[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0410979A1 - Aushärtbare nickellegierung. - Google Patents

Aushärtbare nickellegierung.

Info

Publication number
EP0410979A1
EP0410979A1 EP89903692A EP89903692A EP0410979A1 EP 0410979 A1 EP0410979 A1 EP 0410979A1 EP 89903692 A EP89903692 A EP 89903692A EP 89903692 A EP89903692 A EP 89903692A EP 0410979 A1 EP0410979 A1 EP 0410979A1
Authority
EP
European Patent Office
Prior art keywords
nickel
thermoformed
molybdenum
chromium
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89903692A
Other languages
English (en)
French (fr)
Other versions
EP0410979B1 (de
Inventor
Ulrich Heubner
Michael Koehler
Gregory B Chitwood
Jon R Bryant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp VDM GmbH
Otis Engineering Corp
Original Assignee
VDM Nickel Technologie AG
Otis Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDM Nickel Technologie AG, Otis Engineering Corp filed Critical VDM Nickel Technologie AG
Priority to AT89903692T priority Critical patent/ATE102262T1/de
Publication of EP0410979A1 publication Critical patent/EP0410979A1/de
Application granted granted Critical
Publication of EP0410979B1 publication Critical patent/EP0410979B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon

Definitions

  • the invention relates to a curable
  • Very good corrosion resistance means that the alloy and parts made from it can be exposed to solutions containing CO 2 , H 2 S, chlorides and free sulfur at temperatures between room temperature and 350 ° C and pressures between 10 and 100 bar.
  • Corrosion resistance or they contain niobium as essential for hardening
  • a hardenable nickel alloy which is characterized by 43 to 51% nickel 19 to 24% chromium 4.5 to 7.5% molybdenum 0.4 to 2.5% copper to 1% manganese to 0.5 % Silicon to 0.02% carbon to 2% cobalt 0.3 to 1.8% aluminum 0.9 to 2.2% titanium balance iron, including unavoidable, manufacturing-related impurities.
  • the nickel alloy according to the invention is suitable as
  • a restricted composition which is characterized by particularly good processing properties, is characterized by
  • the nickel alloy is particularly suitable as a material for the production of components that are to be used under very aggressive sour gas conditions. In the manufacture of components that have sufficient corrosion resistance under very aggressive
  • Cast blocks were made, the cast blocks were homogenized at 1220 ° C and then thermoformed above 1000 ° C and the parts obtained were quenched in water, and the thermoformed and quenched parts were cured at 650 to 750 ° C for 4 to 16 hours and then subjected to air cooling.
  • the following alloy is preferably used for casting blocks which are said to have particularly good processing properties 46 to 51% nickel,
  • titanium 1.5 to 2.1% titanium, balance iron, including unavoidable, manufacturing-related impurities used.
  • the mechanical-technological properties can be further improved by additional curing steps.
  • the thermoformed and quenched parts are first annealed for 4 to 10 hours at 700 ° C to 750 ° C, then cooled in an oven at 5 to 25 ° C per hour by 150 ° C and then placed in air.
  • the components can also be kept between 730 ° C to 750 ° C for 30 minutes, then cooled in an oven at 5 to 25 ° C per hour to 700 ° C and then at 2 to 15 ° C per hour to 580 ° C. Finally, the components are placed in air.
  • thermoformed parts are subjected to solution heat treatment at 1150 to 1190 ° C. before being quenched in water.
  • the thermoformed, solution-annealed and water-quenched parts can also be kept at 700 to 750 ° C for 4 to 10 hours, then in the furnace at 5 to 25 ° C per hour by 150 ° C and finally further cooled in air. Further details and advantages of the inventive concept are explained in more detail on the basis of the following test results.
  • Table 1 shows the chemical composition of 7 alloys, which - after different heat treatment - have been examined for their mechanical properties at room temperature (RT) and at 260 ° C. The results are summarized in Tables 2 to 7.
  • results show that the required minimum mechanical properties were achieved in all cases and in some cases considerably exceeded. Furthermore, it can be seen from the results as a whole that with the different variants of the heat treatment, different values of the mechanical properties can be achieved, which can be advantageous for the adjustment to special requirement profiles. In favor of higher elongation at break values, for example, maximum strength values can be dispensed with and vice versa. Apart from this general tendency, it can also be seen that the highest strength values are achieved if the thermoformed parts are not solution annealed again, but are directly quenched in water and that the maximum achievable strength depends on the total aluminum plus titanium content.
  • the aluminum and titanium contents cannot be increased arbitrarily, because disadvantageous elimination phases then occur which cannot be avoided or compensated for even in the case of complex heat treatment.
  • the numerous alternatives in the heat treatment it is always possible to achieve optimum strength values in each case without having to put up with disadvantageous structural structures. For example, the more complex three-stage curing treatment will be indicated when it comes to avoiding a reduction in the impact strength when setting the highest possible strength values.
  • Solution A 25% NaCl, 10 bar H 2 S and 50 bar CO 2 solution B: 25% NaCl, 0.5% acetic acid, 1 g / l sulfur and 12 bar H 2 S.
  • the alloy according to the invention accordingly shows in a new way a combination of high strength that has not been achieved with curable materials and at the same time excellent resistance in very aggressive acid gas media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Articles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

