EP0469631B1 - Ionenpumpe und Vakuumpumpanlage dafür - Google Patents
Ionenpumpe und Vakuumpumpanlage dafür Download PDFInfo
- Publication number
- EP0469631B1 EP0469631B1 EP91113057A EP91113057A EP0469631B1 EP 0469631 B1 EP0469631 B1 EP 0469631B1 EP 91113057 A EP91113057 A EP 91113057A EP 91113057 A EP91113057 A EP 91113057A EP 0469631 B1 EP0469631 B1 EP 0469631B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- outer electrode
- accelerating grid
- thermionic emission
- emission source
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J41/00—Discharge tubes for measuring pressure of introduced gas or for detecting presence of gas; Discharge tubes for evacuation by diffusion of ions
- H01J41/12—Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps
- H01J41/14—Discharge tubes for evacuating by diffusion of ions, e.g. ion pumps, getter ion pumps with ionisation by means of thermionic cathodes
Definitions
- the present invention relates to an exhaust apparatus and a vacuum pumping unit including the exhaust apparatus, which are specifically adapted for discharging a gas in a vacuum vessel to produce an ultrahigh vacuum in the semiconductor process or the like.
- Fig. 3 conceptionally illustrates a prior art vacuum equipment including the high vacuum pump, wherein a vacuum chamber 1 is connected to a vacuum pump 2 through an exhaust pipe 3.
- the vacuum pump 2 which comprises, for example, a turbo molecular pump, an oil diffusion pump, an ion pump and the like and, exhausts only the gas molecules which fly into the exhaust pipe 3 from the vacuum chamber 1.
- gas molecules absorbed into a titanium wall of the pump are desorbed and flow back into the vacuum chamber, thus reducing a vacuum level.
- a vacuum apparatus which comprises a metal cage, a source of electrons exterior of the cage, means for projecting electrons from the source into the cage, a source of magnetic energy adjacent to the cage for directing the electrons in nonlinear paths to ionize a rarefied gas, and means for subjecting the ionized rarified gas molecules to an electric field to project them out of the cage.
- the present invention relates to an exhaust apparatus as referred to in claim 1.
- the present invention has been carried out in view of the above circumstances, and its object is to provide an exhaust apparatus capable of obtaining a high degree of vacuum by exhausting gas molecules in the vacuum chamber through ionization and acceleration of the gas molecules.
- another object of the present invention is to provide a vacuum pumping unit for an exhaust apparatus which is combined with an auxiliary pump set on a back pressure side for the pumping unit.
- the vacuum pumping unit is capable of producing a high degree of vacuum by ionization and acceleration of the gas molecules in a vacuum chamber toward the auxiliary pump, and also by ionization and acceleration of gas molecules which flow back from the auxiliary pump toward the auxiliary pump.
- an exhaust apparatus comprising a thermionic emission source, an electron accelerating grid surrounding the thermionic emission source, an outer electrode surrounding the electron accelerating grid, an ion accelerating grid intersecting an axis of the outer electrode and installed apart from the outer electrode, a vessel for containing said thermionic emission source, said electron accelerating grid, said outer electrode, and said ion accelerating grid therein, a magnet disposed outside of the vessel to generate a magnetic field almost parallel to the axis of said outer electrode, a power supply for heating said thermionic emission source, a first DC power supply for applying a voltage between said electron accelerating grid, said outer electrode and said thermionic emission source, a second DC power supply for applying a voltage between said outer electrode and said ion accelerating grid so as to get said outer electrode positive.
- an exhaust apparatus comprising a thermionic emission source, an outer electrode surrounding the thermionic emission source, an ion accelerating grid intersecting an axis of the outer electrode and installed apart from the outer electrode, a vessel for containing said thermionic emission source, said outer electrode, and said ion accelerating grid therein, a magnet disposed outside of the vessel for generating a magnetic field almost parallel with the axis of said outer electrode, a power supply for heating said thermionic emission source, a first DC power supply for applying a voltage between said outer electrode and said thermionic emission source, a second DC power source for applying a voltage between said outer electrode and said ion accelerating grid so as to get said outer electrode positive.
