[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0490330A1 - Control circuit for gasdischarge lamps - Google Patents

Control circuit for gasdischarge lamps Download PDF

Info

Publication number
EP0490330A1
EP0490330A1 EP91121151A EP91121151A EP0490330A1 EP 0490330 A1 EP0490330 A1 EP 0490330A1 EP 91121151 A EP91121151 A EP 91121151A EP 91121151 A EP91121151 A EP 91121151A EP 0490330 A1 EP0490330 A1 EP 0490330A1
Authority
EP
European Patent Office
Prior art keywords
lamp
circuit
current
voltage
electronic ballast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91121151A
Other languages
German (de)
French (fr)
Other versions
EP0490330B1 (en
Inventor
Siegfried Luger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tridonic Bauelemente GmbH
Original Assignee
Tridonic Bauelemente GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6419851&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0490330(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Tridonic Bauelemente GmbH filed Critical Tridonic Bauelemente GmbH
Publication of EP0490330A1 publication Critical patent/EP0490330A1/en
Application granted granted Critical
Publication of EP0490330B1 publication Critical patent/EP0490330B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3922Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations and measurement of the incident light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/282Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices
    • H05B41/2825Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage
    • H05B41/2827Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices by means of a bridge converter in the final stage using specially adapted components in the load circuit, e.g. feed-back transformers, piezoelectric transformers; using specially adapted load circuit configurations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • H05B41/298Arrangements for protecting lamps or circuits against abnormal operating conditions
    • H05B41/2981Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions
    • H05B41/2983Arrangements for protecting lamps or circuits against abnormal operating conditions for protecting the circuit against abnormal operating conditions against abnormal power supply conditions
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/36Controlling
    • H05B41/38Controlling the intensity of light
    • H05B41/39Controlling the intensity of light continuously
    • H05B41/392Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor
    • H05B41/3921Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations
    • H05B41/3925Controlling the intensity of light continuously using semiconductor devices, e.g. thyristor with possibility of light intensity variations by frequency variation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/18Controlling the light source by remote control via data-bus transmission

Definitions

  • the invention relates generally to an electronic ballast (EVG) for fluorescent lamps.
  • EMG electronic ballast
  • circuit arrangements within the electronic ballast for the separate detection of lamp current and filament current of a lamp.
  • Electronic ballasts of modern design serve to control fluorescent lamps and regularly have the features specified in the preamble of claim 1.
  • the applicant's European patent application EP-A-0338 109 discloses an electronic ballast which has an AC voltage generator with a controllable frequency, a series resonant circuit whose capacitance is parallel to the lamp and a current measuring element for measuring the lamp current.
  • an AC voltage generator with a controllable frequency
  • a series resonant circuit whose capacitance is parallel to the lamp and a current measuring element for measuring the lamp current.
  • the lamp current flowing over the electrodes of the lamp is measured, but also the heating current flowing over the filaments of the lamp.
  • a differentiated statement about the level of the lamp current or the level of the heating coil current cannot be made.
  • the AC voltage generator When the circuit is implemented, the AC voltage generator is switched off in the event of a filament breakage, since parasitic capacitances to ground can result in voltage increases at the open end of the filament. The AC voltage generator must therefore be switched off for safety reasons. After switching off, the heating coil current no longer flows. An automatic restart with a newly inserted lamp cannot take place since the ballast receives no information about the insertion of the new lamp.
  • the invention has for its object to provide an electronic ballast that allows a separate detection of heating current and lamp current and does not turn off the AC generator even in the event of a filament breakage, so that the heating current can still be measured and an automatic restart is possible.
  • FIG. 1 shows a block diagram of an exemplary embodiment of an electronic ballast according to the invention.
  • the mains voltage U N is - if necessary via a switch S1 - the
  • Input circuit 20 (rectifier circuit) supplied. This generates the intermediate circuit voltage U O , U dc , which the AC voltage generator 30
  • the AC voltage generator 30 outputs its high-frequency output voltage U HF to an output load circuit 40 which contains one or more fluorescent lamps LA1, LA2.
  • a plurality of system measured values can be taken from both the AC voltage generator 30 and the load circuit 40. Together the measured values fed to a control and regulating circuit 17, which in turn generates the digital control signals for the inverter 30. These are potential-shifted via a driver circuit 31 and fed to the output MOS-FETs of the inverter.
  • the control and regulating device 17 is also assigned a transmitting and receiving device 10, which is connected via a bus line 12 to other electronic ballasts and / or to a central control device 50.
  • a plurality of electronic ballasts 60-1, 60-2, 60-3, ..., 60-i are connected to a common bus line 12. All ECGs are connected via this bus line to the central control device 50, to which a display unit 51 is assigned. Via bus line 12, it is now possible to control one or more of the aforementioned electronic ballasts and to transmit commands to them, such as switching off, switching on, igniting or the like. Brightness values can also be preset and, in return, error information can be queried from the individual devices. The control unit 50 is thus informed of the overall system status at all times, which means that a high degree of operational reliability can be guaranteed and accelerated maintenance of the decentralized ECGs or for their fluorescent lamps is possible.
  • FIG. 3 shows the control and regulating device 17 as an integrated circuit.
  • the plurality of measured values m which correspond to the process signals of FIG. 1 are fed to it. It emits two digital control signals for the output stage transistors of the inverter 30, which are amplified and potential-shifted via a driver circuit 31.
  • control and regulating device 17 is also supplied with n target values. These influence the predeterminable control behavior. Furthermore, a transmitting and receiving device 10 is provided as part of the control and regulating circuit 17 or separately, which is connected directly or by means of a coupling circuit to the bus line 12. It forms the serial interface, which enables the control and regulating device to transmit error and operating status information to the central control device 50.
  • Setpoints can be, for example, the emergency lighting level (NOT), the minimum brightness level (MIN) and the maximum brightness level (MAX), within the latter of which the specifiable brightness level (DIMM) can move during operation.
  • NOT emergency lighting level
  • MIN minimum brightness level
  • MAX maximum brightness level
  • Serial digital data words are used as command and data words and as error information words. Other value lengths are possible.
  • An address is assigned to each decentralized ECG, which makes it possible to address individual ECGs via the address of the transmitting and receiving device 10 and to query information from them or to issue commands to them.
  • the bidirectional mode of operation of the bus line 12 enables a large number of decentralized electronic ballasts to be connected to a central control unit (50) without problems and with little effort.
  • FIG. 4 shows a basic circuit diagram of an input circuit as can be used for supplying the alternating voltage generator 30 from a supply network with the voltage U N.
  • the input circuit consists of capacitive input filters and possibly a harmonic choke.
  • the Y-circuit capacitors are used for radio interference suppression.
  • a surge arrester or a VDR is connected in parallel. This is followed by a full-wave rectifier, which can be omitted if the device is operated with direct voltage.
  • Downstream of the rectifier is an intermediate circuit capacitor C4, which charges up to approx. 300 V with a residual ripple of approx. 10% at 220 V mains voltage.
  • the intermediate circuit voltage U O should be smoothed well.
  • a voltage divider R18, R28 Parallel to the intermediate circuit capacitor C4 is a voltage divider R18, R28, from which a measurement signal proportional to the intermediate circuit voltage can be tapped.
  • a signal which is proportional to the supply voltage is detected at a low-pass filter R21, C25 and, like the intermediate-circuit voltage-dependent measurement signal, is fed to the control and regulating device 17. Both measurement signals are used to monitor the supply voltage and thus the operational safety of the ECG.
  • FIG. 5 shows an exemplary embodiment of a load circuit 40 according to the invention with a heat exchanger L5 for preheating the filaments of the fluorescent lamp LA1.
  • Fig. 5 only one of a pair of lamp circles is shown.
  • the embodiment of the invention has a pair of these branches, ie two Fluorescent lamps LA1, LA2 at an AC voltage output, which outputs the high-frequency AC voltage U HF between the series-connected power switching transistors V21 and V28.
  • the AC voltage generator is supplied with an intermediate circuit voltage U dc from the input circuit 20 shown in FIG. 4. Since the fluorescent lamps have a negative internal resistance during operation, they must be supplied with high voltage peaks during the ignition process (ZÜND) and with appropriate heating energy when heating the filaments.
  • a series resonance circuit L2, C15 leads via a balancing element TR1, which will be explained later, to the discharge path H2, H4 of the fluorescent lamp. Furthermore, a measuring resistor R32 is connected in series with the fluorescent tube, at which a voltage proportional to the lamp current I L1 is tapped and fed to the control and regulating circuit 17.
  • An ignition capacitor C17 is connected to ground (ZERO) between coil L2 and capacitor C15.
  • this capacitor is connected to ground even when the filament breaks, so that no voltage increases occur at the open lamp holder, since the resistance of the ignition capacitor C17 is sufficiently small at the maximum frequency of the AC voltage generator.
  • Parallel to the ignition capacitor C17 is also the primary winding of the heat exchanger L5 and in series with this a Zener diode V15 and a measuring resistor R10.
  • a voltage proportional to the heating coil current I W1 is tapped from the latter and fed to the control and regulating circuit 17 as a further system measurement variable. Since the inverter 30 impresses an output voltage and the heat exchanger is essentially parallel to the fluorescent lamp LA1, a voltage is impressed on its secondary windings via the heat exchanger.
  • the two secondary windings each supply one of the two heating coils H1, H2 and H3, H4 potential-free.
  • the sum of the heating coil currents I W1 / 2 is measured at the primary-side measuring resistor R10.
  • the Zener diode V15 which is still connected in series, generates a direct current component in the primary winding of L5, which is not transmitted, however, but is missing in the lamp current I L1 and thus the discharge of the lamp with an additional one DC component in the order of magnitude of approx. 1% of the actual discharge current is supplied. This prevents the effect of the "running layers” that occur when the lamps are dimmed.
  • the "running layers” consist in particular of light / dark zones which occur during dimming and run along the tube at a predetermined speed. A superimposition of low direct current accelerates this running effect in such a way that it no longer has a disturbing effect.
  • the inverter 30 is operated at a high frequency f max , so that an AC voltage occurs at C17 which is not suitable for igniting the lamp LA1.
  • the filaments of the lamp are heated via L5, the lamp absorbing a high and then a lower heating current due to the thermistor effect of the filaments.
  • the ignition (IGNITION) of the lamp is initiated.
  • the frequency f of the inverter 30 is reduced so that it comes closer to the resonance frequency f of the output series resonance circuit L2, C15. This creates a voltage surge at C17, which is of the order of approximately 750 V (peak). This will ignite a functional lamp.
  • the series resonance circuit L2, C15 or L3, C16 is strongly damped. On the one hand, this causes a shift in the resonance frequencies f O and, on the other hand, an immediate drop in the AC voltage applied to the respective lamp. The decrease is detected by the control and regulating circuit 17 via the voltage divider R27, R25 connected in parallel to the lamp. This then initiates the actual operating phase (DIMM) of the lamps.
  • DIMM actual operating phase
  • the frequency f of the inverter 30 is regulated so that the lamp output corresponds to the predetermined target value, ie the desired brightness level.
  • the operating frequency of the alternating voltage generator 30 can also be shifted to values which are in the order of magnitude of the heating frequency or above.
  • an output frequency can also be set which is below the ignition frequency but still above the resonance frequency of the series resonance circuit L2, C15.
  • the operating state of the lamp circuit 14 can vary greatly depending on the lamp used, for example argon or krypton lamps, or depending on the lamp power selected.
  • the combination of the capacitor C24 and the diodes V30, V31 results in a frequency-dependent damping of the output circuit when the voltage rises. It is particularly important when there are high frequencies and high impedances, e.g. if there is no lamp or if the filament is already warm.
  • the wiring of this type helps to limit the voltage rise when the lamp is not ignited or missing when it is undesirable.
  • C24 is selected so that the damping remains small enough at the time of ignition.
  • Fig. 6 shows the output circuit of Fig. 5 for the two-lamp - two fluorescent lamps on an inverter - operation.
  • the symmetry transformer TR1 is also shown here in full. Each winding is traversed by one of the two lamp currents. This happens in opposite directions, so that in the event of a deviation in the current amplitude, a resulting magnetization occurs, which induces a voltage in the inductive element which has a symmetrical effect.
  • Such a transformer is advantageous if the two lamps would burn differently bright in the dimmed state due to component tolerances and lamp tolerances as well as different temperature conditions.
  • the symmetry element TR1 avoids this in the case of two-lamp luminaires. If several pairs of lamps are operated at an AC voltage output, such a balancing element TR1 must be provided for each pair.
  • a signal proportional to the lamp current is obtained from them, which signal can be multiplied in the control and regulating circuit 17 by the aforementioned lamp voltage signal. This ensures that at any time of the actual lamp power is P or E brightness proportional signal is available, which can be preset to a precise brightness control as the feedback.
  • FIG. 7 shows the inverter 30 in more detail with its output power transistors V28, V21. Between them, the high-frequency AC voltage U HF is output to the load circuit 40 explained above.
  • the two power transistors are controlled via a control circuit 31, which receives its control signals from the control and regulating circuit 17. Possibly. unbalanced turn-off / turn-on delays come into consideration for the respective transistors, so that a common conduction of both transistors V21, V28 can be avoided in principle.
  • the upper transistor is supplied via a bootstrap circuit (not shown), the lower transistor and the system controller 10, 17, 31 receive their drive voltage via a series resistor and a smoothing capacitor C5 from the intermediate circuit voltage U O.
  • the current that can be supplied to the smoothing capacitor C5 through the series resistor or a current source I q is sufficient to supply the IC31 and the control and regulating circuit 17 in the switched-off mode (SLEEP).
  • the load circuit 40 of the inverter 30 is in an impermissible capacitive range. It represents a danger for the controlling inverter.
  • Phase position considerations are used, in which the load current I L1 is set in relation to the inverter branch current I max and from this the relative phase of both currents is used to detect the operating state.
  • Detection of an impermissible capacitive operating behavior is answered by the control circuit 17 by increasing the operating frequency f of the inverter 30, with which the load circuit 40 is again operated inductively.
  • the above-mentioned capacitive mode of operation mainly occurs with a low supply voltage. With the branch current detection, destruction of components can be safely avoided.
  • the digital interface 10 shows the transmitting and receiving device 10 and the coupling filter connected upstream of it, with which the bus coupling to the control line 12 takes place.
  • the digital interface 10 is given the setpoints for minimum, maximum and emergency lighting brightness (U NOT , U MIN , U MAX ).
  • a digital input DAT is provided, via which both the control signals arrive from a central control device to the decentralized ECG and the error signals are transmitted from the decentralized ECG to the central control device.
  • the serial interface enables remote control of the electronic ballast by means of a digital command signal or command word.
  • An 8 bit data word is provided as such a digital signal.
  • FIG. 8c An advantageous further development of this circuit is shown in FIG. 8c.
  • the circuit is protected against polarity reversal by using a secondary winding with center tap.
  • Optical coupling can also be used, but this has an increased power consumption.
  • control signals 255 (corresponding to 8 bit) brightness values are provided as control signals.
  • the control signal "OFF”, represented by the binary word “zero” is also possible. With the aforementioned signal OFF, the entire ECG switches to an energy-saving shutdown mode (SLEEP) immediately or after a short period of time. In it, the measuring current consumption of the entire ballast is minimal.
  • the inverter 30 and the control circuit 31 are shut down and, after a slight further time delay, if necessary, the essential assemblies of the control and regulating circuit 17. Only the receiving circuit of the transmitting and receiving device 10 and the monitoring circuit for the detection of an emergency operation (EMERGENCY) remain activated. The total circuit power thus drops below 1 W.
  • control and regulating circuit 17 immediately carries out the switch-on sequence which, with preheating and ignition process (IGNITION), transfers to steady-state operation and is used for one immediate setting of the desired brightness value (DIMM) is ensured.
  • IGNITION preheating and ignition process
  • control and regulating circuit 17 is also responsible for extracting the information from all of the aforementioned process variables which are important for monitoring and controlling the electronic ballast.
  • the various operating states of the fluorescent tube can also be distinguished by the measured variables.
  • the measured process variables and those used for checking are summarized below: Supply voltage U ac , U N , Undervoltage / overvoltage U Nmin , U Nmax , Battery voltage U B , DC link voltage U O , U dc , Lamp current / operating current I L1 , I L2 , Lamp voltage U L1 , U L2 , Output voltage U HF , Output current I HF , Spiral current I W1 , I W2 , AC generator branch current I chap .
  • the control and regulating circuit 17 switches off all functions when the voltage becomes too high, and can only function again when the voltage has been switched off and on again.
  • An emergency mode switchover to a predeterminable emergency lighting brightness takes place, for example, when a DC voltage U N is detected by the control circuit 17 via the usual AC supply input of the switch-on circuit 20 and via the sensors R21, C25 (FIG. 4).
  • a counter logic is used, which initiates emergency operation if the specified threshold value is not exceeded or undershot. This can happen after a specified dead time that bridges individual, possibly missing, half-waves.
  • an emergency voltage supply U B which is obtained from batteries or a generator, is placed on the mains voltage line.
  • the ECGs recognize this automatically.
  • the brightness of the fluorescent lamps is no longer specified by the digitally specified brightness value DIMM, but by a trim value that can be specified locally on the device and can be specified via the input U NOT .
  • the ECG is in switch-off mode (SLEEP) when this emergency operation occurs, ie the lamp and inverter are switched off, it will first carry out the normal ignition process (IGNIT) in order to subsequently switch to the emergency operating brightness.
  • SLEEP switch-off mode
  • the electronic ballast When the end of the emergency operating state is recognized, the electronic ballast returns to the previous state; this can be the OFF state if the electronic ballast was previously there. However, this can also be the original brightness value (DIMM), if this was available before requesting emergency operation.
  • DIMM original brightness value
  • the detection of the filament current detects whether either a lamp is not inserted or one of the two filaments is broken.
  • the inverter 30 is operated at its maximum frequency f max , which on the one hand results in the heating current still flowing when the defective lamp has been replaced and on the other hand reduces the voltage on the defective lamp to the smallest possible extent .
  • f max maximum frequency
  • the inductive part of the series resonance circuit in the output becomes so high at the above-mentioned high frequency f max with respect to the capacitive resistance of the ignition capacitor C17 that the voltage at the output is limited to harmless values and there is no danger for the maintenance personnel.
  • the ignition process (IGNITION) is initiated without waiting for the preheating time to elapse.
  • the internal sequence control in the control and regulating circuit 17 also limits the number of start attempts to two and sets (sends) whenever there is an error, e.g. B. the lamp is missing if a filament break or a gas defect is present, an error signal via the transmitting and receiving device 10 on the bidirectional bus 12. This also applies in emergency mode, since emergency mode cannot be maintained if the lamp is defective.
  • an error e.g. B. the lamp is missing if a filament break or a gas defect is present
  • Wiring errors that lead to a short circuit in the discharge path of the lamp can then be detected on the basis of the process signals if the lamp voltages are monitored for a predetermined minimum value. If the value falls below this specified value, as in the case of the mains overvoltage monitoring, the entire ECG is switched off.
  • the unwillingness to ignite the lamp e.g. B. by gas defect, is recognized by the control and regulating circuit 17. If the lamp cannot be ignited within a predetermined ignition timing, i. H. if the voltage across the ignition capacitor C17 does not drop within this period, the said lock is activated.
  • control and regulating circuit 17 reacts as in the case of a broken heating coil and sets the frequency of the inverter 30 to the maximum value f max .
  • control and regulating circuit 17 recognizes by an increase in the lamp voltage or by a change in the heating coil current, an attempt is made to fire again after a new lamp is inserted.
  • the following is explained for the brightness control of the fluorescent lamps.
  • a real brightness control is used, since this guarantees the same lamp outputs regardless of the lamp type - with essentially the same lamp efficiency.
  • the measured values determining the actual value, lamp current and lamp voltage are multiplied and compared in analog or digital form with the setpoints predetermined by remote control via the transmitting and receiving device 10.
  • the comparison result controls the frequency f of the alternating voltage generator 30 directly or via a controller. If a more precise gradation of brightness is desired, a logarithmic setpoint adjustment can take place. Exponential actual value weighting can be carried out in the same way. In addition to the independence of the lamp type, compensation is also achieved for lamp age, the existing operating temperature and also the possibly fluctuating mains voltage U N.
  • FIG. 9 shows a brightness-time diagram in which the brightness of the lamp controlled by the electronic ballast according to FIG. 1 is varied as a function of time.
  • maximum brightness is provided, followed by a switch-off cycle specified via the bus line 12 and the digital interface 10.
  • the brightness is acc. a predetermined slope reduced to zero, then the inverter 30, its driver circuit 31 and essential parts of the control IC 17 turn off to save electricity.
  • a subsequent emergency lighting state leads - despite the system being switched off - to controlled ignition and a build-up of the brightness of the lamp to the preset emergency lighting brightness (EMERGENCY). This can be changed via the setpoint specification U NOT for each decentralized ECG.
  • the maximum and minimum brightness value (MIN, MAX) shown in FIG. 9 can be set or adjusted via a corresponding setpoint value.
  • a program-controlled "soft start” is shown schematically in FIG. 10 as a brightness-time diagram.
  • the ECG 60 is initially in the switched-off state (OFF).
  • the "Softstart” command now leads either to an automatic, slope-controlled increase in lamp brightness - after it has been ignited - or to a program-controlled incremental increase in lamp brightness levels. In the latter case, the central control unit 50 sends incrementally increasing brightness values in certain time segments.
  • the decentralized ECGs follow the requirements almost without delay. This enables a rate of change-controlled (regulated) rise and fall of the decentralized light sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Circuit Arrangements For Discharge Lamps (AREA)
  • Discharge-Lamp Control Circuits And Pulse- Feed Circuits (AREA)
  • Lighting Device Outwards From Vehicle And Optical Signal (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

