy costs during production.

Durch die zuvor erwähnte hohe Temperaturbeständigkeit ist es möglich, die Wicklung und den Kern auch bei Transformatoren bzw. Drosselspulen höherer Leistungen vollständig einzukapseln und die Kühloberfläche zu vermindern. Dadurch wird der Schutz der Wicklungs- und Kernteile gegen schädliche Umwelteinflüsse - insbesondere Feuchtigkeit - optimiert. In dieser Hinsicht ist auch die je nach Zusammensetzung des keramischen Materials erreichbare relativ hohe Wärmeleitfähigkeit günstig, weil hierdurch der Aufbau hoher innerer Temperaturen und Temperaturdifferenzen während des Betriebes vermindert werden.The aforementioned high temperature resistance makes it possible to completely encapsulate the winding and the core, even in the case of transformers or choke coils of higher powers, and to reduce the cooling surface. This optimizes the protection of the winding and core parts against harmful environmental influences - especially moisture. In this regard, the relatively high thermal conductivity that can be achieved, depending on the composition of the ceramic material, is also favorable, because this reduces the build-up of high internal temperatures and temperature differences during operation.

Vorteilhafte Weiterbildung der Erfindung sind in den abhängigen Ansprüchen gekennzeichnet.Advantageous developments of the invention are characterized in the dependent claims.

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert.
Es zeigen:

Fig. 1.1
ein Trockentransformatorteil mit einer mit keramischem Material isolierten Wicklung,
Fig. 1.2
ein Drosselspulenteil mit einer mit keramischem Material isolierten Wicklung,
Fig. 2
ein Trockentransformatorteil mit einer vollständig in keramischem Material eingekapselten Wicklung,
Fig. 3
ein Trockentransformatorteil mit einer vollständig in keramischem Material einkapselten ersten Wicklung und einer gemeinsam mit dem Eisenkern eingekapselten zweiten Wicklung,
Fig. 4
ein Trockentransformatorteil mit zwei vollständig in keramischem Material eingekapselten Wicklungen,
Fig. 5
ein Trockentransformatorteil mit zwei mit dem Eisenkern gemeinsam mit keramischem Material eingekapselten Wicklungen,
Fig. 6
ein Trockentransformatorwicklungsteil Isolation aus keramischem Material,
Fig. 7
ein Trockentransformatorwicklungsteil mit Drahtisolation aus keramischem Material
The invention is explained below with reference to the embodiments shown in the drawing.
Show it:
Fig. 1.1
a dry transformer part with a winding insulated with ceramic material,
Fig. 1.2
a choke coil part with a winding insulated with ceramic material,
Fig. 2
a dry transformer part with a winding completely encapsulated in ceramic material,
Fig. 3
a dry transformer part with a first winding completely encapsulated in ceramic material and a second winding encapsulated together with the iron core,
Fig. 4
a dry transformer part with two windings completely encapsulated in ceramic material,
Fig. 5
a dry transformer part with two windings encapsulated with the iron core together with ceramic material,
Fig. 6
a dry transformer winding part insulation made of ceramic material,
Fig. 7
a dry transformer winding part with wire insulation made of ceramic material

In Figur 1.1 ist gemäß einer ersten Variante ein Trockentransformatorteil und in Fig. 1.2 eine Variante eines Drosselspulenteils jeweils mit einer mit keramischem Material isolierten Wicklung dargestellt. In Fig. 1.1 sind ein Eisenkern 1, eine erste Wicklung 2 und eine zweite Wicklung 4 zu erkennen. In Fig. 1.2 ist ein Eisenkern 11 mit Luftspalten 12 und eine Drosselspulenwicklung 13 dargestellt, wobei die sogenannten Luftspalte 12 mit einem nicht ferromagnetischen Material gebildet werden.According to a first variant, FIG. 1.1 shows a dry transformer part and in FIG. 1.2 a variant of a choke coil part each with a winding insulated with ceramic material. An iron core 1, a first winding 2 and a second winding 4 can be seen in FIG. 1.1. 1.2 shows an iron core 11 with air gaps 12 and a choke coil winding 13, the so-called air gaps 12 being formed with a non-ferromagnetic material.

