EP0517593B1 - Composite gun barrel liner and method for producing same - Google Patents
Composite gun barrel liner and method for producing same Download PDFInfo
- Publication number
- EP0517593B1 EP0517593B1 EP92401529A EP92401529A EP0517593B1 EP 0517593 B1 EP0517593 B1 EP 0517593B1 EP 92401529 A EP92401529 A EP 92401529A EP 92401529 A EP92401529 A EP 92401529A EP 0517593 B1 EP0517593 B1 EP 0517593B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reinforcement
- texture
- gun barrel
- fibers
- inner portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 8
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 230000002787 reinforcement Effects 0.000 claims description 39
- 239000000835 fiber Substances 0.000 claims description 31
- 239000011159 matrix material Substances 0.000 claims description 21
- 239000000919 ceramic Substances 0.000 claims description 14
- 238000004804 winding Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 230000008595 infiltration Effects 0.000 claims description 8
- 238000001764 infiltration Methods 0.000 claims description 8
- 239000002243 precursor Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 7
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 5
- 239000011819 refractory material Substances 0.000 claims description 5
- 229920005989 resin Polymers 0.000 claims description 5
- 239000011347 resin Substances 0.000 claims description 5
- 239000000126 substance Substances 0.000 claims description 5
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 4
- 239000004917 carbon fiber Substances 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000002657 fibrous material Substances 0.000 claims 1
- 238000000280 densification Methods 0.000 description 12
- 229920002239 polyacrylonitrile Polymers 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000004744 fabric Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000003763 carbonization Methods 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 239000007833 carbon precursor Substances 0.000 description 2
- 239000011153 ceramic matrix composite Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 239000012705 liquid precursor Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 239000003380 propellant Substances 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007596 consolidation process Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41A—FUNCTIONAL FEATURES OR DETAILS COMMON TO BOTH SMALLARMS AND ORDNANCE, e.g. CANNONS; MOUNTINGS FOR SMALLARMS OR ORDNANCE
- F41A21/00—Barrels; Gun tubes; Muzzle attachments; Barrel mounting means
- F41A21/02—Composite barrels, i.e. barrels having multiple layers, e.g. of different materials
Definitions
- the present invention relates to a barrel liner, and more particularly to a liner made of composite material with a reinforcement of refractory fibers and a ceramic matrix.
- Constant research is carried out to be able to subject the barrel tubes to firing rates and pressures increasingly higher, in order to increase the performances, but without leading to too rapid degradation.
- a metal barrel tube In order to avoid rapid heating of a metal barrel tube, it has been proposed to provide the latter internally with a ceramic material, in particular in the form of an internal coating or a shrink-wrapped jacket. inside the barrel tube.
- ceramics have resistance to high temperatures, thermal shock, wear and corrosion, as well as a compression content which make them suitable for such an application.
- Ceramic materials with a ceramic matrix add to ceramics increased resistance to mechanical stresses and mechanical and thermal shocks, which gives them particularly interesting thermostructural properties.
- the object of the present invention is to provide a barrel tube liner made of a ceramic matrix composite material which is particularly suitable for the conditions of its use.
- the three-dimensional fibrous texture advantageously consists of superimposed layers of a two-dimensional texture (for example fabric or veil of fibers) which are linked together by needling.
- the two-dimensional texture layers can be bonded by implanting wires through the superimposed layers.
- the three-dimensional fibrous texture can be produced directly by three-dimensional weaving.
- the internal part of the fibrous reinforcement constitutes, after densification by the matrix, a material particularly suitable for contact with the projectile and the propellant gases.
- the three-dimensional structure of the reinforcement effectively opposes delamination of the material (detachments parallel to the layers).
- this three-dimensional structure gives the fibrous reinforcement a fine porosity more easily accessible to the matrix and promotes more homogeneous densification, therefore less final permeability to gases.
- the wound outer part of the fibrous reinforcement constitutes, after densification by the matrix, a material having good resistance to hooping, and in particular a material more suitable for hooping with prestress in compression than the material formed with the internal part of the reinforcement.
- the co-densification of the internal and external parts of the fibrous reinforcement ensures an effective connection between these two parts due to the continuity of the matrix at the interface between the two parts.
- the refractory fibers constituting the fibrous reinforcement are chosen from carbon fibers and ceramic fibers.
- the internal part of the fibrous reinforcement is preferably made of carbon fibers, or of fibers of a carbon precursor, such as preoxidized polyacrylonitrile (PAN), more suitable for needling.
- PAN preoxidized polyacrylonitrile
- the external part of the fibrous reinforcement is preferably made of ceramic fibers, for example fibers consisting essentially of silicon carbide, this in particular to improve the thermal insulation provided by the jacket.
- the invention also aims to provide a method for manufacturing the barrel tube liner defined above.
- the internal part of the reinforcement is formed by winding on a mandrel of a fibrous texture in superimposed layers and bonding of the layers together.
- the connection between the layers can be carried out by needling the fibrous texture on itself as it is wound up or by implantation of wires.
- the internal and external parts of the reinforcement are co-densified by gas or by liquid.
- Co-densification by gas is carried out by chemical vapor infiltration.
- Liquid co-densification consists in impregnating the reinforcement with a liquid precursor of the matrix, then in transforming the precursor, generally by heat treatment to obtain the material constituting the matrix.
- the fibrous reinforcement comprises two coaxial tubular cylindrical parts, an internal part - or internal ring - made up of a three-dimensional fibrous texture and an external part - or external ring - made up by a strip wound around the inner ring.
- the inner ring is made of carbon fibers and the outer ring made of fibers essentially of silicon carbide (SiC fibers).
- the inner ring is formed from a fibrous texture in a strip 10 of preoxidized polyacrylonitrile (PAN) fibers, carbon precursor.