Aushärtbare Nickellegierung
Beschreibung
Die Erfindung bezieht sich auf eine aushärtbare
Nickellegierung mit einer 0,2 %-Dehngrenze von mindestens 500 N/mm2 und sehr guter Korrosionsbeständigkeit, auf die Verwendung der Legierung zur Herstellung von
Bauteilen, die den genannten Anforderungen entsprechen mußten und auf ein Verfahren zur Herstellung solcher
Bauteile.
Sehr gute Korrosionsbeständigkeit bedeutet, daß die Legierung und daraus hergestellte Teile bei Temperaturen zwischen Raumtemperatur und 350ºC und Drücken zwischen 10 und 100 bar Lösungen ausgesetzt werden können, die CO2, H2S, Chloride und freien Schwefel enthalten.
Solche Bedingungen sind typisch für die Erdδl- und Erdgas-Suche und -Forderung. Zur Herstellung von Bauteilen, die diesen Bedingungen genügen, sind bisher hoch mit Chrom und Molybdän legierte Nickelbasiswerkstoffe verwendet worden, obwohl deren 0,2 %-Dehngrenze nur bei 310 bis 345 N/mm2 liegt. Durch Kaltumformen kann deren
Festigkeit erhöht werden, wobei aber gleichzeitig eine
Verringerung der Duktilitat toleriert werden muβ. Auβerdem ist eine Kaltverfestigung bei gröβeren Querschnitten im allgemeinen nicht sehr anwendbar, so das in solchen Fällen auf aushärtbare Werkstoffe zurückgegriffen werden muβ.
Werkstoffe, bei denen durch Aushärten höhere Festigkeiten erzielt werden können, besitzen unter sehr aggressiven
Sauergas-Bedingungen aber keine ausreichende
Korrosionsbeständigkeit, oder sie enthalten Niob als wesentliches zur Aushärtung erforderliches
Leglerungselement. Beispielsweise wurde von J.A. Harris, T.F. Lemke, D.F. Smith und R.H. Moeller ein aushärtbarer Nickelbasiswerkstoff mit (Gew.-%) 42 Nickel, 21 Chrom, 3 Molybdän, 2,2 Kupfer, 2,1 Titan, 0,3 Aluminium, 0,02 Kohlenstoff, Rest Eisen vorgestellt (The Development of a Corrosion Resistant Alloy for Sour Gas Service, CORROSION 84, Paper No.216, National Association of Corrosion Engineers, Houston, Texas, 1984), der unter Sauergas-Bedingungen beständig sein soll. Die mitgeteilten Ergebnisse zeigen jedoch, daß unter extremen Korrosionsbedingungen, wie sie in größeren Tiefen herrschen können, der vorgestellte Werkstoff durch Spannungsriβkorrosion zerstört wird.
Ein anderer Legierungsvorschlag ist mit der European Patent Specification 0 066 361 vorgestellt worden. Dieser Legierungsvorschlag mit (Gew.%) 45 bis 55 Nickel, 15 bis 22 Chrom, 6 bis 9 Molybdän; 2,5 bis 5,5 Niob, 1 bis 2 Titan, bis zu 1 Aluminium, bis zu 0,35 Kohlenstoff und 10 bis 28 Eisen sowie weiteren Begleitelementen enthält Niob als eine für die Aushärtung wesentliche Legierungskomponente. Niobhaltige Legierungen sind für eine großtechnische Herstellung und Verarbeitung aber weitaus weniger gut geeignet als niobfreie, da niobhaltige Schrotte und Fabrikationsabfälle zum Wiedereinschmelzen einen Vakuuminduktionsofen erforderlich machen, wenn bets-achtliche Verluste dieses teuren Legierungselements durch Abbrand vermieden werden sollen. Außerdem schränken höhere Niobgehalte, wie sie hier vorgeschlagen sind, die Warmformgebungsmöglichkeiten sehr deutlich ein. Solche Nachteile treffen auch zu auf die von R.B. Frank und T.A.. DeBold vorgestellte Legierung mit (Gew.