Die äußeren Mantelflächen der ersten Wicklung 2 und der Wicklung 13 sind mit keramischem Material 3 isoliert. Die Herstellung dieser äußeren Isolation erfolgt vorzugsweise gemäß dem Roving-Wickelverfahren, bei dem Glasfaser-Rovings oder Rovings anderer Fasermaterialien mit der nachstehend beschriebenen, ein Pulver aus Silikat und Aluminium enthaltenden Lösung getränkt und auf die Spulen gewickelt werden. Es schließt sich der nachstehend beschriebene Härteprozeß bei Raumtemperatur oder erhöhter Temperatur an. Es ist möglich, die äußere Mantelfläche der zweiten Wicklung 4 in gleicher Weise mit keramischem Material zu isolieren wie die Mantelfläche der Wicklung 2. Es ist auch möglich, keramisches Material für die sogenannten Luftspalte 12 zu verwenden, wobei das Material durch Einmischen von Glasfasern verstärkt werden kann.The outer lateral surfaces of the first winding 2 and the winding 13 are insulated with ceramic material 3. This outer insulation is preferably produced according to the roving winding process, in the case of glass fiber rovings or rovings of other fiber materials are soaked with the solution described below and contains a powder of silicate and aluminum and are wound onto the spools. This is followed by the curing process described below at room temperature or elevated temperature. It is possible to insulate the outer lateral surface of the second winding 4 with ceramic material in the same way as the outer surface of the winding 2. It is also possible to use ceramic material for the so-called air gaps 12, the material being reinforced by mixing in glass fibers can.

In Figur 2 ist gemäß einer zweiten Variante ein Trockentransformatorteil mit einer vollständig in keramischem Material eingekapselten Wicklung dargestellt. Es sind ein Eisenkern 1, eine erste Wicklung 2, eine zweite Wicklung 4 und keramisches Material 3 zu erkennen, wobei das keramische Material 3 die erste Wicklung 2 völlig umschließt. Zur Einkapselung wird die Wicklung 2 in eine entsprechend ausgebildete Form gebracht und mit der ein Pulver aus Silikat und Aluminium enthaltenden, nachstehend beschriebenen Lösung vergossen.According to a second variant, FIG. 2 shows a dry transformer part with a winding completely encapsulated in ceramic material. An iron core 1, a first winding 2, a second winding 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing the first winding 2. For encapsulation, the winding 2 is brought into an appropriately designed shape and cast with the solution described below, containing a powder of silicate and aluminum.

Dementsprechend kann diese Variante auch auf Trockendrosselspulen angewendet werden, wobei dann Luftspalte im Eisenkern 11 und nur eine Wicklung 13 vorgesehen sind. Zur Vermeidung von Lunkern kann das Gießverfahren unter Anwendung von Vakuum durchgeführt werden. Es schließt sich der nachstehend näher beschriebene Härteprozeß bei Raumtemperatur oder erhöhter Temperatur an. Es ist möglich, die Mantelfläche der zweiten Wicklung 4 in gleicher Weise vollständig mit keramischem Material zu kapseln wie die Mantelfläche der ersten Wicklung 2. Das gleiche Verfahren kann auch auf die Wicklung 13 einer Drosselspule angewendet werden.Accordingly, this variant can also be applied to dry choke coils, in which case air gaps in the iron core 11 and only one winding 13 are provided. To avoid cavities, the casting process can be carried out using a vacuum. This is followed by the curing process described in more detail below at room temperature or elevated temperature. It is possible to completely encapsulate the outer surface of the second winding 4 with ceramic material in the same way as the outer surface of the first winding 2. The same method can also be applied to the winding 13 of a choke coil.

Für die in Figur 2 dargestellte Variante eines Trockentransformatorteils mit einer vollständig in Keramischem material eingekapselten Wicklung werden nachfolgend weitere alternative Herstellungsverfahren angegeben.For the variant of a dry transformer part shown in FIG. 2 with a winding completely encapsulated in ceramic material, further alternative production methods are specified below.

