[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0401107B1 - Combustion chamber for ram jet - Google Patents

Combustion chamber for ram jet Download PDF

Info

Publication number
EP0401107B1
EP0401107B1 EP19900401425 EP90401425A EP0401107B1 EP 0401107 B1 EP0401107 B1 EP 0401107B1 EP 19900401425 EP19900401425 EP 19900401425 EP 90401425 A EP90401425 A EP 90401425A EP 0401107 B1 EP0401107 B1 EP 0401107B1
Authority
EP
European Patent Office
Prior art keywords
chamber
injection means
injection
ramjet
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900401425
Other languages
German (de)
French (fr)
Other versions
EP0401107A1 (en
Inventor
Philippe H. Ramette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Europeenne de Propulsion SEP SA
Original Assignee
Societe Europeenne de Propulsion SEP SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Europeenne de Propulsion SEP SA filed Critical Societe Europeenne de Propulsion SEP SA
Publication of EP0401107A1 publication Critical patent/EP0401107A1/en
Application granted granted Critical
Publication of EP0401107B1 publication Critical patent/EP0401107B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/346Feeding into different combustion zones for staged combustion

Definitions

  • the present invention relates to a supersonic combustion ramjet according to the preamble of claim 1.
  • Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff.
  • the propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.
  • the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.
  • the injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow.
  • injected hydrogen In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows.
  • the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against the latter under the effect of air flowing at high speed into the chamber, and combustion occurs from incomplete because of the short air residence time in the room.
  • the present invention aims to provide a supersonic combustion ramjet chamber into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at supersonic speed, while obtaining satisfactory energy efficiency. .
  • a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component
  • ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.
  • the first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
  • a first wall part of the combustion chamber for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.
  • the second injection device can be produced in the same way.
  • porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.
  • the porous material is advantageously a porous composite material with a ceramic or carbon matrix.
  • a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber.
  • thermostructural properties that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber.
  • the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.
  • a material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.
  • the wall of the chamber at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix.
  • the connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.
  • Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant.
  • Fuel flow injection must be performed with a component low speed radial so as not to cause violent interactions or shocks with the supersonic speed air flow; it is preferably the same for the injection of the gas oxidant flow.
  • Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof can be provided.
  • the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow at supersonic speed (arrow A), an upstream sealed section 12, a first injection ring 20 for the injection of a flow of gaseous fuel, a central sealed section 14, a second injection ring 30 for the injection of a flow of gaseous oxidizer and a downstream sealed section 16.
  • the interior surfaces of the sections 12, 14, 16 and injection rings 20, 30 define the continuous cylindrical internal wall of the ramjet chamber.
  • the outer surface of the ring 20 defines a chamber 22 for injecting gaseous fuel which communicates with a fuel source (not shown).
  • the fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.
  • the ring 20 is made in a single piece of porous refractory composite material.
  • the porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow injection of the gaseous flow of hydrogen by transpiration through the injection ring.
  • the hydrogen gas flow thus enters the chamber with a low radial velocity component.
  • the flow of hydrogen injected into the combustion chamber is defined by the porosity of the injection ring, the length of the latter, and the pressure difference between the outer and inner surfaces of the ring.
  • the constituent material of the ring 20 is a composite material consisting of a refractory fibrous reinforcement partially densified by a ceramic material, or of a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation.
  • an annular preform is formed which constitutes the fibrous reinforcement.
  • the preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide.
  • the fiber preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained.
  • the superimposed layers of fabric can be linked together by needling or implantation of threads.
  • the preform is densified by gas or by liquid.
  • a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material).
  • the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.
  • an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.
  • the ring 30 delimits by its outer surface a chamber 32 for injecting gaseous oxidant.
  • This can consist of air taken from the surrounding medium or oxygen from a source (not shown).
  • the ring 30 is made in a single piece of porous composite material either with a ceramic matrix, for example in C / SiC material, or of C / C type protected against oxidation, in the same way as the ring 20.
  • the porosity of the material constituting the ring 30 gives the latter the permeability necessary to allow the injection of a flow of gaseous oxidant by transpiration through the ring 30, the pressure in the injection chamber 32 being greater than that reigning in the ramjet chamber.
  • the flow of gaseous oxidant into the chamber is therefore also carried out with a low radial velocity component.
  • the sections 12, 14, 16 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix.
  • a material having a reinforcement and a matrix of the same type as those of the injection rings 20 and 30 will be chosen.
  • the sections 12, 14 and 16 are sealed, the seal being obtained by densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.
  • connection between the sections ons 12,14,16 of the wall of the chamber 10 and the injection rings 20, 30 is produced by co-densification.
  • the sections 12, 14, 16 and the rings 20, 30 are produced separately while being incompletely densified with respect to the desired degree of final densification.
  • the elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration.
  • the continuity of the matrix material at the interfaces between the sections 12, 14, 16 and the rings 20, 30 ensures the connection between these elements.
  • This final co-densification is continued until the desired degree of porosity is obtained for the injection rings 20 and 30, the sections 12, 14, 16 having previously been sufficiently pre-densified to finally obtain the desired seal.
  • the gas flow 34 of oxidant transpiring through the injection ring 30 forces the gas flow 24 of fuel to move away from the wall of the chamber 10 despite the supersonic air flow having tendency to press it against this wall.
  • a satisfactory mixture is thus obtained between the combustible gas and the oxidizer constituted by the supersonic air and the flow 34.
  • Complete combustion of the combustible gas can thus be carried out in a very short time, without creating violent interactions between the current d supersonic air and gas flows transpiring through the injection rings. This results in an increase in performance of the ramjet chamber, therefore better thrust and specific impulse of the propulsive system.
  • porous materials for example porous metallic structures, can be used in the case of a metallic chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Ceramic Products (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

