EP0401107B1 - Combustion chamber for ram jet - Google Patents
Combustion chamber for ram jet Download PDFInfo
- Publication number
- EP0401107B1 EP0401107B1 EP19900401425 EP90401425A EP0401107B1 EP 0401107 B1 EP0401107 B1 EP 0401107B1 EP 19900401425 EP19900401425 EP 19900401425 EP 90401425 A EP90401425 A EP 90401425A EP 0401107 B1 EP0401107 B1 EP 0401107B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- chamber
- injection means
- injection
- ramjet
- flux
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/007—Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23R—GENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
- F23R3/00—Continuous combustion chambers using liquid or gaseous fuel
- F23R3/28—Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
- F23R3/34—Feeding into different combustion zones
- F23R3/346—Feeding into different combustion zones for staged combustion
Definitions
- the present invention relates to a supersonic combustion ramjet according to the preamble of claim 1.
- Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff.
- the propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.
- the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.
- the injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow.
- injected hydrogen In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows.
- the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against the latter under the effect of air flowing at high speed into the chamber, and combustion occurs from incomplete because of the short air residence time in the room.
- the present invention aims to provide a supersonic combustion ramjet chamber into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at supersonic speed, while obtaining satisfactory energy efficiency. .
- a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component
- ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.
- the first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
- a first wall part of the combustion chamber for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
- the second injection device can be produced in the same way.
- porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.
- the porous material is advantageously a porous composite material with a ceramic or carbon matrix.
- a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber.
- thermostructural properties that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber.
- the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.
- a material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
- the wall of the chamber at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix.
- the connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.
- Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant.
- Fuel flow injection must be performed with a component low speed radial so as not to cause violent interactions or shocks with the supersonic speed air flow; it is preferably the same for the injection of the gas oxidant flow.
- Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof can be provided.
- the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow at supersonic speed (arrow A), an upstream sealed section 12, a first injection ring 20 for the injection of a flow of gaseous fuel, a central sealed section 14, a second injection ring 30 for the injection of a flow of gaseous oxidizer and a downstream sealed section 16.
- the interior surfaces of the sections 12, 14, 16 and injection rings 20, 30 define the continuous cylindrical internal wall of the ramjet chamber.
- the outer surface of the ring 20 defines a chamber 22 for injecting gaseous fuel which communicates with a fuel source (not shown).
- the fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.
- the ring 20 is made in a single piece of porous refractory composite material.
- the porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow injection of the gaseous flow of hydrogen by transpiration through the injection ring.
- the hydrogen gas flow thus enters the chamber with a low radial velocity component.
- the flow of hydrogen injected into the combustion chamber is defined by the porosity of the injection ring, the length of the latter, and the pressure difference between the outer and inner surfaces of the ring.
- the constituent material of the ring 20 is a composite material consisting of a refractory fibrous reinforcement partially densified by a ceramic material, or of a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation.
- an annular preform is formed which constitutes the fibrous reinforcement.
- the preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide.
- the fiber preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained.
- the superimposed layers of fabric can be linked together by needling or implantation of threads.
- the preform is densified by gas or by liquid.
- a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material).
- the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.
- an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.
- the ring 30 delimits by its outer surface a chamber 32 for injecting gaseous oxidant.
- This can consist of air taken from the surrounding medium or oxygen from a source (not shown).
- the ring 30 is made in a single piece of porous composite material either with a ceramic matrix, for example in C / SiC material, or of C / C type protected against oxidation, in the same way as the ring 20.
- the porosity of the material constituting the ring 30 gives the latter the permeability necessary to allow the injection of a flow of gaseous oxidant by transpiration through the ring 30, the pressure in the injection chamber 32 being greater than that reigning in the ramjet chamber.
- the flow of gaseous oxidant into the chamber is therefore also carried out with a low radial velocity component.
- the sections 12, 14, 16 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix.
- a material having a reinforcement and a matrix of the same type as those of the injection rings 20 and 30 will be chosen.