The invention relates in general to an electronic ballast (EVG) for fluorescent lamps. In particular, it relates to circuit arrangements inside the electronic ballast for separately measuring lamp current and heater coil current of lamp. Such an electronic ballast comprises an AC voltage generator (30, WR), whose frequency can be controlled, a series resonant circuit (L2, C17), which is connected to the output of the AC voltage generator (30) and to whose capacitor (C17) the gas discharge lamp is connected in parallel, and a current measuring element (R32) responding to the lamp current (IL1), at least one heating circuit of the heater coils of the gas discharge lamp being connected independently of the series resonant circuit (L2, C17) to the AC voltage generator (30), and a further current measuring element (R10) connected to said heating circuit serving to measure the heating current (JW). <IMAGE>

Description

Die Erfindung betrifft allgemein ein elektronisches Vorschaltgerät (EVG) für Leuchtstofflampen. Insbesondere betrifft sie Schaltungsanordnungen innerhalb des elektronischen Vorschaltgerätes zur separaten Erfassung von Lampenstrom und Heizwendelstrom einer Lampe.The invention relates generally to an electronic ballast (EVG) for fluorescent lamps. In particular, it relates to circuit arrangements within the electronic ballast for the separate detection of lamp current and filament current of a lamp.

Elektronische Vorschaltgeräte moderner Bauweise dienen der Ansteuerung von Leuchtstofflampen und weisen dabei regelmäßig die im Oberbegriff des Anspruchs 1 angegebenen Merkmale auf.Electronic ballasts of modern design serve to control fluorescent lamps and regularly have the features specified in the preamble of claim 1.

Die europäische Patentanmeldung EP-A-0338 109 der Anmelderin offenbart ein elektronisches Vorschaltgerät, das einen Wechselspannungsgenerator mit steuerbarer Frequenz, einen Serienresonanzkreis, dessen Kapazität parallel zur Lampe liegt und ein Strommeßglied zur Meßung des Lampenstroms aufweist. Dabei wird allerdings nicht nur der über die Elektroden der Lampe fließendeLampenstrom gemessen, sondern auch der über die Wendeln der Lampe fließende Heizstrom. Eine differenzierte Aussage über die Höhe des Lampenstroms bzw. die Höhe des Heizwendelstroms kann nicht getroffen werden.The applicant's European patent application EP-A-0338 109 discloses an electronic ballast which has an AC voltage generator with a controllable frequency, a series resonant circuit whose capacitance is parallel to the lamp and a current measuring element for measuring the lamp current. However, not only the lamp current flowing over the electrodes of the lamp is measured, but also the heating current flowing over the filaments of the lamp. A differentiated statement about the level of the lamp current or the level of the heating coil current cannot be made.

Bei einer Realisierung der Schaltung wird der Wechselspannungsgenerator bei einem Wendelbruch abgeschalten, da aufgrund von parasitären Kapazitäten gegen Masse Spannungsüberhöhungen am offenen Ende der Wendel entstehen können. Aus Sicherheitsüberlegungen muß der Wechselspannungsgenerator deshalb abgeschaltet werden. Nach Abschalten fließt kein Heizwendelstrom mehr. Ein automatischer Wiederstart bei neu eingesetzter Lampe kann nicht erfolgen, da das Vorschaltgerät über das Einsetzen der neuen Lampe keine Information erhält.When the circuit is implemented, the AC voltage generator is switched off in the event of a filament breakage, since parasitic capacitances to ground can result in voltage increases at the open end of the filament. The AC voltage generator must therefore be switched off for safety reasons. After switching off, the heating coil current no longer flows. An automatic restart with a newly inserted lamp cannot take place since the ballast receives no information about the insertion of the new lamp.

Der Erfindung liegt die Aufgabe zugrunde, ein elektronisches Vorschaltgerät anzugeben, das ein separates Erfassen von Heizstrom und Lampenstrom zuläßt und auch bei Wendelbruch den Wechselspannungsgenerator nicht abschaltet, so daß der Heizstrom weiterhin gemessen werden kann und ein automatischer Wiederstart möglich ist.The invention has for its object to provide an electronic ballast that allows a separate detection of heating current and lamp current and does not turn off the AC generator even in the event of a filament breakage, so that the heating current can still be measured and an automatic restart is possible.

Die Lösung der erfindungsgemäßen Aufgabe wird mit den kennzeichnenden Merkmalen des Anspruchs 1 erreicht.The object of the invention is achieved with the characterizing features of claim 1.

Vorteilhafte Ausgestaltungen der Erfindung werden mit den abhängigen Ansprüchen erzielt.Advantageous embodiments of the invention are achieved with the dependent claims.

Gestützt auf die Zeichnung werden nachfolgend Ausführungsbeispiele der Erfindung näher erläutert. Es zeigen

  • Fig. 1 ein Blockschaltbild eines erfindungsgemäßen EVG,
  • Fig. 2 ein Blockschaltbild eines erfindungsgemäßen Systemgedankens, bei dem mehrere dezentrale EVGs mit einem zentralen Steuergerät über eine Busleitung 12 verbunden sind,
  • Fig. 3 ein Blockschaltbild eines Ausführungsbeispiels der erfindungsgemäßen Steuer- und Regeleinrichtung als integrierte Schaltung 17,
  • Fig. 4 ein Prinzipschaltbild eines Eingangskreises 20 mit zwei Meßwerterfassungen,
  • Fig. 5 ein Ausführungsbeispiel der transformatorgekoppelten Wendelbeheizung einer Leuchtstofflampe mit drei Meßfühlern,
  • Fig. 6 ein Ausführungsbeispiel eines erfindungsgemäßen Ausgangskreises 40 mit Symmetrierelement TR1 für zwei Leuchtstofflampen,
  • Fig. 7 ein Prinzipschaltbild des Wechselspannungsgenerators mit ihn ansteuernder Treiberschaltung 31,
  • Fig. 8a-c jeweils ein Blockschaltbild der Sende- und Empfangseinrichtung 10 mit verschieden ausgestalteten Koppelschaltungen zur Busleitung 12,
  • Fig. 9 ein Helligkeits-Zeitdiagramm zur Erläuterung des Abschalt- und des Notbeleuchtungsbetriebes,
  • Fig. 10 ein Helligkeits-Zeitdiagramm zur Erläuterung der Softstart- bzw. Softstop-Funktion bei einer Systemkonfiguration gem. Fig. 2.
Based on the drawing, exemplary embodiments of the invention are explained in more detail below. Show it
  • 1 is a block diagram of an electronic ballast according to the invention,
  • 2 shows a block diagram of a system concept according to the invention, in which several decentralized electronic ballasts are connected to a central control device via a bus line 12,
  • 3 shows a block diagram of an exemplary embodiment of the control and regulating device according to the invention as an integrated circuit 17,
  • 4 shows a basic circuit diagram of an input circuit 20 with two measured value recordings,
  • 5 shows an exemplary embodiment of the transformer-coupled filament heating of a fluorescent lamp with three sensors,
  • 6 shows an exemplary embodiment of an output circuit 40 according to the invention with a balancing element TR1 for two fluorescent lamps,
  • 7 shows a basic circuit diagram of the AC voltage generator with driver circuit 31 driving it,
  • 8a-c each show a block diagram of the transmitting and receiving device 10 with differently configured coupling circuits for the bus line 12,
  • 9 is a brightness-time diagram to explain the shutdown and emergency lighting operation,
  • 10 is a brightness-time diagram to explain the soft start or soft stop function in a system configuration according to FIG. Fig. 2.