Bei dem ersten weiteren Herstellungsverfahren wird zunächst die innere Mantelfläche 5 (Figur 2) gemäß dem Roving-Wickelverfahren hergestellt, bei dem die Glasfaserrovings oder andere Faserrovings mit der nachstehend beschriebenen, ein Pulver aus Silikat und Aluminium enthaltenden stark alkalischen Lösung getränkt und auf eine geeignete Form gewickelt werden. Auf die so entstandene innere Mantelfläche werden die Wicklungsleiter und notwendige weitere Isolationen gewickelt, wobei die weiteren Isolationen ebenfalls nach dem Rovingwickelverfahren hergestellt werden. Entweder werden dabei die Faserrovings mit der nachstehend beschriebenen, ein Pulver aus Silikat und Aluminium enthaltenden stark alkalischen Lösung getränkt oder alternativ mit einem flüssigen Kunststoffmaterial (Kunstharz). Nach Fertigstellung der Wicklung der Wicklungsleiter wird die äußere Isolation hergestellt, und zwar in gleicher Weise wie vorstehend bei der Beschreibung zu Figur 1 dargestellt. Daran schließt sich der nachstehend beschriebene Härteprozeß an. Das gleiche Verfahren kann auf die Wicklung 13 einer Drosselspule angewendet werden.In the first further production process, the inner lateral surface 5 (FIG. 2) is first produced in accordance with the roving winding process, in which the glass fiber rovings or other fiber rovings are impregnated with the strongly alkaline solution described below and containing a powder of silicate and aluminum and to a suitable shape be wrapped. The winding conductors and necessary further insulations are wound onto the inner surface thus created, the further insulations also being produced using the roving winding method. Either the fiber rovings are soaked with the strongly alkaline solution described below, containing a powder of silicate and aluminum, or alternatively with a liquid plastic material (synthetic resin). After the winding of the winding conductors has been completed, the outer insulation is produced, in the same way as shown above in the description of FIG. 1. This is followed by the hardening process described below. The same method can be applied to the winding 13 of a choke coil.

Bei dem zweiten weiteren Herstellungsverfahren wird die Wicklung eines Trockentransformators oder einer Drosselspule nach dem Wickeln der Wicklungsleiter und notwendiger weiterer Isolation in ein Tauchbecken getaucht, das die nachstehend beschriebene stark alkalische Lösung inklusive des Pulvers aus Silikat und Aluminium enthält. Dabei entsteht ein allseitiger Überzug, der nach dem Herausziehen der Wicklung aus dem Tauchbecken in einer Schicht auf den äußeren Mantelflächen haften bleibt und auch die inneren Isolationen durchtränkt. Zur Verstärkung der äußeren Mantelflächen können hier vor dem Tränkvorgang Fasermatten, Fasergewebe oder ähnliche Fasermaterialien aufgebracht werden. Der Tränkvorgang kann vorzugsweise unter Vakuum durchgeführt werden, um Lufteinschlüsse zu vermeiden. An den Tränkvorgang schließt sich der nachstehend beschriebene Härtungsprozeß an.In the second further production method, the winding of a dry transformer or a choke coil is immersed in a plunge pool after the winding of the winding conductors and necessary further insulation contains the strongly alkaline solution described below, including the powder made of silicate and aluminum. This creates a coating on all sides that adheres to the outer jacket surfaces in one layer after the winding is pulled out of the plunge pool and also soaks the inner insulation. To reinforce the outer jacket surfaces, fiber mats, fiber fabrics or similar fiber materials can be applied here before the impregnation process. The impregnation process can preferably be carried out under vacuum in order to avoid air pockets. The curing process described below follows the impregnation process.

Es ist möglich, die zweite Wicklung 4 nach beiden weiteren Verfahren in gleicher Weise zu behandeln.It is possible to treat the second winding 4 in the same way using the two further methods.

In Figur 3 ist gemäß einer dritten Variante ein Trockentransformatorteil mit einer vollständig in keramischem Material eingekapselten ersten Wicklung und einer gemeinsam mit dem Eisenkern eingekapselten zweiten Wicklung dargestellt. Es sind ein Eisenkern 1, eine erste Wicklung 2, eine zweite Wicklung 4 und keramisches Material 3 zu erkennen, wobei das keramische Material 3 sowohl die Wicklung 2 als auch die Wicklung 4 zusammen mit dem Eisenkern 1 völlig umschließt. Bei einer Drosselspule entfällt die zweite Wicklung 4 und der Eisenkern 1 wird mit sogenannten Luftspalten ausgeführt. Die Einkapselung erfolgt wie unter Figur 2 beschrieben, wobei der Eisenkern zusammen mit der Wicklung 4 in eine entsprechend gestaltete Form gebracht wird, um den Gießvorgang - vorzugsweise unter Anwendung von Vakuum - durchzuführen. Es ist auch möglich, das Verfahren auf die Wicklung und den Kern einer Drosselspule anzuwenden, wobei das Material für die sogenannten Luftspalten beim gleichen Gießvorgang eingebracht werden kann. Die zweite Wicklung 4 kann gemäß einem der weiteren, unter den Figuren 1 und 2 beschriebenen Verfahren isoliert und gekapselt werden, wobei die in Figur 3 mit Ziffer 6 bezeichnete Eisenkern-Außenfläche als Form zur Bildung der inneren Mantelfläche 5 dient.According to a third variant, FIG. 3 shows a dry transformer part with a first winding completely encapsulated in ceramic material and a second winding encapsulated together with the iron core. An iron core 1, a first winding 2, a second winding 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing both the winding 2 and the winding 4 together with the iron core 1. In the case of a choke coil, the second winding 4 is omitted and the iron core 1 is designed with so-called air gaps. The encapsulation is carried out as described in FIG. 2, the iron core being brought together with the winding 4 into an appropriately designed shape in order to carry out the casting process, preferably using a vacuum. It is also possible to apply the method to the winding and the core of a choke coil, the material for the so-called air gaps being introduced in the same casting process can be. The second winding 4 can be isolated and encapsulated according to one of the further methods described in FIGS. 1 and 2, the iron core outer surface denoted by numeral 6 in FIG. 3 serving as a form for forming the inner jacket surface 5.

