[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0470416A2 - Gleisstromkreis mit Kreuzkorrelation - Google Patents

Gleisstromkreis mit Kreuzkorrelation Download PDF

Info

Publication number
EP0470416A2
EP0470416A2 EP19910112161 EP91112161A EP0470416A2 EP 0470416 A2 EP0470416 A2 EP 0470416A2 EP 19910112161 EP19910112161 EP 19910112161 EP 91112161 A EP91112161 A EP 91112161A EP 0470416 A2 EP0470416 A2 EP 0470416A2
Authority
EP
European Patent Office
Prior art keywords
track
track circuit
signal
transmitter
read
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19910112161
Other languages
English (en)
French (fr)
Other versions
EP0470416B1 (de
EP0470416A3 (en
Inventor
Helmut Uebel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent Deutschland AG
Original Assignee
Alcatel SEL AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SEL AG filed Critical Alcatel SEL AG
Publication of EP0470416A2 publication Critical patent/EP0470416A2/de
Publication of EP0470416A3 publication Critical patent/EP0470416A3/de
Application granted granted Critical
Publication of EP0470416B1 publication Critical patent/EP0470416B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L1/00Devices along the route controlled by interaction with the vehicle or train
    • B61L1/18Railway track circuits
    • B61L1/181Details
    • B61L1/188Use of coded current

Definitions

  • the invention relates to a track circuit according to the preamble of claim 1.
  • Such a track circuit is known from an essay by D. Poole and D. Barker with the title “Digitally coded track circuit", the content of which at the international conference "Electric Railway Systems for a New Century", which took place from September 22nd to 25th 1987, was held in London, England, and was also printed as conference paper (IEE, London, England, 1987, pp xii + 400.).
  • a correlation of the modulation signal obtained on the receiver side with a target signal known to the track circuit receiver and modulated on the track current on the transmitter side is carried out here.
  • So-called gold codes which have particularly well-defined autocorrelation properties, are used as modulation signals.
  • Such a track circuit is also known from "Signal + Draht" 81 (1989) Issue 7/8, pages 158 ff.
  • a code comparator is used to compare the modulation signal obtained on the receiver side with a target code used for modulation in the track current circuit transmitter.
  • the known track circuits are complex due to the components required for filtering and demodulation and are not drift-free due to the use of analog techniques.
  • the invention has for its object to provide a track circuit of the type mentioned that does not require special filters and demodulators and works without drift.
  • the track circuit according to the invention no longer requires filter components, since the cross-correlation itself has an excellent filter effect. Only those signal components of the track voltage contribute to the value of the cross-correlation function which, over time, correspond to the reference voltage synchronous with the modulated output voltage of the track circuit transmitter.
  • the track circuit receiver knows the output voltage of the track circuit transmitter can, for example, as stated in claim 2, be ensured by a direct supply of this output voltage to the track circuit receiver, which is particularly useful when the track circuit transmitter and track circuit receiver are housed in the same subrack.
  • a further development of the invention is specified in claim 3 and provides for the output of the finished modulated track circuit end signal from a pre-programmed read-only memory. This saves a special modulator for modulating a track current carrier signal. Since the track current circuit end signal is available here in digital form, it does not represent a major effort to transmit it in digital form as a reference signal to the receiver. The transmission is thus less susceptible to interference. A special A / D conversion in the track circuit receiver with digitally working correlator is not necessary.
  • An embodiment of the invention reproduced in claim 4 relates to the conversion of the track current circuit end signal stored in digital form into a control signal for a track current source.
  • patent claim 7, which refers back to patent claims 5 and 6, provides for the generation of the reference voltage required by the correlator in the track circuit receiver with the aid of a read-only memory which is preprogrammed in the same way as the read-only memory of the track circuit transmitter and with a reading frequency of the track circuit transmitter which is the same frequency Clock is read out.
  • This eliminates the need for a transmission line between the track circuit transmitter and the track circuit receiver. The latter is particularly advantageous when the track circuit transmitter and the track circuit receiver are to be accommodated in a spatially separate manner.
  • Claim 8 relates to a possibility of distinguishing a busy message due to real occupancy of the track circuit from a busy message due to a fault (e.g. overloading of the track circuit receiver input when the loop is interrupted).
  • a development of the invention specified in claim 9 relates to simplification in the direct transmission of a reference signal from the track circuit transmitter to the track circuit receiver.
  • Claim 10 finally, relates to the use of a computer for performing the correlator function and evaluating the correlator output voltage.
  • FIG. 1 shows a track GL, the rails SCH of which are electrically connected to one another by two rail connectors (so-called S connectors) SV1 and SV2.
  • the rail connectors are short-circuits, which firstly allow the drive reverse current to be equalized between the two rails and secondly form electrical isolating joints that each separate two adjacent track circuits.
  • a track section GA lying between the two rail connectors SV1 and SV2 is secured by a track circuit. It is fed at a feed point ES by a track current circuit transmitter S via a first coupling loop KS1, which is inductively coupled to the rails and the rail connector SV1, with a modulated track current.
  • the track current flows via the rail connector SV2 located at an exit point AS and induces a track voltage in a second coupling loop KS2 which is inductively coupled to the rail connector SV2 and the rails and is evaluated by a track circuit receiver E.
  • Further coupling loops KS3, KS4 shown in FIG. 1 belong to neighboring track circuits.
  • a signal line L connects the track current circuit transmitter S and the track circuit receiver E to one another and is used for the transmission of synchronization signals or code selection signals.
  • a direct feed-in and feed-out or a direct feed-in with inductive coupling-out can also be provided. The latter is e.g. common in middle-fed double track circuits.
  • the track circuit receiver E then outputs a track clear signal via a track clear signal channel GF to an interlocking SW if the track voltage picked up via the coupling loop KS2 exceeds a predetermined threshold value and additionally has the modulation impressed on the track current by the track current circuit transmitter. If the track circuit is short-circuited by axles of a vehicle, the track voltage drops below the threshold value and a busy message is output to the signal box via a track occupancy signaling channel GB.
  • the track circuit shown schematically in Fig. 1 and implemented in a known manner contains a large number of components, e.g. Tuning modules and input filters that ensure the selective reception of the track current frequency and other frequencies, e.g. filter out the different track current frequencies of the neighboring tracks.
  • the tuning modules and input filters must be specially designed for each track current frequency and individually adapted to each track circuit.
  • a track circuit transmitter is shown schematically how it can be used in a track circuit according to the invention.
  • transmission signal sequences are stored in advance in the form of a sequence of bytes in a programmable read-only memory PLC. Each byte contained in the memory specifies a very specific amplitude value of the transmission signal.
  • a clock generator TG controls two counters Z1 and Z2, the counter Z2 directly and the counter Z1 via a divider TL.
  • the counter Z1 outputs a sequence of addresses of the bytes stored in the read-only memory and thus ensures that a corresponding sequence of bytes is output on the adjustable counter Z2.
  • This sequence of bytes if it is dense enough, e.g. 10 bytes per carrier period already represents the finished (modulated) transmission signal, which, repeated cyclically, only needs to be converted into an analog signal and amplified by a low-pass filter in order to be fed into the track GL.
  • the counter Z2 takes care of the D / A conversion if it is preset in parallel by each byte read in and is clocked back by the fast clock of the clock generator and, for example, L- during the clocking back. Outputs signal at its output. It thus generates a pulse width modulated analog signal at its output, which can be used directly to control a track power source.
  • the read-only memory can easily be designed so large that several different transmission signal cycles are stored and e.g. can be selected using a selector switch TA, not shown, using the higher-order address bits of the memory. Different track current profiles can thus be assigned to neighboring track circuits.
  • the output signal of the read-only memory is additionally transmitted in digital form to the track circuit receiver E via a data line L1 and is fed there to a correlator which carries out a cross-correlation between a track voltage tapped at the exit point of the track section and the voltage transmitted by the track circuit transmitter.
  • the track voltage is amplified and converted into digital form.
  • a microcomputer is expediently used as the correlator, which has the value of the cross-correlation function For example, calculated over each signal cycle and the shift time 7 adjusted so that KKF becomes maximum.
  • the computer also evaluates the height of the maximum in relation to a predetermined, permanently stored threshold value and emits a track vacancy signal if the maximum of the cross-correlation function exceeds the threshold value. If the maximum of the cross-correlation function remains below the threshold value, the track section is reported occupied. An additional error message is issued if a high RMS value of the track voltage is determined, but the correlation function has a low maximum value.
  • the RMS value of the track voltage can be determined by calculating the autocorrelation function of the track voltage signal, the value of which corresponds to the RMS value.
  • FIG. 3 shows a track circuit receiver which, as described above, has a computer R as a correlator and an A / D converter W for converting the track voltage tapped at track GL into digital form.
  • the computer gets its work cycle from a quartz-stabilized clock generator TG1. However, the computer does not receive its reference signal required for correlation with the track voltage signal from the track current circuit transmitter, but from a receiver-side read-only memory SPE, the size and content of which corresponds exactly to the read-only memory PLC of the track current circuit transmitter.
  • the computer controls the output of the respectively selected signal cycle via a bus B and reads it in as a reference signal.
  • the signal read out by the computer R from the memory SPE corresponds exactly to the transmission signal of the track circuit transmitter and can be used as a reference signal . Small deviations in the quartz frequencies of the two clock generators are corrected by tracking the time shift 7 when determining the maximum of the cross-correlation function.
  • the track circuit receiver according to FIG. 3 thus enables the output of a track vacancy signal to a track vacancy detection channel GF, a track occupancy report to a track occupancy reporting channel GB and a fault report to a fault reporting channel ST without requiring an additional direct connection between the track circuit transmitter and the track circuit receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Holo Graphy (AREA)
  • Testing Of Coins (AREA)
  • Golf Clubs (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

Es wird ein Gleisstromkreis angegeben, dessen Empfänger (E) zur Gleisfreimeldung eine Kreuzkorrelation zwischen einer am Gleis (GL) abgegriffenen Gleisspannung und einer aus dem Sendesignal des Gleisstromkreissenders (S) abgeleiteten oder separat erzeugten Referenzspannung durchführt. Das Maximum der Kreuzkorrelation wird von Empfänger (E) gesucht und mit einem vorgegebenen Schwellenwert verglichen. Eine rein digital arbeitende Ausführung verwendet als Sender eine Gleisstromquelle, die durch ein aus einem Festwertspeicher zyklisch ausgelesenes, fertig moduliertes Sendesignal gesteuert wird. Zur Berechnung der Kreuzkorrelationsfunktion im Empfänger (E) und zur Bewertung und Nachführung des Maximums dient ein Mikrorechner. Die Referenzspannung wird mit Hilfe eines weiteren, in gleicher Weise wie der sendeseitige Festwertspeicher programmierten Festwertspeichers im Empfänger (E) erzeugt. <IMAGE>

Description

  • Die Erfindung betrifft einen Gleisstromkreis gemäß dem Oberbegriff des Patentanspruchs 1.
  • Ein solcher Gleisstromkreis ist aus einem Aufsatz von D. Poole und D. Barker mit dem Titel "Digitally coded track circuit", bekannt, dessen Inhalt auf der Internationalen Konferenz "Electric Railway Systems for a New Century", die vom 22. bis 25 September 1987 in London, England, stattfand, vorgetragen wurde und der auch als Konferenzpapier gedruckt vorliegt (IEE, London, England, 1987, pp xii + 400.). Zur Prüfung, ob in der aufgenommenen Gleisspannung eine dem Gleisstrom aufgeprägte Modulation enthalten ist, wird hier eine Korrelation des empfängerseitig gewonnenen Modulationssignals mit einem dem Gleisstromkreisempfänger bekannten, dem Gleisstrom sendeseitig aufmodulierten Sollsignal durchgeführt. Als Modulationssignale werden sogenannte Gold-Codes verwendet, die besonders gut definierte Autokorrelationseigenschaften besitzen.
  • Auch aus "Signal + Draht" 81 (1989) Heft 7/8, Seiten 158 ff ist ein derartiger Gleisstromkreis bekannt. Es wird jedoch hier zum Vergleich des empfängerseitig gewonnenen Modulationssignals mit einem im Gleisstromkreissender zur Modulation verwendeten Sollcode, anstelle eines Korrelators ein Code-Vergleicher verwendet.
  • Die bekannten Gleisstromkreise sind aufgrund der für die Filterung und Demodulation erforderlichen Bauteile aufwendig und infolge der Verwendung analoger Techniken nicht driftfrei.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Gleisstromkreis der eingangs genannten Art zu schaffen, der keine besonderen Filter und Demodulatoren benötigt und driftfrei arbeitet.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil des Patentanspruchs 1 angegebenen Merkmale gelöst.
  • Der erfindungsgemäße Gleisstromkreis benötigt keine Filterbauelemente mehr, denn die Kreuzkorrelation selbst übt eine ausgezeichnete Filterwirkung aus. Es tragen nur solche Signalanteile der Gleisspannung zum wert der Kreuzkorrelationsfunktion bei, die in ihrem zeitlichen Verlauf mit der mit der modulierten Ausgangsspannung des Gleisstromkreissenders synchronen Referenzspannung übereinstimmen.
  • Wie die Modulation des Gleisstromes aussieht, ist darüber hinaus gleichgültig, so lange der zeitliche Verlauf der Ausgangsspannung des Gleisstromkreissenders dem Gleisstromkreisempfänger bekannt ist und die Modulation genügend trägerfrequenzfremde Frequenzanteile enthält.
  • Daß der Gleisstromkreisempfänger die Ausgangsspannung des Gleisstromkreissenders kennt kann z.B., wie im Patentanspruch 2 angegeben, durch eine direkte Zuführung dieser Ausgangsspannung zum Gleisstromkreisempfänger sichergestellt werden, was sich insbesondere dann anbietet, wenn Gleisstromkreissender und Gleisstromkreisempfänger im selben Baugruppenträger untergebracht sind.
  • Eine Weiterbildung der Erfindung ist im Patentanspruch 3 angegeben und sieht die Ausgabe des fertigen modulierten Gleisstromkreissendesignals aus einem vorab programmierten Festwertspeicher vor. Ein besonderer Modulator zur Modulation eines Gleisstrom-Trägersignals wird dadurch eingespart. Da das Gleisstromkreissendesignal hier in digitaler Form zur Verfügung steht, stellt es keinen größeren Aufwand dar, es in digitaler Form als Referenzsignal zum Empfänger zu übertragen. Die Übertragung wird damit störungsunanfälliger. Eine besondere A/D-Wandlung im Gleisstromkreisempfänger bei digital arbeitendem Korrelator entfällt.
  • Eine im Patentanspruch 4 wiedergegebene Ausgestaltung der Erfindung betrifft die Umsetzung des in digitaler Form gespeicherten Gleisstromkreissendesignals in ein Steuersignal für eine Gleisstromquelle.
  • Die in den Patentansprüchen 3 und 4 beschriebenen Ausgestaltungen setzen das Vorhandensein einer im Patentanspruch 2 beanspruchten Übertragungsleitung nicht voraus, wenn die zur Kreuzkorrelation benötigte Referenzspannung dem Gleisstromkreisempfänger anderweitig zur Verfügung gestellt werden kann.
  • Die Patentansprüche 5 und 6 entsprechen deshalb bis auf den Rückbezug auf Patentanspruch 2 den Patentansprüchen 3 und 4.
  • Der auf die Patentansprüche 5 und 6 rückbezogene Patentanspruch 7 sieht als Weiterbildung der Erfindung die Erzeugung der vom Korrelator im Gleisstromkreisempfänger benötigten Referenzspannung mit Hilfe eines Festwertspeichers vor, der in gleicher Weise vorprogrammiert ist, wie der Festwertspeicher des Gleisstromkreissenders und mit einem dem Auslesetakt des Gleisstromkreissenders gleichfrequenten Takt ausgelesen wird. Eine Übertragungsleitung zwischen Gleisstromkreissender und Gleisstromkreisempfänger wird damit überflüssig. Letzteres ist vor allem dann vorteilhaft, wenn Gleisstromkreissender und Gleisstromkreisempfänger voneinander räumlich getrennt untergebracht werden sollen.
  • Patentanspruch 8 betrifft eine Möglichkeit, eine Besetztmeldung aufgrund echter Besetzung des Gleisstromkreises von einer Besetztmeldung aufgrund einer Störung (z.B. übersteuerung des Gleisstromkreisempfängereingangs bei Schleifenunterbrechung) zu unterscheiden.
  • Eine im Patentanspruch 9 angegebene Weiterbildung der Erfindung betrifft eine Vereinfachung bei direkter Übertragung eines Referenzsignals vom Gleisstromkreissender zum Gleisstromkreisempfänger.
  • Patentanspruch 10, schließlich, betrifft den Einsatz eines Rechners zur Ausführung der Korrelatorfunktion und Bewertung der Korrelator-Ausgangsspannung.
  • Anhand von 3 Figuren soll nun ein Ausführungsbeispiel des Gleisstromkreises nach der Erfindung eingehend beschrieben werden:
    • Fig. 1 zeigt schematisch die Ausbildung eines isolierstoßfreien Gleisstromkreises an einem Gleis,
    • Fig. 2 zeigt einen Gleisstromkreissender nach der Erfindung,
    • Fig. 3 zeigt einen Gleisstromkreisempfänger nach der Erfindung.
  • In Fig. 1 ist ein Gleis GL dargestellt, dessen Schienen SCH durch zwei Schienenverbinder (sogenannte S-Verbinder) SV1 und SV2 elektrisch miteinander verbunden sind. Die Schienenverbinder stellen Kurzschlüsse dar, die erstens einen Ausgleich des Triebrückstromes zwischen beiden Schienen ermöglichen und zweitens elektrische Trennstöße bilden, die jeweils zwei aneinandergrenzende Gleisstromkreise voneinander trennen. Ein zwischen den beiden Schienenverbindern SV1 und SV2 liegender Gleisabschnitt GA ist durch einen Gleisstromkreis gesichert. Er wird an einer Einspeisestelle ES durch einen Gleisstromkreissender S über eine erste Koppelschleife KS1, die mit den Schienen und dem Schienenverbinder SV1 induktiv gekoppelt ist, mit einem modulierten Gleisstrom gespeist. Der Gleisstrom fließt über den an einer Ausspeisestelle AS befindlichen Schienenverbinder SV2 und induziert in einer zweiten, mit dem Schienenverbinder SV2 und den Schienen induktiv gekoppelten Koppelschleife KS2 eine Gleisspannung, die von einem Gleisstromkreisempfänger E ausgewertet wird. Weitere in Fig. 1 dargestellte Koppelschleifen KS3, KS4 gehören zu Nachbargleisstromkreisen. Eine Signalleitung L verbindet Gleisstromkreissender S und Gleisstromkreisempfänger E miteinander und dient der Übertragung von Synchronisationssignalen oder Codeauswahlsignalen. Selbstverständlich kann anstelle einer Ein- und Ausspeisung über Koppelschleifen auch eine direkte Ein- und Ausspeisung oder eine direkte Einspeisung mit induktiver Auskopplung vorgesehen werden. Letzteres ist z.B. bei mittengespeisten Doppelgleisstromkreisen üblich.
  • Der Gleisstromkreisempfänger E gibt dann ein Gleisfreisignal über einen Gleisfreimeldekanal GF an ein Stellwerk SW aus, wenn die über die Koppelschleife KS2 aufgenommene Gleisspannung einen vorgegebenen Schwellwert übersteigt und zusätzlich die vom Gleisstromkreissender dem Gleisstrom aufgeprägte Modulation aufweist. Wird der Gleisstromkreis durch Achsen eines Fahrzeuges kurzgeschlossen, so sinkt die Gleisspannung unter den Schwellwert und es wird über einen Gleisbesetztmeldekanal GB eine Besetztmeldung an das Stellwerk ausgegeben.
  • Das Zusatzkriterium Übereinstimmung der Modulation im Sende- und im Empfangssignal als Voraussetzung für eine Gleisfreimeldung ist trotz höchstmöglicher Selektivität des Gleisstromkreisempfängers notwendig, da die heute in großer Zahl im Dienst befindlichen phasenanschnittgesteuerten Fahrzeuge Störströme jeder beliebigen Frequenz erzeugen können und deshalb nicht sicher auszuschließen ist, daß in einem besetzten Gleisabschnitt der Schwellwert der Gleisspannung überschritten wird, was ohne Zusatzkriterium eine Gleisfreimeldung bewirken würde. Wird ein Modulationsvergleich zusätzlich durchgeführt und die Ausgabe einer Gleisfreimeldung von der Übereinstimmung der Modulationssignale abhängig gemacht, so ist die Gleisfreimeldung als sicher anzusehen, denn es ist auszuschließen, daß ein Fahrzeug den exakten Modulationscode nachbildet.
  • Der in Fig. 1 schematisch dargestellte, in bekannter Weise ausgeführte Gleisstromkreis enthält eine große Anzahl von Bauelementen, z.B. Abstimmbaugruppen und Eingangsfilter, die den selektiven Empfang der Gleisstromfrequenz sicherstellen und andere Frequenzen, z.B. die unterschiedlichen Gleisstromfrequenzen der Nachbargleiskreise ausfiltern. Die Abstimmbaugruppen und Eingangsfilter müssen für jede Gleisstromfrequenz speziell ausgelegt sein und an jeden Gleisstromkreis individuell angepaßt werden.
  • In Fig. 2 ist ein Gleisstromkreissender schematisch dargestellt, wie er in einem Gleisstromkreis nach der Erfindung eingesetzt werden kann.
  • In einem programmierbaren Festwertspeicher SPS sind verschiedene Sendesignalabläufe (Träger + Modulation) vorab in Form einer Folge von Bytes gespeichert. Jedes im Speicher enthaltene Byte gibt einen ganz bestimmten Amplitudenwert des Sendesignals vor.
  • Ein Taktgeber TG steuert zwei Zähler Z1 und Z2, den Zähler Z2 direkt und den Zähler Z1 über einen Teiler TL an. Der Zähler Z1 gibt eine Folge von Adressen der im Festwertspeicher gespeicherten Bytes aus und sorgt So dafür, daß eine entsprechende Folge von Bytes auf den einstellbaren Zähler Z2 ausgegeben wird.
  • Diese Folge von Bytes stellt, wenn sie dicht genug ist, z.B. 10 Bytes pro Trägerperiode aufweist, bereits das fertige (modulierte) Sendesignal dar, das, zyklisch wiederholt, nur noch durch einen Tiefpaß in ein Analogsignal umgesetzt und verstärkt zu werden braucht, um in das Gleis GL eingespeist werden zu können.
  • Die D/A-Umsetzung besorgt der Zähler Z2, wenn er von jedem eingelesenen Byte parallel voreingestellt und durch den schnellen Takt des Taktgebers zurückgetaktet wird und während des Zurücktaktens z.B. L-Signal an seinem Ausgang ausgibt. Er erzeugt damit an seinem Ausgang ein pulsbreitenmoduliertes Analogsignal, das direkt zur Steuerung einer Gleisstromquelle benutzt werden kann.
  • Der Festwertspeicher kann leicht so groß ausgelegt werden, daß mehrere unterschiedliche Sendesignalzyklen gespeichert und z.B. mittels eines nicht dargestellten Auswahlschalters TA unter Verwendung der höherwertigen Adressbits des Speichers ausgewählt werden können. Damit können benachbarten Gleisstromkreisen jeweils unterschiedliche Gleisstromverläufe zugeordnet werden.
  • Es kann z.B. ein Speicher verwendet werden, der 16 Adressbits aufweist, von denen 12 der Anwahl und Ausgabe der insgesamt 212 Bytes des jeweils ausgewählten Sendesignalzyklus dienen. Die restlichen 4 (höherwertigen) Adressbits dienen dann der Auswahl von 24 = 16 unterschiedlichen Sendesignalzyklen.
  • Das Ausgangssignal des Festwertspeichers wird zusätzlich über eine Datenleitung L1 in digitaler Form dem Gleisstromkreisempfänger E übermittelt und dort einem Korrelator zugeführt, der eine Kreuzkorrelation zwischen einer an der Ausspeisestelle des Gleisabschnitts abgegriffenen Gleisspannung und der vom Gleisstromkreissender her übermittelten Spannung durchführt.
  • Die Gleisspannung wird hierzu verstärkt und in digitale Form umgewandelt.
  • Als Korrelator wird zweckmäßig ein Mikrorechner verwendet, der den Wert der Kreuzkorrelationsfunktion
    Figure imgb0001
    z.B. über jeden Signalzyklus berechnet und die Verschiebungszeit 7 so einregelt, daß KKF maximal wird. Der Rechner bewertet auch die Höhe des Maximums gegenüber einem vorgegebenen, fest abgespeicherten Schwellwert und gibt ein Gleisfreimeldesignal ab, wenn das Maximum der Kreuzkorrelationsfunktion den Schwellwert übersteigt. Bleibt das Maximum der Kreuzkorrelationsfunktion unterhalb des Schwellwertes, wird der Gleisabschnitt besetzt gemeldet. Eine zusätzliche Störungsmeldung wird ausgegeben, wenn ein hoher Effektivwert der Gleisspannung festgestellt wird, jedoch die Korrelationsfunktion einen niedrigen Maximalwert aufweist. Die Bestimmung des Effektivwertes der Gleisspannung kann dabei durch Berechnung der Autokorrelationsfunktion des Gleisspannungssignals erfolgen, deren Wert dem Effektivwert entspricht.
  • In Fig. 3 ist ein Gleisstromkreisempfänger dargestellt, der, wie vorstehend beschrieben, einen Rechner R als Korrelator und einen A/D-Wandler W zur Umwandlung der am Gleis GL abgegriffenen Gleisspannung in digitale Form aufweist. Der Rechner bezieht seinen Arbeitstakt aus einem quarzstabilisierten Taktgeber TG1. Sein zur Korrelation mit dem Gleisspannungssignal benötigtes Referenzsignal erhält der Rechner aber nicht vom Gleisstromkreissender, sondern aus einem empfängerseitigen Festwertspeicher SPE, dessen Größe und Inhalt dem Festwertspeicher SPS des Gleisstromkreissenders genau entspricht. Über einen Bus B steuert der Rechner die Ausgabe des jeweils gewählten Signalzyklus und liest diesen als Referenzsignal ein. Sofern der Takt des Taktgebers TG1 mit dem Takt des Taktgebers TG des Gleisstromkreissenders übereinstimmt und am Auswahlschalter derselbe Signalzyklus eingestellt ist wie am Auswahlschalter des Gleisstromkreissenders, entspricht das vom Rechner R aus dem Speicher SPE ausgelesene Signal genau den Sendesignal des Gleisstromkreissenders und kann als Referenzsignal verwendet werden. Geringe Abweichungen der Quarzfrequenzen der beiden Taktgeber werden durch die Nachführung der zeitverschiebung 7 bei der Bestimmung des Maximums der Kreuzkorrelationsfunktion ausgeregelt.
  • Der Gleisstromkreisempfänger nach Fig. 3 ermöglicht somit die Ausgabe einer Gleisfreimeldung auf einen Gleisfreimeldekanal GF, einer Gleisbesetztmeldung auf einen Gleisbesetztmeldekanal GB und einer Störungsmeldung auf einen Störungsmeldekanal ST ohne eine zusätzliche direkte Verbindung zwischen Gleisstromkreissender und Gleisstromkreisempfänger zu benötigen.

Claims (10)

1. Gleisstromkreis mit einem Gleisstromkreissender, der an einer Einspeisestelle einen modulierten Gleisstrom in die Schienen eines Gleisabschnittes einspeist und mit einem einen Korrelator enthaltenden Gleisstromkreisempfänger, der eine an einer Ausspeisestelle an den Schienen des Gleisabschnittes anstehende oder dort in einer Koppelschleife induzierte Gleisspannung aufnimmt und auswertet und eine Freimeldung für den Gleisabschnitt ausgibt, wenn der durch den eingespeisten Gleisstrom hervorgerufene Teil der aufgenommenen Gleisspannung eine vorgegebene Mindestamplitude aufweist und zusätzlich eine dem Gleisstrom aufgeprägte Modulation enthält, dadurch gekennzeichnet, daß der Korrelator (R) des Gleisstromkreisempfängers (E) eine Kreuzkorrelation der aufgenommenen Gleisspannung mit einer in ihrem zeitlichen Verlauf mit der Ausgangsspannung des Gleisstromkreissenders (S) übereinstimmenden Referenzspannung durchführt, dabei das Maximum der Kreuzkorrelationsfunktion ermittelt und ein Gleisfreimeldesignal ausgibt, wenn dieses Maximum einen vorgegebenen Schwellwert übersteigt.
2. Gleisstromkreis nach Anspruch 1, dadurch gekennzeichnet, daß eine Übertragungsleitung (L) zwischen Gleisstromkreissender und Gleisstromkreisempfänger vorgesehen ist, über die dem Korrelator des Gleisstromkreisempfängers die Ausgangsspannung des Gleisstromkreissenders oder ein aus dieser abgeleitetes Signal als Referenzspannung zugeführt wird.
3. Gleisstromkreis nach Anspruch 2, dadurch gekennzeichnet, daß als Gleisstromkreissender eine steuerbare Stromquelle verwendet wird, der ein vorab erzeugtes, in einem Festwertspeicher (SPS) als Folge digitaler Amplitudenwerte abgelegtes und aus diesem zyklisch mit einem stabilisierten Takt ausgelesenes Sendesignal als Steuersignal zugeführt wird.
4. Gleisstromkreis nach Anspruch 3, dadurch gekennzeichnet, daß die steuerbare Stromquelle einen voreinstellbaren Zähler (Z2) enthält, der als Pulsbreitenmodulator arbeitet und aufeinanderfolgende, aus dem Festwertspeicher (SPS) ausgelesene Byte des Sendesignals in Steuerimpulse umwandelt, deren Breite dem im jeweiligen Byte angegebenen Amplitudenwert proportional ist.
5. Gleisstromkreis nach Anspruch 1, dadurch gekennzeichnet, daß als Gleisstromkreissender eine steuerbare Stromquelle verwendet wird, der ein vorab erzeugtes, in einem Festwertspeicher (SPS) als Folge digitaler Amplitudenwerte abgelegtes und aus diesem zyklisch mit einem stabilisierten Takt ausgelesenes Sendesignal als Steuersignal zugeführt wird.
6. Gleisstromkreis nach Anspruch 5, dadurch gekennzeichnet, daß die steuerbare Stromquelle einen voreinstellbaren Zähler (Z2) enthält, der als Pulsbreitenmodulator arbeitet und aufeinanderfolgende, aus dem Festwertspeicher (SPS) ausgelesene Byte des Sendesignals in Steuerimpulse umwandelt, deren Breite dem im jeweiligen Byte angegebenen Amplitudenwert proportional ist.
7. Gleisstromkreis nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß dem Korrelator (R) des Gleisstromkreisempfängers (E) als Referenzspannung ein vorab erzeugtes, des im Festwertspeicher des Gleisstromkreissenders abgelegten Sendesignal entsprechendes, in einem empfangsseitigen Festwertspeicher (SPE) abgelegtes und aus diesem mit einem stabilisierten, dem im Gleisstromkreissender (S) zum Auslesen des Sendesignals verwendeten Takt gleichfrequenten Takt ausgelesenes Signal zugeführt wird.
8. Gleisstromkreis nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß im Gleisstromkreisempfänger zusätzlich eine Effektivwertermittlung des Gleisspannungssignals erfolgt und daß eine Störungsmeldung ausgegeben wird, wenn bei niedrigem Maximalwert der Kreuzkorrelationsfunktion ein einen vorgegebenen Schwellenwert übersteigender Effektivwert des Gleisspannungssignals gemessen wird.
9. Gleisstromkreis nach Anspruch 2, dadurch gekennzeichnet, daß der Korrelator zum Suchen des Maximums der Kreuzkorrelationsfunktion das Signum der Referenzspannung mit der aufgenommenen Gleisspannung korreliert.
10. Gleisstromkreis nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß als Korrelator (R) und zur Bewertung der Korrelator-Ausgangsspannung ein Mikrorechner verwendet wird.
EP91112161A 1990-08-09 1991-07-20 Gleisstromkreis mit Kreuzkorrelation Expired - Lifetime EP0470416B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4025194A DE4025194A1 (de) 1990-08-09 1990-08-09 Gleisstromkreis mit kreuzkorrelation
DE4025194 1990-08-09

Publications (3)

Publication Number Publication Date
EP0470416A2 true EP0470416A2 (de) 1992-02-12
EP0470416A3 EP0470416A3 (en) 1993-05-12
EP0470416B1 EP0470416B1 (de) 1994-10-12

Family

ID=6411893

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91112161A Expired - Lifetime EP0470416B1 (de) 1990-08-09 1991-07-20 Gleisstromkreis mit Kreuzkorrelation

Country Status (4)

Country Link
EP (1) EP0470416B1 (de)
AT (1) ATE112735T1 (de)
DE (2) DE4025194A1 (de)
ES (1) ES2065584T3 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473209A2 (de) 2003-04-30 2004-11-03 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
EP1746008A3 (de) * 2005-07-20 2007-09-19 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
EP1746009A3 (de) * 2005-07-20 2007-09-19 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
CZ303498B6 (cs) * 2008-11-26 2012-10-24 Ažd Praha S. R. O. Zpusob úpravy kolejového a referencního napetí pro napájení dvoufázových paralelních kolejových obvodu pro železnici

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732355A (en) * 1986-01-09 1988-03-22 General Signal Corporation Rate code decoding system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4732355A (en) * 1986-01-09 1988-03-22 General Signal Corporation Rate code decoding system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTRIC RAILWAY SYSTEMS FOR A NEW CENTURY,22-25 SEPTEMBER 1987 LONDON GB Seiten 333 - 336 D.POOLE ET AL 'DIGITALLY CODED TRACK CIRCUIT' *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1473209A2 (de) 2003-04-30 2004-11-03 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
EP1473209A3 (de) * 2003-04-30 2007-09-12 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
EP1746008A3 (de) * 2005-07-20 2007-09-19 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
EP1746009A3 (de) * 2005-07-20 2007-09-19 Siemens Aktiengesellschaft Schaltungsanordnung zur Überwachung des Belegungszustandes einer Weiche oder eines Gleisbereichs
CZ303498B6 (cs) * 2008-11-26 2012-10-24 Ažd Praha S. R. O. Zpusob úpravy kolejového a referencního napetí pro napájení dvoufázových paralelních kolejových obvodu pro železnici

Also Published As

Publication number Publication date
DE4025194A1 (de) 1992-02-13
DE59103215D1 (de) 1994-11-17
ATE112735T1 (de) 1994-10-15
ES2065584T3 (es) 1995-02-16
EP0470416B1 (de) 1994-10-12
EP0470416A3 (en) 1993-05-12

Similar Documents

Publication Publication Date Title
DE69021120T2 (de) Verfahren und Vorrichtung für Übertragungen mit Trägerfrequenz über die Starkstromleitungen.
DE2630084C2 (de) Zeit-Diversity-Datenübertragungssystem und Datenübertragungsverfahren
EP0566773B1 (de) Verfahren und Schaltungsanordnung zur Übertragung von binären Datenfolgen
DE2944459C2 (de) Verfahren zum Übertragen von Bipolarsignalen mittels eines optischen Senders
DE2221146C3 (de) Schaltungsanordnung zum Übertragen eines Mehrpegelsignalzuges mit darin eingesetzten Pilotsignalen
DE3438791A1 (de) Seriendaten-austausch- oder -verbindungsanlage
EP0304799A2 (de) Einrichtung zum Demodulieren eines Biphasesignales
DE3838606C2 (de)
DE2306234A1 (de) Verfahren und system zur signalfernuebertragung
EP0470416B1 (de) Gleisstromkreis mit Kreuzkorrelation
DE69317200T2 (de) Datenverarbeitungsschaltung
DE2832511A1 (de) Verfahren und vorrichtung zur uebermittlung von bildinformationen
DE2903860C2 (de) Einrichtung zur Gleichstromversorgung eines Verbrauchers und zur gleichzeitigen Informationsübertragung über ein Aderpaar
EP0141130A1 (de) Zeitsequentielles Fernseh-Übertragungssystem, insbesondere für einen Videorecorder
DE3015218C2 (de)
DE2522910C3 (de) Verfahren zur Übertragung eines digitalen Datensignals
DE2523373C3 (de) Schaltungsanordnung zur Übertragung von impulsartigen Signalen über das Koppelfeld einer Zeitmultiplex-Vermittlungsanlage
DE102018132024A1 (de) Netzwerkkommunikationssystem mit bidirektionaler Strommodulation zur Datenübertragung
DE19823234A1 (de) Vorrichtung und Verfahren zur Datenübertragung bzw. Signalauskopplung bei Stromleitern
DE3545601C2 (de)
DE2165750C3 (de) Zeitmultiplex Mehrkanal-Übertragungssystem
DE1462579C3 (de) Sendeseitige Schaltung zur Zusammenfassung und empfangsseitige Schaltung zur Auftrennung eines Zeitmultiplexsignals
DE2718995C2 (de) Verfahren und Anordnung zur Regeneration trggerfrequenter pseudoternär codierter digitaler Signale
DE3035151C2 (de) Verfahren zur Übertragung von Signalen
DE4134564C2 (de) Schaltungsanordnung zum Übertragen bipolarer Datensignale

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL SEL AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES

17P Request for examination filed

Effective date: 19930716

17Q First examination report despatched

Effective date: 19931126

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES

REF Corresponds to:

Ref document number: 112735

Country of ref document: AT

Date of ref document: 19941015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59103215

Country of ref document: DE

Date of ref document: 19941117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2065584

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20000622

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000720

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020810