%) 59 bis 63 Nickel, 19 bis 22 Chrom, 7 bis 9,5 Molybdän, 2,75 bis 4 Niob, 1 bis 1,6 Titan, max. 0,35 Aluminium, max. 0,03 Kohlenstoff, Rest Eisen (Properties of an Age-Hardenable, Corrosion-Resistant, Nickel-Base Alloy, CORROSION 88, Paper No.75, National Association of Corrosion Engineers, Houston, Texas, 1988). Von dieser Legierung ist darüber hinaus infolge ihres hohen Nickelgehaltes, eine ausgeprägte Neigung zur Wasserstoffversprödung unter Sauergasbedingungen im Temperaturbereich unter etwa 100°C zu erwarten, und in dieser Hinsicht demgemäß eine eingeschränkte Verwendungsfähigkeit.
Es besteht somit die Aufgabe, einen aushärtbaren Werkstoff vorzuschlagen, der allen genannten Bedingungen entspricht, d.h., der die geforderten Festigkeitswerte besitzt, unter sehr aggressiven Sauergas-Bedingungen eine ausreichende Korrosionsbeständigkeit aufweist und der kein Niob zur Aushärtung benötigt.
Zur Lösung dieser Aufgabe wird eine aushärtbare Nickellegierung vorgeschlagen, die gekennzeichnet ist durch 43 bis 51 % Nickel 19 bis 24 % Chrom 4,5 bis 7,5 % Molybdän 0,4 bis 2,5 % Kupfer bis 1 % Mangan bis 0,5 % Silizium bis 0,02 % Kohlenstoff bis 2 % Kobalt 0,3 bis 1,8 % Aluminium 0,9 bis 2,2 % Titan Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen.
Die erfindungsgemäße Nickellegierung ist geeignet als
Werkstoff zur Herstellung von Bauteilen, die eine 0,2 %-Dehngrenze von mindestens 500 N/mm2, eine Gleichmaßdehnung A5 von mindestens 20 %, eine Brucheinschnürung von mindestens 25 % und bei Raumtemperatur eine Kerbschlagarbeit von mindestens 54 J entsprechend mindestens 40 ft Ibs an ISO-V-Proben aufweisen müssen.
Eine eingeschränkte Zusammensetzung, die sich durch besonders gute Verarbeitungseigenschaften auszeichnet, ist gekennzeichnet durch
46 bis 51 % Nickel, 20 bis 23,5 % Chrom, 5 bis 7 % Molybdän, 1,5 bis 2,2 % Kupfer, bis 0,8 % Mangan, bis 0,1 % Silizium, bis 0,015% Kohlenstoff, bis. 2 % Kobalt 0,4 bis 0,9 % Aluminium, 1,5 bis 2,1 % Titan, Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen.
Diese kann verwendet werden, wenn eine 0,2 %-Dehngrenze von mindestens 750 N/mm2 gefordert wird, sowie eine Gleichmaßdehnung A5 von mindestens 20 %, eine Brucheinschnürung von mindestens 25 % und bei Raumtemperatur eine Kerbschlagarbeit von mindestens 54 J entsprechend mindestens 40 ft lbs an ISO-V-Proben.
Die Nickellegierung ist insbesondere geeignet als Werkstoff zur Herstellung von Bauteilen, die unter sehr aggressiven Sauergas-Bedingungen eingesetzt werden sollen. Bei der Herstellung von Bauteilen, die eine ausreichende Korrosionsbeständigkeit unter sehr aggressiven
Sauergas-Bedingungen und eine 0,2 %-Dehngrenze von mindestens 500 N/mm2 aufweisen müssen, geht man zweckmäßigerweise so vor, daß aus einer Legierung mit
43 bis 51 % Nickel
19 bis 24 % Chrom