- the sections 12, 14 and 16 are sealed, the seal being obtained by densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.
- connection between the sections ons 12,14,16 of the wall of the chamber 10 and the injection rings 20, 30 is produced by co-densification.
- the sections 12, 14, 16 and the rings 20, 30 are produced separately while being incompletely densified with respect to the desired degree of final densification.
- the elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration.
- the continuity of the matrix material at the interfaces between the sections 12, 14, 16 and the rings 20, 30 ensures the connection between these elements.
- This final co-densification is continued until the desired degree of porosity is obtained for the injection rings 20 and 30, the sections 12, 14, 16 having previously been sufficiently pre-densified to finally obtain the desired seal.
- the gas flow 34 of oxidant transpiring through the injection ring 30 forces the gas flow 24 of fuel to move away from the wall of the chamber 10 despite the supersonic air flow having tendency to press it against this wall.
- a satisfactory mixture is thus obtained between the combustible gas and the oxidizer constituted by the supersonic air and the flow 34.
- Complete combustion of the combustible gas can thus be carried out in a very short time, without creating violent interactions between the current d supersonic air and gas flows transpiring through the injection rings. This results in an increase in performance of the ramjet chamber, therefore better thrust and specific impulse of the propulsive system.
- porous materials for example porous metallic structures, can be used in the case of a metallic chamber.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Fuel-Injection Apparatus (AREA)
- Ceramic Products (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Description
La présente invention concerne un statoréacteur à combustion supersonique selon le préambule de la revendication 1.The present invention relates to a supersonic combustion ramjet according to the preamble of claim 1.
Les statoréacteurs à combustion supersonique sont actuellement étudiés pour la propulsion de véhicules hypersoniques, par exemple les avions spatiaux récupérables à décollage horizontal. La phase de propulsion par statoréacteur à combustion supersonique permet en effet d'accélérer le véhicule de la vitesse - environ Mach 6 - atteinte en fin de phase de propulsion par statoréacteur à combustion subsonique, jusqu'à une vitesse d'environ Mach 15 à Mach 25.Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff. The propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.
Dans une chambre de statoréacteur à combustion supersonique, l'air circule à une vitesse qui est toujours supersonique dans le milieu de la veine d'air, où les effets de paroi se font peu sentir, et le combustible, généralement de l'hydrogène gazeux est introduit à travers la paroi de la chambre.In a supersonic combustion ramjet chamber, the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.
L'injection du flux d'hydrogène gazeux est généralement réalisée par des trous ou des fentes formés dans la paroi de la chambre. Il est difficile d'assurer un mélange satisfaisant entre l'hydrogène et l'air, donc d'obtenir un bon rendement énergétique, sans pertes d'écoulement aérodynamique dues à des interactions ou chocs entre l'écoulement de l'air et le flux d'hydrogène injecté. En effet, une injection d'hydrogène par des trous dirigés vers l'axe de la chambre de combustion produit nécessairement des chocs entre les écoulements gazeux. Par contre, si l'hydrogène est injecté tangentiellement à la paroi de la chambre, il a tendance à rester confiné contre celle-ci sous l'effet de l'airs'écoulant à haute vitesse dans la chambre, et la combustion se produit de façon incomplète en raison du bref temps de séjour de l'air dans la chambre.The injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow. injected hydrogen. In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows. On the other hand, if the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against the latter under the effect of air flowing at high speed into the chamber, and combustion occurs from incomplete because of the short air residence time in the room.
La présente invention vise à fournir une chambre de statoréacteur à combustion supersonique dans laquelle un flux de combustible gazeux peut être introduit sans créer de chocs préjudiciables avec l'air s'écoulant dans la chambre, à vitesse supersonique, tout en obtenant un rendement énergétique satisfaisant.The present invention aims to provide a supersonic combustion ramjet chamber into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at supersonic speed, while obtaining satisfactory energy efficiency. .