- a vacuum pumping unit including an arbitrary vacuum pump and an exhaust apparatus, in which said exhaust apparatus comprises a thermionic emission source, an electron accelerating grid surrounding the thermionic emission source, an outer electrode surrounding the electron accelerating grid, an ion accelerating grid intersecting an axis of the outer electrode and installed apart from the outer electrode, a vessel containing said thermionic emission source, said electron accelerating grid, said outer electrode, and said ion accelerating grid therein, a magnet disposed outside of the vessel and generating a magnetic field almost parallel to the axis of said outer electrode, a power supply for heating said thermionic emission source, a first DC power supply for applying a voltage between said electron accelerating grid, said outer electrode and said thermionic emission source, a second DC power supply for applying a voltage between said outer electrode and said ion accelerating grid so as to get said outer electrode positive are comprised, is interposed between said vacuum pump and a vacuum vessel to be evacuated.
- a vacuum pumping unit including an arbitrary vacuum pump and an exhaust apparatus, in which a thermionic emission source, an outer electrode surrounding the thermionic emission source, an ion accelerating grid intersecting an axis of the outer electrode and installed apart from the outer electrode, a vessel for containing said thermionic emission source, said outer electrode, and said ion accelerating grid therein, a magnet disposed outside of the vessel and generating a magnetic field almost parallel to the axis of said outer electrode, a power supply for heating said thermionic emission source, a first DC power supply for impressing a voltage between said outer electrode and said thermionic emission source, a second DC power supply for applying a voltage between said outer electrode and said ion accelerating grid so as to get said outer electrode positive are comprised, and which is interposed between said vacuum pump and a vacuum vessel to be evacuated.
- the exhaust apparatus and the vacuum pumping unit of the present invention since gas molecules are ionized by electron bombardment and are accelerated toward the auxiliary pump, the backflow of gas molecules from an auxiliary vacuum pump can be completely prevented to thereby realize a high degree of vacuum.
- a reference number 50 denotes an exhaust apparatus according to the present invention
- 100 denotes a vacuum pumping unit, the vacuum pumping unit 100 comprising a combination of the exhaust apparatus 50 with an arbitrary vacuum pump 31 provided on a back pressure side of the exhaust apparatus 50.
- the exhaust apparatus 50 comprises a hairpin shaped thermionic emission filament 21 as a thermionic emission source, a cylindrical electron accelerating grid 22, a cylindrical outer electrode 23, an ion accelerating flat grid 24, a vessel 25, an electromagnet 26, a power supply 28 for heating the filament 21, an electron accelerating DC power supply 29, and an ion accelerating DC power supply 30, and the exhaust apparatus is interposed between a vacuum vessel 32 to be evacuated and the vacuum pump 31 which operates as an auxiliary pump.
- the thermionic emission filament 21, the electron accelerating grid 22, the outer electrode 23, and the ion accelerating grid 24 are each disposed within the vessel 25.
- the filament 21 is disposed nearly at the center of the vessel 25, and is also disposed along a longitudinal axis of the vessel.
- the electron accelerating grid 22 is disposed surrounding the filament 21, and the outer electrode 23 is disposed surrounding the electron accelerating grid 22.
- the ion accelerating grid 24 intersects an axis of the outer electrode 23 perpendicularly and is disposed on the vacuum pump 31 side apart somewhat from the outer electrode 23.
- the electromagnet 26, the power supply 28, the electron accelerating DC power supply 29, and the ion accelerating DC power supply 30 are disposed out of the vessel 25, and the electromagnet 26 disposed along a peripheral portion of the vessel 25 generates a DC magnetic field almost parallel with the axis of the outer electrode 23 in the vessel 25.
- the DC power supply 29 is connected between the filament 21, the electron accelerating grid 22 and the outer electrode 23, and applies a voltage so as to get the filament 21 in negative potential.
- the ion accelerating DC power supply 30 is connected between the electron accelerating grid 22, the outer electrode 23 and the ion accelerating grid 24, which applied a voltage so as to get the outer electrode 23 in positive potential.