Fig. 1 zeigt zunächst ein Blockschaltbild eines Ausführungsbeispiels eines erfindungsgemäßen EVGs. Die Netzspannung UN wird - ggf. über einen Schalter S1 - dem 1 shows a block diagram of an exemplary embodiment of an electronic ballast according to the invention. The mains voltage U N is - if necessary via a switch S1 - the

Eingangsschaltkreis 20 (Gleichrichterschaltkreis) zugeführt. Dieser erzeugt die Zwischenkreisspannung UO,Udc, die dem Wechselspannungsgenerator 30Input circuit 20 (rectifier circuit) supplied. This generates the intermediate circuit voltage U O , U dc , which the AC voltage generator 30

(Wechselrichter) zugeführt wird. Der Wechselspannungsgenerator 30 gibt seine hochfrequente Ausgangsspannung UHF an einen Ausgangs-Lastkreis 40 ab, der eine oder mehrere Leuchtstofflampen LA1,LA2 enthält. Sowohl dem Wechselspannungsgenerator 30 als auch dem Lastkreis 40 sind eine Mehrzahl von System-Meßwerten (Prozeßgrößen) entnehmbar. Gemeinsam werden die Meßwerte einer Steuer- und Regelschaltung 17 zugeführt, die ihrerseits die digitalen Ansteuersignale für den Wechselrichter 30 erzeugt. Diese werden über eine Treiberschaltung 31 potentialverschoben und den Ausgangs-MOS-FETs des Wechselrichters zugeführt. Der Steuer- und Regeleinrichtung 17 ist außerdem eine Sende- und Empfangseinrichtung 10 zugeordnet, die über eine Busleitung 12 mit anderen EVGs und/oder mit einem zentralen Steuergerät 50 verbunden ist.(Inverter) is fed. The AC voltage generator 30 outputs its high-frequency output voltage U HF to an output load circuit 40 which contains one or more fluorescent lamps LA1, LA2. A plurality of system measured values (process variables) can be taken from both the AC voltage generator 30 and the load circuit 40. Together the measured values fed to a control and regulating circuit 17, which in turn generates the digital control signals for the inverter 30. These are potential-shifted via a driver circuit 31 and fed to the output MOS-FETs of the inverter. The control and regulating device 17 is also assigned a transmitting and receiving device 10, which is connected via a bus line 12 to other electronic ballasts and / or to a central control device 50.

Letzteres wird von Fig. 2 gezeigt. Dort sind eine Mehrzahl von EVGs 60-1, 60-2, 60-3,...,60-i an einer gemeinsamen Busleitung 12 angeschlossen. Alle EVGs sind über diese Busleitung mit dem zentralen Steuergerät 50 verbunden, dem eine Anzeigeeinheit 51 zugeordnet ist. Über die Busleitung 12 wird es nun möglich, einzelne oder mehrere der genannten EVGs anzusteuern und ihnen Befehle zu übertragen, wie Ausschalten, Einschalten, Zünden o. ä. Auch können Helligkeitswerte voreingestellt werden und im Gegenzug Fehlerinformationen von den einzelnen Geräten abgefragt werden. So ist das Steuergerät 50 jederzeit über den Gesamt-Systemzustand informiert, wodurch ein hohes Maß an Betriebssicherheit gewährt werden kann und eine beschleunigte Wartung der dezentralen EVGs, bzw. für deren Leuchtstofflampen, möglich wird.The latter is shown in Fig. 2 . There, a plurality of electronic ballasts 60-1, 60-2, 60-3, ..., 60-i are connected to a common bus line 12. All ECGs are connected via this bus line to the central control device 50, to which a display unit 51 is assigned. Via bus line 12, it is now possible to control one or more of the aforementioned electronic ballasts and to transmit commands to them, such as switching off, switching on, igniting or the like. Brightness values can also be preset and, in return, error information can be queried from the individual devices. The control unit 50 is thus informed of the overall system status at all times, which means that a high degree of operational reliability can be guaranteed and accelerated maintenance of the decentralized ECGs or for their fluorescent lamps is possible.

Die in Fig. 1 gezeigten Funktionsblöcke 20,30,40,10,17 werden anhand der folgenden Figuren nun näher erläutert.The functional blocks 20, 30, 40, 10, 17 shown in FIG. 1 will now be explained in more detail with reference to the following figures.

Fig. 3 zeigt hierzu die Steuer- und Regeleinrichtung 17 als integrierte Schaltung. Ihr werden die Vielzahl von Meßwerten m, welche den Prozeßsignalen der Fig. 1 entsprechen, zugeführt. Sie gibt zwei digitale Ansteuersignale für die Endstufen-Transistoren des Wechselrichters 30 ab, die über eine Treiberschaltung 31 noch verstärkt und potentialverschoben werden. 3 shows the control and regulating device 17 as an integrated circuit. The plurality of measured values m which correspond to the process signals of FIG. 1 are fed to it. It emits two digital control signals for the output stage transistors of the inverter 30, which are amplified and potential-shifted via a driver circuit 31.

Neben den m Meßwerten werden der Steuer- und Regeleinrichtung 17 auch n Sollwerte zugeführt. Diese beeinflussen das vorgebbare Steuer- und Regelverhalten. Weiterhin ist als Teil der Steuer- und Regelschaltung 17 oder separat eine Sende- und Empfangseinrichtung 10 vorgesehen, die direkt oder mittels eines Koppelschaltkreises mit der Busleitung 12 verbunden ist. Sie bildet die serielle Schnittstelle, die es der Steuer- und Regeleinrichtung ermöglicht, Fehler- und Betriebszustandsinformationen dem zentralen Steuergerät 50 zu übermitteln.In addition to the m measured values, the control and regulating device 17 is also supplied with n target values. These influence the predeterminable control behavior. Furthermore, a transmitting and receiving device 10 is provided as part of the control and regulating circuit 17 or separately, which is connected directly or by means of a coupling circuit to the bus line 12. It forms the serial interface, which enables the control and regulating device to transmit error and operating status information to the central control device 50.

Die zuvor genannten n Sollwerte können auch dieser Sende- und Empfangseinrichtung 10 zugeführt werden, die sie nach entsprechender Aufbereitung an die Steuer- und Regelschaltung 17 weitergibt. Sollwerte können beispielsweise sein der Notbeleuchtungspegel (NOT), der minimale Helligkeitspegel (MIN) und der maximale Helligkeitspegel (MAX), innerhalb letzterer beider kann sich der vorgebbare Helligkeitspegel (DIMM) im Betrieb bewegen.The aforementioned n setpoints can also be supplied to this transmitting and receiving device 10, which they send to the control and control device after appropriate preparation Control circuit 17 passes on. Setpoints can be, for example, the emergency lighting level (NOT), the minimum brightness level (MIN) and the maximum brightness level (MAX), within the latter of which the specifiable brightness level (DIMM) can move during operation.

Als Befehls- und Datenworte sowie als Fehlerinformationsworte werden serielle digitale Datenworte verwendet, deren Länge 8 bit ist. Andere Wertlängen sind möglich. Jedem dezentralen EVG wird eine Adresse zugeordnet, die es ermöglicht, einzelne EVGs über die Adresse der Sende- und Empfangseinrichtung 10 anzusprechen und Informationen von ihnen abzufragen oder ihnen Befehle zu erteilen. Die bidirektionelle Arbeitsweise der Busleitung 12 ermöglicht ein problemloses und aufwandsarmes Verkabeln einer Vielzahl von dezentraler EVGs mit einem zentralen Steuergerät (50).Serial digital data words, the length of which are 8 bits, are used as command and data words and as error information words. Other value lengths are possible. An address is assigned to each decentralized ECG, which makes it possible to address individual ECGs via the address of the transmitting and receiving device 10 and to query information from them or to issue commands to them. The bidirectional mode of operation of the bus line 12 enables a large number of decentralized electronic ballasts to be connected to a central control unit (50) without problems and with little effort.

Fig. 4 zeigt ein Prinzipschaltbild eines Eingangskreises, wie er zur Speisung des Wechselspannungsgenerators 30 aus einem Versorgungsnetz mit der Spannung UN verwendbar ist. Der Eingangskreis besteht aus kapazitiven Eingangsfiltern sowie ggf. aus einer Oberwellendrossel. Die Kondensatoren in Y-Schaltung dienen der Funkentstörung. Ihnen ist ein Überspannungsableiter oder ein VDR parallel geschaltet. Es schließt sich ein Vollwellengleichrichter an, der dann entfallen kann, wenn das Gerät betriebsmäßig mit Gleichspannung betrieben wird. Dem Gleichrichter nachgeschaltet ist ein Zwischenkreiskondensator C4, der sich bei 220 V Netzspannung auf ca. 300 V mit einer Restwelligkeit von ca. 10 % auflädt. FIG. 4 shows a basic circuit diagram of an input circuit as can be used for supplying the alternating voltage generator 30 from a supply network with the voltage U N. The input circuit consists of capacitive input filters and possibly a harmonic choke. The Y-circuit capacitors are used for radio interference suppression. A surge arrester or a VDR is connected in parallel. This is followed by a full-wave rectifier, which can be omitted if the device is operated with direct voltage. Downstream of the rectifier is an intermediate circuit capacitor C4, which charges up to approx. 300 V with a residual ripple of approx. 10% at 220 V mains voltage.

Aufgrund eines niedrig zu haltenden Crestfaktors sollte die Zwischenkreisspannung UO gut geglättet sein.Due to a crest factor to be kept low, the intermediate circuit voltage U O should be smoothed well.

Parallel zum Zwischenkreiskondensator C4 liegt ein Spannungsteiler R18,R28, an dem ein der Zwischenkreis-Spannung proportionales Meßsignal abgreifbar ist. An einem Tiefpaß R21,C25 wird ein der Versorgungsspannung proportionales Signal erfaßt und ebenso, wie das zwischenkreisspannungs-abhängige Meßsignal der Steuer- und Regeleinrichtung 17 zugeführt. Beide Meßsignale dienen der Versorgungsspannungs-Überwachung und damit der Betriebssicherheit des EVG.Parallel to the intermediate circuit capacitor C4 is a voltage divider R18, R28, from which a measurement signal proportional to the intermediate circuit voltage can be tapped. A signal which is proportional to the supply voltage is detected at a low-pass filter R21, C25 and, like the intermediate-circuit voltage-dependent measurement signal, is fed to the control and regulating device 17. Both measurement signals are used to monitor the supply voltage and thus the operational safety of the ECG.

Fig. 5 zeigt ein Ausführungsbeispiel eines erfindungsgemäßen Lastkreises 40 mit einem Heizübertrager L5 für die Vorheizung der Wendeln der Leuchtstofflampe LA1. In Fig. 5 ist lediglich einer von einem Paar von Lampenkreisen gezeigt. Das Ausführungsbeispiel der Erfindung weist ein Paar dieser Zweige auf, d. h. zwei Leuchtstofflampen LA1,LA2 an einem Wechselspannungsgenerator-Ausgang, der die hochfrequente Wechselspannung UHF zwischen den in Serie geschalteten Leistungs-Schalttransistoren V21 und V28 abgibt. Der Wechselspannungsgenerator wird aus der in Fig. 4 gezeigten Eingangsschaltung 20 mit einer Zwischenkreisspannung Udc versorgt. Da die Leuchtstofflampen einen negativen Innenwiderstand bei Betrieb besitzen, müssen sie beim Zündvorgang (ZÜND) mit hohen Spannungsspitzen und beim Heizen der Wendeln mit entsprechender Heizenergie versorgt werden. Ausgehend von dem Ausgangsanschluß des Wechselrichters 30 führt ein Serienresonanzkreis L2,C15 über ein Symmetrierelement TR1, welches später erläutert wird, auf die Entladungsstrecke H2,H4 der Leuchtstofflampe. Weiterhin ist zu der Leuchtstoffröhre ein Meßwiderstand R32 in Serie geschaltet, an welchem eine dem Lampenstrom IL1 proportionale Spannung abgegriffen und der Steuer- und Regelschaltung 17 zugeführt wird. Zwischen Spule L2 und Kondensator C15 ist ein Zündkondensator C17 gegen Erde (NULL) geschaltet. Mit Hilfe dieser Anordnung kann die Dimmerkennlinie der Entladungslampe vergleichmäßigt werden, da bei steigender Frequenz der Widerstand des Kondensators C15 abnimmt und der Widerstand der Entladungslampe zunimmt. Außerdem liegt dieser Kondensator auch bei Wendelbruch an Masse, so daß an der offenen Lampenfassung keine Spannungsüberhöhungen entstehen, da der Widerstand des Zündkondensators C17 bei der maximalen Frequenz des Wechselspannungsgenerators ausreichend klein ist. Parallel zu dem Zündkondensator C17 liegt auch die Primärwicklung des Heizübertragers L5 sowie in Serie zu dieser weiterhin eine Zenerdiode V15 und ein Meßwiderstand R10. An letzterem wird eine dem Heizwendelstrom IW1 proportionale Spannung abgegriffen und dem Steuer- und Regelschaltkreis 17 als weitere Systemmeßgröße zugeführt. Da der Wechselrichter 30 eine Ausgangsspannung einprägt und der Heizübertrager im wesentlichen parallel zur Leuchtstofflampe LA1 liegt, wird über den Heizübertrager auf seine Sekundärwicklungen eine Spannung eingeprägt. Die beiden Sekundärwicklungen versorgen je potentialfrei eine der beiden Heizwendeln H1,H2 und H3,H4. An dem primärseitigen Meßwiderstand R10 wird so die Summe der Heizwendelströme IW1/2 gemessen. Mit Hilfe der separaten Versorgung der Heizwendeln ist ein Betreiben sowohl von Argonals auch von Krypton-Lampen problemlos möglich, da die unterschiedlichen Eigenschaften der beiden Lampen durch den Einsatz des Heizübertragers L5 im wesentlichen kompensiert werden. 5 shows an exemplary embodiment of a load circuit 40 according to the invention with a heat exchanger L5 for preheating the filaments of the fluorescent lamp LA1. In Fig. 5 only one of a pair of lamp circles is shown. The embodiment of the invention has a pair of these branches, ie two Fluorescent lamps LA1, LA2 at an AC voltage output, which outputs the high-frequency AC voltage U HF between the series-connected power switching transistors V21 and V28. The AC voltage generator is supplied with an intermediate circuit voltage U dc from the input circuit 20 shown in FIG. 4. Since the fluorescent lamps have a negative internal resistance during operation, they must be supplied with high voltage peaks during the ignition process (ZÜND) and with appropriate heating energy when heating the filaments. Starting from the output connection of the inverter 30, a series resonance circuit L2, C15 leads via a balancing element TR1, which will be explained later, to the discharge path H2, H4 of the fluorescent lamp. Furthermore, a measuring resistor R32 is connected in series with the fluorescent tube, at which a voltage proportional to the lamp current I L1 is tapped and fed to the control and regulating circuit 17. An ignition capacitor C17 is connected to ground (ZERO) between coil L2 and capacitor C15. With the aid of this arrangement, the dimmer characteristic of the discharge lamp can be made more uniform, since with increasing frequency the resistance of the capacitor C15 decreases and the resistance of the discharge lamp increases. In addition, this capacitor is connected to ground even when the filament breaks, so that no voltage increases occur at the open lamp holder, since the resistance of the ignition capacitor C17 is sufficiently small at the maximum frequency of the AC voltage generator. Parallel to the ignition capacitor C17 is also the primary winding of the heat exchanger L5 and in series with this a Zener diode V15 and a measuring resistor R10. A voltage proportional to the heating coil current I W1 is tapped from the latter and fed to the control and regulating circuit 17 as a further system measurement variable. Since the inverter 30 impresses an output voltage and the heat exchanger is essentially parallel to the fluorescent lamp LA1, a voltage is impressed on its secondary windings via the heat exchanger. The two secondary windings each supply one of the two heating coils H1, H2 and H3, H4 potential-free. The sum of the heating coil currents I W1 / 2 is measured at the primary-side measuring resistor R10. With the separate supply of the heating coils, both argon and krypton lamps can be operated without any problems since the different properties of the two lamps are essentially compensated for by the use of the L5 heat exchanger.

Die weiterhin in Serie geschaltete Zenerdiode V15 erzeugt in der Primärwicklung von L5 eine Gleichstromkomponente, die aber nicht übertragen wird, sondern im Lampenstrom IL1 fehlt und damit die Entladung der Lampe mit einem zusätzlichen Gleichstromanteil in der Größenanordnung von ca. 1 % des tatsächlichen Entladungsstromes versorgt. Dies verhindert den Effekt der "laufenden Schichten", die bei Dimmung der Lampen auftreten. Die "laufenden Schichten" bestehen aus insbesondere beim Dimmen auftretenden Hell-/Dunkelzonen, die mit einer vorgegebenen Geschwindigkeit längs der Röhre laufen. Ein Überlagern von geringem Gleichstrom beschleunigt diesen Laufeffekt derart, daß er nicht mehr störend wirkt.The Zener diode V15, which is still connected in series, generates a direct current component in the primary winding of L5, which is not transmitted, however, but is missing in the lamp current I L1 and thus the discharge of the lamp with an additional one DC component in the order of magnitude of approx. 1% of the actual discharge current is supplied. This prevents the effect of the "running layers" that occur when the lamps are dimmed. The "running layers" consist in particular of light / dark zones which occur during dimming and run along the tube at a predetermined speed. A superimposition of low direct current accelerates this running effect in such a way that it no longer has a disturbing effect.

Zum Heizen wird der Wechselrichter 30 mit einer hohen Frequenz fmax betrieben, so daß an C17 eine Wechselspannung auftritt, die nicht zum Zünden der Lampe LA1 geeignet ist. Über L5 werden in diesem Betriebszustand die Wendeln der Lampe beheizt, wobei, bedingt durch den Kaltleitereffekt der Wendeln, die Lampe zuerst einen hohen und dann einen geringeren Heizstrom aufnimmt. Nach ca. 750 msec Vorheizzeit wird die Zündung (ZÜND) der Lampe eingeleitet.For heating, the inverter 30 is operated at a high frequency f max , so that an AC voltage occurs at C17 which is not suitable for igniting the lamp LA1. In this operating state, the filaments of the lamp are heated via L5, the lamp absorbing a high and then a lower heating current due to the thermistor effect of the filaments. After a preheating time of approx. 750 ms, the ignition (IGNITION) of the lamp is initiated.

Beim Zünden der Leuchtstofflampe wird die Frequenz f des Wechselrichters 30 reduziert, sodaß sie näher an die Resonanzfrequenz f des Ausgangs-Serienresonanzkreises L2,C15 herankommt. Dadurch entsteht an C17 eine Spannungsüberhöhung, die in der Größenordnung von ca. 750 V (Spitze) liegt. Hierdurch wird eine funktionsfähige Lampe gezündet.When the fluorescent lamp is ignited, the frequency f of the inverter 30 is reduced so that it comes closer to the resonance frequency f of the output series resonance circuit L2, C15. This creates a voltage surge at C17, which is of the order of approximately 750 V (peak). This will ignite a functional lamp.

Sobald die Lampe LA1 oder LA2 gezündet hat, wird der Serienresonanzkreis L2,C15 oder L3,C16 stark bedämpft. Dies bewirkt einerseits eine Verschiebung der Resonanzfrequenzen fO und andererseits ein sofortiges Absinken der an der jeweiligen Lampe liegenden Wechselspannung. Das Absinken wird über den parallel zur Lampe geschalteten Spannungsteiler R27,R25 von dem Steuer- und Regelschaltkreis 17 erkannt. Dieser leitet daraufhin die eigentliche Betriebsphase (DIMM) der Lampen ein.As soon as the lamp LA1 or LA2 has ignited, the series resonance circuit L2, C15 or L3, C16 is strongly damped. On the one hand, this causes a shift in the resonance frequencies f O and, on the other hand, an immediate drop in the AC voltage applied to the respective lamp. The decrease is detected by the control and regulating circuit 17 via the voltage divider R27, R25 connected in parallel to the lamp. This then initiates the actual operating phase (DIMM) of the lamps.

Zum effektiven Betrieb der Lampe wird die Frequenz f des Wechselrichters 30 so geregelt, daß die Leistung der Lampe dem vorgegebenen Sollwert, d. h. dem gewünschten Helligkeitsniveau, entspricht. Je höher die Frequenz im Betriebszustand wird, desto geringer wird die Lampenhelligkeit. Die Betriebsfrequenz des Wechselspannungsgenerators 30 kann dabei durchaus auch auf Werte verschoben werden, die in der Größenordnung der Heizfrequenz oder darüber liegen. Auch kann bei einer maximalen Leistung (MAX) eine Ausgangsfrequenz eingestellt werden, die unterhalb der Zündfrequenz, aber noch oberhalb der Resonanzfrequenz des Serienresonanzkreises L2,C15 liegt.For effective lamp operation, the frequency f of the inverter 30 is regulated so that the lamp output corresponds to the predetermined target value, ie the desired brightness level. The higher the frequency in the operating state, the lower the lamp brightness. The operating frequency of the alternating voltage generator 30 can also be shifted to values which are in the order of magnitude of the heating frequency or above. At a maximum power (MAX), an output frequency can also be set which is below the ignition frequency but still above the resonance frequency of the series resonance circuit L2, C15.

Der Betriebszustand des Lampenkreises 14 kann abhängig von der eingesetzten Lampe, beispielsweise Argon-, Krypton-Lampe, oder abhängig von der gewählten Lampenleistung, stark variieren.The operating state of the lamp circuit 14 can vary greatly depending on the lamp used, for example argon or krypton lamps, or depending on the lamp power selected.

Die Kombination aus dem Kondensator C24 und den Dioden V30, V31 bewirkt eine frequenzabhängige Bedämpfung des Ausgangskreises bei Spannungsüberhöhung. Sie ist vor allem dann wichtig, wenn hohe Frequenzen und hohe Impedanzen vorkommen, also z.B. bei fehlender Lampe oder beim Vorheizen bei bereits warmer Wendel. Die Beschaltung dieser Art hilft, die Spannungsüberhöhung bei nicht gezündeter oder fehlender Lampe dann zu begrenzen, wenn sie unerwünscht ist. C24 ist so gewählt, daß die Bedämpfung zum Zündzeitpunkt klein genug bleibt.The combination of the capacitor C24 and the diodes V30, V31 results in a frequency-dependent damping of the output circuit when the voltage rises. It is particularly important when there are high frequencies and high impedances, e.g. if there is no lamp or if the filament is already warm. The wiring of this type helps to limit the voltage rise when the lamp is not ignited or missing when it is undesirable. C24 is selected so that the damping remains small enough at the time of ignition.

Fig. 6 zeigt den Ausgangskreis der Fig. 5 für den zweiflammigen - zwei Leuchtstofflampen an einem Wechselrichter - Betrieb. Hier ist auch der Symmetieübertrager TR1 vollständig eingezeichnet. Jede Wicklung wird von einem der beide Lampenströme durchflossen. Dies geschieht gegensinnig, so daß bei Stromamplituden-Abweichung eine resultierende Magnetisierung entsteht, die in dem induktiven Element eine Spannung induziert, welche symmetrierend wirkt. Ein solcher Übertrager ist vorteilhaft, wenn durch Bauteiltoleranzen und Lampentoleranzen sowie unterschiedlichen Temperaturbedingungen die beiden Lampen im gedimmten Zustand unterschiedlich hell brennen würden. Durch das Symmetrieelement TR1 wird dies bei zweilampigen Leuchten vermieden. Werden mehrere Paare von Lampen an einem Wechselspannungsgenerator-Ausgang betrieben, so ist für jeweils ein Paar ein solches Symmetrierelement TR1 vorzusehen. Fig. 6 shows the output circuit of Fig. 5 for the two-lamp - two fluorescent lamps on an inverter - operation. The symmetry transformer TR1 is also shown here in full. Each winding is traversed by one of the two lamp currents. This happens in opposite directions, so that in the event of a deviation in the current amplitude, a resulting magnetization occurs, which induces a voltage in the inductive element which has a symmetrical effect. Such a transformer is advantageous if the two lamps would burn differently bright in the dimmed state due to component tolerances and lamp tolerances as well as different temperature conditions. The symmetry element TR1 avoids this in the case of two-lamp luminaires. If several pairs of lamps are operated at an AC voltage output, such a balancing element TR1 must be provided for each pair.

Aus Fig. 6 ist weiterhin ersichtlich, daß jeder Leuchtstofflampe ein individueller Serienresonanzkreis vorgeschaltet ist sowie ein individueller Zündkondensator C17,C18 parallelgeschaltet ist. Dies ermöglicht eine relativ unabhängige Zündphase sowie einem Gleichlauf im Dimmbetrieb. Parallel zu den Zündkondensatoren C17,C18 liegt jeweis ein Spannungsteiler R25-R28, die ein der Ausgangs-Wechselspannung proportionales Signal an die Steuer- und Regeleinrichtung 17 führen. In gleicher Weise ist es auch möglich, die Spannungsteiler direkt parallel zur Leuchtstofflampe zu schalten, d. h. hinter das Symmetierelemente TR1. In Serie zu den Lampen, dies war anhand von Fig. 5 bereits für einen Lampenkreis erläutert, findet sich je ein Strommeß-Shunt R31,R32. An ihnen wird ein dem Lampenstrom proportionales Signal gewonnen, welches im Steuer- und Regelschaltkreis 17 mit dem vorgenannten Lampenspannungssignal multiplizierbar ist. Auf diese Weise wird sichergestellt, daß jederzeit ein der tatsächlichen Lampenleistung Pist bzw. der Helligkeit E proportionales Signal zur Verfügung steht, das einer genauen Helligkeitsregelung als Istwert vorgebbar ist.From Fig. 6 it can also be seen that an individual series resonance circuit is connected upstream of each fluorescent lamp and that an individual ignition capacitor C17, C18 is connected in parallel. This enables a relatively independent ignition phase and synchronization in dimming mode. In parallel with the ignition capacitors C17, C18 there is a voltage divider R25-R28, which feed a signal proportional to the output AC voltage to the control and regulating device 17. In the same way, it is also possible to connect the voltage dividers directly parallel to the fluorescent lamp, ie behind the balancing element TR1. In series with the lamps, this was already explained for a lamp circuit with reference to FIG. 5, there is one current measuring shunt R31, R32 each. A signal proportional to the lamp current is obtained from them, which signal can be multiplied in the control and regulating circuit 17 by the aforementioned lamp voltage signal. This ensures that at any time of the actual lamp power is P or E brightness proportional signal is available, which can be preset to a precise brightness control as the feedback.

Fig. 7 zeigt detaillierter den Wechselrichter 30 mit seinen Ausgangs-Leistungstransistoren V28,V21. Zwischen ihnen wird die hochfrequente Wechselspannung UHF an den zuvor erläuterten Lastkreis 40 abgeben. Angesteuert werden die beiden Leistungstransistoren über einen Ansteuer-Schaltkreis 31, der seine Steuersignale von dem Steuer- und Regelschaltlkreis 17 erhält. Ggf. kommen unsymmetrische Abschalt-/Einschaltverzögerungen für die jeweiligen Transistoren in Betracht, so daß ein gemeinsames Leiten beider Transistoren V21,V28 grundsätzlich vermieden werden kann. Der obere Transistor wird über eine (nicht eingezeichnete) Bootstrap-Schaltung versorgt, der untere Transistor und die Systemsteuerung 10,17,31 erhalten ihre Ansteuerspannung über einen Vorwiderstand und einen Glättungskondensator C5 aus der Zwischenkreisspannung UO. Neben der genannten Stromversorgung aus dem Zwischenkreis findet auch eine verlustarme Wechselspannungskopplung aus dem schwingenden Wechselrichter 30 über einen Koppelkondensator C21, die Dioden V12,V7 und die Induktivität L7 in die Speicherkapazität C5 statt. 7 shows the inverter 30 in more detail with its output power transistors V28, V21. Between them, the high-frequency AC voltage U HF is output to the load circuit 40 explained above. The two power transistors are controlled via a control circuit 31, which receives its control signals from the control and regulating circuit 17. Possibly. unbalanced turn-off / turn-on delays come into consideration for the respective transistors, so that a common conduction of both transistors V21, V28 can be avoided in principle. The upper transistor is supplied via a bootstrap circuit (not shown), the lower transistor and the system controller 10, 17, 31 receive their drive voltage via a series resistor and a smoothing capacitor C5 from the intermediate circuit voltage U O. In addition to the aforementioned power supply from the intermediate circuit, there is also a low-loss AC voltage coupling from the oscillating inverter 30 via a coupling capacitor C21, the diodes V12, V7 and the inductance L7 into the storage capacitance C5.

Der durch den Vorwiderstand oder eine Stromquelle Iq dem Glättungskondensator C5 zuführbare Strom ist ausreichend, um das IC31 und die Steuer- und Regelschaltung 17 im abgeschalteten Betrieb (SLEEP) zu versorgen.The current that can be supplied to the smoothing capacitor C5 through the series resistor or a current source I q is sufficient to supply the IC31 and the control and regulating circuit 17 in the switched-off mode (SLEEP).

Bei Betrieb des Wechselrichters reicht die über einen Kondensator C21 ausgekoppelte, über die genannten Bauteile V12,V7,L7 gleichgerichtete und über C5 geglätte lasteingekoppelte Versorgung aus. Diese Versorgungsspannungsgewinnung ist nahezu verlustfrei, da lediglich reaktive Elemente zur Strombegrenzung eingesetzt werden. Mittels der in den unteren Wechselrichter-Halbzweig des Transistors V21 eingeschalteten antiparallelen Dioden V14,V15 und dem diesen parallel geschalteten Widerstand R34 wird eine dem Zweigstrom Imax proportionales Spannungssignal UKap gewonnen. Dieses wird, wie die anderen Prozeßsignale dem Steuer- und Regelschaltkreis 17 zugeführt. Er kann hieraus die Stromrichtung des durch den Wechselrichter im Moment vor dem Öffnen von V21 fließenden Stromes feststellen. Ist dieser Strom negativ, so befindet sich der Lastkreis 40 des Wechselrichters 30 in einem unzulässigen kapazitiven Bereich. Er stellt hierbei eine Gefahr für den steuernden Wechselrichter dar. Neben der reinen Amplituden-Detektion kann auch eine Phasenlagen-Betrachtung herangezogen werden, bei der der Laststrom IL1 in Bezug zum Wechselrichter-Zweigstrom Imax gesetzt wird und hieraus die relative Phase beider Ströme zur Detektion des Betriebszustandes herangezogen wird.When the inverter is in operation, the supply, coupled out via a capacitor C21, rectified via the named components V12, V7, L7 and smoothly coupled in via C5, is sufficient. This supply voltage generation is almost loss-free since only reactive elements are used to limit the current. A voltage signal U Kap proportional to the branch current I max is obtained by means of the anti-parallel diodes V14, V15 connected in the lower inverter half-branch of the transistor V21 and the resistor R34 connected in parallel. Like the other process signals, this is fed to the control and regulating circuit 17. From this, he can determine the current direction of the current flowing through the inverter at the moment before V21 is opened. If this current is negative, the load circuit 40 of the inverter 30 is in an impermissible capacitive range. It represents a danger for the controlling inverter. In addition to the pure amplitude detection, one can also Phase position considerations are used, in which the load current I L1 is set in relation to the inverter branch current I max and from this the relative phase of both currents is used to detect the operating state.

Eine Erkennung eines unzulässigen kapazitiven Betriebsverhaltens wird von der Steuerschaltung 17 mit einer Erhöhung der Betriebsfrequenz f des Wechselrichters 30 beantwortet, womit der Lastkreis 40 wieder induktiv betrieben wird. Die vorgenannte kapazitive Betriebsweise tritt vorwiegend bei geringer Versorgungsspannung auf. Mit der Zweigstromerfassung kann ein Zerstören von Bauelementen sicher vermieden werden.Detection of an impermissible capacitive operating behavior is answered by the control circuit 17 by increasing the operating frequency f of the inverter 30, with which the load circuit 40 is again operated inductively. The above-mentioned capacitive mode of operation mainly occurs with a low supply voltage. With the branch current detection, destruction of components can be safely avoided.

Fig. 8 zeigt die Sende- und Empfangseinrichtung 10 sowie das ihr vorgeschaltete Koppelfilter, mit dem die Busankopplung zu der Steuerleitung 12 erfolgt. Der Digitalschnittstelle 10 sind in diesem Beispiel die Sollwerte für minimale-, maximale- und Notbeleuchtungshelligkeit (UNOT,UMIN,UMAX) vorgegeben. Weiterhin ist ein Digitaleingang DAT vorgesehen, über den sowohl die Steuersignale von einem zentralen Steuergerät zum dezentralen EVG gelangen, als auch die Fehlersignale von dem dezentralen EVG zu dem zentralen Steuergerät übermittelt werden. Das serielle Interface ermöglicht die Femsteuerung des elektronischen Vorschaltgerätes durch ein digitales Befehlssignal oder Befehlswort. Als solches digitales Signal ist ein 8 bit-Datenwort vorgesehen. Es wird von den beiden Kondensatoren C22,C23 differenziert, sodann um die Hälfte der Versorgungsspannung des Regelschaltkreises 17 bzw. des Sende- und Empfangsschaltkreises 10 potentialverschoben und dann über einen Dämpfungskondensator C12 dem Digitaleingang DAT der Schnittstelle 10 zugeführt. Hierdurch können sowohl die 50 Hz-Netzfrequenz unterdrückt, als auch die Eingangsströme jeder Schnittstelle geringgehalten werden. Fig. 8b zeigt eine weitere Ausgestaltung der Busankopplung. Hierbei sind die beiden Busleitungen 12 mit dem Dateneingang der Digitalschnittstelle induktiv gekoppelt. Werden EVGs mit dem in Fig. 8a dargestellten Koppelfilter an verschiedenen Phasen des Drehstromnetzes betrieben, können Ausgleichsströme fließen, die die Datenübertragung störend beeinflußen. Diese Ausgleichsströme können zwar in der Schaltung gemäß Fig. 8b ebenfalls fließen, sie heben sich allerdings auf, da keine primärseitige Masseverbindung existiert. Eine vorteilhafte Weiterbildung dieser Schaltung zeigt Fig. 8c. Durch die Verwendung einer Sekundärwicklung mit Mittelanzapfung wird die Schaltung verpolungssicher. Anwendbar ist auch eine optische Kopplung, jedoch weist diese einen erhöhten Stromverbrauch auf. 8 shows the transmitting and receiving device 10 and the coupling filter connected upstream of it, with which the bus coupling to the control line 12 takes place. In this example, the digital interface 10 is given the setpoints for minimum, maximum and emergency lighting brightness (U NOT , U MIN , U MAX ). Furthermore, a digital input DAT is provided, via which both the control signals arrive from a central control device to the decentralized ECG and the error signals are transmitted from the decentralized ECG to the central control device. The serial interface enables remote control of the electronic ballast by means of a digital command signal or command word. An 8 bit data word is provided as such a digital signal. It is differentiated by the two capacitors C22, C23, then potential-shifted by half the supply voltage of the control circuit 17 or of the transmit and receive circuit 10 and then fed to the digital input DAT of the interface 10 via a damping capacitor C12. This means that both the 50 Hz mains frequency can be suppressed and the input currents of each interface can be kept low. 8b shows a further embodiment of the bus coupling. Here, the two bus lines 12 are inductively coupled to the data input of the digital interface. If ECGs are operated with the coupling filter shown in Fig. 8a on different phases of the three-phase network, compensating currents can flow that interfere with the data transmission. Although these compensating currents can also flow in the circuit according to FIG. 8b, they cancel each other out because there is no ground connection on the primary side. An advantageous further development of this circuit is shown in FIG. 8c. The circuit is protected against polarity reversal by using a secondary winding with center tap. Optical coupling can also be used, but this has an increased power consumption.

Als Stellsignale werden 255 (entsprechend 8 bit) Helligkeitswerte vorgesehen. Auch das Steuersigal "AUS", dargestellt durch das binäre Wort "Null" ist möglich. Durch das vorgenannte Signal AUS versetzt sich das Gesamt-EVG sofort oder nach einer geringen Zeitspanne in einen stromsparenden Abschaltmodus (SLEEP). In ihm wird der Meßstromverbrauch des gesamten Vorschaltgerätes minimal. Der Wechselrichter 30 und die Ansteuerschaltung 31 werden stillgelegt und ggf. nach geringer weiterer Zeitverzögerung auch die wesentlichen Baugruppen des Steuer- und Regelschaltkreises 17. Lediglich die Empfangsschaltung der Sende- und Empfangseinrichtung 10 und die Überwachungsschaltung für die Erkennung eines Notbetriebes (NOT) bleiben aktiviert. Die Gesamtkreisleistung sinkt damit unter 1 W. Trifft jedoch in einem solchen Zustand ein neues Stellsignal ein, so nimmt die Steuer- und Regelschaltung 17 sofort die Einschaltsequenz vor, die mit Vorheizen und Zündvorgang (ZÜND) in den stationären Betrieb überleitet und dort wird für eine sofortige Einstellung des gewünschten Helligkeitswertes (DIMM) gesorgt.255 (corresponding to 8 bit) brightness values are provided as control signals. The control signal "OFF", represented by the binary word "zero" is also possible. With the aforementioned signal OFF, the entire ECG switches to an energy-saving shutdown mode (SLEEP) immediately or after a short period of time. In it, the measuring current consumption of the entire ballast is minimal. The inverter 30 and the control circuit 31 are shut down and, after a slight further time delay, if necessary, the essential assemblies of the control and regulating circuit 17. Only the receiving circuit of the transmitting and receiving device 10 and the monitoring circuit for the detection of an emergency operation (EMERGENCY) remain activated. The total circuit power thus drops below 1 W. However, if a new control signal arrives in such a state, the control and regulating circuit 17 immediately carries out the switch-on sequence which, with preheating and ignition process (IGNITION), transfers to steady-state operation and is used for one immediate setting of the desired brightness value (DIMM) is ensured.

Neben der Steuerung der Helligkeit und des Notbeleuchtungsmodus sowie des Abschalt-Modus (SLEEP-Mode) obliegt dem Steuer- und Regelschaltkreis 17 auch die Aufgabe, sämtlichen vorgenannten Prozeßgrößen die Informationen zu entnehmen, die zur Überwachung und Steuerung des EVG von Wichtigkeit sind.In addition to controlling the brightness and the emergency lighting mode and the switch-off mode (SLEEP mode), the control and regulating circuit 17 is also responsible for extracting the information from all of the aforementioned process variables which are important for monitoring and controlling the electronic ballast.

Dies sind die Spannungsüberwachung, die Notbetriebs-Aufrechterhaltung und die Überwachung der Leuchtstofflampen hinsichtlich Wendelbruch oder Gasdefekt. Auch werden durch die Meßgrößen die verschiedenen Betriebszustände der Leuchtstoffröhre, wie Zünden, Vorheizen und stationärer Betrieb unterscheidbar. Nachfolgend sollen die gemessenen und zur Überprüfung herangezogenen Prozeßgrößen zusammengefaßt werden:
Versorgungsspannung Uac, UN,
Unter-/Überspannung UNmin, UNmax,
Batteriespannung UB,
Zwischenkreisspannung UO,Udc,
Lampenstrom/Betriebsstrom IL1,IL2,
Lampenspannung UL1, UL2,
Ausgangsspannung UHF,
Ausgangsstrom IHF,
Wendelstrom IW1, IW2,
Wechselspannungsgenerator-Zweigstrom IKap.
These are voltage monitoring, emergency operation maintenance and monitoring of the fluorescent lamps with regard to filament breakage or gas defects. The various operating states of the fluorescent tube, such as ignition, preheating and stationary operation, can also be distinguished by the measured variables. The measured process variables and those used for checking are summarized below:
Supply voltage U ac , U N ,
Undervoltage / overvoltage U Nmin , U Nmax ,
Battery voltage U B ,
DC link voltage U O , U dc ,
Lamp current / operating current I L1 , I L2 ,
Lamp voltage U L1 , U L2 ,
Output voltage U HF ,
Output current I HF ,
Spiral current I W1 , I W2 ,
AC generator branch current I chap .

Anhand der aufgeführten Größen werden Überspannung und Unterspannung im Zwischenkreis und im Versorgungskreis erfaßt. Die Steuer- und Regelschaltung 17 schaltet dabei alle Funktionen ab, wenn die Spannung zu hoch wird, und kann erst wieder in Funktion gehen, wenn die Spannung einmal ab- und wieder zugesehaltet wurde.Overvoltage and undervoltage in the intermediate circuit and in the supply circuit are detected using the variables listed. The control and regulating circuit 17 switches off all functions when the voltage becomes too high, and can only function again when the voltage has been switched off and on again.

Das Auftreten von Unterspannung - welches zu einem gefährdenden kapazitiven Betrieb des Wechselrichters führt - wird damit beantwortet, daß die Ansteuerschaltung 31 gesperrt wird. Solange die Netzversorgung nicht die notwendige Spannung hat, um den Heizvorgang der Wendeln zu garantierten und den kapazitiven Betrieb zu vermeiden, nimmt die Steuer- und Regeleinrichtung 17 keine Zündung vor. Erst nach Überschreiten eines vorgebbaren Schwellenwertes wird der Zündvorgang ausgelöst. Dieses geschieht automatisch.The occurrence of undervoltage - which leads to dangerous capacitive operation of the inverter - is answered by the fact that the control circuit 31 is blocked. As long as the mains supply does not have the necessary voltage to guarantee the heating process of the coils and to avoid capacitive operation, the control and regulating device 17 does not ignite. The ignition process is only triggered after a predetermined threshold value has been exceeded. This happens automatically.

Eine Notbetriebsumschaltung auf eine vorgebbare Notbeleuchtungs-Helligkeit erfolgt beispielsweise dann, wenn über den üblichen Wechselspannungs-Versorgungseingang des Einschaltkreises 20 und über den Meßfühler R21,C25 (Fig. 4) eine Gleichspannung UN von dem Regelschaltkreis 17 erkannt wird. Hierzu dient eine Zähllogik, die bei Ausbleiben der Über- oder Unterschreitung eines vorgegebenen Schwellenwertes den Notbetrieb einleitet. Dies kann nach einer vorgebenen Totzeit geschehen, die einzelne, möglicherweise fehlende, Halbwellen, überbrückt.An emergency mode switchover to a predeterminable emergency lighting brightness takes place, for example, when a DC voltage U N is detected by the control circuit 17 via the usual AC supply input of the switch-on circuit 20 and via the sensors R21, C25 (FIG. 4). For this purpose, a counter logic is used, which initiates emergency operation if the specified threshold value is not exceeded or undershot. This can happen after a specified dead time that bridges individual, possibly missing, half-waves.

Fällt in einem Leuchtensystem die normal speisende Wechselspannung Uac, UN aus, so wird eine Notspannungsversorgung UB, die aus Batterien oder einem Generator gewonnen wird, auf die Netzspannungsleitung gelegt. Dies erkennen die EVGs automatisch.If the normally feeding AC voltage U ac , U N fails in a lighting system, an emergency voltage supply U B , which is obtained from batteries or a generator, is placed on the mains voltage line. The ECGs recognize this automatically.

Im Notbetrieb wird die Helligkeit der Leuchtstofflampen nicht mehr durch den digital vorgegebenen Helligkeitswert DIMM vorgegeben, sondern durch einen dezentral am Gerät vorgebbaren Trimmwert, der über den Eingang UNOT vorgebbar ist. Sollte sich das EVG beim Eintreten dieses Notbetriebes im Abschalt-Modus (SLEEP) befinden, d. h. Lampe und Wechselrichter abgeschaltet, so führt es zuerst den normalen Zündvorgang (ZÜND) durch, um nachher auf die Notbetriebshelligkeit zu stellen.In emergency mode, the brightness of the fluorescent lamps is no longer specified by the digitally specified brightness value DIMM, but by a trim value that can be specified locally on the device and can be specified via the input U NOT . If the ECG is in switch-off mode (SLEEP) when this emergency operation occurs, ie the lamp and inverter are switched off, it will first carry out the normal ignition process (IGNIT) in order to subsequently switch to the emergency operating brightness.

Bei erkanntem Ende des Notbetriebszustandes geht das EVG in den vorherigen Zustand zurück, dies kann der AUS-Zustand sein, wenn sich das EVG vorher dort befand. Dies kann jedoch auch der ursprüngliche Helligkeitswert (DIMM) sein, sofern dieser vor Anforderung des Notbetriebes vorlag.When the end of the emergency operating state is recognized, the electronic ballast returns to the previous state; this can be the OFF state if the electronic ballast was previously there. However, this can also be the original brightness value (DIMM), if this was available before requesting emergency operation.

Über die Erfassung des Wendelstromes erfolgt eine Erkennung, ob entweder eine Lampe nicht eingesetzt ist oder eine der beiden Wendeln gebrochen ist. In einem dieser Fehler-Fälle wird der Wechselrichter 30 an seiner maximalen Frequenz fmax betrieben, was einerseits einen nach wie vor fließenden Heizstrom zur Folge hat, wenn die defekte Lampe ausgetauscht worden ist und andererseits die Spannung an der defekten Lampe auf das kleinstmögliche Maß heruntersetzt. Dies ist zur Einhaltung der Sicherheitsbestimmung nach VDE wichtig. Der induktive Teil des Serienresonanzkreises im Ausgang wird bei der genannten hohen Frequenz fmax gegenüber dem kapazitiven Widerstand des Zündkondensators C17 so hoch, daß die Spannung am Ausgang auf ungefährliche Werte beschränkt wird und keine Gefahr für das Wartungspersonal besteht.The detection of the filament current detects whether either a lamp is not inserted or one of the two filaments is broken. In one of these error cases, the inverter 30 is operated at its maximum frequency f max , which on the one hand results in the heating current still flowing when the defective lamp has been replaced and on the other hand reduces the voltage on the defective lamp to the smallest possible extent . This is important to comply with the safety regulations according to VDE. The inductive part of the series resonance circuit in the output becomes so high at the above-mentioned high frequency f max with respect to the capacitive resistance of the ignition capacitor C17 that the voltage at the output is limited to harmless values and there is no danger for the maintenance personnel.

Bei Einsetzen einer funktionsfähigen Lampe wird ohne weitere Maßnahmen nach Abwarten der Vorheizdauer der Zündvorgang (ZÜND) eingeleitet.If a functional lamp is inserted, the ignition process (IGNITION) is initiated without waiting for the preheating time to elapse.

Die interne Ablaufsteuerung im Steuer- und Regelsehaltkreis 17 begrenzt weiterhin auch die Anzahl der Startversuche auf zwei und setzt (sendet) immer dann, wenn ein Fehlerfall vorliegt, wenn z. B. die Lampe fehlt, wenn ein Wendelbruch oder ein Gasdefekt vorliegt, ein Fehlersignal über die Sende- und Empfangseinrichtung 10 auf dem bidirektionalen Bus 12 ab. Dies gilt auch im Notbetrieb, da beim Defekt der Lampe der Notbetrieb nicht eingehalten werden kann.The internal sequence control in the control and regulating circuit 17 also limits the number of start attempts to two and sets (sends) whenever there is an error, e.g. B. the lamp is missing if a filament break or a gas defect is present, an error signal via the transmitting and receiving device 10 on the bidirectional bus 12. This also applies in emergency mode, since emergency mode cannot be maintained if the lamp is defective.

Verdrahtungsfehler, die zu einem Kurzschluß der Entladungsstrecke der Lampe führen, können aufgrund der Prozeßsignale dann erfaßt werden, wenn die Lampenspannungen auf einen vorgegebenen minimalen Wert hin überwacht werden. Dabei führt eine Unterschreitung dieses vorgegebenen Wertes, wie bei der Netzüberspannungs-Überwachung zu einem Abschalten des gesamten EVG.Wiring errors that lead to a short circuit in the discharge path of the lamp can then be detected on the basis of the process signals if the lamp voltages are monitored for a predetermined minimum value. If the value falls below this specified value, as in the case of the mains overvoltage monitoring, the entire ECG is switched off.

Auch die Zündunwilligkeit der Lampe, z. B. durch Gasdefekt, wird von dem Steuer-und Regelschaltkreis 17 erkannt. Wenn die Lampe innerhalb einer vorgegebenen Zündvorgabezeit nicht gezündet werden kann, d. h. wenn ein Abfallen der Spannung an dem Zündkondensator C17 innerhalb dieser Zeitspanne nicht eintritt, greift die genannte Sperre ein.Also the unwillingness to ignite the lamp, e.g. B. by gas defect, is recognized by the control and regulating circuit 17. If the lamp cannot be ignited within a predetermined ignition timing, i. H. if the voltage across the ignition capacitor C17 does not drop within this period, the said lock is activated.

Neben einem vollständigen Abschalten und einer Fehlermeldung kann auch eine Wiederholzeit abgewartet werden, nach der ein erneuter Zünd- und Starversuch unternommen wird. Wird auch hierbei kein Zünderfolg bewirkt, so reagiert die Steuer- und Regelschaltung 17 wie bei Heizwendelbruch und setzt die Frequenz des Wechselrichters 30 auf maximalen Wert fmax.In addition to a complete shutdown and an error message, you can also wait for a repeat time after which you have to try again to start and start again is undertaken. If no ignition success is achieved here either, the control and regulating circuit 17 reacts as in the case of a broken heating coil and sets the frequency of the inverter 30 to the maximum value f max .

Bei Austauschen der Lampe, was der Steuer- und Regelschaltkreis 17 an einem Ansteigen der Lampenspannung oder an einem Verändern des Heizwendelstromes erkennt, erfolgt nach Wiedereinsetzen einer neuen Lampe neuerlich ein Zündversuch.When the lamp is replaced, which the control and regulating circuit 17 recognizes by an increase in the lamp voltage or by a change in the heating coil current, an attempt is made to fire again after a new lamp is inserted.

Zur Helligkeitsregelung der Leuchtstofflampen sei folgendes erläutert. Es findet eine echte Helligkeitsregelung Anwendung, da diese lampentypunabhängig gleiche Lampenleistungen - bei im wesentlichen gleichem Lampenwirkungsgrad - gewährleistet. Die istwertbestimmenden Meßgrößen Lampenstrom, Lampenspannung werden multipliziert und analog oder digital mit den über die Sende- und Empfangseinrichtung 10 ferngesteuert vorgegebenen Sollwerten verglichen. Das Vergleichsergebnis steuert unmittelbar oder über einen Regler die Frequenz f des Wechselspannungsgenerators 30. Wird eine genauere Helligkeitsabstufung gewünscht, so kann eine logarithmische Sollwertanpassung erfolgen. Auf gleiche Weise kann eine exponentielle Istwertgewichtung durchgeführt werden. Neben der Lampentypunabhängigkeit wird auch eine Kompensation von Lampenalter, von der bestehenden Betriebstemperatur und auch von der möglicherweise schwankenden Netzspannung UN erreicht.The following is explained for the brightness control of the fluorescent lamps. A real brightness control is used, since this guarantees the same lamp outputs regardless of the lamp type - with essentially the same lamp efficiency. The measured values determining the actual value, lamp current and lamp voltage, are multiplied and compared in analog or digital form with the setpoints predetermined by remote control via the transmitting and receiving device 10. The comparison result controls the frequency f of the alternating voltage generator 30 directly or via a controller. If a more precise gradation of brightness is desired, a logarithmic setpoint adjustment can take place. Exponential actual value weighting can be carried out in the same way. In addition to the independence of the lamp type, compensation is also achieved for lamp age, the existing operating temperature and also the possibly fluctuating mains voltage U N.

Mit der prozeßsignalgesteuerten Betriebszustandsüberwachung wird es auch möglich, das Zünden der Lampen auf kleine Helligkeitswerte durchzuführen, wobei der normalerweise auftretende Lichtimpuls vermieden werden kann. Letzterer ist bedingt durch die sich im Ausgangskreis durch den Zündvorgang speichernde Energie, die dann nach Zünden schlagartig in die Lampe entladen wird. Zur Unterdrückung bzw. Beseitigung wird eine schnelle Zünderkennung - über die Änderung der Lampenbrennspannung UL1,UL2 - vorgesehen, sowie eine schnelle Reduktion des Lampenstroms nach dem Zünden ausgeführt. Letzteres durch augenblickliche Verschiebung der Wechselrichter-Ausgangsfrequenz in Richtung zu höheren Frequenzen hin. Hierdurch wird der Glimmbereich zwischen dem Zünden und der stationären Gasentladung künstlich verlängert. Hierdurch würde unter normalen Umständen eine Reduktion der Lampenlebensdauer auftreten. Dies wird gem. dem Ausführungsbeispiel jedoch vermieden, da die Verlängerung der Glimmphase nur für die kritischen niedrigen Helligkeitswerte eingesetzt wird. Für große Helligkeitswerte wird der Strom auf einem höheren Pegel gehalten, wodurch die Glimmphase verkürzt wird. Dies kann über digitale Steuerworte und die Sende- und Empfangseinrichtung 10 per Software eingestellt werden.With the process signal-controlled operating state monitoring, it is also possible to ignite the lamps to small brightness values, whereby the normally occurring light pulse can be avoided. The latter is due to the energy stored in the output circuit by the ignition process, which is then suddenly discharged into the lamp after ignition. For suppression or elimination, a quick ignition detection - by changing the lamp lamp voltage U L1 , U L2 - is provided, and a rapid reduction in the lamp current after ignition is carried out. The latter by instantly shifting the inverter output frequency towards higher frequencies. As a result, the glow area between the ignition and the stationary gas discharge is artificially extended. This would result in a reduction in lamp life under normal circumstances. This is according to the embodiment avoided, however, since the extension of the glow phase is used only for the critical low brightness values. For large brightness values, the current is kept at a higher level, which shortens the glow phase becomes. This can be set via digital control words and the transmitting and receiving device 10 via software.

In Fig. 9 ist ein Helligkeits-Zeitdiagramm dargestellt, in welchem die Helligkeit der von dem EVG gemäß Fig. 1 gesteuerten Lampe zeitabhängig variiert wird. Zunächst ist maximale Helligkeit vorgesehen, es folgt ein über die Busleitung 12 und die Digitalschnittstelle 10 vorgegebener Abschalt-Zyklus. Die Helligkeit wird gem. einer vorgegebenen Steigung bis auf Null reduziert, sodann schalten sich der Wechselrichter 30, seine Treiberschaltung 31 und wesentliche Teile des Steuer-ICs 17 zur Stromersparnis ab. Ein daraufhin folgender Notbeleuchtungs-Zustand führt - trotz abgeschaltetem System - zu einem gesteuerten Zünden sowie einem Aufbau der Helligkeit der Lampe auf die voreingestellte Notbeleuchtungshelligkeit (NOT). Diese ist über die Sollwert-Vorgabe UNOT für jedes dezentrale EVG veränderbar. Ebenso ist der in Fig. 9 eingezeichnete maximale und minimale Helligkeitswert (MIN,MAX) über eine entsprechende Sollwertvorgabe einstellbar oder abgleichbar. FIG. 9 shows a brightness-time diagram in which the brightness of the lamp controlled by the electronic ballast according to FIG. 1 is varied as a function of time. First, maximum brightness is provided, followed by a switch-off cycle specified via the bus line 12 and the digital interface 10. The brightness is acc. a predetermined slope reduced to zero, then the inverter 30, its driver circuit 31 and essential parts of the control IC 17 turn off to save electricity. A subsequent emergency lighting state leads - despite the system being switched off - to controlled ignition and a build-up of the brightness of the lamp to the preset emergency lighting brightness (EMERGENCY). This can be changed via the setpoint specification U NOT for each decentralized ECG. Likewise, the maximum and minimum brightness value (MIN, MAX) shown in FIG. 9 can be set or adjusted via a corresponding setpoint value.

In Fig.10 ist ein programmtechnisch gesteuerter "Softstart" als Helligkeits-Zeitdiagramm schematisch dargestellt. Das EVG 60 befindet sich zunächst in abgeschaltetem Zustand (AUS). Der Befehl "Softstart" führt nun entweder auf ein automatisches steigungsgeregeltes Ansteigen der Lampenhelligkeit - nach deren Zündung - oder zu einem programmgesteuerten inkrementalen Anwachsen der Lampenhelligkeitsstufen. Im letzteren Fall werden von dem zentralen Steuergerät 50 aus in bestimmten Zeitabschnitten inkremental wachsende Helligkeitswerte gesendet. Die dezentralen EVGs folgen den Anforderungen nahezu verzögerungslos. Hierdurch wird ein änderungsgeschwindigkeits-gesteuertes (geregeltes) Ansteigen und Abfallen der dezentralen Lichtquellen möglich.A program-controlled "soft start" is shown schematically in FIG. 10 as a brightness-time diagram. The ECG 60 is initially in the switched-off state (OFF). The "Softstart" command now leads either to an automatic, slope-controlled increase in lamp brightness - after it has been ignited - or to a program-controlled incremental increase in lamp brightness levels. In the latter case, the central control unit 50 sends incrementally increasing brightness values in certain time segments. The decentralized ECGs follow the requirements almost without delay. This enables a rate of change-controlled (regulated) rise and fall of the decentralized light sources.