Ce but est atteint au moyen d'un statoréacteur comprenant une chambre de combustion destinée à être parcourue longitudinalement par un flux d'air à vitesse supersonique, et un premier dispositif d'injection pour injecter dans la chambre un flux de combustible gazeux avec une vitesse d'entrée dans la chambre ayant une composante transversale de faible amplitude, statoréacteur dans lequel un deuxième dispositif d'injection est situé en aval du premier, dans le sens de l'écoulement de l'air à vitesse supersonique, pour injecter dans la chambre un flux de comburant gazeux qui contribue à décoller de la paroi de la chambre le flux de combustible gazeux injecté par le premier dispositif d'injection.This object is achieved by means of a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component, ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.
Le premier dispositif d'injection comprend de préférence une première partie de paroi de la chambre de combustion, par exemple une partie en forme d'anneau, qui est réalisée en un matériau perméable au flux de combustible gazeux à injecter dans la chambre et qui a une surface constituant une partie de la surface intérieure de la chambre et une surface opposée en communication avec une source du combustible gazeux à injecter, de sorte que l'injection du flux de combustible gazeux est réalisée par transpiration à travers la porosité du matériau poreux constitutif du premier dispositif d'injection.The first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
Le deuxième dispositif d'injection peut être réalisé de la même façon.The second injection device can be produced in the same way.
L'utilisation d'un matériau poreux à travers lequel transpire le flux gazeux est un moyen d'injection qui convient parfaitement pour injecter le flux gazeux dans la chambre avec une vitesse d'entrée ayant une composante radiale de faible amplitude.The use of a porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.
Le matériau poreux est avantageusement un matériau composite poreux à matrice céramique ou carbone. Un tel matériau est particulièrement adapté à la réalisation d'un dispositif d'injection d'un flux gazeux dans une chambre de combustion de statoréacteur. En effet, un tel matériau a des propriétés thermos- tructurales, c'est-à-dire un comportement mécanique à température élevée qui permet de réaliser un dispositif d'injection constituant un élément de structure de la chambre. En outre, la porosité de ce matériau peut être contrôlée en agissant sur le taux volumique de fibres constitutives de sa texture fibreuse de renfort et/ou sur le degré de densification par le matériau constitutif de la matrice.The porous material is advantageously a porous composite material with a ceramic or carbon matrix. Such a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber. Indeed, such a material has thermostructural properties, that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber. In addition, the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.
Un matériau de type C/SiC (renfort en fibres de carbone et matrice en carbure de silicium), ou de type SiC/SiC (renfort en fibres essentiellement en carbure de silicium et matrice en carbure de silicium), ou de type C/C protégé (renfort en fibres de carbone, matrice de carbone et protection anti-oxydation), pourra convenir.A material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
De préférence, la paroi de la chambre, au moins dans ses parties adjacentes aux dispositifs d'injection, est réalisée également en matériau composite non poreux à matrice céramique ou carbone. La liaison entre les dispositifs d'injection et les autres parties de la paroi de la chambre de combustion peut alors être avantageusement réalisée par co-densification des parties de paroi formant dispositifs d'injection et des autres parties de paroi assemblées à l'état incomplètement densifiés. Cette co-densification est réalisée de préférence par dépôt chimique en phase vapeur.Preferably, the wall of the chamber, at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix. The connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.
Des procédés d'injection autres que par transpiration à travers un matériau poreux pourront être utilisés pour injecter le flux de combustible gazeux ou le flux de comburant gazeux. L'injection du flux de combustible doit être réalisée avec une composante radiale de vitesse faible pour ne pas provoquer d'interactions ou chocs violents avec le flux d'air vitesse supersonique ; il en est de préférence de même pour l'injection du flux de comburant gazeux. Des injecteurs ou orifices d'injection débouchant dans la chambre sensiblement tangentiellement à la paroi de celle-ci peuvent être prévus.Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant. Fuel flow injection must be performed with a component low speed radial so as not to cause violent interactions or shocks with the supersonic speed air flow; it is preferably the same for the injection of the gas oxidant flow. Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof can be provided.