La présente invention concerne un statoréacteur à combustion supersonique selon le préambule de la revendication 1.The present invention relates to a supersonic combustion ramjet according to the preamble of claim 1.

Les statoréacteurs à combustion supersonique sont actuellement étudiés pour la propulsion de véhicules hypersoniques, par exemple les avions spatiaux récupérables à décollage horizontal. La phase de propulsion par statoréacteur à combustion supersonique permet en effet d'accélérer le véhicule de la vitesse - environ Mach 6 - atteinte en fin de phase de propulsion par statoréacteur à combustion subsonique, jusqu'à une vitesse d'environ Mach 15 à Mach 25.Supersonic combustion ramjet engines are currently being studied for the propulsion of hypersonic vehicles, for example recoverable space planes with horizontal takeoff. The propulsion phase by supersonic combustion ramjet makes it possible to accelerate the vehicle by the speed - approximately Mach 6 - reached at the end of the propulsion phase by subsonic combustion ramjet, up to a speed of approximately Mach 15 to Mach 25.

Dans une chambre de statoréacteur à combustion supersonique, l'air circule à une vitesse qui est toujours supersonique dans le milieu de la veine d'air, où les effets de paroi se font peu sentir, et le combustible, généralement de l'hydrogène gazeux est introduit à travers la paroi de la chambre.In a supersonic combustion ramjet chamber, the air circulates at a speed which is always supersonic in the middle of the air stream, where the wall effects are hardly felt, and the fuel, generally hydrogen gas. is introduced through the wall of the chamber.

L'injection du flux d'hydrogène gazeux est généralement réalisée par des trous ou des fentes formés dans la paroi de la chambre. Il est difficile d'assurer un mélange satisfaisant entre l'hydrogène et l'air, donc d'obtenir un bon rendement énergétique, sans pertes d'écoulement aérodynamique dues à des interactions ou chocs entre l'écoulement de l'air et le flux d'hydrogène injecté. En effet, une injection d'hydrogène par des trous dirigés vers l'axe de la chambre de combustion produit nécessairement des chocs entre les écoulements gazeux. Par contre, si l'hydrogène est injecté tangentiellement à la paroi de la chambre, il a tendance à rester confiné contre celle-ci sous l'effet de l'airs'écoulant à haute vitesse dans la chambre, et la combustion se produit de façon incomplète en raison du bref temps de séjour de l'air dans la chambre.The injection of the hydrogen gas flow is generally carried out by holes or slots formed in the wall of the chamber. It is difficult to ensure a satisfactory mixture between hydrogen and air, and therefore to obtain good energy efficiency, without aerodynamic flow losses due to interactions or shocks between the air flow and the flow. injected hydrogen. In fact, an injection of hydrogen through holes directed towards the axis of the combustion chamber necessarily produces shocks between the gas flows. On the other hand, if the hydrogen is injected tangentially to the wall of the chamber, it tends to remain confined against the latter under the effect of air flowing at high speed into the chamber, and combustion occurs from incomplete because of the short air residence time in the room.

La présente invention vise à fournir une chambre de statoréacteur à combustion supersonique dans laquelle un flux de combustible gazeux peut être introduit sans créer de chocs préjudiciables avec l'air s'écoulant dans la chambre, à vitesse supersonique, tout en obtenant un rendement énergétique satisfaisant.The present invention aims to provide a supersonic combustion ramjet chamber into which a flow of gaseous fuel can be introduced without creating damaging shocks with the air flowing in the chamber, at supersonic speed, while obtaining satisfactory energy efficiency. .