In Figur 4 ist gemäß einer vierten Variante ein Trockentransformatorteil dargestellt mit Wicklungen, die gemeinsam vollständig in keramischem Material eingekapselt sind. Es sind ein Eisenkern 1 sowie zwei Wicklungen 2 und 4 mit keramischem Material 3 zu erkennen, wobei das keramische Material 3 beide Wicklungen vollständig umschließt. die Einkapselung erfolgt gemäß einem unter Figur 2 beschriebenen Verfahren, wobei die Wicklungen 2, 4 entweder gemeinsam in eine entsprechend gestaltete Form gebracht und vergossen oder gemeinsam im Tauchverfahren getränkt oder gemeinsam im Rovingwickelverfahren bewikkelt werden - vorzugsweise unter Anwendung von Vakuum.According to a fourth variant, FIG. 4 shows a dry transformer part with windings which together are completely encapsulated in ceramic material. An iron core 1 and two windings 2 and 4 with ceramic material 3 can be seen, the ceramic material 3 completely enclosing both windings. the encapsulation is carried out according to a method described in FIG. 2, the windings 2, 4 either being brought together into a correspondingly shaped form and potted or soaked together in the immersion process or co-processed in the roving winding process - preferably using a vacuum.

In Figur 5 ist gemäß einer fünften Variante ein Trockentransformatorteil mit zwei mit dem Eisenkern gemeinsam mit keramischem Material eingekapselten Wicklungen dargestellt. Es sind ein Eisenkern 1, Wicklungen 2 und 4 und keramisches Material 3 zu erkennen, wobei das keramische Material 3 sowohl die Wicklungen 2 und 4 als auch den Eisenkern völlig umschließt. Die Einkapselung erfolgt entweder nach dem Gießverfahren, wobei der Eisenkern zusammen mit allen Wicklungen in eine entsprechend gestaltete Form gebracht wird, oder nach dem Tränkverfahren, wobei der Eisenkern zusammen mit allen Wicklungen in ein Tränkbecken getaucht wird. Beide Verfahren sind unter Figur 2 beschrieben und werden vorzugsweise unter Vakuum durchgeführt.According to a fifth variant, FIG. 5 shows a dry transformer part with two windings encapsulated with the iron core together with ceramic material. An iron core 1, windings 2 and 4 and ceramic material 3 can be seen, the ceramic material 3 completely enclosing both the windings 2 and 4 and the iron core. The encapsulation is carried out either by the casting process, in which the iron core is brought into an appropriately designed shape together with all the windings, or by the impregnation process, in which the iron core is immersed in a drinking basin together with all the windings. Both methods are described in Figure 2 and are preferably carried out under vacuum.

In Figur 6 ist ein Trockentransformatorwicklungsteil oder Drosselspulenwicklungsteil mit Lagenisolation und Kapselung aus keramischem Material dargestellt. Es sind die Wicklungsleiter 7, die äußere Isolation oder Kapselung 8 und die innere Lagenisolation 9 (innere Wicklungsisolationslagen) zu erkennen. Die inneren Wicklungsisolationslagen 9 werden ebenso wie die äußere Isolation 8 nach einem unter den Figuren 1 bis 5 beschriebenen Verfahren mit keramischem Material hergestellt.FIG. 6 shows a dry transformer winding part or choke coil winding part with layer insulation and encapsulation made of ceramic material. The winding conductors 7, the outer insulation or encapsulation 8 and the inner layer insulation 9 (inner winding insulation layers) can be seen. The inner winding insulation layers 9, like the outer insulation 8, are produced using a method described in FIGS. 1 to 5 with ceramic material.