Claims (7)

Elektronisches Vorschaltgerät für eine Gasentladungslampe mit
   einem Wechselspannungsgenerator (30, WR), dessen Frequenz steuerbar ist;
   einem an den Ausgang des Wechselspannungsgenerators (30) angeschlossenen Serienresonanzkreis (L2, C17), zu dessen Kondensator (C17) die Gasentladungslampe parallel geschaltet ist; und
   einem auf den Lampenstrom (IL1) ansprechenden Strommeßglied, gekennzeichnet durch
   mindestens einen Heizstromkreis für die Heizwendeln der Gasentladungslampe, der unabhängig vom Serienresonanzkreis (L2, C17) an den Wechselspannungsgenerator (30) angeschlossen ist, und
   ein mit dem Heizstromkreis verbundenen weiteren Strommeßglied zur Messung des Heizstroms.
Electronic ballast for a gas discharge lamp with
an AC voltage generator (30, WR) whose frequency is controllable;
a series resonance circuit (L2, C17) connected to the output of the AC voltage generator (30), to whose capacitor (C17) the gas discharge lamp is connected in parallel; and
a current measuring element responsive to the lamp current (I L1 ), characterized by
at least one heating circuit for the heating filaments of the gas discharge lamp, which is connected to the AC voltage generator (30) independently of the series resonance circuit (L2, C17), and
a further current measuring element connected to the heating circuit for measuring the heating current.
Elektronisches Vorschaltgerät nach Anspruch 1,
gekennzeichnet durch
einen Heizübertrager (L5) mit einer an den Wechselspannungsgenerator (30) angeschlossenen Primärwicklung und mit zwei Sekundärwicklungen, wobei jeweils eine Sekundärwicklung in jeweils einem Heizstromkreis angeordnet ist; und durch einen mit der Primärwicklung in Serie liegenden Widerstand (10), an dem eine dem Heizstrom (IW) proportionale Meßgröße abgreifbar ist.
Electronic ballast according to claim 1,
marked by
a heat exchanger (L5) with a primary winding connected to the AC voltage generator (30) and with two secondary windings, one secondary winding being arranged in each heating circuit; and by means of a resistor (10) in series with the primary winding, from which a measurement variable proportional to the heating current (I W ) can be tapped.
Elektronisches Vorschaltgerät nach Anspruch 2,
dadurch gekennzeichnet,
daß der Heizübertrager (L5) wechselstrommäßig parallel zu dem Kondensator (C17) des Serienresonanzkreises (L2, C17) angeordnet ist.
Electronic ballast according to claim 2,
characterized by
that the heat exchanger (L5) is arranged alternately in parallel with the capacitor (C17) of the series resonant circuit (L2, C17).
Elektronisches Vorschaltgerät nach Anspruch 3,
dadurch gekennzeichnet,
daß die Spule (L2) des Serienresonanzkreises zwischen dem Wechselspannungsgenerator (30) und der Primärwicklung des Heizübertragers (L5) in Serie angeordnet ist.
Electronic ballast according to claim 3,
characterized by
that the coil (L2) of the series resonant circuit between the AC voltage generator (30) and the primary winding of the heat exchanger (L5) is arranged in series.
Elektronisches Vorschaltgerät nach Anspruch 1,
dadurch gekennzeichnet,
daß der Lampenstrom (IL1) über einen Widerstand (R32) an Masse geführt ist, wobei eine dem Lampenstrom (IL1) proportionale Meßgröße am Widerstand (R32) abgreifbar ist.
Electronic ballast according to claim 1,
characterized,
that the lamp current (I L1 ) is led to ground via a resistor (R32), a measurement variable proportional to the lamp current (I L1 ) being able to be tapped at the resistor (R32).
Elektronisches Vorschaltgerät nach Anspruch 1,
gekennzeichnet durch
ein parallel zur Gasentladungslampe angeordnetes und zwei in Reihe geschaltete Widerstände (R27, R25) umfassendes Spannungsmeßglied, wobei zwischen den beiden Widerständen eine der Lampenspannung (UL1) proportionale Meßgröße abgreifbar ist.
Electronic ballast according to claim 1,
marked by
a voltage measuring element arranged parallel to the gas discharge lamp and comprising two resistors (R27, R25) connected in series, a measurement variable proportional to the lamp voltage (U L1 ) being able to be tapped between the two resistors.
Elektronisches Vorschaltgerät nach einem der Ansprüche 2 bis 6,
gekennzeichnet durch
eine Steuer- und Regeleinrichtung (17), der die jeweiligen Meßgrößen (IW, IL1, UL1) sowie vorgebbare Schwellenwerte zuführbar sind, wobei die Steuer- und Regeleinrichtung (17) die Frequenz des Wechselspannungsgenerators bei Erkennen eines Lampendefekts zum Frequenzmaximum verschiebt.
Electronic ballast according to one of claims 2 to 6,
marked by
a control and regulating device (17) to which the respective measured variables (I W , I L1 , U L1 ) and predeterminable threshold values can be supplied, the control and regulating device (17) shifting the frequency of the AC voltage generator to the frequency maximum when a lamp defect is detected.
EP91121151A 1990-12-07 1991-12-09 Control circuit for gasdischarge lamps Expired - Lifetime EP0490330B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4039161 1990-12-07
DE4039161A DE4039161C2 (en) 1990-12-07 1990-12-07 System for controlling the brightness and operating behavior of fluorescent lamps

Publications (2)

Publication Number Publication Date
EP0490330A1 true EP0490330A1 (en) 1992-06-17
EP0490330B1 EP0490330B1 (en) 1995-08-30

Family

ID=6419851

Family Applications (9)

Application Number Title Priority Date Filing Date
EP99126074A Expired - Lifetime EP0989786B1 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the behaviour of gas discharge lamps
EP95114571A Withdrawn EP0701390A3 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP91121150A Revoked EP0490329B1 (en) 1990-12-07 1991-12-09 System for controlling the light intensity and the behaviour of gas discharge lamps
EP95114670A Expired - Lifetime EP0701389B1 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP99126075A Ceased EP0989787A3 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the behaviour of gas discharge lamps
EP95114340A Withdrawn EP0688153A3 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the operating mode of discharge lamps
EP95114759A Withdrawn EP0706307A3 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP95114483A Withdrawn EP0689373A3 (en) 1990-12-07 1991-12-09 Circuits for controlling the light intensity and the operating mode of discharge lamps
EP91121151A Expired - Lifetime EP0490330B1 (en) 1990-12-07 1991-12-09 Control circuit for gasdischarge lamps

Family Applications Before (8)

Application Number Title Priority Date Filing Date
EP99126074A Expired - Lifetime EP0989786B1 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the behaviour of gas discharge lamps
EP95114571A Withdrawn EP0701390A3 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP91121150A Revoked EP0490329B1 (en) 1990-12-07 1991-12-09 System for controlling the light intensity and the behaviour of gas discharge lamps
EP95114670A Expired - Lifetime EP0701389B1 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP99126075A Ceased EP0989787A3 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the behaviour of gas discharge lamps
EP95114340A Withdrawn EP0688153A3 (en) 1990-12-07 1991-12-09 Process and circuit for controlling the light intensity and the operating mode of discharge lamps
EP95114759A Withdrawn EP0706307A3 (en) 1990-12-07 1991-12-09 Circuit for controlling the light intensity and the operating mode of discharge lamps
EP95114483A Withdrawn EP0689373A3 (en) 1990-12-07 1991-12-09 Circuits for controlling the light intensity and the operating mode of discharge lamps

Country Status (6)

Country Link
EP (9) EP0989786B1 (en)
AT (4) ATE137078T1 (en)
DE (5) DE4039161C2 (en)
ES (1) ES2087222T3 (en)
FI (1) FI117464B (en)
NO (1) NO300750B1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589081A1 (en) * 1992-09-24 1994-03-30 Knobel Ag Lichttechnische Komponenten Circuit for operating a fluorescent lamp with a current measuring circuit
EP0617567A1 (en) * 1993-03-26 1994-09-28 Toshiba Lighting & Technology Corporation Ballast for discharge lamp with improved crest factor
EP0658071A1 (en) * 1993-12-13 1995-06-14 Koninklijke Philips Electronics N.V. Balancing ballast for two lamps in parallel
EP0722263A1 (en) * 1995-01-13 1996-07-17 Siemens Aktiengesellschaft Preheating circuit for the cathodes of a fluorescent lamp
EP0769889A1 (en) * 1995-10-20 1997-04-23 Koninklijke Philips Electronics N.V. Circuit arrangement
US5691604A (en) * 1994-11-24 1997-11-25 Oy Helvar Method and circuit system for controlling a lighting electronics appliance
WO1999053731A1 (en) * 1998-04-15 1999-10-21 Electro-Mag International, Inc. Ballast instant start circuit
DE10127135B4 (en) * 2001-06-02 2006-07-06 Insta Elektro Gmbh Dimmable electronic ballast
EP1901591A1 (en) * 2006-09-13 2008-03-19 TridonicAtco GmbH & Co. KG Ignition of gas discharge lamps in variable ambient conditions
WO2008116496A1 (en) * 2007-03-27 2008-10-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Operating device and lighting system for low-pressure discharge lamps having temperature-dependant power return control
DE19501695B4 (en) * 1994-10-13 2008-10-02 Tridonicatco Gmbh & Co. Kg Ballast for at least one gas discharge lamp with preheatable lamp filaments
WO2016041567A1 (en) * 2014-09-17 2016-03-24 Cooper Crouse-Hinds Gmbh Electronic ballast and method for controlling a load

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5287040A (en) * 1992-07-06 1994-02-15 Lestician Ballast, Inc. Variable control, current sensing ballast
DE4330114B4 (en) * 1992-11-24 2004-05-06 Tridonicatco Gmbh & Co. Kg Circuit arrangement for controlling a plurality of consumers, in particular ballast for lamps
EP0671088B1 (en) * 1992-11-24 1997-03-05 Tridonic Bauelemente GmbH Circuit arrangement for controlling a plurality of users, especially lamp ballasts
DE4245092B4 (en) * 1992-12-23 2012-07-26 Tridonic Gmbh & Co Kg Starter circuit for use with parallel driven gas-discharge lighting units - has inverter coupled to series resonance circuit with transformer having symmetrical windings coupled to lamps
DE4243955B4 (en) * 1992-12-23 2010-11-18 Tridonicatco Gmbh & Co. Kg Ballast for at least one parallel-operated pair of gas discharge lamps
AT499U1 (en) * 1992-12-23 1995-11-27 Tridonic Bauelemente CIRCUIT FOR THE POWER SUPPLY AND BRIGHTNESS CONTROL OF A LOW-VOLTAGE HALOGEN LAMP
DE4330942C2 (en) * 1993-09-08 1997-05-22 Smi Syst Microelect Innovat Method for detecting a defective fluorescent lamp when operating with a higher frequency voltage
JP2745379B2 (en) * 1994-02-24 1998-04-28 株式会社遠藤照明 Fluorescent lighting dimming system
DE4421736C2 (en) * 1994-06-22 1998-06-18 Wolfgang Nuetzel Controllable lighting system
DE4425890A1 (en) * 1994-07-11 1996-01-18 Priamos Licht Ind & Dienstleis Circuit arrangement for driving a discharge lamp
US5656891A (en) * 1994-10-13 1997-08-12 Tridonic Bauelemente Gmbh Gas discharge lamp ballast with heating control circuit and method of operating same
US5633564A (en) * 1995-06-01 1997-05-27 Edwards; M. Larry Modular uninterruptible lighting system
EP0773708A1 (en) * 1995-11-09 1997-05-14 MAGNETEK S.p.A. Adaptor for electrical equipment with incorporated controller
GB2307321A (en) * 1995-11-15 1997-05-21 Delmatic Ltd Failed light detector
DE29617553U1 (en) * 1996-10-09 1997-01-02 Gövert, Ulrich, 48167 Münster Circuit for touch dimmer
DE19705985A1 (en) * 1997-02-17 1998-07-02 Bosch Gmbh Robert Arrangement for operating and controlling gas-discharge lamps esp high-pressure type in motor vehicle
US6094016A (en) * 1997-03-04 2000-07-25 Tridonic Bauelemente Gmbh Electronic ballast
DE29724657U1 (en) * 1997-03-04 2002-09-05 TridonicAtco GmbH &amp; Co. KG, Dornbirn Electronic ballast
DE19708791C5 (en) * 1997-03-04 2004-12-30 Tridonicatco Gmbh & Co. Kg Control circuit and electronic ballast with such a control circuit
DE19708792A1 (en) * 1997-03-04 1998-09-10 Tridonic Bauelemente Method and device for detecting the rectification effect occurring in a gas discharge lamp
DE19715028B4 (en) * 1997-04-11 2008-07-03 Insta Elektro Gmbh Bus-capable dimmers, electronic transformers and ballasts for brightness control of luminaires
US20030133292A1 (en) 1999-11-18 2003-07-17 Mueller George G. Methods and apparatus for generating and modulating white light illumination conditions
US7161313B2 (en) 1997-08-26 2007-01-09 Color Kinetics Incorporated Light emitting diode based products
EP0903966B1 (en) * 1997-09-18 2003-04-16 CEAG Sicherheitstechnik GmbH Lighting system
DE59711003D1 (en) * 1997-09-18 2003-12-18 Ceag Sicherheitstechnik Gmbh lighting system
DE19748007A1 (en) * 1997-10-30 1999-05-12 Tridonic Bauelemente Interface for a lamp control gear
US6157093A (en) * 1999-09-27 2000-12-05 Philips Electronics North America Corporation Modular master-slave power supply controller
US20020176259A1 (en) 1999-11-18 2002-11-28 Ducharme Alfred D. Systems and methods for converting illumination
DE10006408A1 (en) * 2000-02-14 2001-08-16 Zumtobel Staff Gmbh Lighting system
DE10011306A1 (en) 2000-03-10 2001-09-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Device for controlling light sources with ballast
DE10013279A1 (en) * 2000-03-17 2001-09-27 Trilux Lenze Gmbh & Co Kg Monitoring input voltage of electronic voltage adapter for fluorescent lamp involves controlling adapter according to amplitude and/or type of input voltage
DE10049842A1 (en) 2000-10-09 2002-04-11 Tridonic Bauelemente Operating circuit for gas discharge lamps, has additional DC supply line for each gas discharge lamp for preventing unwanted lamp extinction
DE10052826A1 (en) * 2000-10-24 2002-04-25 Wittenstein Gmbh & Co Kg Circuit for triggering two or more electrical consumers, has receiver coil unit for supplying an AC voltage to the circuit and consumer paths each connecting in parallel to the receiver coil unit.
WO2002067636A1 (en) * 2001-02-20 2002-08-29 Noontek Limited A digital lamp controller for low frequency operation
DE10145766A1 (en) * 2001-09-17 2003-04-03 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Device and method for preheating the filament electrodes of a fluorescent lamp
DE10163957A1 (en) * 2001-12-23 2003-07-03 Der Kluth Decke Und Licht Gmbh Electronic voltage adapter for light sources is able to be connected to more than two light sources, especially fluorescent tubes, has rectifier connected to several high frequency generators
DE10206731B4 (en) * 2002-02-18 2016-12-22 Tridonic Gmbh & Co Kg Lamp sensor for a ballast for operating a gas discharge lamp
CN1910966A (en) * 2004-01-20 2007-02-07 皇家飞利浦电子股份有限公司 Electronic ballast with multi-slope current feedback
US7619539B2 (en) 2004-02-13 2009-11-17 Lutron Electronics Co., Inc. Multiple-input electronic ballast with processor
ITVI20040062A1 (en) * 2004-03-19 2004-06-19 Beghelli Spa INTEGRATED SYSTEM OF DIAGNOSIS AND MANAGEMENT OF FLUORESCENT LAMPS
DE102004040947A1 (en) * 2004-07-23 2006-03-16 Tridonicatco Gmbh & Co. Kg Interface circuit for the transmission of digital signals
CN101002507B (en) * 2004-07-23 2015-07-01 三多尼克爱特克两合股份有限公司 Interface circuit for transmission of digital signals
US7245224B2 (en) * 2004-08-13 2007-07-17 Dell Products Lp Methods and systems for diagnosing projection device failure
DE102004051162B4 (en) * 2004-10-20 2019-07-18 Tridonic Gmbh & Co Kg Modulation of a PFC in DC mode
US7369060B2 (en) 2004-12-14 2008-05-06 Lutron Electronics Co., Inc. Distributed intelligence ballast system and extended lighting control protocol
DE102005018763A1 (en) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Operating devices with evaluation of the lamp temperature during lamp control
DE102005018775A1 (en) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Electronic ballast for e.g. fluorescent lamp, has microcontroller assigned to intermediate circuit voltage regulator, where external instructions are applied to microcontroller, and properties of regulator depend on external instructions
DE102005018774A1 (en) * 2005-04-22 2006-10-26 Tridonicatco Gmbh & Co. Kg Adjustable digital lamp power control
DE102005045618B4 (en) 2005-09-23 2019-02-07 Osram Gmbh Emergency power light with an electronic ballast for the control of an emergency power source, as well as emergency power system with such emergency lights
EP2080423A1 (en) * 2006-11-07 2009-07-22 Pantec Engineering AG Method for operating a uv lamp
EP2088837B1 (en) 2008-02-04 2011-06-01 Uviterno AG Method for operating a UV lamp
CN101603648B (en) * 2008-06-10 2012-05-30 矽诚科技股份有限公司 Parallel type single-line addressing lighting device
CN101640967B (en) * 2008-07-30 2013-01-02 普诚科技股份有限公司 Drive circuit, dimming circuit and dimming method for fluorescent lamp
DE102008056814A1 (en) * 2008-11-11 2010-05-27 HÜCO Lightronic GmbH Electronic ballast, lighting device and method of operation of same
DE102010039154A1 (en) 2010-08-10 2012-02-16 Tridonic Gmbh & Co. Kg Modulation of a PFC in DC mode
EP2468746A1 (en) 2010-12-23 2012-06-27 The University of Queensland Benzothiazinone compounds and their use as anti-tuberculosis agents
DE102013107872B3 (en) * 2013-08-07 2014-12-11 Vossloh-Schwabe Deutschland Gmbh Device and method for operating a lamp arrangement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059064B1 (en) * 1981-02-21 1985-10-02 THORN EMI plc Lamp driver circuits
GB2212995A (en) * 1987-10-23 1989-08-02 Rockwell International Corp Fluorescent lamp dimmer
EP0338109A1 (en) * 1988-04-20 1989-10-25 Zumtobel Aktiengesellschaft Converter for a discharge lamp
EP0391360A1 (en) * 1989-04-03 1990-10-10 Zumtobel Aktiengesellschaft Ballast for a direct heated discharge lamp
EP0422594A1 (en) * 1989-10-12 1991-04-17 Honeywell Inc. Alternating cathode fluorescent lamp dimmer

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2747173B2 (en) * 1977-10-20 1979-11-15 Praezisa Industrieelektronik Gmbh, 4300 Essen Emergency light with luminous flux control
FR2417876A1 (en) * 1978-02-16 1979-09-14 Aglo Sa Control circuit for standby lighting - has capacitor discharged via transistor and resistor for connecting battery supply in case of mains supply fault
DE3025249A1 (en) * 1980-07-03 1982-01-28 Helmut Ulrich Apparatebau, 8000 München Brightness control circuit for fluorescent lamps - has controllable shunt, parallel to lamp discharge path, and in series with heating electrode
US4346332A (en) * 1980-08-14 1982-08-24 General Electric Company Frequency shift inverter for variable power control
US4396872A (en) * 1981-03-30 1983-08-02 General Mills, Inc. Ballast circuit and method for optimizing the operation of high intensity discharge lamps in the growing of plants
US4484190A (en) * 1981-05-26 1984-11-20 General Electric Company System for load output level control
US4695769A (en) * 1981-11-27 1987-09-22 Wide-Lite International Logarithmic-to-linear photocontrol apparatus for a lighting system
AU564304B2 (en) * 1982-01-15 1987-08-06 Minitronics Pty. Limited Electronic high frequency controlled device for operating gasdischarge lamps
US4441054A (en) * 1982-04-12 1984-04-03 Gte Products Corporation Stabilized dimming circuit for lamp ballasts
FI65524C (en) * 1982-04-21 1984-05-10 Helvar Oy FOER REFRIGERATION FOER MATNING AVERAGE REQUIREMENTS FOR FLUORESCENT LAMPS
US4523128A (en) * 1982-12-10 1985-06-11 Honeywell Inc. Remote control of dimmable electronic gas discharge lamp ballasts
DE3524681A1 (en) * 1985-07-11 1987-01-22 Trilux Lenze Gmbh & Co Kg DIMMER SWITCH FOR AN ELECTRONIC FLUORESCENT LAMP CONTROLLER
US4704563A (en) * 1986-05-09 1987-11-03 General Electric Company Fluorescent lamp operating circuit
US4870327A (en) * 1987-07-27 1989-09-26 Avtech Corporation High frequency, electronic fluorescent lamp ballast
DE3729383A1 (en) * 1987-09-03 1989-03-16 Philips Patentverwaltung CIRCUIT ARRANGEMENT FOR STARTING A HIGH-PRESSURE DISCHARGE LAMP
US4904905A (en) * 1988-08-05 1990-02-27 American Sterilizer Company Dual resonant frequency arc lamp power supply
NL8900703A (en) * 1989-03-22 1990-10-16 Nedap Nv HIGH-FREQUENT BALLAST.
FI903403A0 (en) * 1989-07-10 1990-07-05 Philips Corp KRETTSSAMMANSTAELLNING.
NL8902811A (en) * 1989-11-14 1991-06-03 Arkalite B V Lighting system with multiple lamps and supplies - has addressed control modules for remote control of each lamp
US5099176A (en) * 1990-04-06 1992-03-24 North American Philips Corporation Fluorescent lamp ballast operable from two different power supplies
DE4021131A1 (en) * 1990-07-03 1992-01-09 Zumtobel Ag CIRCUIT ARRANGEMENT AND METHOD FOR APPROACHING A NON-LINEAR TRANSMISSION FUNCTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0059064B1 (en) * 1981-02-21 1985-10-02 THORN EMI plc Lamp driver circuits
GB2212995A (en) * 1987-10-23 1989-08-02 Rockwell International Corp Fluorescent lamp dimmer
EP0338109A1 (en) * 1988-04-20 1989-10-25 Zumtobel Aktiengesellschaft Converter for a discharge lamp
EP0391360A1 (en) * 1989-04-03 1990-10-10 Zumtobel Aktiengesellschaft Ballast for a direct heated discharge lamp
EP0422594A1 (en) * 1989-10-12 1991-04-17 Honeywell Inc. Alternating cathode fluorescent lamp dimmer

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589081A1 (en) * 1992-09-24 1994-03-30 Knobel Ag Lichttechnische Komponenten Circuit for operating a fluorescent lamp with a current measuring circuit
US5504399A (en) * 1992-09-24 1996-04-02 Knobel Ag Lichttechnische Komponenten Electrical circuit for operating a fluorescent lamp and for measuring the lamp current
EP0617567A1 (en) * 1993-03-26 1994-09-28 Toshiba Lighting & Technology Corporation Ballast for discharge lamp with improved crest factor
EP0658071A1 (en) * 1993-12-13 1995-06-14 Koninklijke Philips Electronics N.V. Balancing ballast for two lamps in parallel
BE1007869A3 (en) * 1993-12-13 1995-11-07 Koninkl Philips Electronics Nv Shifting.
DE19501695B4 (en) * 1994-10-13 2008-10-02 Tridonicatco Gmbh & Co. Kg Ballast for at least one gas discharge lamp with preheatable lamp filaments
US5691604A (en) * 1994-11-24 1997-11-25 Oy Helvar Method and circuit system for controlling a lighting electronics appliance
EP0722263A1 (en) * 1995-01-13 1996-07-17 Siemens Aktiengesellschaft Preheating circuit for the cathodes of a fluorescent lamp
BE1009717A3 (en) * 1995-10-20 1997-07-01 Philips Electronics Nv Shifting.
EP0769889A1 (en) * 1995-10-20 1997-04-23 Koninklijke Philips Electronics N.V. Circuit arrangement
WO1999053731A1 (en) * 1998-04-15 1999-10-21 Electro-Mag International, Inc. Ballast instant start circuit
US6069455A (en) * 1998-04-15 2000-05-30 Electro-Mag International, Inc. Ballast having a selectively resonant circuit
US6236168B1 (en) 1998-04-15 2001-05-22 Electro-Mag International, Inc. Ballast instant start circuit
DE10127135B4 (en) * 2001-06-02 2006-07-06 Insta Elektro Gmbh Dimmable electronic ballast
EP1901591A1 (en) * 2006-09-13 2008-03-19 TridonicAtco GmbH & Co. KG Ignition of gas discharge lamps in variable ambient conditions
WO2008116496A1 (en) * 2007-03-27 2008-10-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Operating device and lighting system for low-pressure discharge lamps having temperature-dependant power return control
WO2016041567A1 (en) * 2014-09-17 2016-03-24 Cooper Crouse-Hinds Gmbh Electronic ballast and method for controlling a load
US10154563B2 (en) 2014-09-17 2018-12-11 Eaton Protection Systems Ip Gmbh & Co. Kg Electronic ballast and method for controlling a load

Also Published As

Publication number Publication date
EP0989786A2 (en) 2000-03-29
EP0689373A2 (en) 1995-12-27
ATE137078T1 (en) 1996-05-15
EP0989787A2 (en) 2000-03-29
DE59109260D1 (en) 2004-04-29
FI117464B (en) 2006-10-13
DE59106372D1 (en) 1995-10-05
EP0989787A3 (en) 2000-05-24
ES2087222T3 (en) 1996-07-16
ATE127312T1 (en) 1995-09-15
FI915757A (en) 1992-06-08
DE4039161C2 (en) 2001-05-31
EP0701390A2 (en) 1996-03-13
FI915757A0 (en) 1991-12-05
EP0989786A3 (en) 2000-08-23
DE59107686D1 (en) 1996-05-23
DE4039161A1 (en) 1992-06-11
EP0706307A2 (en) 1996-04-10
NO300750B1 (en) 1997-07-14
ATE262774T1 (en) 2004-04-15
EP0688153A2 (en) 1995-12-20
EP0688153A3 (en) 1997-02-26
EP0701389B1 (en) 2002-04-03
DE59109232D1 (en) 2002-05-08
EP0701390A3 (en) 1996-06-05
EP0706307A3 (en) 1996-07-10
EP0701389A2 (en) 1996-03-13
EP0490329B1 (en) 1996-04-17
ATE215770T1 (en) 2002-04-15
NO914820L (en) 1992-06-09
EP0490330B1 (en) 1995-08-30
NO914820D0 (en) 1991-12-06
EP0689373A3 (en) 1997-05-07
EP0989786B1 (en) 2004-03-24
EP0490329A1 (en) 1992-06-17
EP0701389A3 (en) 1998-08-26

Similar Documents

Publication Publication Date Title
EP0490330B1 (en) Control circuit for gasdischarge lamps
EP0338109B1 (en) Converter for a discharge lamp
EP1103165B1 (en) Electronic ballast for at least one low-pressure discharge lamp
EP0422255B1 (en) Electronic ballast
DE69019862T2 (en) Arrangement for supplying a discharge lamp.
EP0669789B1 (en) Circuit for operating at least one low-pressure discharge lamp
EP0801881B1 (en) Method of operating at least one fluorescent lamp with electronic ballast, and ballast therefor
EP0264765A2 (en) Circuit arrangement for operating low-voltage halogen incandescent lamps
EP0707438A2 (en) Ballast for at least one discharge lamp
EP0957662B1 (en) Circuit arrangement for operating electric lamps
DE69120846T2 (en) Fluorescent ballast powered by two different power supplies
DE3829388A1 (en) CIRCUIT ARRANGEMENT FOR OPERATING A LOAD
EP0439240B1 (en) Electronic ballast
AT517946B1 (en) PROCESS, OPERATING DEVICE AND LIGHTING SYSTEM
DE3235197C2 (en)
EP2208403B1 (en) Operating device for controlling the warm-up time of a lamp
EP0862844B1 (en) Electronic transformer
EP1635620B1 (en) Electronic ballast with charge pump for discharge lamps with pre-heated electrodes
DE3910738A1 (en) CONTROL UNIT FOR A DIRECTLY HEATED DISCHARGE LAMP
EP1860925B1 (en) Electronic lamp cut-in unit with heater switch
DE102011000441B4 (en) Operating control device and method for dimming a lamp via the supply voltage and the voltage frequency
DE10112115A1 (en) Dimmer adapter device for gas discharge lamps, especially fluorescent lamps, has heating branch connected to a.c. source to supply electrode heating, voltage limiter in heating branch
EP0165893A2 (en) Brightness control device for a fluorescent lamp
DE19501695A1 (en) Starter or ballast circuit for operation of electrical gas-discharge lamp - has electrodes of lamp coupled to series-coupled inverter switches and to output of transformer-based heating circuit.
DE102012215786A1 (en) Circuit arrangement for operating LED, has first rectifier whose output rectifies output of second rectifier, and ignition simulation device connected with LED, where first rectifier whose input is coupled between connection poles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19920708

17Q First examination report despatched

Effective date: 19940415

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19950830

Ref country code: DK

Effective date: 19950830

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950830

REF Corresponds to:

Ref document number: 127312

Country of ref document: AT

Date of ref document: 19950915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59106372

Country of ref document: DE

Date of ref document: 19951005

ITF It: translation for a ep patent filed
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19951231

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951208

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: TRIDONIC BAUELEMENTE GMBH

Free format text: TRIDONIC BAUELEMENTE GMBH#SCHMELZHUETTERSTRASSE 34#DORNBIRN (AT) -TRANSFER TO- TRIDONIC BAUELEMENTE GMBH#SCHMELZHUETTERSTRASSE 34#DORNBIRN (AT)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110107

Year of fee payment: 20

Ref country code: AT

Payment date: 20101220

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101223

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 20

Ref country code: SE

Payment date: 20101221

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110225

Year of fee payment: 20

Ref country code: NL

Payment date: 20110208

Year of fee payment: 20

Ref country code: IT

Payment date: 20101229

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106372

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59106372

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20111209

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20111208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111209

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111208

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 127312

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20111210