[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0401693B1 - Method for improving the accuracy of hit of a controlled missile - Google Patents

Method for improving the accuracy of hit of a controlled missile Download PDF

Info

Publication number
EP0401693B1
EP0401693B1 EP90110415A EP90110415A EP0401693B1 EP 0401693 B1 EP0401693 B1 EP 0401693B1 EP 90110415 A EP90110415 A EP 90110415A EP 90110415 A EP90110415 A EP 90110415A EP 0401693 B1 EP0401693 B1 EP 0401693B1
Authority
EP
European Patent Office
Prior art keywords
path
missile
target
disturbances
extrapolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90110415A
Other languages
German (de)
French (fr)
Other versions
EP0401693A1 (en
Inventor
Peter Dr. Sundermeyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl Verwaltungs Stiftung
Original Assignee
Diehl GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl GmbH and Co filed Critical Diehl GmbH and Co
Publication of EP0401693A1 publication Critical patent/EP0401693A1/en
Application granted granted Critical
Publication of EP0401693B1 publication Critical patent/EP0401693B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/22Homing guidance systems

Definitions

  • the invention relates to a method according to the preamble of claim 1.
  • a missile which is intended to fly to a specific target will be equipped with a seeker head which is capable of identifying the target itself and generating guide signals for the pursuit of this target after the target perception, as in DE-A1- 33 03 763, described in DE-A1-15 78 299 or in DE-A1-28 30 502.
  • This has the advantage of tracking the missile into the target position of the target point by regulating the influences of path disturbances, in particular air currents acting transversely to the trajectory, even if the target performs evasive maneuvers.
  • a path advance specified in the control program can be provided by switching the squint angle during the remaining time of the target approach.
  • the target point is determined by reconnaissance means arranged outside the missile with transmission of target and / or correction information to the projectile already in the approach.
  • Fixed orbital data for stationary targets can also be corrected as a function of the missile-related path deviations of the missile.
  • Such an autonomous missile with control that does not seek a target along a preprogrammed or externally predetermined trajectory is equipped for navigation with inertial systems or corresponding sensors which provide the current actual position and thus the deviation from the known target trajectory in order to provide the missile's autopilot with this error information Food. This causes a real trajectory to the specified target point via the missile positioning system, despite disturbances acting transversely to the trajectory (such as air currents in particular).
  • an additional engine acting in the longitudinal direction is fired or activated, for example, only shortly before the target hits.
  • the invention has for its object to provide a method of the type mentioned, with which a target control of a fixed or a movable target with high accuracy is possible without the missile is equipped with a seeker head, a high accuracy is also achieved , if the programmed flying missile is affected by path disturbances such as strong ground winds.
  • the final phase path reserve provided according to this solution is therefore of a different nature than the previously known squint angle change in order to achieve a more favorable hit position, controlled from the sensor-based approach to the target. Rather, in the present solution it is a question of compensating the lateral forces acting on the trajectory, which can be determined on board the missile via the control deviation of the target trajectory, in their influence on the changed longitudinal velocity of the missile in such a way that before or at least during the final phase acceleration the missile is forced to change orbit contrary to the resulting path shift.
  • the flight path ahead can be calculated in advance in an orbital extrapolation model operated on board the missile in accordance with the respective ideal target position and the current actual position of the missile, taking into account also the influences of other flight condition variables.
  • the target path correction in the sense of reducing this error is then derived from the resultant hit error.
  • a path extrapolation can expediently be repeated in a plurality of iterations.
  • the trajectory extrapolation carried out in several iterations preferably takes into account the future acceleration profile of the missile, so that, including future trajectory disturbances and taking current external trajectory disturbances into account, a target trajectory results with a minimal hit error.
  • the target path optimized in this way serves as a reference or target specification for an autopilot of the missile.
  • a missile does not have a seeker head because, for example, this should be saved for cost reasons, or because the seeker head would not be suitable for recognizing the target to be combated, or because the geodetic location of the target to be combated is known from prior clarification, which is particularly important for stationary targets such as bridges, buildings or the like. the case is, the missile can only move along a programmed trajectory to the target to be fought. It is assumed that the programmed flying missile both its ideal target path, which leads it to the target to be fought, from pre-programmed data or by transmission via a so-called. Data-link knows, and also has sensors and / or an inertial navigation unit that delivers the actual position to the missile. This situation is shown schematically in a block diagram in FIG.
  • a web extrapolation model 10 is closed with a control unit 12 a self-contained system connected, which is indicated by the two arrows 14 and 16.
  • the web extrapolation model 10 has two inputs 18 and 20 and one output 22.
  • the input 18 is connected to the output 24 of a reference unit 26, which is indicated by the arrow 28.
  • the reference unit 26 has an input 30 through which data preprogrammed into the reference unit 26 is input.
  • the output 22 of the orbit extrapolation model 10 is connected to an input 32 of an autopilot 34, which is illustrated by the connecting line 36.
  • the autopilot 34 has a second input 38 and an output 40, the output 40 of the autopilot 34 being connected to an actuating system 42.
  • the control system 42 is connected to the missile dynamics illustrated by block 44.
  • the output 46 of the missile dynamics 44 represents the trajectory of the missile. This trajectory is characterized by the trajectory disturbances indicated by the arrow 48, which are, for example, gusts of wind, ground wind or the like. acts, influences.
  • Sensors 50 serve to detect the flight path or the flight path disturbances, the output 52 of the sensors 50 being connected to the second input 38 of the autopilot 34.
  • the output 52 of the sensors 50 is connected to an inertial navigation unit 54, at the output 56 of which the actual position of the missile is given.
  • the actual position of the missile is entered through the input 20 of the orbital extrapolation model 10 and the ideal target path of the missile is entered through the input 18 of the orbital extrapolation model 10.
  • the output 22 of the orbit extrapolation model 10 represents the target path of the missile, while the arrow 14 between the orbit extrapolation model 10 and the control unit 12 represents the hit error.
  • the autopilot 34 and the positioning system can be used 42 to influence the missile dynamics so that the real trajectory of the missile despite the external disturbances - which are indicated by the arrow 48 - leads to the target to be combated.
  • the target path of the missile which is indicated by the connecting line 36 between the orbit extrapolation model 10 and the autopilot 34 in FIG. 1
  • a path reserve is provided, which compensates for the error sketched for the horizontal plane in FIG. 2 by trajectory disturbances (see arrow 48 in FIG. 1).
  • the flight path ahead is calculated in advance according to the ideal target position (input 18 of the rail extrapolation model 10 in FIG. 1) and according to the current actual position (input 20 of the rail extrapolation model 10 in FIG. 1), and according to further flight state variables.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Anspruches 1.The invention relates to a method according to the preamble of claim 1.