- the filament 21 When the filament 21 is heated by the power supply 28, the filament 21 emits thermal electrons. The emitted electrons are accelerated toward the electron accelerating grid 22, and obtain a sufficient energy. Then they pass through the electron accelerating grid 22. A magnetic field which orthogonally crosses the direction of the electrons movement is applied by the electromagnet 26 within a space between the electron accelerating grid 22 and the outer electrode 23, and thus the electrons move in a circular motion within the plane perpendicular to an axis of the outer electrode 23 while moving toward the outer electrode 23. Due to the circular motion of the electrons, a path of the electrons to reach the outer electrode 23 becomes longer, and thus the electrons easily come to collide with a lot of gas molecules and produce a large quantity of ions. The produced ions are accelerated toward the ion accelerating grid 24, and exhausted through the pump 31.
- the gas molecules flowing back or desorbed from the vacuum pump 31 toward a high vacuum side are ionized and accelerated likewise in the manner stated above by the exhaust apparatus 50 and returned to the vacuum pump 31, therefore a high vacuum level is attained in the vacuum vessel.
- Fig. 2 represents an exhaust apparatus and a vacuum pumping unit according to another embodiment of the present invention.
- the embodiment comprises a structure almost same as the embodiment shown in Fig. 1.
- the same reference numbers represent the same constituents and operation in Fig. 1 and Fig. 2, repetitious descriptions will be omitted here.
- a reference number 60 denotes an exhaust apparatus
- 110 denotes a vacuum pumping unit which operates on the exhaust apparatus 60.
- the vacuum pumping unit 110 consists of the exhaust apparatus 60 and the arbitrary vacuum pump 31 provided on a back pressure side of the exhaust apparatus 60.
- the electron accelerating grid 22 in Fig. 1 is omitted. That is, the exhaust apparatus 60 has only the hairpin shaped thermionic emission filament 21 as a thermionic emission source and the outer electrode 23 surrounding the filament 21 concentrically disposed within the vessel 25.
- thermal electrons emitted from the heated filament 21 are attracted toward the outer electrode 23, and make a circular orbit under the magnetic field generated by the electromagnet 26.
- the electrons run on a long path because of the circular orbit until the reach of the electrode 23, they collide with a lot of gas molecules to produce a large quantity of ions.
- the produced ions are accelerated toward the ion accelerating grid 24 and are exhausted by the pump 31.
- the gas molecules are exhausted by the vacuum pump 31 operating as an auxiliary exhaust means.
- the present embodiment has a difference partly in construction and operation from the embodiment of Fig. 1, but, an exhaust effect is same.
- ionization and acceleration of gas molecules which come in the vessel 25 by diffusion from the vessel 32 to be evacuated and by back diffusion from an auxiliary vacuum pump 31 can realize a high degree of vacuum.
Landscapes
- Electron Tubes For Measurement (AREA)
- Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
Claims (10)
- Ausstoßvorrichtung (60, 50), die folgendes aufweist: eine thermionische Emissionsquelle bzw. Quelle zur Emission von Thermo-Ionen (21), eine äußere Elektrode (23), die die thermionische Emissionsquelle (21) umgibt, ein Ionenbeschleunigungsgitter (24), das eine Achse der äußeren Elektrode (23) schneidet und getrennt von der äußeren Elektrode (23) angebracht bzw. eingebaut ist, ein Gefäß (25) zum Beinhalten der thermionischen Emissionsquelle (21), der äußeren Elektrode (23) und des Ionenbeschleunigungsgitters (24) darin, einen Magneten (26), der außerhalb des Gefäßes (25) angeordnet ist zum Erzeugen eines Magnetfeldes fast parallel zu der Achse der äußeren Elektrode (23), eine Leistungsversorgung (28) zum Erwärmen der thermionischen Emissionsquelle (21), eine erste Gleichspannungs- bzw. DC-Leistungsversorgung (29) zum Anlegen einer Spannung zwischen der äußeren Elektrode (23) und der thermionischen Emissionsquelle (21), eine zweite Gleichspannungsbzw. DC-Leistungsversorgung (30) zum Anlegen einer Spannung zwischen der äußeren Elektrode (23) und dem Ionenbeschleunigungsgitter (24), um die äußere Elektrode (23) positiv zu machen.
- Ausstoßvorrichtung (50, 60) gemäß Anspruch 1, wobei die thermionische Emissionsquelle (21) ein haarnadelförmiger thermionischer Emissionsglühfaden bzw. ein haarnadelförmiges Filament zur Emission von Thermo-Ionen ist.