- Texture 10 is a complex consisting of a strip of fabric of pre-oxidized PAN on which a veil of fibers also of pre-oxidized PAN has been pre-needled.
- the texture 10 is unwound from a storage roller to be wound with a low tension on a metal axis 14 (FIG. 1).
- the diameter of the axis 14 is chosen as a function of the inside diameter of the jacket to be produced.
- a drive roller 16 winds the texture 10 at a determined speed around the axis 14, the drive being carried out by contact on the wound texture.
- the texture 10 is needled by means of a needle board 20 provided with two rows of needles 22.
- the rows of needles extend parallel to the axis 14, over a length substantially equal to the width of the texture 10.
- the rows of needles are symmetrical to each other with respect to an axial plane P, parallel to the needles 22, and are spaced apart from one other by a distance greater than the diameter of the axis 14.
- the needles penetrate into the wound texture 10, on either side of the axis 14.
- the needling is carried out by making the needles penetrate over a relatively constant depth, as the texture 10 is wound up.
- the distance between the axis 14 and the needle board 20, at the rear end of its travel is increased by an amount roughly corresponding to the thickness of a needled layer.
- the barbs with which these are provided entrain fibers, mainly taken from the veil of preoxidized PAN, transversely with respect to the superimposed layers of texture 10.
- the crossing of the bonding fibers between layers makes it possible to obtain a very fine fibrous structure, that is to say a structure free from macroporosity.
- the three-dimensional texture of the inner ring could be obtained by winding a two-dimensional texture, for example a strip of fabric, in superimposed layers and implantation of wires through the layers to bind them together.
- a two-dimensional texture for example a strip of fabric
- the inner ring of pre-oxidized PAN fibers is carbonized to transform the pre-oxidized PAN into carbon.
- the internal ring 30 is supported by a graphite axis 24.
- the graphite axis 24 has a diameter slightly smaller than that of the axis 14 to take account of the tightening of the texture during the transformation of the PAN pre-oxidized to carbon.
- the internal ring 30 is maintained in its form by a fugitive binder, in particular by impregnating at least one resin which is easily removable, for example by heat treatment, such as a PVA resin (polyvinyl alcohol) which can be removed thermally without leaving any solid residue.
- a fugitive binder in particular by impregnating at least one resin which is easily removable, for example by heat treatment, such as a PVA resin (polyvinyl alcohol) which can be removed thermally without leaving any solid residue.
- the internal ring 30 thus maintained in shape can be machined to the desired external diameter and optionally cut in length if the total length of the ring 30 corresponds to several times the length of a shirt.
- the outer ring is put in place by winding a strip texture 26 around the inner ring carried by the axis 24.
- the strip 26 is a strip of twill weave fabric made of SiC fibers pulled a storage roller. The winding is carried out as previously by means of the drive roller 16. At the start of its winding, the strip of fabric 26 is bonded to the surface of the ring 30 by the same resin as that used for the impregnation of the latter. .
- the impregnation resin is removed during the temperature rise phase prior to infiltration. Partial densification is first carried out by infiltration of the material constituting the matrix in order to consolidate the preform, ie to sufficiently bind the fibers together to be able to handle the preform.
- the consolidated preform is removed from the infiltration installation to be machined to a few tenths of a mm from its final dimensions, the axis 24 being eliminated.
- the co-densification of the rings 30 and 32 ensures the connection between the latter by the continuity of the matrix.
- the ceramic matrix is for example silicon carbide.
- the technique of chemical vapor infiltration of a ceramic matrix is well known. Reference may in particular be made to the French patent published under No. 2,401,888 in the name of the applicant.
- An interphase layer for example made of pyrocarbon (carbon deposited by chemical vapor infiltration) can be formed on the fibers of the preform, before densification by the ceramic matrix.
- pyrocarbon carbon deposited by chemical vapor infiltration
- the co-densification of the rings 30 and 32 can be carried out by the liquid route.
- the preform is impregnated with a liquid precursor of the ceramic material of the matrix, then is subjected to a treatment, generally a heat treatment, to transform the precursor into ceramic material. Several consecutive impregnation cycles may be necessary.
- Figure 4 shows the mounting of the jacket formed by the internal 30 and external 32 rings co-densified, inside a metal barrel tube 40.
- the jacket is arranged in the end part of the tube situated in the vicinity of the breech, since it is the most more loaded from the barrel tube when the projectile leaves. It is unnecessary to protect the bore of the barrel tube over its entire length, this being even undesirable in order to limit the axial stresses due to the differential expansions between the CMC jacket and the metal barrel tube, as well as accuracy difficulties. machining for the realization of hooping.
- the mounting of the jacket inside the tube 40 is carried out in a conventional manner by shrinking.
- the compressive stress of the jacket promotes the transfer to the metal body of the tube of the forces due to the pressure build-up in the tube.
- the barrel tube liner according to the invention offers good wear resistance and a satisfactory seal against propellant gases, due to the cohesion of the reinforcing fibrous structure in the internal ring, which provides great resistance to the wear, and the fineness of this structure, which promotes uniform and high densification.
- the barrel tube liner also offers good resistance to pressure in the tube and provides good thermal insulation, due to the constitution of the fibrous reinforcing structure in the outer ring (circumferential winding of a band) and the insulating nature of this fibrous structure.
- forcing cone 34 ( Figure 4) in which the moving projectile is hooped to seal between the projectile and the bore of the housing of the jacket in the tube.
- This forcing cone causes additional radial and axial stresses that the ceramic matrix composite material constituting the jacket is capable of withstanding.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
La présente invention concerne une chemise de canon, et plus particulièrement une chemise en matériau composite à renfort en fibres réfractaires et à matrice ceramique.The present invention relates to a barrel liner, and more particularly to a liner made of composite material with a reinforcement of refractory fibers and a ceramic matrix.