4,5 bis 7,5 % Molybdän
0,4 bis 2,5 % Kupfer bis 1 % Mangan bis 0,5 % Silizium bis 0,02 % Kohlenstoff bis 2 % Kobalt
0,3 bis 1,8 % Aluminium
0,9 bis 2,2 % Titan
Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen,
Gußblöcke gefertigt, die Gußblöcke bei 1220°C homogenisiert und danach oberhalb von 1000°C warmverformt und die erhaltenen Teile in Wasser abgeschreckt, sowie die warmgeformten und abgeschreckten Teile 4 bis 16 Stunden bei 650 bis 750ºC ausgehärtet und danach einer Luftabkühlung unterworfen werden.
Für Gußblöcke, die besonders gute Verarbeitungseigenschaften besitzen sollen, wird vorzugsweise die folgende Legierung mit 46 bis 51 % Nickel,
20 bis 23,5 % Chrom,
5 bis 7 % Molybdän,
1,5 bis 2,2 % Kupfer, bis 0,8 % Mangan, bis 0,1 % Silizium, bis 0,015% Kohlenstoff, bis 2 % Kobalt
0,4 bis 0,9 % Aluminium,
1,5 bis 2,1 % Titan, Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen verwendet.
Neben der erwähnten einstufigen Wärmbehandlung lassen sich durch zusätzliche Aushärtungsschritte die mechanisch-technologischen Eigenschaften weiter verbessern. In diesem Fall werden die warmgeformten und abgeschreckten Teile zunächst 4 bis 10 Stunden bei 700°C bis 750°C geglüht, danach im Ofen mit 5 bis 25°C pro Stunde um 150°C kontrolliert abgekühlt und anschließend an Luft abgelegt. Alternativ können die Bauteile auch 30 min zwischen 730ºC bis 750°C gehalten, danach im Ofen mit 5 bis 25°C pro Stunde auf 700°C und anschließend mit 2 bis 15ºC pro Stunde auf 580°C kontrolliert abgekühlt werden. Zuletzt werden die Bauteile an Luft abgelegt.
Nach einer weiteren Abwandlung des Herstellungsverfahrens ist vorgesehen, daß die warmgeformten Teile vor dem Abschrecken in Wasser einer Lösungsglühung bei 1150 bis 1190°C unterworfen werden. Schließlich kann man die warmgeformten, lösungsgeglühten und in Wasser abgeschreckten Teile auch 4 bis 10 Stunden bei 700 bis 750°C halten, danach im Ofen mit 5 bis 25°C pro Stunde um 150°C und schließlich weiter an Luft abkühlen. Weitere Einzelheiten und Vorteile des Erfindungsgedankens werden anhand der nachfolgenden Versuchsergebnisse näher erläutert.
In Tabelle 1 ist die chemische Zusammensetzung von 7 Legierungen angegeben, die - nach unterschiedlicher Wärmebehandlung - auf ihre mechanischen Eigenschaften bei Raumtemperatur (RT) und bei 260°C untersucht worden sind. Die Ergebnisse sind in den Tabellen 2 bis 7 zusammengestellt.
Aus etwa 45 Kg schweren Guβblöcken wurden nach dem Losungsgluhen bei 1220°C Stangen mit einem Durchmesser von etwa 18 mm warmgeschmiedet und zwar bei Temperaturen oberhalb 1000ºC. Danach wurden die Stangen entweder direkt in Wasser abgeschreckt oder nochmals lösungsgeglüht und dann in Wasser abgeschreckt. Anschließend wurden die so vorbereiteten Proben einer ein- bis dreistufigen Aushärtungsbehandlung unterworfen. In der ersten Stufe wurden Glühtemperaturen von 730 oder 750°C und Glühzeiten von 8, 4 oder 0,5 Stunden angewandt. Beim zweistufigen Verfahren schloß sich hieran eine gesteuerte Abkühlung mit 15°C/h auf 600 oder 580°C an, während beim dreistufigen Verfahren zunächst eine gesteuerte Abkühlung mit 5ºC/h auf 700°C und dann eine weitere gesteuerte Abkühlung mit 15ºC/h auf 580°C vorgenommen wurde, bevor die Proben der unbeeinflußten weiteren Abkühlung an Luft ausgesetzt wurden.
Die Ergebnisse zeigen, daß die geforderten Mindestwerte der mechanischen Eigenschaften in allen Fällen erreicht und zum Teil erheblich übertroffen wurden. Ferner ist aus den Ergebnissen insgesamt zu ersehen, daß mit den verschiedenen Varianten der Wärmebehandlung unterschiedliche Werte der mechanischen Eigenschaften erreicht werden können, was für die Einstellung auf spezielle Anforderungsprofile vorteilhaft sein kann. Zugunsten höherer Bruchdehnungswerte kann man beispielsweise auf maximale Festigkeitswerte verzichten und umgekehrt. Abgesehen von dieser allgemeinen Tendenz, erkennt man aber auch, daß die höchsten Festigkeitswerte erreicht werden, wenn die warmgeformten Teile nicht noch einmal lösungsgeglüht, sondern direkt in Wasser abgeschreckt werden und daß die maximal erreichbare Festigkeit vom Summengehalt Aluminium plus Titan abhängig ist.
Die Aluminium- und Titangehalte können aber nicht beliebig erhöht werden, weil dann nachteilige Ausscheidungsphasen auftreten, die selbst bei aufwendiger Wärmebehandlung nicht zu vermeiden bzw. zu kompensieren sind. Andererseits ist das im Rahmen der erf indungsgemäßen Zusammensetzung wegen der zahlreichen Alternativen bei der Wärmebehandlung immer möglich, jeweils optimale Festigkeitswerte zu erreichen, ohne nachteilige Gefügestrukturen in Kauf nehmen zu müssen. So wird die aufwendigere dreistufige Aushärtungsbehandlung beispielsweise dann angezeigt sein, wenn es darum geht, ein Absinken der Kerbschlagzähigkeit bei der Einstellung möglichst hoher Festigkeitswerte zu vermeiden.
Zur Überprüfung der Spannungsrißkorrosionsbeständigkeit wurden Dreipunkt-Biegeproben im Autoklaven zwei verschiedenen Korrosionsmedien ausgesetzt. Je nach vorausgegangener Wärmebehandlung wurden die Proben mit unterschiedlichen Prüfspannungen belastet, wobei als
Bezugsgröβe die Werte 100 % Rp0,2 sowie 120 % Rp0, 2 gewählt worden sind. Die Prüftemperaturen betrugen 232°C und 260°C. Die Lösungen A und B, mit denen die Sauergas-Bedingungen simuliert werden, enthielten:
Lösung A: 25 % NaCl, 10 bar H2S und 50 bar CO2 Lösu-ng B: 25 % NaCl, 0,5 % Essigsäure, 1 g/l Schwefel und 12 bar H2S.
Die Ergebnisse dieser Korrosionsuntersuchungen mit Angabe der Prüfbedingungen sind in den Tabellen 8 bis 13 zusammengefaßt.
Man erkennt, daß nach einem Prüfzyklus, der zwischen 23 bis 26 Tagen lag, keine der Proben einen Bruch zeigt oder einen Angriff, der auf Spannungsr ißkorrosion hinweist.
Die erfindungsgemäße Legierung zeigt demnach in neuartiger Weise eine mit aushärtbaren Werkstoffen bisher nicht erreichte Kombination hoher Festigkeit bei zugleich ausgezeichneter Beständigkeit in sehr aggressiven Sauergas-Medien.