Ce but est atteint au moyen d'un statoréacteur comprenant une chambre de combustion destinée à être parcourue longitudinalement par un flux d'air à vitesse supersonique, et un premier dispositif d'injection pour injecter dans la chambre un flux de combustible gazeux avec une vitesse d'entrée dans la chambre ayant une composante transversale de faible amplitude, statoréacteur dans lequel un deuxième dispositif d'injection est situé en aval du premier, dans le sens de l'écoulement de l'air à vitesse supersonique, pour injecter dans la chambre un flux de comburant gazeux qui contribue à décoller de la paroi de la chambre le flux de combustible gazeux injecté par le premier dispositif d'injection.This object is achieved by means of a ramjet comprising a combustion chamber intended to be traversed longitudinally by an air flow at supersonic speed, and a first injection device for injecting into the chamber a flow of gaseous fuel with a speed entry into the chamber having a low amplitude transverse component, ramjet in which a second injection device is located downstream of the first, in the direction of the flow of air at supersonic speed, for injecting into the chamber a flow of gaseous oxidizer which contributes to detaching from the wall of the chamber the flow of gaseous fuel injected by the first injection device.

Le premier dispositif d'injection comprend de préférence une première partie de paroi de la chambre de combustion, par exemple une partie en forme d'anneau, qui est réalisée en un matériau perméable au flux de combustible gazeux à injecter dans la chambre et qui a une surface constituant une partie de la surface intérieure de la chambre et une surface opposée en communication avec une source du combustible gazeux à injecter, de sorte que l'injection du flux de combustible gazeux est réalisée par transpiration à travers la porosité du matériau poreux constitutif du premier dispositif d'injection.The first injection device preferably comprises a first wall part of the combustion chamber, for example a ring-shaped part, which is made of a material permeable to the flow of gaseous fuel to be injected into the chamber and which has a surface constituting a part of the interior surface of the chamber and an opposite surface in communication with a source of the gaseous fuel to be injected, so that the injection of the gaseous fuel flow is carried out by transpiration through the porosity of the porous material constituting of the first injection device.

Le deuxième dispositif d'injection peut être réalisé de la même façon.The second injection device can be produced in the same way.

L'utilisation d'un matériau poreux à travers lequel transpire le flux gazeux est un moyen d'injection qui convient parfaitement pour injecter le flux gazeux dans la chambre avec une vitesse d'entrée ayant une composante radiale de faible amplitude.The use of a porous material through which the gas flow transpires is an injection means which is perfectly suitable for injecting the gas flow into the chamber with an input speed having a radial component of low amplitude.

Le matériau poreux est avantageusement un matériau composite poreux à matrice céramique ou carbone. Un tel matériau est particulièrement adapté à la réalisation d'un dispositif d'injection d'un flux gazeux dans une chambre de combustion de statoréacteur. En effet, un tel matériau a des propriétés thermos- tructurales, c'est-à-dire un comportement mécanique à température élevée qui permet de réaliser un dispositif d'injection constituant un élément de structure de la chambre. En outre, la porosité de ce matériau peut être contrôlée en agissant sur le taux volumique de fibres constitutives de sa texture fibreuse de renfort et/ou sur le degré de densification par le matériau constitutif de la matrice.The porous material is advantageously a porous composite material with a ceramic or carbon matrix. Such a material is particularly suitable for producing a device for injecting a gas flow into a ramjet combustion chamber. Indeed, such a material has thermostructural properties, that is to say a mechanical behavior at high temperature which makes it possible to produce an injection device constituting a structural element of the chamber. In addition, the porosity of this material can be controlled by acting on the volume ratio of fibers constituting its fibrous reinforcing texture and / or on the degree of densification by the material constituting the matrix.

Un matériau de type C/SiC (renfort en fibres de carbone et matrice en carbure de silicium), ou de type SiC/SiC (renfort en fibres essentiellement en carbure de silicium et matrice en carbure de silicium), ou de type C/C protégé (renfort en fibres de carbone, matrice de carbone et protection anti-oxydation), pourra convenir.A material of type C / SiC (reinforcement of carbon fibers and matrix of silicon carbide), or of type SiC / SiC (reinforcement of fibers essentially of silicon carbide and matrix of silicon carbide), or of type C / C protected (carbon fiber reinforcement, carbon matrix and anti-oxidation protection), may be suitable.