L'invention sera mieux comprise à la lecture de la description faite ci-après, à titre indicatif, mais non limitatif, en référence au dessin annexé sur lequel la figure unique est une vue très schématique, en coupe axiale, d'une chambre de statoréacteur à combustion supersonique constituant un mode particulier de réalisation de l'invention.The invention will be better understood on reading the description given below, by way of indication, but not limitation, with reference to the appended drawing in which the single figure is a very schematic view, in axial section, of a ramjet with supersonic combustion constituting a particular embodiment of the invention.
Dans l'exemple illustré, la chambre 10 est de forme cylindrique à section circulaire et comprend, dans le sens d'écoulement de l'air à vitesse supersonique (flèche A), un tronçon étanche amont 12, un premier anneau d'injection 20 pour l'injection d'un flux de combustible gazeux, un tronçon étanche central 14, un deuxième anneau d'injection 30 pour l'injection d'un flux de comburant gazeux et un tronçon étanche aval 16. Les surfaces intérieures des tronçons 12, 14, 16 et des anneaux d'injection 20, 30 définissent la paroi interne continue cylindrique de la chambre du statoréacteur.In the example illustrated, the
La surface extérieure de l'anneau 20 délimite une chambre 22 d'injection de combustible gazeux qui communique avec une source de combustible (non représentée). Le combustible est par exemple de l'hydrogène qui est injecté à l'état gazeux, la pression régnant dans la chambre d'injection 22 étant supérieure à celle régnant dans la chambre de combustion du statoréacteur.The outer surface of the
L'anneau 20 est réalisé en une seule pièce en matériau composite réfractaire poreux. La porosité du matériau constitutif de l'anneau 20 confère à ce dernier la perméabilité nécessaire pour permettre l'injection du flux gazeux d'hydrogène par transpiration à travers l'anneau d'injection. Le flux gazeux d'hydrogène pénètre ainsi dans la chambre avec une composante de vitesse radiale faible. Le débit d'hydrogène injecté dans la chambre de combustion est défini par la porosité de l'anneau d'injection, la longueur de celui-ci, et la différence de pression entre les surfaces extérieure et intérieure de l'anneau.The
Le matériau constitutif de l'anneau 20 est un matériau composite constitué d'un renfort fibreux réfractaire partiellement densifié par une matière céramique, ou d'un renfort fibreux en carbone partiellement densifié par une matrice de carbone et protégé contre l'oxydation. Pour la fabrication de l'anneau, on réalise une préforme annulaire qui constitue le renfort fibreux. La préforme est réalisée en fibres de carbone ou en fibres céramique, par exemple en fibres essentiellement en carbure de silicium. A titre d'exemple, la préforme fibreuse est réalisée par bobinage sur un mandrin d'une bande de tissu jusqu'à obtention de l'épaisseur désirée. Les couches de tissu superposées peuvent être liées entre elles par aiguilletage ou implantation de fils.The constituent material of the
La densification de la préforme est réalisée par voie gazeuse ou par voie liquide. Dans le premier cas, on réalise une matrice par infiltration chimique en phase vapeur de matériau céramique, par exemple du carbure de silicium, ou de carbone (pour un matériau de type C/C protégé). Dans le deuxième cas, la préforme est imprégnée par un précurseur du matériau de la matrice, celle-ci étant obtenue ensuite par traitement thermique.The preform is densified by gas or by liquid. In the first case, a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material). In the second case, the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.
La durée d'infiltration chimique en phase vapeur ou le nombre de cycles imprégnation liquide-thermolyse sont choisis afin d'obtenir la porosité finale désirée compte-tenu de la porosité initiale de la préforme. A titre indicatif, on pourra réaliser un anneau d'injection en matériau céramique C/SiC en fabriquant une préforme en fibres de carbone ayant un taux volumique de fibres d'environ 35 % et en densifiant celle-ci par infiltration chimique en phase vapeur de carbure de silicium jusqu'à atteindre une porosité résiduelle d'environ 40%.The duration of chemical vapor infiltration or the number of liquid-thermolysis impregnation cycles are chosen in order to obtain the desired final porosity taking into account the initial porosity of the preform. As an indication, an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.