In Figur 7 ist ein Trockentransformatorwicklungsteil oder Drosselspulenwicklungsteil mit Lagen- und Drahtisolation aus keramischem Material dargestellt. Es sind die Wicklungsleiter 7 und die Isolation 10 aus keramischem Material zu erkennen. Es wird verdeutlicht, daß nicht nur die inneren Wicklungslagen g gemäß Figur 6, sondern auch die Isolation von Wicklungsleiter zu Wicklungsleiter mit einem unter den Figuren 1 bis 5 beschriebenen Verfahren mit keramischem Material hergestellt werden können.FIG. 7 shows a dry transformer winding part or choke coil winding part with layer and wire insulation made of ceramic material. The winding conductors 7 and the insulation 10 made of ceramic material can be seen. It is clarified that not only the inner winding layers g according to FIG. 6, but also the insulation from winding conductor to winding conductor can be produced with a ceramic material using a method described in FIGS. 1 to 5.

In den Figuren 6 und 7 sind Wicklungsleiter 7 mit rundem Querschnitt dargestellt. Es können alternativ Wicklungsleiter mit rechteckigem Querschnitt angewendet werden.FIGS. 6 and 7 show winding conductors 7 with a round cross section. Alternatively, winding conductors with a rectangular cross section can be used.

Bei dem verwendeten keramischem Material handelt es sich um einen keramischen Werkstoff auf Alumino-Silikat-Basis mit einem Silizium-Aluminium-Atom-Verhältnis vorzugsweise zwischen 2 und 4 (Gleichgewichtsverhältnis 2,07 bis 4,14). Zur Herstellung des keramischen Materials wird ein feines Pulver aus Aluminium und Silikat in eine stark alkalische Lösung gebracht, die Natrium-, Kalium-, Kalzium- oder Lithium-Ionen oder eine Kombination all dieser Elemente beinhaltet. Die verwendeten Korngrößen liegen vorzugsweise zwischen 0,25µm und 1µm. Die Lösung ist eine Flüssigkeit mit einer Viskosität zwischen ca. 500 und 300 mPas.The ceramic material used is an alumino-silicate-based ceramic material with a silicon-aluminum atom ratio, preferably between 2 and 4 (equilibrium ratio 2.07 to 4.14). To produce the ceramic material, a fine powder of aluminum and silicate is placed in a strongly alkaline solution that contains sodium, potassium, calcium or lithium ions or a combination of all these elements. The grain sizes used are preferably between 0.25 µm and 1 µm. The solution is one Liquid with a viscosity between approx. 500 and 300 mPas.

Bei Raumtemperatur oder durch Aufheizung der mit dem Pulver aus Aluminium und Silikat versehenen Lösung auf Temperaturen von vorzugsweise 70 bis 100°C wird eine exotherme Reaktion ausgelöst, begleitet von einer Polykondensation der keramischen Moleküle. Diese basiert auf dem Zusammenschluß von ALO₄- und SiO₄-Tetraeder, wobei die metallischen Ionen der Lösung als Ladungsausgleich in die entstehende Struktur eingeschlossen werden. Durch den Zusammenschluß der Moleküle entsteht eine 3-dimensionale Struktur, die jedoch völlig ungeordnet bleibt, so daß das entstehende Material amorph ist.At room temperature or by heating the solution provided with the powder of aluminum and silicate to temperatures of preferably 70 to 100 ° C, an exothermic reaction is triggered, accompanied by polycondensation of the ceramic molecules. This is based on the merger of ALO₄ and SiO₄ tetrahedra, whereby the metallic ions of the solution are included in the structure as a charge balance. The combination of the molecules creates a 3-dimensional structure, which remains completely disordered, so that the resulting material is amorphous.

Die Zeitspanne der Aufheizung ist im wesentlichen durch die Dimension des Bauteils bestimmt, wobei der Werkstoff prinzipiell bei verschiedenen Temperaturgradienten aushärten kann. So liegt die Härtezeit für 0,1 mm dicke Folien bei 70°C bei ca. 30 min, für 1 cm dicke Blöcke bei der gleichen Temperatur bei ca. 3 Stunden. Auch bei Raumtemperatur ist eine Härtung möglich, die dafür notwendige Zeitspanne liegt jedoch in der Größenordnung von Tagen, wiederum abhängig von der Geometrie.The heating up period is essentially determined by the dimension of the component, the material being able to cure in principle at different temperature gradients. The curing time for 0.1 mm thick films at 70 ° C is approx. 30 min, for 1 cm thick blocks at the same temperature approx. 3 hours. Hardening is also possible at room temperature, but the time required for this is on the order of days, again depending on the geometry.