De préférence, la paroi de la chambre, au moins dans ses parties adjacentes aux dispositifs d'injection, est réalisée également en matériau composite non poreux à matrice céramique ou carbone. La liaison entre les dispositifs d'injection et les autres parties de la paroi de la chambre de combustion peut alors être avantageusement réalisée par co-densification des parties de paroi formant dispositifs d'injection et des autres parties de paroi assemblées à l'état incomplètement densifiés. Cette co-densification est réalisée de préférence par dépôt chimique en phase vapeur.Preferably, the wall of the chamber, at least in its parts adjacent to the injection devices, is also made of non-porous composite material with ceramic or carbon matrix. The connection between the injection devices and the other parts of the wall of the combustion chamber can then advantageously be carried out by co-densification of the wall parts forming injection devices and of the other wall parts assembled in an incomplete state. densified. This co-densification is preferably carried out by chemical vapor deposition.

Des procédés d'injection autres que par transpiration à travers un matériau poreux pourront être utilisés pour injecter le flux de combustible gazeux ou le flux de comburant gazeux. L'injection du flux de combustible doit être réalisée avec une composante radiale de vitesse faible pour ne pas provoquer d'interactions ou chocs violents avec le flux d'air vitesse supersonique ; il en est de préférence de même pour l'injection du flux de comburant gazeux. Des injecteurs ou orifices d'injection débouchant dans la chambre sensiblement tangentiellement à la paroi de celle-ci peuvent être prévus.Injection methods other than by transpiration through a porous material may be used to inject the flow of gaseous fuel or the flow of gaseous oxidant. Fuel flow injection must be performed with a component low speed radial so as not to cause violent interactions or shocks with the supersonic speed air flow; it is preferably the same for the injection of the gas oxidant flow. Injectors or injection orifices opening into the chamber substantially tangentially to the wall thereof can be provided.

L'invention sera mieux comprise à la lecture de la description faite ci-après, à titre indicatif, mais non limitatif, en référence au dessin annexé sur lequel la figure unique est une vue très schématique, en coupe axiale, d'une chambre de statoréacteur à combustion supersonique constituant un mode particulier de réalisation de l'invention.The invention will be better understood on reading the description given below, by way of indication, but not limitation, with reference to the appended drawing in which the single figure is a very schematic view, in axial section, of a ramjet with supersonic combustion constituting a particular embodiment of the invention.

Dans l'exemple illustré, la chambre 10 est de forme cylindrique à section circulaire et comprend, dans le sens d'écoulement de l'air à vitesse supersonique (flèche A), un tronçon étanche amont 12, un premier anneau d'injection 20 pour l'injection d'un flux de combustible gazeux, un tronçon étanche central 14, un deuxième anneau d'injection 30 pour l'injection d'un flux de comburant gazeux et un tronçon étanche aval 16. Les surfaces intérieures des tronçons 12, 14, 16 et des anneaux d'injection 20, 30 définissent la paroi interne continue cylindrique de la chambre du statoréacteur.In the example illustrated, the chamber 10 is of cylindrical shape with circular section and comprises, in the direction of air flow at supersonic speed (arrow A), an upstream sealed section 12, a first injection ring 20 for the injection of a flow of gaseous fuel, a central sealed section 14, a second injection ring 30 for the injection of a flow of gaseous oxidizer and a downstream sealed section 16. The interior surfaces of the sections 12, 14, 16 and injection rings 20, 30 define the continuous cylindrical internal wall of the ramjet chamber.

La surface extérieure de l'anneau 20 délimite une chambre 22 d'injection de combustible gazeux qui communique avec une source de combustible (non représentée). Le combustible est par exemple de l'hydrogène qui est injecté à l'état gazeux, la pression régnant dans la chambre d'injection 22 étant supérieure à celle régnant dans la chambre de combustion du statoréacteur.The outer surface of the ring 20 defines a chamber 22 for injecting gaseous fuel which communicates with a fuel source (not shown). The fuel is for example hydrogen which is injected in the gaseous state, the pressure prevailing in the injection chamber 22 being greater than that prevailing in the combustion chamber of the ramjet.

L'anneau 20 est réalisé en une seule pièce en matériau composite réfractaire poreux. La porosité du matériau constitutif de l'anneau 20 confère à ce dernier la perméabilité nécessaire pour permettre l'injection du flux gazeux d'hydrogène par transpiration à travers l'anneau d'injection. Le flux gazeux d'hydrogène pénètre ainsi dans la chambre avec une composante de vitesse radiale faible. Le débit d'hydrogène injecté dans la chambre de combustion est défini par la porosité de l'anneau d'injection, la longueur de celui-ci, et la différence de pression entre les surfaces extérieure et intérieure de l'anneau.The ring 20 is made in a single piece of porous refractory composite material. The porosity of the material constituting the ring 20 gives the latter the permeability necessary to allow injection of the gaseous flow of hydrogen by transpiration through the injection ring. The hydrogen gas flow thus enters the chamber with a low radial velocity component. The flow of hydrogen injected into the combustion chamber is defined by the porosity of the injection ring, the length of the latter, and the pressure difference between the outer and inner surfaces of the ring.