Des recherches constantes sont effectuées pour pouvoir soumettre les tubes de canon à des cadences de tirs et des pressions de plus en plus élevées, afin d'augmenter les performances, mais sans conduire à une dégradation trop rapide.Constant research is carried out to be able to subject the barrel tubes to firing rates and pressures increasingly higher, in order to increase the performances, but without leading to too rapid degradation.
Afin d'éviter l'échauffement rapide d'un tube de canon métallique, il a été proposé de munir celui-ci intérieurement d'un matériau céramique, en particulier sous forme d'un revêtement interne ou d'une chemise frettée à l'intérieur du tube de canon. En effet, les céramiques présentent des résistances aux hautes températures, aux chocs thermiques, à l'usure et à la corrosion, ainsi qu'une teneur en compression qui les rendent aptes à une telle application.In order to avoid rapid heating of a metal barrel tube, it has been proposed to provide the latter internally with a ceramic material, in particular in the form of an internal coating or a shrink-wrapped jacket. inside the barrel tube. Indeed, ceramics have resistance to high temperatures, thermal shock, wear and corrosion, as well as a compression content which make them suitable for such an application.
Les matériaux composites à matrice céramique (CMC) ajoutent aux céramiques des résistances accrues aux sollicitations mécaniques et aux chocs mécaniques et thermiques, ce qui leur confère des propriétés thermostructurales particulièrement intéressantes.Composite materials with a ceramic matrix (CMC) add to ceramics increased resistance to mechanical stresses and mechanical and thermal shocks, which gives them particularly interesting thermostructural properties.
Aussi, l'utilisation de CMC à l'intérieur de tubes de canon a été envisagée, en particulier dans les brevets US 4 435 455, US 4 464 192 et US 4 581 053.Also, the use of CMC inside barrel tubes has been envisaged, in particular in patents US 4,435,455, US 4,464,192 and US 4,581,053.
Il a par ailleurs été proposé dans le document FR-A-2 587 083 sur lequel se fondent les préambules des revendications indépendantes 1 et 6, de réaliser un tube en matériau composite, notamment un tube lance-missile, avec un renfort fibreux comportant une partie interne cylindrique constituée d'une texture fibreuse tridimensionnelle et une partie externe constituée par une bande bobinée autour de la partie interne.It has also been proposed in document FR-A-2 587 083 on which the preambles of
La présente invention a pour but de fournir une chemise de tube de canon en matériau composite à matrice céramique qui soit particulièrement adaptée aux conditions de son utilisation.The object of the present invention is to provide a barrel tube liner made of a ceramic matrix composite material which is particularly suitable for the conditions of its use.
Ce but est atteint avec une chemise de tube de canon telle que définie dans la revendication 1.This object is achieved with a barrel tube jacket as defined in
La texture fibreuse tridimensionnelle est avantageusement constituée de couches superposées d'une texture bidimensionnelle (par exemple tissu ou voile de fibres) qui sont liées entre elles par aiguilletage. En variante, la liaison des couches de texture bidimensionnelle peut être réalisée par implantation de fils a travers les couches superposées. Toujours en variante, la texture fibreuse tridimensionnelle peut être fabriquée directement par tissage tridimensionnelThe three-dimensional fibrous texture advantageously consists of superimposed layers of a two-dimensional texture (for example fabric or veil of fibers) which are linked together by needling. Alternatively, the two-dimensional texture layers can be bonded by implanting wires through the superimposed layers. Still alternatively, the three-dimensional fibrous texture can be produced directly by three-dimensional weaving.
La partie interne du renfort fibreux constitue, après densification par la matrice, un matériau particulièrement apte au contact avec le projectile et les gaz propulsifs.The internal part of the fibrous reinforcement constitutes, after densification by the matrix, a material particularly suitable for contact with the projectile and the propellant gases.
En effet, la structure tridimensionnelle du renfort s'oppose efficacement à un délaminage du matériau (décollements parallèlement aux couches). En outre, cette structure tridimensionnelle confere au renfort fibreux une porosité fine plus aisément accessible à la matrice et favorise une densification plus homogène, donc une moindre perméabilité finale aux gazIndeed, the three-dimensional structure of the reinforcement effectively opposes delamination of the material (detachments parallel to the layers). In addition, this three-dimensional structure gives the fibrous reinforcement a fine porosity more easily accessible to the matrix and promotes more homogeneous densification, therefore less final permeability to gases.
La partie externe bobinée du renfort fibreux constitue, après densification par la matrice, un matériau présentant une bonne tenue au frettage, et notamment un matériau plus apte au frettage avec précontrainte en compression que le matériau formé avec la partie interne du renfort.The wound outer part of the fibrous reinforcement constitutes, after densification by the matrix, a material having good resistance to hooping, and in particular a material more suitable for hooping with prestress in compression than the material formed with the internal part of the reinforcement.
La co-densification des parties interne et externe du renfort fibreux assure une liaison efficace entre ces deux parties en raison de la continuité de la matrice à l'interface entre les deux parties.The co-densification of the internal and external parts of the fibrous reinforcement ensures an effective connection between these two parts due to the continuity of the matrix at the interface between the two parts.
Les fibres réfractaires constituant le renfort fibreux sont choisies parmi les fibres de carbone et les fibres céramiques.The refractory fibers constituting the fibrous reinforcement are chosen from carbon fibers and ceramic fibers.
La partie interne du renfort fibreux est de préference en fibres de carbone , ou en fibres d'un précurseur de carbone, tel que le polyacrylonitrile (PAN) préoxydé, plus apte à l'aiguilletage.The internal part of the fibrous reinforcement is preferably made of carbon fibers, or of fibers of a carbon precursor, such as preoxidized polyacrylonitrile (PAN), more suitable for needling.
La partie externe du renfort fibreux est de préférence en fibres céramiques, par exemple en fibres constituées essentiellement de carbure de silicium, ceci notamment pour améliorer l'isolation thermique procurée par la chemise.The external part of the fibrous reinforcement is preferably made of ceramic fibers, for example fibers consisting essentially of silicon carbide, this in particular to improve the thermal insulation provided by the jacket.
L'invention a aussi pour objet de fournir un procédé permettant la fabrication de la chemise de tube de canon définie plus haut.The invention also aims to provide a method for manufacturing the barrel tube liner defined above.
Conformément à l'invention, le procédé comprend les étapes qui consistent à :
- réaliser une première texture tridimensionnelle cylindrique en fibres en matériau réfractaire ou en un précurseur de celui-ci, afin de former la partie interne du renfort, (carbonisation dans le cas du précurseur)
- bobiner sur la partie interne du renfort une deuxième texture en fibres en matériau réfractaire, afin de former la partie externe du renfort, et
- densifier simultanément la partie interne et la partie externe de renfort par le matériau constitutif de la matrice céramique.
- make a first three-dimensional cylindrical texture of fibers of refractory material or a precursor thereof, in order to form the internal part of the reinforcement, (carbonization in the case of the precursor)
- winding on the internal part of the reinforcement a second texture of fibers of refractory material, in order to form the external part of the reinforcement, and
- simultaneously densify the internal part and the external reinforcement part with the material constituting the ceramic matrix.
Avantageusement, la partie interne du renfort est formée par enroulement sur un mandrin d'une texture fibreuse en couches superposées et liaison des couches entre elles. La liaison entre les couches peut être réalisée par aiguilletage de la texture fibreuse sur elle-même au fur et à mesure de son enroulement ou par implantation de fils.Advantageously, the internal part of the reinforcement is formed by winding on a mandrel of a fibrous texture in superimposed layers and bonding of the layers together. The connection between the layers can be carried out by needling the fibrous texture on itself as it is wound up or by implantation of wires.
De préférence, les parties interne et externe du renfort sont co-densifiées par voie gazeuse ou par voie liquide.Preferably, the internal and external parts of the reinforcement are co-densified by gas or by liquid.
La co-densification par voie gazeuse est réalisée par infiltration chimique en phase vapeur.Co-densification by gas is carried out by chemical vapor infiltration.
La co-densification par voie liquide consiste à imprégner le renfort par un liquide précurseur de la matrice, puis à transformer le précurseur, généralement par traitement thermique pour obtenir le matériau constitutif de la matrice.Liquid co-densification consists in impregnating the reinforcement with a liquid precursor of the matrix, then in transforming the precursor, generally by heat treatment to obtain the material constituting the matrix.
D'autres particularités et avantages de la présente invention ressortiront à la lecture de la description faite ci-après, à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- La figure 1 est une vue schématique en perspective montrant la réalisation par aiguilletage de la partie interne du renfort fibreux d'une chemise de tube de canon en matériau composite conforme à l'invention ;
- La figure 2 est une vue schématique en coupe montrant l'aiguilletage de la partie interne du renfort fibreux ;
- La figure 3 est une vue schématique en perspective montrant la réalisation par enroulement de la partie externe du renfort fibreux d'une chemise de tube de canon conforme à l'invention ; et
- la figure 4 montre très schématiquement, en perspective et en coupe, une chemise de tube de canon conforme à l'invention frettée à l'intérieur d'un tube de canon.
- Figure 1 is a schematic perspective view showing the production by needling of the internal part of the fibrous reinforcement of a barrel tube liner of composite material according to the invention;
- Figure 2 is a schematic sectional view showing the needling of the internal part of the fibrous reinforcement;
- Figure 3 is a schematic perspective view showing the embodiment by winding of the outer part of the fibrous reinforcement of a barrel tube liner according to the invention; and
- Figure 4 shows very schematically, in perspective and in section, a barrel tube liner according to the invention hooped inside a barrel tube.
Dans une chemise de tube de canon en matériau composite selon l'invention , le renfort fibreux comprend deux parties cylindriques tubulaires coaxiales, une partie interne - ou bague interne - constituée d'une texture fibreuse tridimensionnelle et une partie externe - ou bague externe - constituée par une bande bobinée autour de la bague interne.In a barrel tube liner made of composite material according to the invention, the fibrous reinforcement comprises two coaxial tubular cylindrical parts, an internal part - or internal ring - made up of a three-dimensional fibrous texture and an external part - or external ring - made up by a strip wound around the inner ring.
Dans l'exemple considéré ici, la bague interne est en fibres de carbone et la bague externe en fibres essentiellement en carbure de silicium (fibres SiC).In the example considered here, the inner ring is made of carbon fibers and the outer ring made of fibers essentially of silicon carbide (SiC fibers).
La bague interne est formée à partir d'une texture fibreuse en bande 10 en fibres de polyacrylonitrile (PAN) préoxydé, précurseur du carbone. La texture 10 est un complexe constitué d'une bande de tissu de PAN préoxydé sur laquelle un voile de fibres également en PAN préoxydé a été pré-aiguilleté. La texture 10 est dévidée d'un rouleau de stockage pour être enroulée avec une faible tension sur un axe métallique 14 (figure 1). Le diamètre de l'axe 14 est choisi en fonction du diamètre intérieur de la chemise à réaliser. Un rouleau d'entraînement 16 enroule la texture 10 suivant une vitesse déterminée autour de l'axe 14, l'entraînement étant réalisé par contact sur la texture enroulée.The inner ring is formed from a fibrous texture in a
Au fur et à mesure de son enroulement sur l'axe 14, la texture 10 est aiguilletée au moyen d'une planche à aiguilles 20 munie de deux rangées d'aiguilles 22. Les rangées d'aiguilles s'étendent parallèlement à l'axe 14, sur une longueur sensiblement égale à la largeur de la texture 10. Les rangées d'aiguilles sont symétriques l'une de l'autre par rapport à un plan axial P, parallèle aux aiguilles 22, et sont espacées l'une de l'autre d'une distance supérieure au diamètre de l'axe 14.As it is wound on the
Ainsi, comme le montre la figure 2, les aiguilles pénêtrent dans la texture 10 enroulée, de part et d'autre de l'axe 14.Thus, as shown in FIG. 2, the needles penetrate into the
Avantageusement, l'aiguilletage est réalisé en faisant pénêtrer les aiguilles sur une profondeur relativement constante, au fur et à mesure de l'enroulement de la texture 10. A cet effet, à chaque fois qu'un tour est accompli par la texture 10 autour de l'axe 14, la distance entre l'axe 14 et la planche à aiguilles 20, à l'extrémité arrière de sa course, est augmentée d'une quantité correspondant à peu près à l'épaisseur d'une couche aiguilletée.Advantageously, the needling is carried out by making the needles penetrate over a relatively constant depth, as the
Lorsque l'épaisseur désirée de la bague interne 30 a été atteinte, plusieurs passes d'aiguilletage de finition sont réalisées sans apport de texture 10 et en diminuant progressivement la profondeur de pénétration des aiguilles.When the desired thickness of the
On notera que le procédé d'aiguilletage ci-dessus décrit est analogue à celui objet du brevet français publié sous le N°2 584 107 au nom de la déposante.It will be noted that the needling process described above is analogous to that which is the subject of the French patent published under No. 2,584,107 in the name of the applicant.
A chaque pénêtration des aiguilles 22 les barbes dont celles-ci sont munies entraînent des fibres, principalement prélevées dans le voile de PAN préoxydé, transversalement par rapport aux couches superposées de la texture 10. La disposition des rangées d'aiguilles, de part et d'autre de l'axe 14, fait que les fibres entraînées par les aiguilles sont disposées dans des directions qui se croisent(figure 2). Le croisement des fibres de liaison entre couches permet d'obtenir une structure fibreuse très fine, c'est à dire une structure exempte de macroporosité.At each penetration of the
Comme déjà indiqué, la texture tridimensionnelle de la bague interne pourraît être obtenue par enroulement d'une texture bidimensionnelle, par exemple une bande de tissu, en couches superposées et implantation de fils à travers les couches pour les lier entre elles. Un tel procédé d'obtention d'une préforme fibreuse est décrit dans le brevet français publié sous le N° 2 565 262.As already indicated, the three-dimensional texture of the inner ring could be obtained by winding a two-dimensional texture, for example a strip of fabric, in superimposed layers and implantation of wires through the layers to bind them together. Such a process for obtaining a fibrous preform is described in the French patent published under No. 2,565,262.
La bague interne en fibres de PAN préoxydé est carbonisée pour transformer le PAN préoxydé en carbone. Lors de la carbonisation, la bague interne 30 est supportée par un axe en graphite 24. L'axe en graphite 24 a un diamètre légèrement inférieur à celui de l'axe 14 pour tenir compte du resserrage de la texture lors de la transformation du PAN préoxydé en carbone.The inner ring of pre-oxidized PAN fibers is carbonized to transform the pre-oxidized PAN into carbon. During carbonization, the
Après carbonisation, la bague interne 30 est maintenue dans sa forme par un liant fugitif, notamment par imprégnation au moins d'une résine facilement éliminable, par exemple par traitement thermique, telle qu'une résine PVA (alcool polyvinylique) éliminable thermiquement sans laisser de résidu solide.After carbonization, the
La bague interne 30 ainsi maintenue en forme peut être usinée au diamètre extérieur voulu et éventuellement découpée en longueur si la longueur totale de la bague 30 correspond à plusieurs fois la longueur d'une chemise.The
Ensuite (figure 3), la bague externe est mise en place par bobinage d'une texture en bande 26 autour de la bague interne portée par l'axe 24. La bande 26 est une bande de tissu d'armure sergé en fibres SiC tirée d'un rouleau de stockage. L'enroulement est effectué comme précédemment au moyen du rouleau d'entraînement 16. Au début de son enroulement, la bande de tissu 26 est collée sur la surface de la bague 30 par la même résine que celle utilisée pour l'imprégnation de cette dernière.Then (FIG. 3), the outer ring is put in place by winding a
Lorsque le diamètre extérieur de la bague externe 32 a été atteint, le désenroulement de la bande de tissu 26 est bloqué par bobinage d'un fil de carbone.When the outer diameter of the
La préforme fibreuse constituée par la bague interne 30 et la bague externe 32, montée sur l'axe en graphite 24, est placée dans la chambre de réaction d'une installation d'infiltration chimique en phase vapeur en vue de réaliser une première consolidation. La résine d'imprégnation est éliminée lors de la phase de montée en température précédant l'infiltration. Une densification partielle est d'abord réalisée par infiltration du matériau constitutif de la matrice afin de consolider la préforme, c'est à dire de lier suffisamment les fibres entre elles pour pouvoir manipuler la préforme.The fibrous preform constituted by the
La préforme consolidée est retirée de l'installation d'infiltration pour être usinée à quelques dizièmes de mm de ses cotes finales, l'axe 24 étant éliminé.The consolidated preform is removed from the infiltration installation to be machined to a few tenths of a mm from its final dimensions, the
Ensuite la densification par la matrice est poursuivie jusqu'à atteindre une densité maximale, et la chemise de tube de canon obtenue est usinée à ses dimensions définitives.Then the densification by the matrix is continued until reaching a maximum density, and the barrel tube liner obtained is machined to its final dimensions.
La co-densification des bagues 30 et 32 assure la liaison entre ces dernières par la continuité de la matrice. La matrice céramique est par exemple du carbure de silicium. La technique d'infiltration chimique en phase vapeur d'une matrice céramique est bien connue. On pourra en particulier se référer au brevet français publié sous le n°2 401 888 au nom de la déposante.The co-densification of the
Une couche d'interphase, par exemple en pyrocarbone (carbone déposé par infiltration chimique en phase vapeur) peut être formée sur les fibres de la préforme, avant densification par la matrice céramique. La formation d'une telle couche d'interphase, améliorant la liaison entre les fibres et la matrice, est décrite dans le brevet européen n°172 082 de la déposante.An interphase layer, for example made of pyrocarbon (carbon deposited by chemical vapor infiltration) can be formed on the fibers of the preform, before densification by the ceramic matrix. The formation of such an interphase layer, improving the bond between the fibers and the matrix, is described in European patent No. 172,082 of the applicant.
En variante, la co-densification des bagues 30 et 32 peut être réalisée par voie liquide. A cet effet, la préforme est imprégnée par un liquide précurseur du matériau céramique de la matrice, puis est soumise à un traitement, généralement un traitement thermique, pour transformer le précurseur en matériau céramique. Plusieurs cycles consécutifs d'imprégnation peuvent être nécessaires.Alternatively, the co-densification of the
La figure 4 montre le montage de la chemise formée par les bagues interne 30 et externe 32 co-densifiées, à l'intérieur d'un tube de canon métallique 40. La chemise est disposée dans la partie d'extrémité du tube située au voisinage de la culasse, puisque c'est la partie la plus sollicitée du tube de canon lors du départ du projectile. Il est inutile de protéger l'alésage du tube de canon sur toute sa longueur, ceci étant même non souhaitable afin de limiter les contraintes axiales dues aux dilatations différentielles entre la chemise en CMC et le tube de canon métallique, ainsi que des difficultés de précision d'usinage pour la réalisation du frettage.Figure 4 shows the mounting of the jacket formed by the internal 30 and external 32 rings co-densified, inside a
Le montage de la chemise à l'intérieur du tube 40 est réalisé de façon classique par frettage. La contrainte en compression de la chemise favorise le transfert au corps métallique du tube des efforts dus à la montée en pression dans le tube.The mounting of the jacket inside the
La chemise de tube de canon conforme à l'invention offre une bonne résistance à l'usure et une étanchéité satisfaisante aux gaz propulsifs, du fait de la cohésion de la structure fibreuse de renfort dans la bague interne, qui apporte une grande résistance à l'usure, et à la finesse de cette structure, qui favorise une densification homogène et élevée. La chemise de tube de canon offre en outre une bonne résistance à la pression dans le tube et procure une bonne isolation thermique, du fait de la constitution de la structure fibreuse de renfort dans la bague externe (bobinage circonférentiel d'une bande) et de la nature isolante de cette structure fibreuse.The barrel tube liner according to the invention offers good wear resistance and a satisfactory seal against propellant gases, due to the cohesion of the reinforcing fibrous structure in the internal ring, which provides great resistance to the wear, and the fineness of this structure, which promotes uniform and high densification. The barrel tube liner also offers good resistance to pressure in the tube and provides good thermal insulation, due to the constitution of the fibrous reinforcing structure in the outer ring (circumferential winding of a band) and the insulating nature of this fibrous structure.
Il est possible d'intégrer dans l'alésage de la chemise un cône de forcement 34 (figure 4) dans lequel le projectile en mouvement vient se fretter pour réaliser l'étanchéité entre le projectile et l'alésage du logement de la chemise dans le tube. Ce cône de forcement entraîne des contraintes supplémentaires radiales et axiales que le matériau composite à matrice céramique constituant la chemise est capable de supporter.It is possible to integrate into the bore of the jacket a forcing cone 34 (Figure 4) in which the moving projectile is hooped to seal between the projectile and the bore of the housing of the jacket in the tube. This forcing cone causes additional radial and axial stresses that the ceramic matrix composite material constituting the jacket is capable of withstanding.
Claims (14)
- Gun barrel lining made of composite material having refractory fiber reinforcement densified by a matrix, the fiber reinforcement comprising a cylindrical inner portion (30) constituted by a three-dimensional fiber texture and a cylindrical outer portion (32) constituted by a strip (26) wound around the inner portion, characterized in that the inner (30) and outer (32) portions of the fiber reinforcement are codensified by a ceramic matrix.
- Gun barrel lining according to claim 1, characterized in that the inner portion (30) of the reinforcement is made of carbon fibers.
- Gun barrel lining according to any one of claims 1 and 2, characterized in that the outer portion (32) of the reinforcement is made of ceramic fibers.
- Gun barrel lining according to claim 3, characterized in that the outer portion (32) of the reinforcement is made of fibers essentially comprising silicon carbide.
- Gun barrel lining according to any one of claims 1 to 4, characterized in that the ceramic matrix is made of silicon carbide.
- Method of manufacturing a gun barrel lining according to any one of claims 1 to 5, comprising the steps consisting in making a first cylindrical three-dimensional texture (10) of fiber material or of a subsequently carbonized precursor thereof, in order to form the inner portion (30) of the reinforcement; and in winding a second texture (26) of fibers in refractory material onto the inner portion of the reinforcement, in order to form the outer portion (32) of the reinforcement;
characterized in that it further comprises simultaneously densifying the inner portion (30) and the outer portion (32) of the reinforcement by means of the material that constitutes the ceramic matrix. - Method according to claim 6, characterized in that the inner portion (30) of the reinforcement is formed by winding superposed layers of fiber texture onto a mandrel and by bonding the layers together by needling.
- Method according to claim 7, characterized in that the needling is performed in directions that intersect.
- Method according to claim 6, characterized in that the inner portion (30) of the reinforcement is formed by winding superposed layers of a fiber texture onto a mandrel, and by binding the layers together by implanting threads through the layers.
- Method according to any one of claims 6 to 9, characterized in that the inner (30) and outer (32) portions of the reinforcement are codensified by chemical vapor infiltration.
- Method according to any one of claims 6 to 9, characterized in that the inner (30) and outer (32) portions of the reinforcement are codensified by using a liquid.
- Method according to any one of claims 6 to 11, characterized in that the first wound texture (10) is made of fibers constituted by a precursor of a refractory material, the precursor being transformed into the refractory material by heat treatment prior to winding of the outer portion of the reinforcement.
- A method according to any one of claims 6 to 12, characterized in that the inner portion (30) of the reinforcement is held in shape by being impregnated with a fugitive resin, prior to the outer portion (32) of the reinforcement being wound thereon.
- Gun barrel characterized in that it comprises a lining according to any one of claims 1 to 5, shrink-fitted inside the tube (40).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9106890A FR2677442B1 (en) | 1991-06-06 | 1991-06-06 | CANON TUBE SHIRT OF COMPOSITE MATERIAL, MANUFACTURING METHOD THEREOF, AND CANON TUBE PROVIDED WITH SUCH A SHIRT. |
FR9106890 | 1991-06-06 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0517593A1 EP0517593A1 (en) | 1992-12-09 |
EP0517593B1 true EP0517593B1 (en) | 1996-08-28 |
Family
ID=9413559
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92401529A Expired - Lifetime EP0517593B1 (en) | 1991-06-06 | 1992-06-04 | Composite gun barrel liner and method for producing same |
Country Status (6)
Country | Link |
---|---|
US (1) | US5348598A (en) |
EP (1) | EP0517593B1 (en) |
CA (1) | CA2070071C (en) |
DE (1) | DE69213103T2 (en) |
FR (1) | FR2677442B1 (en) |
NO (1) | NO175277C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007045723A1 (en) | 2007-09-24 | 2009-04-02 | Rheinmetall Waffe Munition Gmbh | Gun barrel in lightweight construction |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5804756A (en) * | 1995-12-18 | 1998-09-08 | Rjc Development, L.C. | Composite/metallic gun barrel having matched coefficients of thermal expansion |
US7153465B1 (en) * | 2001-08-14 | 2006-12-26 | Thor Technologies, Inc. | Method of producing hybrid tubular metal/ceramic composites |
US6889464B2 (en) * | 2003-06-04 | 2005-05-10 | Michael K. Degerness | Composite structural member |
US20050108916A1 (en) * | 2003-08-28 | 2005-05-26 | Ra Brands, L.L.C. | Modular barrel assembly |
WO2005106377A2 (en) | 2004-04-27 | 2005-11-10 | Materials & Electrochemical Research Corp. | Gun barrel and method of forming |
GB2454704B (en) * | 2007-11-16 | 2012-05-02 | Richard Allen | A method of manufacturing a fibrous structure and an apparatus therefor |
US8677670B2 (en) | 2010-01-06 | 2014-03-25 | Jason Christensen | Segmented composite barrel for weapon |
US9863732B2 (en) | 2013-08-28 | 2018-01-09 | Proof Research, Inc. | Lightweight composite mortar tube |
CA2921663C (en) * | 2013-08-28 | 2018-09-25 | Proof Research, Inc. | High temperature composite projectile barrel |
KR102313776B1 (en) | 2013-12-09 | 2021-10-15 | 프루프 리서치, 인코포레이션. | Fiber winding system for composite projectile barrel structure |
US11385013B2 (en) | 2016-07-01 | 2022-07-12 | Blackpowder Products, Inc. | Hybrid carbon—steel firearm barrel |
US11655870B2 (en) | 2019-10-08 | 2023-05-23 | Honeywell International Inc. | Method for manufacturing composite fiber preform for disc brakes |
US11293507B2 (en) | 2019-10-08 | 2022-04-05 | Honeywell International Inc. | Composite fiber preform for disc brakes |
USD1018757S1 (en) | 2020-09-17 | 2024-03-19 | Blackpowder Products, Inc. | Firearm barrel |
US12221388B2 (en) | 2021-08-19 | 2025-02-11 | Honeywell International Inc. | Method for manufacturing composite fiber preform for disc brakes |
CN114645483A (en) * | 2022-02-21 | 2022-06-21 | 江苏金呢工程织物股份有限公司 | Composite papermaking felt and preparation method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3641870A (en) * | 1970-06-04 | 1972-02-15 | Us Army | Shingle-wrap liner for a gun barrel |
FR2584107B1 (en) * | 1985-06-27 | 1988-07-01 | Europ Propulsion | METHOD FOR MANUFACTURING THREE-DIMENSIONAL REVOLUTION STRUCTURES BY NEEDLEING LAYERS OF FIBROUS MATERIAL AND MATERIAL USED FOR THE IMPLEMENTATION OF THE PROCESS |
US4790052A (en) * | 1983-12-28 | 1988-12-13 | Societe Europeenne De Propulsion | Process for manufacturing homogeneously needled three-dimensional structures of fibrous material |
FR2565262B1 (en) * | 1984-05-29 | 1986-09-26 | Europ Propulsion | METHOD FOR MANUFACTURING A MULTI-DIRECTIONAL FIBROUS TEXTURE AND DEVICE FOR CARRYING OUT THIS METHOD |
FR2587083B1 (en) * | 1985-09-11 | 1988-04-29 | Lerc Lab Etudes Rech Chim | TUBULAR ELEMENT IN COMPOSITE MATERIAL |
US4854990A (en) * | 1987-04-13 | 1989-08-08 | David Constant V | Method for fabricating and inserting reinforcing spikes in a 3-D reinforced structure |
US5077243A (en) * | 1988-07-02 | 1991-12-31 | Noritake Co., Limited | Fiber-reinforced and particle-dispersion reinforced mullite composite material and method of producing the same |
FR2637586B1 (en) * | 1988-10-06 | 1991-01-11 | Europ Propulsion | PROCESS FOR THE MANUFACTURE OF MULTI-DIRECTIONAL REINFORCEMENT TEXTURES ESSENTIALLY IN CERAMIC FIBERS BASED ON SILICON COMPOUND FOR THE PRODUCTION OF COMPOSITE MATERIALS, AS WELL AS THE COMPOSITE TEXTURES AND MATERIALS OBTAINED |
-
1991
- 1991-06-06 FR FR9106890A patent/FR2677442B1/en not_active Expired - Fee Related
-
1992
- 1992-05-29 CA CA002070071A patent/CA2070071C/en not_active Expired - Fee Related
- 1992-06-02 US US07/892,179 patent/US5348598A/en not_active Expired - Fee Related
- 1992-06-03 NO NO922188A patent/NO175277C/en not_active IP Right Cessation
- 1992-06-04 DE DE69213103T patent/DE69213103T2/en not_active Expired - Fee Related
- 1992-06-04 EP EP92401529A patent/EP0517593B1/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007045723A1 (en) | 2007-09-24 | 2009-04-02 | Rheinmetall Waffe Munition Gmbh | Gun barrel in lightweight construction |
Also Published As
Publication number | Publication date |
---|---|
CA2070071C (en) | 1997-03-04 |
DE69213103D1 (en) | 1996-10-02 |
NO175277B (en) | 1994-06-13 |
CA2070071A1 (en) | 1992-12-07 |
EP0517593A1 (en) | 1992-12-09 |
NO922188L (en) | 1992-12-07 |
NO922188D0 (en) | 1992-06-03 |
FR2677442B1 (en) | 1993-10-15 |
DE69213103T2 (en) | 1997-04-03 |
NO175277C (en) | 1994-09-21 |
US5348598A (en) | 1994-09-20 |
FR2677442A1 (en) | 1992-12-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0517593B1 (en) | Composite gun barrel liner and method for producing same | |
EP0956276B2 (en) | Friction element in composite carbon/carbon-silicon carbide material and method for manufacturing same | |
EP2154119B1 (en) | Method of producing a part from a thermostructural composite material and part thus obtained | |
EP0931225B1 (en) | Preparation of textile preforms for brake discs in composite material | |
EP0886627B1 (en) | Method for making parts, in particular brake disks, in composite carbon-carbon material | |
EP2315734B1 (en) | Method of producing a nozzle or a divergent nozzle element made of a composite | |
WO2017109403A1 (en) | Lighter-weight casing made of composite material and method of manufacturing same | |
WO2006090087A1 (en) | Method for making a part of composite material with ceramic matrix and resulting part | |
WO2013144512A1 (en) | Integration of parts of an afterbody of an aircraft engine | |
WO2008050068A2 (en) | Process for manufacturing a thermostructural composite part | |
EP0174886A1 (en) | Thermal protecting device resistant to ablation and vibration, and production method therefor | |
FR2852003A1 (en) | Production of a multi-perforated component in a composite material with a ceramic base involves the insertion and elimination of pins in a consolidated fibrous preformer, notably for the combustion chamber of a jet engine | |
EP0398787B1 (en) | Tufted thermal protection layer and production method therefor | |
CA2971421A1 (en) | Tooling and impregnation process for a fibrous revolution preform | |
EP0239439B1 (en) | Method of producing a corrugated tubular structure to reinforce a composite-material part, and part so obtained | |
FR2587992A1 (en) | CARBON-CARBON COMPOSITE MATERIAL FOR FRICTION COMPONENTS, AND ITS APPLICATION TO BRAKING DEVICES | |
EP0452199B1 (en) | Method of strengthening preforms for the fabrication of heat resistant composite material parts, in particular parts in the shape of sails or panels | |
EP0449695B1 (en) | Method of strengthening a fibrous reinforcing texture for the fabrication of a composite material part | |
EP0850713B1 (en) | Method and device for the thermal and mechanical protection of a surface | |
EP0555134B1 (en) | Process for manufacturing of shaped fibrous structure for fabricating a composite material and products obtained thereby | |
EP0963362B1 (en) | Method for making an internal combustion engine piston in thermostructural composite material | |
WO2025008587A1 (en) | Method for manufacturing a part made of composite material | |
FR3141164A1 (en) | FIBROUS PREFORM AND ITS MANUFACTURING METHOD FOR PRODUCING A PART IN COMPOSITE MATERIAL WITH CERAMIC MATRIX | |
EP0482968A1 (en) | Silicon carbide matrix composite useable as flame protection layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB IT SE |
|
17P | Request for examination filed |
Effective date: 19930517 |
|
17Q | First examination report despatched |
Effective date: 19941019 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB IT SE |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19960910 |
|
REF | Corresponds to: |
Ref document number: 69213103 Country of ref document: DE Date of ref document: 19961002 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20030611 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20030618 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20030620 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040604 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040605 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20050101 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20040604 |
|
EUG | Se: european patent has lapsed | ||
EUG | Se: european patent has lapsed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050604 |