Dans le cas d'un matériau de type C/C, un traitement spécifique sera effectué pour protéger le matériau contre l'oxydation. Différents traitements de protection anti-oxydation des composites C/C sont bien connus.In the case of a C / C type material, a specific treatment will be carried out to protect the material against oxidation. Various anti-oxidation protection treatments for C / C composites are well known.
L'anneau 30 délimite par sa surface extérieure une chambre 32 d'injection de comburant gazeux. Celui-ci peut être constitué par de l'air prélevé dans le milieu environnant ou de l'oxygène provenant d'une source (non représentée).The
L'anneau 30 est réalisé en une seule pièce en matériau composite poreux soit à matrice céramique, par exemple en matériau C/SiC, soit de type C/C protégé contre l'oxydation, de la même manière que l'anneau 20. La porosité du matériau constitutif de l'anneau 30 confère à ce dernier la perméabilité nécessaire pour permettre l'injection d'un flux de comburant gazeux par transpiration à travers l'anneau 30, la pression dans la chambre d'injection 32 étant supérieure à celle régnant dans la chambre du statoréacteur. L'entrée du flux de comburant gazeux dans la chambre est donc aussi réalisée avec une composante de vitesse radiale faible.The
Les tronçons 12, 14, 16 de la chambre de statoréacteur sont de préférence également en un matériau composite à matrice céramique ou carbone. Avantageusement, on choisira un matériau ayant un renfort et une matrice de même nature que ceux des anneaux d'injection 20 et 30. Toutefois, contrairement aux anneaux 20 et 30, les tronçons 12, 14 et 16 sont étanches, l'étanchéité étant obtenue par une densification suffisamment poussée pour combler la porosité du renfort fibreux jusqu'à rendre le matériau imperméable.The
De façon avantageuse, la liaison entre les tronçons 12,14,16 de la paroi de la chambre 10 et les anneaux d'injection 20, 30 est réalisé par co-densification. Acet effet, les tronçons 12, 14, 16 et les anneaux 20, 30 sont réalisés séparément en étant incomplètement densifiés par rapport au degré de densification finale désiré. Les éléments sont ensuite assemblés bout à bout et disposés dans un four d'infiltration pour subir une co-densification finale par infiltration chimique en phase vapeur. Au cours de la co-densification finale, la continuité du matériau de la matrice aux interfaces entre les tronçons 12, 14, 16 et les anneaux 20, 30 assure la liaison entre ces éléments. Cette co-densification finale est poursuivie jusqu'à obtenir le degré de porosité voulu pour les anneaux d'injection 20 et 30, les tronçons 12,14,16 ayant été précédemment suffisamment pré-densifiés pour obtenir finalement l'étanchéité désirée.Advantageously, the connection between the sections ons 12,14,16 of the wall of the
Comme le montre schématiquement la figure, le flux gazeux 34 de comburant transpirant à travers l'anneau d'injection 30 oblige le flux gazeux 24 de combustible à s'écarter de la paroi de la chambre 10 en dépit du courant d'air supersonique ayant tendance à le plaquer contre cette paroi. On obtient ainsi un mélange satisfaisant entre le gaz combustible et le comburant constitué par l'air supersonique et le flux 34. Une combustion complète du gaz combustible peut ainsi être réalisée en un temps très court, sans créer d'interactions violentes entre le courant d'air supersonique et les flux gazeux transpirant à travers lesanneaux d'injection. Il en résulte une augmentation de performance de la chambre de statoréacteur, donc de meilleures poussée et impulsion spécifique du système propulsif.As shown schematically in the figure, the
L'on a envisagé ci-avant la réalisation de l'injection des flux gazeux dans la chambre par transpiration à travers un anneau d'injection en matériau composite poreux à matrice céramique.It has been envisaged above carrying out the injection of the gas flows into the chamber by transpiration through an injection ring of porous composite material with ceramic matrix.