Bei der Reaktion entsteht Wasser als Kondensationsprodukt, das durch mehrstündiges Aufheizen auf Temperaturen über 50°C aus dem Werkstoff entfernt wird. Diese Trocknung ist ein wichtiger Zeitfaktor, da sie besonders bei großen Bauteilen wesentlich langsamer abläuft als das Härten. Hierbei spielt auch die Aufheizgeschwindigkeit eine wichtige Rolle, da bei zu schnellem Aufheizen unter Umständen Risse im Werkstoff entstehen können. Das so entstandene keramische Material hat keramische Eigenschaften bezüglich Hochtemperaturfestigkeit, chemische Stabilität, Härte, Bruchzähigkeit und elektrische Eigenschaften. Die Werkstoffeigenschaften - insbesondere die mechanische Festigkeit - können auch durch eine Verstärkung des keramischen Materials mit verschiedenen Fasermaterialien oder Füllstoffen beeinflußt werden. Es können insbesondere Glasfasern und/oder mineralische Füllstoff verwendet werden.The reaction produces water as a condensation product, which is removed from the material by heating for several hours at temperatures above 50 ° C. This drying is an important time factor, as it is much slower than hardening, especially for large components. The heating speed also plays an important role here, since if the heating is too fast, cracks may occur in the material. The resulting ceramic material has ceramic properties regarding high temperature strength, chemical stability, hardness, fracture toughness and electrical properties. The material properties - in particular the mechanical strength - can also be influenced by reinforcing the ceramic material with various fiber materials or fillers. In particular, glass fibers and / or mineral fillers can be used.

Keramisches Material kann durch eine keramikartige Glasierung auf seiner Oberfläche oder auch mit einem dünnen Überzug aus einem anderen wasserundurchlässigen Material vollständig versiegelt werden. Vorteilhaft können Flüssigkeiten mit günstigen dielektrischen Eigenschaften wie z. B. eine silikonhaltige Emulsion, zur Tränkung des keramischen Materials und damit zur Erhöhung der dielektrischen Festigkeit des Werkstoffes sowie ein silikonhaltiger Lack zur äußeren Beschichtung des Werkstoffes verwendet werden.Ceramic material can be completely sealed with a ceramic-like glaze on its surface or with a thin coating of another water-impermeable material. Liquids with favorable dielectric properties such as. B. a silicone-containing emulsion, for impregnating the ceramic material and thus to increase the dielectric strength of the material, and a silicone-containing lacquer for the outer coating of the material.

Claims (35)