Claims

Patentansprüche
1. Aushärtbare Nickellegierung mit einer 0,2 %-Dehngrenze von mindestens 500 N/mm2 und sehr guter Korrosionsbeständigkeit, gekennzeichnet durch 43 bis 51 % Nickel 19 bis 24 % Chrom 4,5 bis 7,5 % Molybdän 0,4 bis 2,5 % Kupfer bis 1 % Mangan bis 0,5 % Silizium bis 0,02 % Kohlenstoff bis 2 % Kobalt 0,3 bis 1,8 % Aluminium 0,9 bis 2,2 % Titan Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen.
2. Verwendung der Nickellegierung nach Anspruch 1 als
Werkstoff zur Herstellung von Bauteilen, die eine 0,2 %-Dehngrenze von mindestens 500 N/mm2, eine
Gleichmasdehnung A5 von mindestens 20 %, eine
Brucheinschnürung von mindestens 25 % und bei
Raumtemperatur eine Kerbschlagarbeit von Mindestens
54 J ( ISO-V-Probe) aufweisen müssen.
3. Nickellegierung nach Anspruch 1, gekennzeichnet durch 46 bis 51 % Nickel,
20 bis 2*3,5 % Chrom, 5 bis 7 % Molybdän, 1,5 bis 2,2 % Kupfer, bis 0,8 % Mangan, bis 0,1 % Silizium, bis 0,015% Kohlenstoff, bis 2 % Kobalt 0,4 bis 0,9 % Aluminium, 1,5 bis 2,1 % Titan, Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen.
4. Verwendung der Nickellegierung nach Anspruch 3 für Bauteile, die eine 0,2 %-Dehngrenze von mindestens 750 N/mm2, eine Gleichmaßdehnung von A5 von mindestens 20 %, eine Brucheinschnürung von mindestens 25 % und bei Raumtemperatur eine Kerbschlagarbeit von mindestens 54 J ( ISO-V-Probe) aufweisen müssen.
5. Verwendung der Nickellegierung nach den Ansprüchen 1 und 3 als Werkstoff zur Herstellung von Bauteilen für den Einsatz unter Sauergas-Bedingungen.
6. Verfahren zur Herstellung von Bauteilen, die eine sehr gute Korrosionsbeständigkeit und eine 0,2 %-Dehngrenze von mindestens 500 N/mm2 aufweisen müssen, dadurch gekennzeichnet, daß a) aus einer Legierung mit
43 bis 51 % Nickel
19 bis 24 % Chrom 4,5 bis 7,5 % Molybdän 0,4 bis 2,5 % Kupfer bis 1 % Mangan bis 0,5 % Silizium bis 0,02 % Kohlenstoff bis 2 % Kobalt 0,3 bis 1,8 % Aluminium 0,9 bis 2 , 2 % Titan Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen,
Gußblöcke gefertigt,
b) die Gußblöcke bei 1220°C homogenisiert und danach oberhalb von 1000°C warmverformt und die erhaltenen Teile in Wasser abgeschreckt und daß
c) die warmgeformten und abgeschreckten Teile 4 bis 16 Stunden bei 650 bis 750°C ausgehärtet und danach einer Luftabkühlung unterworfen werden.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß die Gußblöcke hergestellt sind aus einer Legierung mit: 46 bis 51 % Nickel,
20 bis 23,5 % Chrom,
5 bis 7 % Molybdän,
1,5 bis 2,2 % Kupfer, bis 0,8 % Mangan, bis 0,1 % Silizium, bis 0,015% Kohlenstoff, bis 2 % Kobalt
0,4 bis 0,9 % Aluminium,
1,5 bis 2,1 % Titan, Rest Eisen, einschließlich unvermeidbarer, herstellungsbedingter Verunreinigungen
8. Verfahren nach Anspruch 6 oder 7, jedoch mit der Maßgabe, daß die warmgeformten und abgeschreckten Teile 4 bis 10 Stunden bei 700 bis 750°C gehalten, danach mit 5 bis 25°C pro Stunde um 150°C im Ofen gekühlt und schließlich weiter an Luft abgekühlt werden.
9. Verfahren nach Anspruch 6 oder 7, jedoch mit der Maßgabe, daß die warmgeformten und abgeschreckten Teile 30 Minuten bei 730°C bis 750°C gehalten, danach im Ofen ait 5 bis 25°C pro Stunde auf 700ºC, weiter mit 2 bis 15°C pro Stunde auf 580°C und schließlich weiter an Luft abgekühlt werden.
10. Verfahren nach Anspruch 6 oder 7, jedoch mit der Maßgabe, daß die warmgeformten Teile vor dem Abschrecken in Wasser einer Lösungsglühung bei 1150 bis 1190°C unterworfen werden.
11. Verfahren nach Anspruch 10, jedoch mit der Maßgabe, daß die warmgeformten, losungsgegluhten und in Wasser abgeschreckten Teile 4 bis 10 Stunden bei 700 bis 750ºC gehalten, danach ia Ofen ait 5 bis 25ºC pro Stunde um 150ºC und schließlich weiter an Luft abgekühlt werden.
EP89903692A 1988-03-26 1989-03-23 Aushärtbare nickellegierung Expired - Lifetime EP0410979B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89903692T ATE102262T1 (de) 1988-03-26 1989-03-23 Aushaertbare nickellegierung.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3810336 1988-03-26
DE3810336A DE3810336A1 (de) 1988-03-26 1988-03-26 Aushaertbare nickellegierung

Publications (2)

Publication Number Publication Date
EP0410979A1 true EP0410979A1 (de) 1991-02-06
EP0410979B1 EP0410979B1 (de) 1994-03-02

Family

ID=6350790

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89903692A Expired - Lifetime EP0410979B1 (de) 1988-03-26 1989-03-23 Aushärtbare nickellegierung

Country Status (5)

Country Link
US (1) US5429690A (de)
EP (1) EP0410979B1 (de)
CA (1) CA1334344C (de)
DE (2) DE3810336A1 (de)
WO (1) WO1989009292A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645186A1 (de) * 1996-11-02 1998-05-07 Asea Brown Boveri Wärmebehandlungsverfahren für Werkstoffkörper aus einer hochwarmfesten Eisen-Nickel-Superlegierung sowie wärmebehandelter Werkstoffkörper
US7785532B2 (en) * 2006-08-09 2010-08-31 Haynes International, Inc. Hybrid corrosion-resistant nickel alloys
CN104451339B (zh) * 2014-12-23 2017-12-12 重庆材料研究院有限公司 低镍时效强化型铁镍基耐蚀合金及制备方法
US10718042B2 (en) * 2017-06-28 2020-07-21 United Technologies Corporation Method for heat treating components

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE546036A (de) *
GB531466A (en) * 1939-04-06 1941-01-06 Harry Etchells Improvements in alloys
US2777766A (en) * 1952-06-04 1957-01-15 Union Carbide & Carbon Corp Corrosion resistant alloys
US2977222A (en) * 1955-08-22 1961-03-28 Int Nickel Co Heat-resisting nickel base alloys
US4358511A (en) * 1980-10-31 1982-11-09 Huntington Alloys, Inc. Tube material for sour wells of intermediate depths
JPS57207143A (en) * 1981-06-12 1982-12-18 Sumitomo Metal Ind Ltd Alloy for oil well pipe with superior stress corrosion cracking resistance and hot workability
US4421571A (en) * 1981-07-03 1983-12-20 Sumitomo Metal Industries, Ltd. Process for making high strength deep well casing and tubing having improved resistance to stress-corrosion cracking
NO831752L (no) * 1982-05-17 1983-11-18 Kobe Steel Ltd Austenittiske legeringer med hoeyt nikkelinnhold.
US4652315A (en) * 1983-06-20 1987-03-24 Sumitomo Metal Industries, Ltd. Precipitation-hardening nickel-base alloy and method of producing same
US4685977A (en) * 1984-12-03 1987-08-11 General Electric Company Fatigue-resistant nickel-base superalloys and method
JPS61201759A (ja) * 1985-03-04 1986-09-06 Sumitomo Metal Ind Ltd ラインパイプ用高強度高靭性溶接クラツド鋼管
JPS6223950A (ja) * 1985-07-23 1987-01-31 Kubota Ltd 電気めつき用通電ロ−ル合金
US4750950A (en) * 1986-11-19 1988-06-14 Inco Alloys International, Inc. Heat treated alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO8909292A1 *

Also Published As

Publication number Publication date
DE58907125D1 (de) 1994-04-07
US5429690A (en) 1995-07-04
WO1989009292A1 (en) 1989-10-05
CA1334344C (en) 1995-02-14
EP0410979B1 (de) 1994-03-02
DE3810336A1 (de) 1989-10-05

Similar Documents

Publication Publication Date Title
DE1964992C3 (de) Verfahren zur Erhöhung der Duktilität und Zeitstandfestigkeit einer Nickelknetlegierung sowie Anwendung des Verfahrens
DE60123065T2 (de) Titanlegierung und wärmebehandlungsverfahren für grossdimensionale, halbfertige materialien aus dieser legierung
DE60021619T3 (de) Hartlötblech
AT502294B1 (de) Al-zn-knetlegierung und verwendung einer solchen legierung
DE60316212T2 (de) Nickelbasislegierung, heissbeständige Feder aus dieser Legierung und Verfahren zur Herstellung dieser Feder
DE69413461T2 (de) Legierung auf Nickelbasis mit hohe Bruchfestigkeit und sehr guten Korngrössenregelung
DE60020890T2 (de) Aluminiumlötlegierung
EP3176275B2 (de) Aluminium-silizium-druckgusslegierung, verfahren zur herstellung eines druckgussbauteils aus der legierung und karosseriekomponente mit einem druckgussbauteil
DE10329899B3 (de) Beta-Titanlegierung, Verfahren zur Herstellung eines Warmwalzproduktes aus einer solchen Legierung und deren Verwendungen
DE68905640T2 (de) Sulfidierungs- und oxidationsbestaendige legierungen auf nickelbasis.
DE102020106433A1 (de) Nickel-Legierung mit guter Korrosionsbeständigkeit und hoher Zugfestigkeit sowie Verfahren zur Herstellung von Halbzeugen
WO2005045080A1 (de) Aluminiumlegierung
DE2052000B2 (de) Verwendung einer hochfesten aluminiumlegierung
EP1017867B1 (de) Legierung auf aluminiumbasis und verfahren zu ihrer wärmebehandlung
DE69620771T2 (de) Verwendung von gewalzte aluminiumlegierungen für konstruktionsteile von fahrzeuge
DE2500084C3 (de) Verfahren zur Herstellung von Aluminium-Halbzeug
DE1301586B (de) Austenitische ausscheidungshaertbare Stahllegierung und Verfahren zu ihrer Waermebehandlung
DE2456857C3 (de) Verwendung einer Nickelbasislegierung für unbeschichtete Bauteile im Heißgasteil von Turbinen
DE1270825B (de) Verfahren zur Loesungsgluehbehandlung einer Legierung auf Titanbasis und Verwendung derart waermebehandelter Titanlegierungen
EP2703508B1 (de) Gegen interkristalline Korrosion beständige Aluminiumlegierung
EP0119501B1 (de) Verwendung einer aushärtbaren Kupfer-Nickel-Mangan-Legierung als Werkstoff zur Herstellung von Brillenteilen
DE2641924C2 (de) Austenitische Ni-Cv-Legierung hoher Korrosionsbeständigkeit und Warmverformbarkeit
DE1232759B (de) Martensitaushaertbarer Chrom-Nickel-Stahl
DE2023446A1 (de) Aluminiumgußlegierung von hoher Festigkeit
DE2029962A1 (de) Nickel-Legierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE FR GB IT SE

17Q First examination report despatched

Effective date: 19920904

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 102262

Country of ref document: AT

Date of ref document: 19940315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940224

REF Corresponds to:

Ref document number: 58907125

Country of ref document: DE

Date of ref document: 19940407

ITF It: translation for a ep patent filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OTIS ENGINEERING CORPORATION

Owner name: KRUPP VDM GMBH

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 89903692.5

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970429

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970508

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980219

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19990301

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990503

Year of fee payment: 11

EUG Se: european patent has lapsed

Ref document number: 89903692.5

EUG Se: european patent has lapsed

Ref document number: 89903692.5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000323

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050323