Im Regelfalle wird man einen Flugkörper, der ein bestimmtes Ziel anfliegen soll, mit einem Suchkopf ausrüsten, der in der Lage ist, das Ziel selbst zu identifizieren und nach der Zielauffassung Führungssignale zur Verfolgung dieses Zieles zu generieren, wie etwa in der DE-A1-33 03 763, in der DE-A1-15 78 299 oder in der DE-A1-28 30 502 beschrieben. Das hat den Vorteil, über eine geschlossene Lenkschleife den Flugkörper unter Ausregelung der Einflüsse von Bahnstörungen wie insbesondere von quer zur Flugbahn wirkenden Luftströmungen in die Sollposition des Zielpunktes nachzuführen, selbst dann, wenn das Ziel Ausweichmanöver vollführt. Dabei kann, wie in der DE-C1-18 15 727 näher dargestellt, zum Erreichen einer günstigeren Trefferlage in Abhängigkeit von der sensorisch ermittelten Annäherung an das Zielobjekt eine im Steuerungsprogramm vorgegebene Bahnvorverlegung durch Schielwinkel-Umschaltung während der Restlaufzeit der Zielannäherung vorgesehen werden.As a rule, a missile which is intended to fly to a specific target will be equipped with a seeker head which is capable of identifying the target itself and generating guide signals for the pursuit of this target after the target perception, as in DE-A1- 33 03 763, described in DE-A1-15 78 299 or in DE-A1-28 30 502. This has the advantage of tracking the missile into the target position of the target point by regulating the influences of path disturbances, in particular air currents acting transversely to the trajectory, even if the target performs evasive maneuvers. Here, as shown in DE-C1-18 15 727, to achieve a more favorable hit position depending on the sensor-determined approach to the target object, a path advance specified in the control program can be provided by switching the squint angle during the remaining time of the target approach.