  1. Dry-type transformer or reactance coil having an iron core, at least one winding having winding conductors, an outer circumferential surface and an insulation, characterised in that a ceramic material based on aluminium silicate is provided as insulation.
  2. Dry-type transformer or reactance coil according to Claim 1, the outer circumferential surface of at least one winding (2, 13) being insulated with the ceramic material (3).
  3. Dry-type transformer or reactance coil according to Claim 2, at least one winding (2, 13) being completely enclosed by the ceramic material (3).
  4. Dry-type transformer or reactance coil according to Claim 3, both the iron core (1, 11) and at least one winding (2, 13) being completely enclosed by the ceramic material (3).
  5. Dry-type transformer or reactance coil according to Claim 1, the winding conductors (7) of at least one winding being insulated with the ceramic material (10).
  6. Dry-type transformer or reactance coil according to Claim 1, the inner winding-insulation layers (9) and the outer insulation (8) comprising of at least one winding of the ceramic material.
  7. Dry-type transformer or reactance coil according to one of Claims 1 to 6, the ceramic material having the grouping-together of AlO₄ and SiO₄ tetrahedrons.
  8. Dry-type transformer or reactance coil according to one of Claims 1 to 7, the surfaces of the ceramic material being at least partially sealed with a ceramic-like glazing, as is customary in ceramics.
  9. Dry-type transformer or reactance coil according to one of Claims 1 to 7, the surface of the ceramic material being at least partially sealed with a water-impermeable material.
  10. Dry-type transformer or reactance coil according to Claim 9, characterised by the use of a silicone-containing lacquer for the outer coating of the ceramic material.
  11. Dry-type transformer or reactance coil according to Claim 9, characterised by the use of a silicone-containing emulsion for impregnating the ceramic material.
  12. Dry-type transformer or reactance coil according to one of Claims 1 to 7, the ceramic material used being entirely or partially impregnated with a liquid having favourable dielectric properties, such as epoxy resin or silicone resin.
  13. Process for the production of a winding of a dry-type transformer or of a reactance coil, characterised in that, first of all, the inner circumferential surface (5) of the winding is produced by fibre rovings being impregnated with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium and wound onto a form, in that subsequently the winding conductors are wound on and further insulations are applied.
  14. Process according to Claim 13, the further insulations being likewise produced by using fibre rovings.
  15. Process according to Claim 14, the fibre rovings being likewise impregnated with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium.
  16. Process according to Claim 14, the fibre rovings being additionally impregnated with a liquid synthetic resin such as epoxy resin or silicone resin.
  17. Process for the production of a winding of a dry-type transformer or of a reactance coil, characterised in that, after winding with winding conductors and necessary further insulation, the winding are [sic] impregnated in a dip tank with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium.
  18. Process for the production of a winding of a dry-type transformer or of a reactance coil, characterised in that fibre rovings are impregnated with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium and are wound onto the winding (2, 3).
  19. Process for the production of at least one winding of a dry-type transformer or of a reactance coil, characterised in that at least one winding, situated in a mould, are [sic] cast with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium.
  20. Process for the production of a dry-type transformer or of a reactance coil, characterised in that at least one winding (2, 13), situated together with an iron core (1, 11) in a mould, is cast with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium.
  21. Process for the production of a dry-type transformer or of a reactance coil, characterised in that at least one winding (2, 13) is impregnated together with an iron core (1) in a dip tank with a strongly alkaline solution with sodium and/or potassium and/or calcium and/or lithium ions as well as a powder of silicate and aluminium.
  22. Process according to at least one of Claims 13 to 21, the silicate/aluminium atomic ratio being between 2 and 4.
  23. Process according to one of Claims 13 to 21, characterised in that the particle size of the powder is 0.25µm to 1µm.
  24. Process according to at least one of Claims 13 to 23, the windings or the windings with iron core or the transformer being successively heated to a temperature of 70 to 100°C.
  25. Process according to at least one of Claims 13 to 24, characterised by the application of a vacuum in the case of winding, pouring or impregnating.
  26. Process according to at least one of Claims 13 to 25, the solution being additionally provided with fibres, preferably glass fibres.
  27. Process according to at least one of Claims 13 to 26, the solution being additionally provided with fillers, preferably mineral fillers.
  28. Process according to at least one of Claims 13 to 27, the water produced during the curing reaction being driven out by heating over hours to temperatures above 50°C.
  29. Process according to at least one of Claims 13 to 28, the ceramic material being impregnated after curing by dipping at least one winding into a dip tank with a liquid having favourable dielectric properties.
  30. Process according to at least one of Claims 13 to 29, the ceramic material being impregnated after curing by dipping at least one winding together with the iron core into a dip tank with a liquid having favourable dielectric properties.
  31. Process according to at least one of Claims 29 and 30, the impregnating agent or the components to be impregnated being heated to temperatures above 30°C.
  32. Process according to at least one of Claims 29 and 30, the impregnating agent and the components to be impregnated being heated to temperatures above 30°C.
  33. Process according to at least one of Claims 29 to 32, a vacuum being applied during the impregnating operation.
  34. Use of ceramic material based on Al-Si as insulating and/or protecting material for the windings of dry-type transformers and reactance coils.
  35. Use of ceramic material based on Al-Si as insulating and/or protecting material for the windings and the iron core of dry-type transformers and reactance coils.
EP91918142A 1990-10-18 1991-10-15 Dry transformer or choke coil and process for making it Expired - Lifetime EP0553175B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE4033030 1990-10-18
DE4033030 1990-10-18
DE4110223 1991-03-28
DE4110223A DE4110223A1 (en) 1990-10-18 1991-03-28 DRY TRANSFORMER OR THROTTLE COIL AND METHOD FOR THEIR PRODUCTION
PCT/EP1991/001956 WO1992007369A1 (en) 1990-10-18 1991-10-15 Dry transformer or choke coil and process for making it

Publications (2)

Publication Number Publication Date
EP0553175A1 EP0553175A1 (en) 1993-08-04
EP0553175B1 true EP0553175B1 (en) 1994-09-07

Family

ID=25897795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91918142A Expired - Lifetime EP0553175B1 (en) 1990-10-18 1991-10-15 Dry transformer or choke coil and process for making it

Country Status (5)

Country Link
EP (1) EP0553175B1 (en)
AU (1) AU8722791A (en)
DE (2) DE4110223A1 (en)
ES (1) ES2062817T3 (en)
WO (1) WO1992007369A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931810A (en) * 2016-06-27 2016-09-07 杨林娣 Power transformer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4343121A1 (en) * 1993-12-17 1995-06-22 Abb Patent Gmbh Process for producing a casting ceramic
DE19505529A1 (en) * 1994-12-24 1996-06-27 Abb Patent Gmbh Three=phase power transformer with load-bearing rated coil former
KR100341321B1 (en) * 1999-07-26 2002-06-21 윤종용 Transformer for a microwave oven
FI118398B (en) * 2005-05-17 2007-10-31 Nokian Capacitors Oy Method and arrangement for making a choking coil and choking coil
CN105931809A (en) * 2016-06-27 2016-09-07 杨林娣 Oil-immersed transformer
CN105931811A (en) * 2016-06-27 2016-09-07 杨林娣 Oil-immersed power transformer
CN113903562A (en) * 2021-10-14 2022-01-07 广东电网有限责任公司 Dry-type transformer and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS411256B1 (en) * 1964-03-27 1966-02-01
EP0066633B1 (en) * 1981-06-04 1985-11-13 Nikkiso Co., Ltd. Process for forming a ceramic-like insulation
SE439212B (en) * 1983-10-06 1985-06-03 Asea Lepper Gmbh DISTANCE HOLDER BETWEEN LEADER STORES FOR A STORAGE WINDOW FOR A TRANSFORMER OR REACTOR
US4831303A (en) * 1988-01-27 1989-05-16 Westinghouse Electric Corp. Coil armor tape for new bonding surface and CORONOX seal
FR2630253A1 (en) * 1988-04-19 1989-10-20 Alsthom METHOD FOR IMPROVING THE FIRE RESISTANCE OF A DRY ELECTRICAL TRANSFORMER

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931810A (en) * 2016-06-27 2016-09-07 杨林娣 Power transformer

Also Published As

Publication number Publication date
DE4110223A1 (en) 1992-04-23
ES2062817T3 (en) 1994-12-16
DE59102870D1 (en) 1994-10-13
EP0553175A1 (en) 1993-08-04
AU8722791A (en) 1992-05-20
WO1992007369A1 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
DE3507509A1 (en) HIGH VOLTAGE-RESISTANT COMPONENT AND METHOD FOR THE PRODUCTION THEREOF
CH643676A5 (en) COMPOSITE INSULATOR MADE OF PLASTIC.
EP0553175B1 (en) Dry transformer or choke coil and process for making it
EP0129819A1 (en) Method of impregnating and enveloping electrical coils
DE1719241B2 (en) Process for the production of an electrical insulating material that is resistant to nuclear radiation and mechanically resistant
DE102018214641B4 (en) Potting compound, method for electrically isolating an electrical or electronic component using the potting compound, electrically insulated component produced by such a method and using the potting compound
CH261736A (en) Method of manufacturing a dry-type transformer.
DE69915808T2 (en) STRIPED INDUCTION COIL WITH IMPROVED HEAT TRANSFER AND SHORT-CIRCULAR STRENGTH
DE2747663A1 (en) Coatings for compressed mixts. of silica opacifier and mineral wool - comprises a mixt. of inorganic binder, filler, pigment and mineral wool
EP0031576B1 (en) Method of casting-in an electrical appliance
CH365769A (en) Process for producing electrical conductor insulation
DE2543146C2 (en) Method of encapsulating parts
KR960039544A (en) Preparation of electric insulated wire wheel
DE3514879A1 (en) METHOD FOR REDUCING WATER VAPOR DIFFUSION IN A MULTIPLE LAYER PLASTIC COMPOSITE INSULATOR
DE19860412A1 (en) Manufacturing of motor coils involves winding oval coils, applying internal discharge protective impregnated tape, spreading coils, and applying insulation and outer discharge protection
EP0658527B1 (en) Process for making a castable ceramic
DE1665075B1 (en) Method of insulating an electrical object
DE1640214A1 (en) Process for the production of electrically conductive coatings on encapsulated electrotechnical devices
DE3907090C2 (en) Process for the powder metallurgical production of a soft magnetic body
DE69402862T2 (en) METHOD FOR THE PRODUCTION OF SPRING CYLINDRICAL CYLINDER-SHAPED AND SPRING CYLINDER-SHAPED CASTING
DE1018121B (en) Outdoor high-voltage composite insulator made of plastic
DE1958028A1 (en) Resin-impregnated transformer coil
DE1811797A1 (en) Dry resin insulated high-tension transformer
AT206984B (en) High-voltage insulation with cast resin
DE1162901B (en) Implementation for high voltage and process for their production

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19930824

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 59102870

Country of ref document: DE

Date of ref document: 19941013

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940921

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2062817

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961014

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970812

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980130

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19981016

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19981015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051015