D'autres types de matériaux poreux, par exemple des structures métalliques poreuses, peuvent être utilisées dans le cas d'une chambre métallique.Other types of porous materials, for example porous metallic structures, can be used in the case of a metallic chamber.
Claims (9)
characterized in that a second injection means (30) is provided downstream of said first injection means along the direction of supersonic air flow to inject into said chamber (10) a flux of combustive gas (34) that serves to delaminate from the wall of the chamber (10) the flux of combustible gas (24) injected by the first injection means.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8907019 | 1989-05-29 | ||
FR8907019A FR2647533B1 (en) | 1989-05-29 | 1989-05-29 | SUPERSONIC COMBUSTION STATOREACTOR CHAMBER |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0401107A1 EP0401107A1 (en) | 1990-12-05 |
EP0401107B1 true EP0401107B1 (en) | 1993-07-21 |
Family
ID=9382105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19900401425 Expired - Lifetime EP0401107B1 (en) | 1989-05-29 | 1990-05-29 | Combustion chamber for ram jet |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0401107B1 (en) |
JP (1) | JPH0396645A (en) |
DE (1) | DE69002281T2 (en) |
FR (1) | FR2647533B1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19730674A1 (en) * | 1997-07-17 | 1999-01-21 | Deutsch Zentr Luft & Raumfahrt | Combustion chamber and method of manufacturing a combustion chamber |
JP4522558B2 (en) * | 2000-08-11 | 2010-08-11 | 実 屋我 | Method and apparatus for promoting fuel mixing for a scramjet engine |
FR2836699B1 (en) * | 2002-03-04 | 2005-02-11 | Eads Launch Vehicles | ENGINE OF ROCKET |
FR2836698B1 (en) | 2002-03-04 | 2005-02-11 | Eads Launch Vehicles | COMBUSTION CHAMBER FOR STATOREACTOR AND STATOREACTOR PROVIDED WITH SUCH A COMBUSTION CHAMBER |
CN103343983B (en) * | 2013-07-31 | 2014-12-24 | 哈尔滨工业大学 | Supersonic-speed stable combustion method based on strong magnetic field stable electric arc |
GB2518211B (en) * | 2013-09-13 | 2015-11-18 | Carolyn Billie Knight | Rocket motor with combustion chamber having porous membrane |
CN108317541B (en) * | 2018-02-26 | 2020-07-07 | 中国科学院力学研究所 | Ramjet engine |
CN113530709B (en) * | 2021-09-16 | 2021-12-14 | 西安空天引擎科技有限公司 | Bimodal hydrogen peroxide gas generator |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE253189C (en) * | ||||
US2658332A (en) * | 1951-03-21 | 1953-11-10 | Carborundum Co | Fluid cooled, refractory, ceramic lined rocket structure |
US3114961A (en) * | 1959-03-20 | 1963-12-24 | Power Jets Res & Dev Ltd | Treatment of porous bodies |
GB1046909A (en) * | 1963-08-26 | 1966-10-26 | Gur Charan Saini | Rocket thrust chambers |
CH427118A (en) * | 1963-11-28 | 1966-12-31 | Bbc Brown Boveri & Cie | Method for protecting surface parts of a heat-resistant body that is swept by hot media |
BE790956A (en) * | 1971-11-05 | 1973-03-01 | Penny Robert N | FLAME TUBE FOR AGAZ TURBINE ENGINE COMBUSTION CHAMBER |
US3864907A (en) * | 1973-11-05 | 1975-02-11 | Us Air Force | Step cylinder combustor design |
FR2461690B1 (en) * | 1979-07-19 | 1985-08-16 | Europ Propulsion | HIGH TEMPERATURE THERMAL INSULATION MATERIAL AND MANUFACTURING METHOD THEREOF |
GB2089434A (en) * | 1980-12-09 | 1982-06-23 | Rolls Royce | Composite Ducts for Jet Pipes |
FR2610044A1 (en) * | 1986-10-14 | 1988-07-29 | Gen Electric | PROPULSION SYSTEM COMPRISING AN IMPROVED TRIM OF THE COMBUSTION CHAMBER AND METHOD OF MANUFACTURING SUCH MANUFACTURE |
-
1989
- 1989-05-29 FR FR8907019A patent/FR2647533B1/en not_active Expired - Lifetime