In anderen Fällen, wie bei der Leitstrahl-Lenkung gemäß DE-A1-29 51 941, erfolgt die Zielpunktbestimmung durch außerhalb des Flugkörpers angeordnete Aufklärungsmittel unter Übermittlung von Ziel- und/oder Korrekturinformationen an das bereits im Zielanflug befindliche Projektil. Auch können fest vorgegebene Bahndaten zu stationären Zielen in Abhängigkeit von störungsbedingten Bahnabweichungen des Flugkörpers korrigiert werden. Ein Solcher autonomer Flugkörper mit nichtzielsuchender Steuerung längs einer vorprogrammierten oder extern vorgegebenen Flugbahn ist für die Navigation mit Inertialsystemen oder entsprechenden Sensoren ausgestattet, die die aktuelle Ist-Position und somit die Abweichung von der bekannten Sollflugbahn liefern, um den Autopiloten des Flugkörpers mit dieser Fehlerinformation zu speisen. Der bewirkt dadurch über das Flugkörper-Stellsystem, trotz quer zur Flugbahn wirkender Störungen (wie insbesondere Luftströmungen) eine reale Flugbahn zum vorgegebenen Zielpunkt.In other cases, such as with the guidance of the guide beam according to DE-A1-29 51 941, the target point is determined by reconnaissance means arranged outside the missile with transmission of target and / or correction information to the projectile already in the approach. Fixed orbital data for stationary targets can also be corrected as a function of the missile-related path deviations of the missile. Such an autonomous missile with control that does not seek a target along a preprogrammed or externally predetermined trajectory is equipped for navigation with inertial systems or corresponding sensors which provide the current actual position and thus the deviation from the known target trajectory in order to provide the missile's autopilot with this error information Food. This causes a real trajectory to the specified target point via the missile positioning system, despite disturbances acting transversely to the trajectory (such as air currents in particular).

Zur Verbesserung der Munitionswirkung im Ziel infolge erhöhter Auftreffgeschwindigkeit wird beispielsweise erst kurz vor dem Zielaufschlag ein in Längsrichtung wirkendes Zusatz-Triebwerk gezündet oder aufgesteuert.To improve the ammunition effect in the target as a result of increased impact speed, an additional engine acting in the longitudinal direction is fired or activated, for example, only shortly before the target hits.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, mit welchem eine Zielansteuerung eines ortsfesten oder eines beweglichen Zieles mit hoher Treffgenauigkeit möglich ist, ohne daß der Flugkörper mit einem Suchkopf ausgerüstet ist, wobei eine hohe Treffgenauigkeit auch dann erzielt wird, wenn auf den programmiert fliegenden Flugkörper Bahnstörungen wie z.B. starke Bodenwinde einwirken.The invention has for its object to provide a method of the type mentioned, with which a target control of a fixed or a movable target with high accuracy is possible without the missile is equipped with a seeker head, a high accuracy is also achieved , if the programmed flying missile is affected by path disturbances such as strong ground winds.

Das Verfahren mit den Merkmalen des Patentanspruches 1 löst diese Aufgabe.The method with the features of claim 1 solves this problem.

Der nach dieser Lösung vorgesehene Endphasen-Bahnvorhalt ist also anderer Natur, als die vorbekannte Schielwinkel-Änderung zum Erzielen einer günstigeren Trefferlage, gesteuert aus der sensorisch ermittelten Zielannäherung. Vielmehr geht es bei vorliegender Lösung darum, die auf die Flugbahn einwirkenden Querkräfte, die an Bord des Flugkörpers über die Regelabweichung der Sollflugbahn ermittelbar sind, in ihrem Einfluß auf die geänderte Längsgeschwindigkeit des Flugkörpers dadurch zu kompensieren, daß schon vor oder jedenfalls bei Endphasen-Beschleunigung des Flugkörpers eine Bahnänderung entgegen der an sich resultierenden Bahnverlagerung erzwungen wird.The final phase path reserve provided according to this solution is therefore of a different nature than the previously known squint angle change in order to achieve a more favorable hit position, controlled from the sensor-based approach to the target. Rather, in the present solution it is a question of compensating the lateral forces acting on the trajectory, which can be determined on board the missile via the control deviation of the target trajectory, in their influence on the changed longitudinal velocity of the missile in such a way that before or at least during the final phase acceleration the missile is forced to change orbit contrary to the resulting path shift.

Dabei kann der vorausliegende Flugweg in einem an Bord des Flugkörpers betriebenen Bahnextrapolationsmodell nach Maßgabe der jeweiligen idealen Sollposition und der aktuellen Ist-Position des Flugkörpers, unter Berücksichtigung auch der Einflüsse weiterer Flugzustandsgrößen, vorausberechnet werden. Aus dem daraus resultierenden Trefferfehler wird dann die Sollbahn-Korrektur im Sinne einer Verringerung dieses Fehlers abgeleitet. Zum Minimieren des verbleibenden Trefferfehlers kann eine solche Bahnextrapolation zweckmäßigerweise in mehreren Iterationen wiederholt werden. Hierbei, d. h. bei der in mehreren Iterationen durchgeführten Bahnextrapolation wird vorzugsweise das künftige Beschleunigungsprofil des Flugkörpers berücksichtigt, so daß sich unter Einschluß künftiger Flugbahnstörungen und unter Beachtung aktueller externer Flugbahnstörungen eine Sollflugbahn mit minimalem Treffehler ergibt. Die auf diese Weise optimierte Sollbahn dient einem Autopiloten des Flugkörpers als Referenz bzw. Sollvorgabe.The flight path ahead can be calculated in advance in an orbital extrapolation model operated on board the missile in accordance with the respective ideal target position and the current actual position of the missile, taking into account also the influences of other flight condition variables. The target path correction in the sense of reducing this error is then derived from the resultant hit error. To minimize the remaining hit error, such a path extrapolation can expediently be repeated in a plurality of iterations. Here, ie at The trajectory extrapolation carried out in several iterations preferably takes into account the future acceleration profile of the missile, so that, including future trajectory disturbances and taking current external trajectory disturbances into account, a target trajectory results with a minimal hit error. The target path optimized in this way serves as a reference or target specification for an autopilot of the missile.

Weitere Einzelheiten, Merkmale und Vorteile des erfindungsgemäßen Verfahrens werden nachfolgend anhand der Zeichnung beschrieben. Es zeigt:

Fig.1
eine Blockschaltung zur Verdeutlichung des Verfahrens zur Verbesserung der Treffgenauigkeit eines programmiert fliegenden Flugkörpers, und
Fig.2
eine grafische Darstellung des Einflusses einer Bahnstörung auf die Flugbahn des programmiert fliegenden Flugkörpers bzw. auf seine Treffgenauigkeit.
Further details, features and advantages of the method according to the invention are described below with reference to the drawing. It shows:
Fig. 1
a block circuit to illustrate the method for improving the accuracy of a programmed flying missile, and
Fig. 2
a graphic representation of the influence of a path disturbance on the flight path of the programmed flying missile or on its accuracy.

Verfügt ein Flugkörper nicht über einen Suchkopf, weil dieser bspw. aus Kostengründen eingespart werden soll, oder weil der Suchkopf nicht geeignet wäre, das zu bekämpfende Ziel zu erkennen, oder weil die geodätische Lage des zu bekämpfenden Zieles durch vorherige Aufklärung bekannt ist, was insbesondere bei stationären Zielen wie Brücken, Gebäuden o.dgl. der Fall ist, so kann sich der Flugkörper nur auf einer programmierten Flugbahn zum zu bekämpfenden Ziel bewegen. Dabei wird angenommen, daß der programmiert fliegende Flugkörper sowohl seine ideale Sollbahn, die ihn zum zu bekämpfenden Ziel führt, aus vorprogrammierten Daten oder durch Übermittlung über einen sogen. Data-link kennt, als auch über Sensoren und/oder über eine inertiale Navigationseinheit verfügt, die dem Flugkörper jeweils seine Istposition liefert. Dieser Sachverhalt ist in Fig.1 in einer Blockdarstellung schematisch gezeichnet. Ein Bahnextrapolationsmodell 10 ist mit einer Regeleinheit 12 zu einem in sich geschlossenen System verbunden, was durch die beiden Pfeile 14 und 16 angedeutet ist. Das Bahnextrapolationsmodell 10 weist zwei Eingänge 18 und 20 sowie einen Ausgang 22 auf. Der Eingang 18 ist mit dem Ausgang 24 einer Referenzeinheit 26 verbunden, was durch den Pfeil 28 angedeutet ist. Die Referenzeinheit 26 besitzt einen Eingang 30, durch den in die Referenzeinheit 26 vorprogrammierte Daten eingegeben werden.If a missile does not have a seeker head because, for example, this should be saved for cost reasons, or because the seeker head would not be suitable for recognizing the target to be combated, or because the geodetic location of the target to be combated is known from prior clarification, which is particularly important for stationary targets such as bridges, buildings or the like. the case is, the missile can only move along a programmed trajectory to the target to be fought. It is assumed that the programmed flying missile both its ideal target path, which leads it to the target to be fought, from pre-programmed data or by transmission via a so-called. Data-link knows, and also has sensors and / or an inertial navigation unit that delivers the actual position to the missile. This situation is shown schematically in a block diagram in FIG. A web extrapolation model 10 is closed with a control unit 12 a self-contained system connected, which is indicated by the two arrows 14 and 16. The web extrapolation model 10 has two inputs 18 and 20 and one output 22. The input 18 is connected to the output 24 of a reference unit 26, which is indicated by the arrow 28. The reference unit 26 has an input 30 through which data preprogrammed into the reference unit 26 is input.

Der Ausgang 22 des Bahnextrapolationsmodelles 10 ist mit einem Eingang 32 eines Autopiloten 34 verbunden, was durch die Verbindungslinie 36 verdeutlicht ist. Der Autopilot 34 weist einen zweiten Eingang 38 und einen Ausgang 40 auf, wobei der Ausgang 40 des Autopiloten 34 mit einem Stellsystem 42 verbunden ist. Das Stellsystem 42 ist mit der durch den Block 44 verdeutlichten Flugkörperdynamik verbunden. Der Ausgang 46 der Flugkörperdynamik 44 stellt die Flugbahn des Flugkörpers dar. Diese Flugbahn wird durch die durch den Pfeil 48 angedeuteten Flugbahn-Störungen, bei denen es sich bspw. um Windböen, Bodenwind o.dgl. handelt, beeinflußt. Sensoren 50 dienen zum Detektieren der Flugbahn bzw. der Flugbahnstörungen, wobei der Ausgang 52 der Sensoren 50 mit dem zweiten Eingang 38 des Autopiloten 34 verbunden ist. Außerdem ist der Ausgang 52 der Sensoren 50 mit einer inertialen Navigationseinheit 54 verbunden, an deren Ausgang 56 die jeweilige Istposition des Flugkörpers gegeben ist. Durch den Eingang 20 des Bahnextrapolationsmodelles 10 wird also die Istposition des Flugkörpers und durch den Eingang 18 des Bahnextrapolationsmodells 10 wird die ideale Sollbahn des Flugkörpers eingegeben. Der Ausgang 22 des Bahnextrapolationsmodelles 10 stellt die Sollbahn des Flugkörpers dar, während der Pfeil 14 zwischen dem Bahnextrapolationsmodell 10 und der Regeleinheit 12 den Treffehler darstellt.The output 22 of the orbit extrapolation model 10 is connected to an input 32 of an autopilot 34, which is illustrated by the connecting line 36. The autopilot 34 has a second input 38 and an output 40, the output 40 of the autopilot 34 being connected to an actuating system 42. The control system 42 is connected to the missile dynamics illustrated by block 44. The output 46 of the missile dynamics 44 represents the trajectory of the missile. This trajectory is characterized by the trajectory disturbances indicated by the arrow 48, which are, for example, gusts of wind, ground wind or the like. acts, influences. Sensors 50 serve to detect the flight path or the flight path disturbances, the output 52 of the sensors 50 being connected to the second input 38 of the autopilot 34. In addition, the output 52 of the sensors 50 is connected to an inertial navigation unit 54, at the output 56 of which the actual position of the missile is given. The actual position of the missile is entered through the input 20 of the orbital extrapolation model 10 and the ideal target path of the missile is entered through the input 18 of the orbital extrapolation model 10. The output 22 of the orbit extrapolation model 10 represents the target path of the missile, while the arrow 14 between the orbit extrapolation model 10 and the control unit 12 represents the hit error.

Je nach der Genauigkeit der Sensoren 50 gelingt es mit Hilfe des Autopiloten 34 und mit Hilfe des Stellsystemes 42, die Flugkörperdynamik so zu beeinflussen, daß die reale Flugbahn des Flugkörpers trotz der äußeren Störungen - die durch den Pfeil 48 angedeutet sind - zum zu bekämpfenden Ziel führt.Depending on the accuracy of the sensors 50, the autopilot 34 and the positioning system can be used 42 to influence the missile dynamics so that the real trajectory of the missile despite the external disturbances - which are indicated by the arrow 48 - leads to the target to be combated.

Soll der Flugkörper zur Erhöhung der Auftreffgeschwindigkeit am zu bekämpfenden Ziel in der Endphase der Flugbahn zur Verbesserung der Wirksamkeit des Flugkörpers stark beschleunigt werden, so ergeben sich bei einem Flugkörper ohne Suchkopf die folgenden in Fig.2 verdeutlichten Probleme:

  • 1. Bei der Bewegung des Flugkörpers in einem Windfeld ergibt sich ein resultierender inertialer Geschwindigkeitsvektor v als Überlagerung, d.h. als Vektorsumme des Geschwindigkeitsvektors va gegenüber ruhender Luft und des Windgeschwindigkeitsvektors vw . In Fig.2 ist eine Vektordarstellung in einer Horizontalebene x-y gezeichnet, entsprechendes gilt selbstverständlich auch für die zu dieser Horizontalebene senkrechte Vertikalebene. Ergibt sich nun in einem stationären Zielanflug der inertiale Bahnwinkel b₁ als resultierende Flugrichtung zum Ziel mit der Geschwindigkeit va1 und der Windgeschwindigkeit vw zur resultierenden Geschwindigkeit v₁, so ändert sich bei Schuberhöhung die Geschwindigkeit va1 zur Geschwindigkeit va2, wobei der Windgeschwindigkeitsvektor vw gleich bleibt. Das bedeutet jedoch, daß die aus va2 und vw resultierende Geschwindigkeit v₂ als neue inertiale Geschwindigkeit auftritt, die mit der x-Achse einen von b₁ abweichenden Winkel b₂ einschließt. Es ergibt sich also ein Winkelfehler Δb als Differenz zwischen den beiden genannten Winkeln b₁ und b₂ in der Zielpunktrichtung und folglich eine Verringerung der Treffgenauigkeit, da Bahnkorrekturen des beschleunigten Flugkörpers im Ergebnis zu großen Ablagen führen.
  • 2. Ein zur Geschwindigkeitserhöhung dienendes Triebwerk des Flugkörpers wird typischerweise seine Schubkraft in Flugkörper-Längsrichtung, d.h. in Richtung des Vektors va entwickeln. Befindet sich der Flugkörper vor der Beschleunigungsphase im Schiebeflug, so bewegt er sich inertial in der in Fig.2 dargestellten Horizotalebene x-y nicht in der Flugkörper-Längsrichtung sondern in einer von der Windgeschwindigkeit vw abhängigen resultierenden Bahnrichtung, die durch den Autopiloten 34 (s. Fig.1) in Zielpunktrichtung gedreht wird. Wird nun der Flugkörper beschleunigt, so wird er nicht in der inertialen Bahnrichtung zum Ziel sondern in seiner Flugkörper-Längsrichtung beschleunigt und kann nur unter unrealistischen Manövereingriffen des Autopiloten 34 zum zu bekämpfenden Ziel korrigiert werden, was ebenfalls zu einer Verringerung der Treffgenauigkeit führt. Entsprechendes gilt selbstverständlich auch für die Bewegung in der Vertikalebene.
If the missile is to be strongly accelerated to increase the impact velocity at the target to be combated in the end phase of the trajectory in order to improve the effectiveness of the missile, the following problems arise in a missile without a search head:
  • 1. When the missile moves in a wind field, a resulting inertial speed vector v results as a superimposition, ie as a vector sum of the speed vector v a compared to still air and the wind speed vector v w . A vector representation is drawn in a horizontal plane xy in FIG. 2; the same applies of course also to the vertical plane perpendicular to this horizontal plane. Now results in a stationary target approach the inertial orbit angle b₁ as the resulting flight direction to the target with the speed v a1 and the wind speed v w to the resulting speed v₁, so the speed v a1 changes to the speed v a2 when the thrust is increased, the wind speed vector v w stays the same. However, this means that the velocity v₂ resulting from v a2 and v w occurs as a new inertial velocity, which includes an angle b₂ deviating from b₁ with the x-axis. So there is an angle error Δb as the difference between the two angles b₁ and b₂ mentioned in the direction of the target point and consequently a reduction in the accuracy, since path corrections of the accelerated missile result in large deposits.
  • 2. A missile engine used to increase the speed typically becomes its thrust develop in the longitudinal direction of the missile, ie in the direction of the vector v a . If the missile is in the push flight before the acceleration phase, it moves inertially in the horizontal plane xy shown in FIG. 2 not in the longitudinal direction of the missile but in a resulting orbital direction dependent on the wind speed v w , which is determined by the autopilot 34 (see FIG. Fig.1) is rotated in the direction of the target point. If the missile is now accelerated, it is accelerated not in the inertial orbital direction to the target but in its longitudinal direction and can only be corrected under unrealistic maneuvering by the autopilot 34 to the target to be combated, which likewise leads to a reduction in accuracy. The same naturally also applies to the movement in the vertical plane.

Die beiden genannten Probleme, die zur Verschlechterung der Treffgenauigkeit führen, lassen sich lösen, wenn die Sollbahn des Flugkörpers, die durch die Verbindungslinie 36 zwischen dem Bahnextrapolationsmodell 10 und dem Autopiloten 34 in Fig.1 angedeutet ist, vor und während der Beschleunigung des Flugkörpers mit einem Bahnvorhalt versehen wird, der den in Fig.2 für die Horizontalebene skizzierten Fehler durch Flugbahn-Störungen (s. Pfeil 48 in Fig.1) kompensiert. Dazu wird im Bahnextrapolationsmodell 10 der vorausliegende Flugweg nach Maßgabe der idealen Sollposition ( Eingang 18 des Bahnextrapolationsmodelles 10 in Fig.1) und nach Maßgabe der aktuellen Istposition ( Eingang 20 des Bahnextrapolationsmodelles 10 in Fig.1), und nach Maßgabe weiterer Flugzustandsgrößen vorherberechnet. Aus dem sich ergebenden vorhergesagten Treffehler werden in der Bahnextrapolations-Einheit über die Regeleinheit 12 Bahnkorrekturen der Sollbahn ermittelt, die zu einer Verringerung des Treffehlers führen. Bei dieser vorzugsweise in mehreren Iterationen verlaufenden Bahnextrapolation wird das künftige Beschleunigungsprofil des Flugkörpers berücksichtigt, so daß eine Sollflugbahn entsteht, die unter Einschluß künftiger Bahnstörungen und unter Beachtung aktueller externer Flugbahnstörungen zu einer Minimierung des Treffehlers führt. Diese optimierte Sollbahn ( Verbindungslinie 36 in Fig.1) dient dem Autopiloten 34 als Referenz bzw. Sollvorgabe.The two problems mentioned, which lead to a deterioration in the accuracy of the hit, can be solved if the target path of the missile, which is indicated by the connecting line 36 between the orbit extrapolation model 10 and the autopilot 34 in FIG. 1, occurs before and during the acceleration of the missile a path reserve is provided, which compensates for the error sketched for the horizontal plane in FIG. 2 by trajectory disturbances (see arrow 48 in FIG. 1). For this purpose, in the rail extrapolation model 10, the flight path ahead is calculated in advance according to the ideal target position (input 18 of the rail extrapolation model 10 in FIG. 1) and according to the current actual position (input 20 of the rail extrapolation model 10 in FIG. 1), and according to further flight state variables. From the resultant predicted hit error, 12 path corrections of the target path are determined in the web extrapolation unit via the control unit, which lead to a reduction in the hit error. With this orbit extrapolation, which preferably runs in several iterations, the future acceleration profile of the Missile taken into account so that a target trajectory is created, which, including future trajectory disturbances and current external trajectory disturbances, leads to a minimization of the hit error. This optimized target path (connecting line 36 in FIG. 1) serves the autopilot 34 as a reference or target specification.

Claims (5)

  1. Method of improving the target accuracy of a missile without homing head, which may be controlled along a desired flight path, may be post-accelerated in the final phase of the target approach and may be influenced by external current-related disturbances in flight path, characterised in that the desired flight path of the controlled missile without homing head is provided with a path guidance dependent on the given path disturbances and on its longitudinal acceleration profile.
  2. Method according to Claim 1, characterised in that the anticipated flight path is calculated beforehand in a path extrapolation model in accordance with the ideal desired position and the current actual position and in accordance with further flight variables, wherein path corrections to the desired path are determined from the forecast target errors resulting herein in a path extrapolation unit via a control unit to reduce the target error.
  3. Method according to Claim 1 or 2, characterised in that the path extrapolation is carried out in several iterations.
  4. Method according to Claim 3, characterised in that in the path extrapolation carried out in several iterations, the future acceleration profile of the missile is taken into account, thus resulting in a desired flight path with minimum target error to include future path disturbances and take into account current external flight path disturbances.
  5. Method according to one of the preceding claims, characterised in that the optimised desired path acts as a reference or desired preset value for an autopilot of the missile.
EP90110415A 1989-06-08 1990-06-01 Method for improving the accuracy of hit of a controlled missile Expired - Lifetime EP0401693B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3918701A DE3918701A1 (en) 1989-06-08 1989-06-08 METHOD FOR IMPROVING THE ACCURACY OF A PROGRAMMED FLYING BODY
DE3918701 1989-06-08

Publications (2)

Publication Number Publication Date
EP0401693A1 EP0401693A1 (en) 1990-12-12
EP0401693B1 true EP0401693B1 (en) 1994-11-17

Family

ID=6382343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90110415A Expired - Lifetime EP0401693B1 (en) 1989-06-08 1990-06-01 Method for improving the accuracy of hit of a controlled missile

Country Status (3)

Country Link
EP (1) EP0401693B1 (en)
DE (2) DE3918701A1 (en)
ES (1) ES2064529T3 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4300761A1 (en) * 1993-01-14 1994-07-21 Erno Raumfahrttechnik Gmbh Control device
DE10030036B4 (en) * 2000-06-17 2014-07-17 Eads Deutschland Gmbh Vehicle control system for path control taking into account a flow influencing the vehicle and a method for generating a trajectory
DE102010032281A1 (en) * 2010-07-26 2012-01-26 Diehl Bgt Defence Gmbh & Co. Kg A method of controlling an engine driven missile

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3303763A1 (en) * 1983-02-04 1984-08-09 Diehl GmbH & Co, 8500 Nürnberg METHOD FOR TARGETING A PROJECTILE AND DETERMINING ITS BALLISTIC FLIGHT TRACK AND DEVICES FOR EXECUTING THE METHOD
US4522356A (en) * 1973-11-12 1985-06-11 General Dynamics, Pomona Division Multiple target seeking clustered munition and system
DE1815727C1 (en) * 1968-12-19 1985-10-31 Fried. Krupp GmbH Krupp Atlas-Elektronik Bremen, 2800 Bremen Target control system for steered torpedo - uses acoustic target location data and switches from navigation mode to curved steering mode at given proximity
DE3522154A1 (en) * 1985-06-21 1987-01-02 Diehl Gmbh & Co SEARCH SUBMUNITION

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1578299B2 (en) * 1967-10-14 1976-03-11 Licenti a Patent-Verwaltung s-GmbH, 6000 Frankfurt PROCEDURE FOR RETAINING THE MEETING POINT FOR PASSIVE LOCATIONS IN THE SELF-STEERING PHASE USING PROPORTIONAL NAVIGATION OF JOINTED SHELVES
DE2543606C2 (en) * 1975-09-30 1986-11-06 Deutsch-Französisches Forschungsinstitut Saint-Louis, Saint-Louis Arrangement for correcting the trajectory of a rotating projectile
DE2830502C3 (en) * 1978-07-12 1981-10-08 Bodenseewerk Gerätetechnik GmbH, 7770 Überlingen Missile control device
US4277038A (en) * 1979-04-27 1981-07-07 The United States Of America As Represented By The Secretary Of The Army Trajectory shaping of anti-armor missiles via tri-mode guidance
DE2951941C2 (en) * 1979-12-22 1988-01-21 Diehl GmbH & Co, 8500 Nürnberg Optical remote control device for a projectile

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1815727C1 (en) * 1968-12-19 1985-10-31 Fried. Krupp GmbH Krupp Atlas-Elektronik Bremen, 2800 Bremen Target control system for steered torpedo - uses acoustic target location data and switches from navigation mode to curved steering mode at given proximity
US4522356A (en) * 1973-11-12 1985-06-11 General Dynamics, Pomona Division Multiple target seeking clustered munition and system
DE3303763A1 (en) * 1983-02-04 1984-08-09 Diehl GmbH & Co, 8500 Nürnberg METHOD FOR TARGETING A PROJECTILE AND DETERMINING ITS BALLISTIC FLIGHT TRACK AND DEVICES FOR EXECUTING THE METHOD
DE3522154A1 (en) * 1985-06-21 1987-01-02 Diehl Gmbh & Co SEARCH SUBMUNITION

Also Published As

Publication number Publication date
ES2064529T3 (en) 1995-02-01
DE3918701C2 (en) 1992-04-09
DE59007711D1 (en) 1994-12-22
DE3918701A1 (en) 1990-12-13
EP0401693A1 (en) 1990-12-12

Similar Documents

Publication Publication Date Title
DE3608108C1 (en) Defense against flying objects
DE3024908C2 (en) Target search system for a missile executing a roll motion
DE3738580C2 (en)
DE69411398T2 (en) INTEGRATED FIRE AND FLIGHT CONTROL FOR HELICOPTERS WITH A GUIDE SYSTEM BEFORE AND AFTER SHOOTING
EP4232771A1 (en) Interceptor missile and method for steering same
DE3442598C2 (en) Guidance system for missiles
DE2750128C2 (en)
DE69931216T2 (en) FLUGBAH COMMAND CONTROL WITH NEURONAL NETWORK
WO1990008936A1 (en) Process and device for improving the accuracy of aim
EP0401693B1 (en) Method for improving the accuracy of hit of a controlled missile
DE3013405C2 (en) Method of avoiding messaging from ballistic missile launchers
DE69913490T2 (en) METHOD AND SYSTEM FOR STEERING A missile
DE2204261C1 (en)
EP1014028B1 (en) Guidance, navigation and control system for missile
DE19601846A1 (en) Symmetric rocket guiding method, involves actuating actuating elements such that rocket accepts transverse accelerations, and periodically starting parameter detection, calculations and resulting controls of actuating elements
EP2395409B1 (en) Method and device for controlling a guided missile
EP0745828A1 (en) Method for determining roll of a spinning flying object
DE69405260T2 (en) Method for launching and controlling a movable vehicle of a non-vertically guided projectile with a braked flight path
DE2445478C3 (en) Procedure for autonomous target selection
DE102022001285B4 (en) Method for guiding a missile
DE4018198C2 (en) Steering method for projectiles and arrangements for carrying out the method
WO2015058743A1 (en) Method for controlling a directable weapon of a vehicle during shooting exercises
DE4203224C2 (en) Two-phase command / beacon guidance of a controllable projectile
EP4261491A1 (en) Method for steering an interception missile
DE19805850C1 (en) Guided flying body for striking airborne targets

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

17Q First examination report despatched

Effective date: 19930310

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 59007711

Country of ref document: DE

Date of ref document: 19941222

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2064529

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19960617

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970526

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050601