- Ausstoßvorrichtung (50, 60) gemäß Anspruch 1 oder 2, wobei die thermionische Emissionsquelle (21) fast in der Mitte des Gefäßes (25) und entlang einer Längsachse des Gefäßes (25) angeordnet ist.
- Ausstoßvorrichtung (50, 60) gemäß einem der Ansprüche 1 bis 3, wobei das Ionenbeschleunigungsgitter (24) die Achse der äußeren Elektrode (23) senkrecht schneidet.
- Ausstoßvorrichtung (50, 60) gemäß einem der Ansprüche 1 bis 4, wobei der Magnet (26) ein entlang eines Umfangsteils des Gefäßes (25) angeordneter Elektromagnet ist.
- Ausstoßvorrichtung (50, 60) gemäß einem der Ansprüche 1 bis 5, wobei die Vorrichtung ferner ein Elektronenbeschleunigungsgitter (22) aufweist, welches die thermionische Emissionsquelle (21) umgibt, wobei das Gefäß (25) ferner das Elektronenbeschleunigungsgitter (22) enthält, und wobei die erste Gleichspannungs-bzw. DC-Leistungsversorgung (29) eine Spannung zwischen dem Elektronenbeschleunigungsgitter (22), der äußeren Elektrode (23) und der thermionischen Emissionsquelle (21) anlegt.
- Ausstoßvorrichtung (50, 60) gemäß einem der Ansprüche 1 bis 6, wobei der zweite Gleichspannungs- bzw. DC-Leistungsversorgung (30) zwischen das Elektronenbeschleunigungsgitter (22), die äußere Elektrode (23) und das Ionenbeschleunigungsgitter (24) geschaltet ist.
- Ausstoßvorrichtung (50, 60) gemäß Anspruch 1, wobei der Ausgang bzw. die Ausgabegröße von der Heizleistungsversorgung, der ersten Gleichspannungs-Leistungsversorgung und der zweiten Gleichspannungs-Leistungsversorgung über an dem Gefäß vorgesehene Anschlüsse an die thermionische Emissionsquelle bzw. die äußere Elektrode bzw. das Ionenbeschleunigungsgitter angelegt wird.
- Ausstoßvorrichtung (50, 60) gemäß einem der Ansprüche 6 oder 7, wobei der Ausgang bzw. die Ausgabegröße von der Heizleistungsversorgung (28), der ersten Gleichspannungs-Leistungsversorgung (29) und der zweiten Gleichspannungs-Leistungsversorgung (30) über an dem Gefäß (25) vorgesehene Anschlüsse an die thermionische Emissionsquelle (21) bzw. das Elektronenbeschleunigungsgitter (22) bzw. die äußere Elektrode (23) bzw. das Ionenbeschleunigungsgitter (24) angelegt wird.
- Vakuumpumpeinheit (100, 110) mit einer beliebigen Vakuumpumpe (31) und einer Ausstoßvorrichtung (50, 60) gemäß einem der vorhergehenden Ansprüche, wobei die Ausstoßvorrichtung (50, 60) zwischen der Vakuumpumpe (31) und einem zu evakuierenden Vakuumgefäß (32) angeordnet ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP205224/90 | 1990-08-03 | ||
JP2205224A JPH0675386B2 (ja) | 1990-08-03 | 1990-08-03 | 高真空装置及び該高真空装置を用いた真空ポンプ装置 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0469631A2 EP0469631A2 (de) | 1992-02-05 |
EP0469631A3 EP0469631A3 (en) | 1992-07-01 |
EP0469631B1 true EP0469631B1 (de) | 1996-07-17 |
Family
ID=16503470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP91113057A Expired - Lifetime EP0469631B1 (de) | 1990-08-03 | 1991-08-02 | Ionenpumpe und Vakuumpumpanlage dafür |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0469631B1 (de) |
JP (1) | JPH0675386B2 (de) |
AT (1) | ATE140560T1 (de) |
DE (1) | DE69120874T2 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014182333A1 (en) * | 2013-05-09 | 2014-11-13 | Fomani Arash Akhavan | Vacuum pumps for producing adsorbate-free surfaces |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5240381A (en) * | 1990-08-03 | 1993-08-31 | Ebara Corporation | Exhaust apparatus and vacuum pumping unit including the exhaust apparatus |
US5326227A (en) * | 1990-08-03 | 1994-07-05 | Ebara Corporation | Exhaust apparatus with vacuum pump |
JPH05174780A (ja) * | 1991-02-12 | 1993-07-13 | Ebara Corp | 高真空装置及び該高真空装置を用いた真空ポンプ装置 |