Le matériau constitutif de l'anneau 20 est un matériau composite constitué d'un renfort fibreux réfractaire partiellement densifié par une matière céramique, ou d'un renfort fibreux en carbone partiellement densifié par une matrice de carbone et protégé contre l'oxydation. Pour la fabrication de l'anneau, on réalise une préforme annulaire qui constitue le renfort fibreux. La préforme est réalisée en fibres de carbone ou en fibres céramique, par exemple en fibres essentiellement en carbure de silicium. A titre d'exemple, la préforme fibreuse est réalisée par bobinage sur un mandrin d'une bande de tissu jusqu'à obtention de l'épaisseur désirée. Les couches de tissu superposées peuvent être liées entre elles par aiguilletage ou implantation de fils.The constituent material of the ring 20 is a composite material consisting of a refractory fibrous reinforcement partially densified by a ceramic material, or of a fibrous carbon reinforcement partially densified by a carbon matrix and protected against oxidation. For the manufacture of the ring, an annular preform is formed which constitutes the fibrous reinforcement. The preform is made of carbon fibers or ceramic fibers, for example fibers essentially of silicon carbide. By way of example, the fiber preform is produced by winding on a mandrel of a strip of fabric until the desired thickness is obtained. The superimposed layers of fabric can be linked together by needling or implantation of threads.

La densification de la préforme est réalisée par voie gazeuse ou par voie liquide. Dans le premier cas, on réalise une matrice par infiltration chimique en phase vapeur de matériau céramique, par exemple du carbure de silicium, ou de carbone (pour un matériau de type C/C protégé). Dans le deuxième cas, la préforme est imprégnée par un précurseur du matériau de la matrice, celle-ci étant obtenue ensuite par traitement thermique.The preform is densified by gas or by liquid. In the first case, a matrix is produced by chemical vapor infiltration of ceramic material, for example silicon carbide, or carbon (for a protected C / C type material). In the second case, the preform is impregnated with a precursor of the matrix material, which is then obtained by heat treatment.

La durée d'infiltration chimique en phase vapeur ou le nombre de cycles imprégnation liquide-thermolyse sont choisis afin d'obtenir la porosité finale désirée compte-tenu de la porosité initiale de la préforme. A titre indicatif, on pourra réaliser un anneau d'injection en matériau céramique C/SiC en fabriquant une préforme en fibres de carbone ayant un taux volumique de fibres d'environ 35 % et en densifiant celle-ci par infiltration chimique en phase vapeur de carbure de silicium jusqu'à atteindre une porosité résiduelle d'environ 40%.The duration of chemical vapor infiltration or the number of liquid-thermolysis impregnation cycles are chosen in order to obtain the desired final porosity taking into account the initial porosity of the preform. As an indication, an injection ring made of ceramic material C / SiC can be produced by manufacturing a carbon fiber preform having a fiber volume ratio of approximately 35% and densifying it by chemical vapor infiltration of silicon carbide until a residual porosity of about 40% is reached.

Dans le cas d'un matériau de type C/C, un traitement spécifique sera effectué pour protéger le matériau contre l'oxydation. Différents traitements de protection anti-oxydation des composites C/C sont bien connus.In the case of a C / C type material, a specific treatment will be carried out to protect the material against oxidation. Various anti-oxidation protection treatments for C / C composites are well known.

L'anneau 30 délimite par sa surface extérieure une chambre 32 d'injection de comburant gazeux. Celui-ci peut être constitué par de l'air prélevé dans le milieu environnant ou de l'oxygène provenant d'une source (non représentée).The ring 30 delimits by its outer surface a chamber 32 for injecting gaseous oxidant. This can consist of air taken from the surrounding medium or oxygen from a source (not shown).

L'anneau 30 est réalisé en une seule pièce en matériau composite poreux soit à matrice céramique, par exemple en matériau C/SiC, soit de type C/C protégé contre l'oxydation, de la même manière que l'anneau 20. La porosité du matériau constitutif de l'anneau 30 confère à ce dernier la perméabilité nécessaire pour permettre l'injection d'un flux de comburant gazeux par transpiration à travers l'anneau 30, la pression dans la chambre d'injection 32 étant supérieure à celle régnant dans la chambre du statoréacteur. L'entrée du flux de comburant gazeux dans la chambre est donc aussi réalisée avec une composante de vitesse radiale faible.The ring 30 is made in a single piece of porous composite material either with a ceramic matrix, for example in C / SiC material, or of C / C type protected against oxidation, in the same way as the ring 20. The porosity of the material constituting the ring 30 gives the latter the permeability necessary to allow the injection of a flow of gaseous oxidant by transpiration through the ring 30, the pressure in the injection chamber 32 being greater than that reigning in the ramjet chamber. The flow of gaseous oxidant into the chamber is therefore also carried out with a low radial velocity component.

Les tronçons 12, 14, 16 de la chambre de statoréacteur sont de préférence également en un matériau composite à matrice céramique ou carbone. Avantageusement, on choisira un matériau ayant un renfort et une matrice de même nature que ceux des anneaux d'injection 20 et 30. Toutefois, contrairement aux anneaux 20 et 30, les tronçons 12, 14 et 16 sont étanches, l'étanchéité étant obtenue par une densification suffisamment poussée pour combler la porosité du renfort fibreux jusqu'à rendre le matériau imperméable.The sections 12, 14, 16 of the ramjet chamber are preferably also made of a composite material with a ceramic or carbon matrix. Advantageously, a material having a reinforcement and a matrix of the same type as those of the injection rings 20 and 30 will be chosen. However, unlike the rings 20 and 30, the sections 12, 14 and 16 are sealed, the seal being obtained by densification sufficiently advanced to fill the porosity of the fibrous reinforcement until the material is impermeable.

De façon avantageuse, la liaison entre les tronçons 12,14,16 de la paroi de la chambre 10 et les anneaux d'injection 20, 30 est réalisé par co-densification. Acet effet, les tronçons 12, 14, 16 et les anneaux 20, 30 sont réalisés séparément en étant incomplètement densifiés par rapport au degré de densification finale désiré. Les éléments sont ensuite assemblés bout à bout et disposés dans un four d'infiltration pour subir une co-densification finale par infiltration chimique en phase vapeur. Au cours de la co-densification finale, la continuité du matériau de la matrice aux interfaces entre les tronçons 12, 14, 16 et les anneaux 20, 30 assure la liaison entre ces éléments. Cette co-densification finale est poursuivie jusqu'à obtenir le degré de porosité voulu pour les anneaux d'injection 20 et 30, les tronçons 12,14,16 ayant été précédemment suffisamment pré-densifiés pour obtenir finalement l'étanchéité désirée.Advantageously, the connection between the sections ons 12,14,16 of the wall of the chamber 10 and the injection rings 20, 30 is produced by co-densification. Actually, the sections 12, 14, 16 and the rings 20, 30 are produced separately while being incompletely densified with respect to the desired degree of final densification. The elements are then assembled end to end and placed in an infiltration oven to undergo a final co-densification by chemical vapor infiltration. During the final co-densification, the continuity of the matrix material at the interfaces between the sections 12, 14, 16 and the rings 20, 30 ensures the connection between these elements. This final co-densification is continued until the desired degree of porosity is obtained for the injection rings 20 and 30, the sections 12, 14, 16 having previously been sufficiently pre-densified to finally obtain the desired seal.

Comme le montre schématiquement la figure, le flux gazeux 34 de comburant transpirant à travers l'anneau d'injection 30 oblige le flux gazeux 24 de combustible à s'écarter de la paroi de la chambre 10 en dépit du courant d'air supersonique ayant tendance à le plaquer contre cette paroi. On obtient ainsi un mélange satisfaisant entre le gaz combustible et le comburant constitué par l'air supersonique et le flux 34. Une combustion complète du gaz combustible peut ainsi être réalisée en un temps très court, sans créer d'interactions violentes entre le courant d'air supersonique et les flux gazeux transpirant à travers lesanneaux d'injection. Il en résulte une augmentation de performance de la chambre de statoréacteur, donc de meilleures poussée et impulsion spécifique du système propulsif.As shown schematically in the figure, the gas flow 34 of oxidant transpiring through the injection ring 30 forces the gas flow 24 of fuel to move away from the wall of the chamber 10 despite the supersonic air flow having tendency to press it against this wall. A satisfactory mixture is thus obtained between the combustible gas and the oxidizer constituted by the supersonic air and the flow 34. Complete combustion of the combustible gas can thus be carried out in a very short time, without creating violent interactions between the current d supersonic air and gas flows transpiring through the injection rings. This results in an increase in performance of the ramjet chamber, therefore better thrust and specific impulse of the propulsive system.

L'on a envisagé ci-avant la réalisation de l'injection des flux gazeux dans la chambre par transpiration à travers un anneau d'injection en matériau composite poreux à matrice céramique.It has been envisaged above carrying out the injection of the gas flows into the chamber by transpiration through an injection ring of porous composite material with ceramic matrix.

D'autres types de matériaux poreux, par exemple des structures métalliques poreuses, peuvent être utilisées dans le cas d'une chambre métallique.Other types of porous materials, for example porous metallic structures, can be used in the case of a metallic chamber.

Claims (9)

1. Supersonic combustion ramjet comprising a combustion chamber (10) along which can flow longitudinally an airflux at supersonic speed, and a first injection means (20) for injecting into said chamber (10) a flux of combustible gas (24) flowing substantially tangentially along the wall thereof,
characterized in that a second injection means (30) is provided downstream of said first injection means along the direction of supersonic air flow to inject into said chamber (10) a flux of combustive gas (34) that serves to delaminate from the wall of the chamber (10) the flux of combustible gas (24) injected by the first injection means.
2. Ramjet according to claim 1, characterized in that the first injection means (20) comprises a first wall portion of the combustion chamber (10), said first wall portion being made of a material that is permeable to the flux of combustible gas to be injected into the chamber (10) and having a surface forming a part of the inner surface of the chamber, and an opposite surface that communicates with a source of combustible gas to be injected, so that the injection of said flux of combustible gas is obtained by transpiration through pores of a porous material forming said first injection means (20).
3. Ramjet according to claim 2, characterized in that the first wall portion of the chamber (10) is in the form of a ring of porous material.
4. Ramjet according to any one of claims 1 to 3, characterized in that the second injection means (30) comprises a second wall portion of the combustion chamber (10), said second wall portion being made of a material that is permeable to the flux of combustive gas to be injected into the chamber (10) and having a surface forming a part of the inner surface of the chamber, and an opposite surface that communicates with a source of combustive gas to be injected, so that the injection of the flux of combustive gas is obtained by transpiration through pores of a porous material forming the second injection means (30).
5. Ramjet according to claim 4, characterized in that the second wall portion of the chamber is in the form of a ring of porous material.
6. Ramjet according to any one of claims 2 to 5, characterized in that the porous material is a porous composite material selected from the ceramic matrix composites and the carbon/carbon type composites.
7. Ramjet according to claim 6, characterized in that the porous material is selected from a C/SiC type composite and a SiC/SiC type composite.
8. Ramjet according to any one of claims 6 and 7, characterized in that the wall portions of the chamber (12, 14, 16) adjacent to the injection means (20, 30) are made of an impermeable composite material selected from the ceramic matrix composites and the carbon/carbon type composites.
9. Ramjet according to claim 8, characterized in that the porous composite material forming the injection means (20, 30) and the impermeable composite material forming the wall portions (12,14,16) adjacent to said injection means (20, 30) are of the same type with different degrees of densification.
EP19900401425 1989-05-29 1990-05-29 Combustion chamber for ram jet Expired - Lifetime EP0401107B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8907019 1989-05-29
FR8907019A FR2647533B1 (en) 1989-05-29 1989-05-29 SUPERSONIC COMBUSTION STATOREACTOR CHAMBER

Publications (2)

Publication Number Publication Date
EP0401107A1 EP0401107A1 (en) 1990-12-05
EP0401107B1 true EP0401107B1 (en) 1993-07-21

Family

ID=9382105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401425 Expired - Lifetime EP0401107B1 (en) 1989-05-29 1990-05-29 Combustion chamber for ram jet

Country Status (4)

Country Link
EP (1) EP0401107B1 (en)
JP (1) JPH0396645A (en)
DE (1) DE69002281T2 (en)
FR (1) FR2647533B1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19730674A1 (en) * 1997-07-17 1999-01-21 Deutsch Zentr Luft & Raumfahrt Combustion chamber and method of manufacturing a combustion chamber
JP4522558B2 (en) * 2000-08-11 2010-08-11 実 屋我 Method and apparatus for promoting fuel mixing for a scramjet engine
FR2836699B1 (en) * 2002-03-04 2005-02-11 Eads Launch Vehicles ENGINE OF ROCKET
FR2836698B1 (en) 2002-03-04 2005-02-11 Eads Launch Vehicles COMBUSTION CHAMBER FOR STATOREACTOR AND STATOREACTOR PROVIDED WITH SUCH A COMBUSTION CHAMBER
CN103343983B (en) * 2013-07-31 2014-12-24 哈尔滨工业大学 Supersonic-speed stable combustion method based on strong magnetic field stable electric arc
GB2518211B (en) * 2013-09-13 2015-11-18 Carolyn Billie Knight Rocket motor with combustion chamber having porous membrane
CN108317541B (en) * 2018-02-26 2020-07-07 中国科学院力学研究所 Ramjet engine
CN113530709B (en) * 2021-09-16 2021-12-14 西安空天引擎科技有限公司 Bimodal hydrogen peroxide gas generator

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE253189C (en) *
US2658332A (en) * 1951-03-21 1953-11-10 Carborundum Co Fluid cooled, refractory, ceramic lined rocket structure
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
GB1046909A (en) * 1963-08-26 1966-10-26 Gur Charan Saini Rocket thrust chambers
CH427118A (en) * 1963-11-28 1966-12-31 Bbc Brown Boveri & Cie Method for protecting surface parts of a heat-resistant body that is swept by hot media
BE790956A (en) * 1971-11-05 1973-03-01 Penny Robert N FLAME TUBE FOR AGAZ TURBINE ENGINE COMBUSTION CHAMBER
US3864907A (en) * 1973-11-05 1975-02-11 Us Air Force Step cylinder combustor design
FR2461690B1 (en) * 1979-07-19 1985-08-16 Europ Propulsion HIGH TEMPERATURE THERMAL INSULATION MATERIAL AND MANUFACTURING METHOD THEREOF
GB2089434A (en) * 1980-12-09 1982-06-23 Rolls Royce Composite Ducts for Jet Pipes
FR2610044A1 (en) * 1986-10-14 1988-07-29 Gen Electric PROPULSION SYSTEM COMPRISING AN IMPROVED TRIM OF THE COMBUSTION CHAMBER AND METHOD OF MANUFACTURING SUCH MANUFACTURE

Also Published As

Publication number Publication date
EP0401107A1 (en) 1990-12-05
FR2647533A1 (en) 1990-11-30
JPH0396645A (en) 1991-04-22
DE69002281D1 (en) 1993-08-26
FR2647533B1 (en) 1993-03-19
DE69002281T2 (en) 1994-01-27

Similar Documents

Publication Publication Date Title
EP0817762B1 (en) Composite material protected from oxidation by a self-healing matrix, and method for making same
EP0604279B1 (en) Injector with porous wall for a rocket combustion chamber
EP1045971B1 (en) Heat exchanger in composite material and method for making same
EP0401107B1 (en) Combustion chamber for ram jet
FR2852003A1 (en) Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine
WO2002070775A1 (en) Chemical vapour infiltration method for densifying porous substrates having a central passage
EP1342905B1 (en) Rocket motor
EP0517593B1 (en) Composite gun barrel liner and method for producing same
CA2971421A1 (en) Tooling and impregnation process for a fibrous revolution preform
EP1342904B1 (en) Combustion chamber for a ram-jet and ram-jet with such a combustion chamber
CA2429393A1 (en) Improvements to methods for calefaction densification of a porous structure
EP0421865B1 (en) Rocket combustion chamber
Patterson et al. Advanced HfC-TaC oxidation resistant composite rocket thruster
EP0401106B1 (en) Reactor chamber and method of manufacture
WO1993013636A1 (en) Method for making a sealed passage in a refractory composite part, and application to the production of a refractory composite structure cooled by fluid circulation
WO2022038324A1 (en) Method for depositing a coating on a wire in a microwave field
WO2014170586A1 (en) Holding and loading tool and facility for densifying porous rotating preforms
FR3027959B1 (en) FIRE PROTECTION OF A COMPOSITE MATERIAL PART OF A GAS TURBINE
FR3081156A1 (en) PROCESS FOR MANUFACTURING A COATED CMC PART
FR3141164A1 (en) FIBROUS PREFORM AND ITS MANUFACTURING METHOD FOR PRODUCING A PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX
FR2898390A1 (en) Thermal protection made up of structure of three or multi dimensional refractory fibers for combustion chamber of an engine useful in vehicle propulsion such as missiles or rocket, comprises an elastic layer of silicone elastomer material
EP4192690A1 (en) Additive manufacturing process for producing a structure
FR2645071A1 (en) Method of producing holes in a component made of composite material
FR3084445A1 (en) MANUFACTURE OF A COMBUSTION CHAMBER OF COMPOSITE MATERIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19901217

17Q First examination report despatched

Effective date: 19920109

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REF Corresponds to:

Ref document number: 69002281

Country of ref document: DE

Date of ref document: 19930826

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000512

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000523

Year of fee payment: 11

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010529

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020301