-
1990
- 1990-05-29 DE DE1990602281 patent/DE69002281T2/en not_active Expired - Fee Related
- 1990-05-29 EP EP19900401425 patent/EP0401107B1/en not_active Expired - Lifetime
- 1990-05-29 JP JP13730390A patent/JPH0396645A/en active Pending
Also Published As
Publication number | Publication date |
---|---|
EP0401107A1 (en) | 1990-12-05 |
FR2647533A1 (en) | 1990-11-30 |
JPH0396645A (en) | 1991-04-22 |
DE69002281D1 (en) | 1993-08-26 |
FR2647533B1 (en) | 1993-03-19 |
DE69002281T2 (en) | 1994-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0817762B1 (en) | Composite material protected from oxidation by a self-healing matrix, and method for making same | |
EP0604279B1 (en) | Injector with porous wall for a rocket combustion chamber | |
EP1045971B1 (en) | Heat exchanger in composite material and method for making same | |
EP0401107B1 (en) | Combustion chamber for ram jet | |
FR2852003A1 (en) | Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine | |
WO2002070775A1 (en) | Chemical vapour infiltration method for densifying porous substrates having a central passage | |
EP1342905B1 (en) | Rocket motor | |
EP0517593B1 (en) | Composite gun barrel liner and method for producing same | |
CA2971421A1 (en) | Tooling and impregnation process for a fibrous revolution preform | |
EP1342904B1 (en) | Combustion chamber for a ram-jet and ram-jet with such a combustion chamber | |
CA2429393A1 (en) | Improvements to methods for calefaction densification of a porous structure | |
EP0421865B1 (en) | Rocket combustion chamber | |
Patterson et al. | Advanced HfC-TaC oxidation resistant composite rocket thruster | |
EP0401106B1 (en) | Reactor chamber and method of manufacture | |
WO1993013636A1 (en) | Method for making a sealed passage in a refractory composite part, and application to the production of a refractory composite structure cooled by fluid circulation | |
WO2022038324A1 (en) | Method for depositing a coating on a wire in a microwave field | |
WO2014170586A1 (en) | Holding and loading tool and facility for densifying porous rotating preforms | |
FR3027959B1 (en) | FIRE PROTECTION OF A COMPOSITE MATERIAL PART OF A GAS TURBINE | |
FR3081156A1 (en) | PROCESS FOR MANUFACTURING A COATED CMC PART | |
FR3141164A1 (en) | FIBROUS PREFORM AND ITS MANUFACTURING METHOD FOR PRODUCING A PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX | |
FR2898390A1 (en) | Thermal protection made up of structure of three or multi dimensional refractory fibers for combustion chamber of an engine useful in vehicle propulsion such as missiles or rocket, comprises an elastic layer of silicone elastomer material | |
EP4192690A1 (en) | Additive manufacturing process for producing a structure | |
FR2645071A1 (en) | Method of producing holes in a component made of composite material | |
FR3084445A1 (en) | MANUFACTURE OF A COMBUSTION CHAMBER OF COMPOSITE MATERIAL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
17P | Request for examination filed |
Effective date: 19901217 |
|
17Q | First examination report despatched |
Effective date: 19920109 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REF | Corresponds to: |
Ref document number: 69002281 Country of ref document: DE Date of ref document: 19930826 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19931018 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20000512 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20000523 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010529 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020301 |