CN109707612B (zh) * | 2018-11-28 | 2020-01-17 | 中国科学院近代物理研究所 | 一种离子泵性能测试和优化装置及其测试和优化方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE596017C (de) * | 1932-06-24 | 1934-04-25 | Linde Eismasch Ag | Verfahren zur Erzielung einer Pumpwirkung in Gasen |
US2578009A (en) * | 1947-12-23 | 1951-12-11 | Rca Corp | Electronic high vacuum apparatus |
GB684710A (en) * | 1950-07-19 | 1952-12-24 | Ass Elect Ind | Improvements relating to high vacuum pumps |
-
1990
- 1990-08-03 JP JP2205224A patent/JPH0675386B2/ja not_active Expired - Lifetime
-
1991
- 1991-08-02 AT AT91113057T patent/ATE140560T1/de not_active IP Right Cessation
- 1991-08-02 DE DE69120874T patent/DE69120874T2/de not_active Expired - Fee Related
- 1991-08-02 EP EP91113057A patent/EP0469631B1/de not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014182333A1 (en) * | 2013-05-09 | 2014-11-13 | Fomani Arash Akhavan | Vacuum pumps for producing adsorbate-free surfaces |
Also Published As
Publication number | Publication date |
---|---|
EP0469631A3 (en) | 1992-07-01 |
DE69120874D1 (de) | 1996-08-22 |
JPH0675386B2 (ja) | 1994-09-21 |
JPH0492353A (ja) | 1992-03-25 |
EP0469631A2 (de) | 1992-02-05 |
ATE140560T1 (de) | 1996-08-15 |
DE69120874T2 (de) | 1997-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3374941A (en) | Air blower | |
JPH0568545B2 (de) | ||
US5899666A (en) | Ion drag vacuum pump | |
US4739214A (en) | Dynamic electron emitter | |
EP0469631B1 (de) | Ionenpumpe und Vakuumpumpanlage dafür | |
US5480286A (en) | Exhaust apparatus and vacuum pumping unit including the exhaust apparatus | |
JPH04277500A (ja) | 高速原子線源 | |
JP3129226B2 (ja) | 電界放出型冷陰極搭載装置の製造方法 | |
US5240381A (en) | Exhaust apparatus and vacuum pumping unit including the exhaust apparatus | |
EP0499239B1 (de) | Ionenpumpe und Vakuumpumpanlage dafür | |
US3022933A (en) | Multiple electron beam ion pump and source | |
JP3140636B2 (ja) | プラズマ発生装置 | |
JPH06101319B2 (ja) | 高真空装置及び該高真空装置を用いた真空ポンプ装置 | |
GB1398167A (en) | High pressure ion sources | |
JPH02121233A (ja) | イオン源 | |
JP2855160B2 (ja) | イオン源 | |
JPS6127053A (ja) | 電子ビ−ム源 | |
JPH0473896A (ja) | プラズマ発生装置 | |
Zavjalov et al. | Problems of cathode design and breakdown avoidance relevant to high-power broadband gas-plasma-filled microwave sources | |
JPS63307655A (ja) | 電子照射装置 | |
JPH06338279A (ja) | 電子銃 | |
Uman et al. | Double chamber ion source | |
JPH0426758A (ja) | 薄膜形成装置 | |
JPH02199743A (ja) | 金属イオン源 | |
JPH06289193A (ja) | 高速原子線源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19921113 |
|
17Q | First examination report despatched |
Effective date: 19941221 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 19960717 Ref country code: DK Effective date: 19960717 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960717 Ref country code: LI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960717 Ref country code: CH Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960717 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19960717 Ref country code: ES Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 19960717 Ref country code: BE Effective date: 19960717 Ref country code: AT Effective date: 19960717 |
|
REF | Corresponds to: |
Ref document number: 140560 Country of ref document: AT Date of ref document: 19960815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 69120874 Country of ref document: DE Date of ref document: 19960822 |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19960831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Effective date: 19961017 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20020717 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20020723 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20020828 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040302 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20030802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |