EP0327965A2 - Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales - Google Patents
Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales Download PDFInfo
- Publication number
- EP0327965A2 EP0327965A2 EP89101798A EP89101798A EP0327965A2 EP 0327965 A2 EP0327965 A2 EP 0327965A2 EP 89101798 A EP89101798 A EP 89101798A EP 89101798 A EP89101798 A EP 89101798A EP 0327965 A2 EP0327965 A2 EP 0327965A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- antenna
- printed
- ground plane
- wire
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
- H01Q1/362—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/28—Combinations of substantially independent non-interacting antenna units or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/40—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
- H01Q5/45—Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
- H01Q9/20—Two collinear substantially straight active elements; Substantially straight single active elements
Definitions
- the invention relates to a multifrequency antenna, usable in particular in the field of space telecommunications.
- each mission has its own specificities concerning the following characteristics: - Frequency band, - blanket, - general radio-electric performances (gain, decoupling of space etc ).
- the object of the invention is to meet such an objective.
- the invention proposes, for this purpose, a multifrequency antenna comprising a first printed antenna operating at one or more frequencies, characterized in that it comprises a second antenna disposed in front of the first antenna using the same radiating surface and operating at a different frequency .
- the first antenna is formed of a ground plane, of a dielectric substrate on which is disposed a metal track and the second antenna is a wire type antenna which crosses the first antenna in a through hole drilled in the center of symmetry of the metal track, the ground plane seen by the wire antenna being composed of the metal track as well as the ground plane general of the printed antenna.
- the first antenna is a planar antenna
- the second antenna is produced by a coaxial cable which ends in a dipole.
- the first antenna is a planar antenna and the second antenna is produced by a coaxial cable which ends in a helix.
- the invention consists of the association on the same projected surface of at least two radiating elements operating according to different principles: - radiation produced by "cavities”, thus producing a microstrip or printed type antenna ("Patch” in English) - wire-type radiation, thus producing a radiating dipole or helix.
- a dual-frequency antenna according to the invention enables radiation on one frequency to be produced at one frequency using a printed antenna, radiation at another frequency via a wire antenna.
- the independence of operation of these two antennas makes it possible to optimize them at separate frequencies.
- the decoupling between the two elements is ensured by the fact that the principles which contribute to the radiation are of different natures.
- a wire antenna is installed on a printed antenna using this property.
- Such an embodiment has the following two characteristics: -
- the wire antenna does not affect the adaptation and radiation characteristics of the printed antenna. - Due to different radiation principles, the coupling between the two elements remains very weak.
- wire antenna A certain number of types of wire antenna can be envisaged as being able to be mounted on the printed antenna. The precise choice depends on an optimization in relation to a need, and directs the solution towards dipoles, monofilar helices, quadrifilar helices ...
- wire-type antennas have been studied for many years (see notably Richard C manual JOHNSON and Henry JASIK entitled “Antenna Engineering Handbook", McGraw-Hill Book Company, New York).
- the calculation methods developed in particular in this document make assumptions about the nature of the current established on the conductors in order to assess the radiation integral.
- the wire element In nominal operation (without printed antenna) the wire element is placed in front of a ground plane at a suitable distance.
- the resulting radiation can be estimated for example using the principle images for a dipole structure.
- the ground plane seen by the wire antenna being produced by all of the printed conductor and the general ground plane of the antenna printed.
- the operating frequency of the wire antenna does not correspond to a resonance of the printed antenna, the printed antenna does not play a particular role (field concentration, cavity, resonance).
- a slight adaptation of the height of the dipole may however be necessary in order to optimize the resulting diagram.
- FIG. 3 we have: - A flat printed antenna, as shown in Figure 2, pierced in its center with a through hole 15; - a coaxial cable 16, passing through this hole 15 perpendicular to the plane of the printed antenna. This cable ends at its free end with a dipole antenna 17.
- the dielectric substrate has a thickness of a few millimeters, the track is square in shape and about 60 mm on a side.
- the printed antenna has a resonant frequency at 1628 MHz (see curve 20 in Figure 5) and adaptation bandwidths: at -10dB: 31 MHz at -15dB: 16 MHz.
- the dipole alone is defined at 2449 MHz (see curve 21 in Figure 6) and has the following adaptation bandwidths: at -10dB: 227 MHz at -15dB: 110 MHz
- the tuning frequency is obtained for 1638 MHz (see curve 22 in Figure 5), ie a deviation of less than 1% compared to the "Patch" alone, and the adaptation bandwidths are : at -10dB: 31.5 MHz at -15dB: 16.9 MHz - for dipole antenna access, the tuning frequency obtained is 2446 MHz (see curve 23 in Figure 6), i.e. a deviation much less than 1% compared to the element alone, the adaptation widths are: at -10dB: 236 MHz at -15dB: 122 MHz
- the thickness of the dielectric substrate is relatively small and depends on the nature of the dielectric material; for a "honeycomb" structure in KEVLAR: we will always have a thickness ⁇ 10 mm, for dielectric materials with a higher constant, this thickness may not exceed a few millimeters (2 to 3 mm typically for ⁇ r ⁇ 2, 5)
- the coaxial cable 16 passing through the hole 15 ends in an antenna 18 in a helix.
- the shape of the microstrip antenna may obviously not be planar and be provided with a certain curvature (cylindrical, spherical%), Depending on its particular location on a structure: for example implantation on concave surfaces.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Details Of Aerials (AREA)
- Waveguide Aerials (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
- L'invention concerne une antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales.
- L'évolution actuelle dans le domaine des satellites de télécommunication va dans le sens d'une augmentation générale de capacités : chaque satellite devant pour des raisons économiques pouvoir embarquer plusieurs charges utiles. D'une façon générale on peut dire que l'augmentation des capacités de trafic impose, pour des raisons de débit d'information, l'utilisation d'antennes à gain élevé.
- De plus, chaque mission a ses spécificités propres concernant les caractéristiques suivantes :
- Bande de fréquence,
- couverture,
- performances générales radio-électriques (gain, découplage d'espace etc...). - Et il n'est pas possible, au sens de leur implantation sur le même corps de satellite, de multiplier le nombre de grandes antennes (diamètre supérieur à 2 mètres environ).
- De façon générale, que ce soit dans le cas d'un réseau à rayonnement direct ou d'une antenne à réflecteurs, il est attractif d'utiliser la même surface rayonnante : Ceci allant dans le sens d'une intégration maximale des fonctions et d'une meilleure utilisation des surfaces.
- L'invention a pour objet de répondre à un tel objectif.
- L'invention propose, à ct effet, une antenne multifréquence comprenant une première antenne imprimée fonctionnant à une ou plusieurs fréquences, caractérisée en ce qu'elle comprend une seconde antenne disposée devant la première antenne utilisant la même surface rayonnante et fonctionnant à une fréquence différente.
- Avantageusement, la première antenne est formée d'un plan de masse, d'un substrat diélectrique sur lequel est disposée une piste métallique et la seconde antenne est une antenne de type filaire qui traverse la première antenne dans un trou de passage percé au centre de symétrie de la piste métallique, le plan de masse vu par l'antenne filaire étant composé de la piste métallique ainsi que du plan de masse général de l'antenne imprimée.
- Dans une première réalisation la première antenne est une antenne plane, la seconde antenne est réalisée par un câble coaxial qui se termine par un dipôle.
- Dans une seconde réalisation, la première antenne est une antenne plane et la seconde antenne est réalisée par un câble coaxial qui se termine par une hélice.
- Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
- - les figures 1 et 2 représentent deux vues en coupe de réalisation de l'art connu ;
- - la figure 3 représente une vue en coupe d'une réalisation de l'antenne selon l'invention ;
- - la figure 4 représente une vue en coupe d'une autre réalisation de l'antenne selon l'invention ;
- - les figures 5 et 6 illustrent des courbes, caractéristiques des pertes en réflection en fonction de la fréquence, relatives à la réalisation représentée à la figure 3 ;
- - la figure 7 représente une courbe, du découplage interéléments en fonction de la fréquence, relative à la réalisation représentée à la figure 3.
- L'invention consiste en l'association sur une même surface projetée d'au moins deux éléments rayonnants fonctionnant selon des principes différents :
- un rayonnement réalisé par "cavités", réalisant ainsi une antenne microruban ou de type imprimée ("Patch" en anglais)
- un rayonnement de type filaire, réalisant ainsi un dipôle ou une hélice rayonnants. - Une antenne bi-fréquence selon l'invention permet de réaliser sur la même surface utile le rayonnement à une fréquence à l'aide d'une antenne imprimée, le rayonnement à une autre fréquence par le biais d'une antenne filaire. L'indépendance de fonctionnement de ces deux antennes permet d'optimiser celles-ci à des fréquences séparées. Le découplage entre les deux éléments est assuré par le fait que les principes qui contribuent au rayonnement sont de natures différentes.
- Le principe et le calcul du rayonnement d'une antenne microruban, telle que représentée aux figures 1 et 2 avec un plan de masse 11, un substrat diélectrique 12 et une piste métallique 10, ont été décrit par de nombreux auteurs (voir notamment l'article de R.MOSIG et de E. GARDIOL intitulé "Rayonnement d'une antenne microruban de forme arbitraire", paru dans ANN. TELECOMMUN. 40, n° 3-4 1985 aux pages 181 à 189).
- Dans le cas d'éléments de forme carrée ou circulaire, on s'aperçoit que le point central A de la piste imprimée supérieure 10 (croisement de ses deux axes de symétrie) est au même potentiel que le plan de masse inférieur 11, comme représenté à la figure 1.
- Il y a donc aucun changement dans les caractéristiques (adaptation, rayonnement) entre une antenne imprimée nominale ou une antenne imprimée dont le conducteur supérieur est relié au plan de masse 12 (AB) par un stub métallique 13, comme représenté sur la figure 2.
- Selon l'invention on implante une antenne filaire sur une antenne imprimée en utilisant cette propriété.
- Une telle réalisation présente les deux caractéristiques suivantes :
- L'antenne filaire n'affecte pas les caractéristiques adaptation et rayonnement de l'antenne imprimée.
- Du fait de principes de rayonnement différents, le couplage entre les deux éléments reste très faible. - Un certain nombre de types d'antennes filaires, peut être envisagé comme pouvant être montées sur l'antenne imprimée. Le choix précis dépend d'une optimisation par rapport à un besoin, et oriente la solution vers des dipôles, hélices monofilaires, hélices quadrifilaires... De telles antennes de type filaire ont été étudiées depuis de nombreuses années (voir notamment manuel de Richard C. JOHNSON et Henry JASIK intitulé "Antenna Engineering Handbook", McGraw-Hill Book Company, New-York). Les méthodes de calcul développées notamment dans ce document font des hypothèses sur la nature du courant établi sur les conducteurs afin d'évaluer l'intégrale de rayonnement.
- En fonctionnement nominal (sans antenne imprimée) l'élément filaire est placé devant un plan de masse à une distance convenable. Le rayonnement résultant peut être estimé par exemple à l'aide du principe des images pour une structure dipôle.
- Il n'y a aucun changement notable de performances de l'antenne filaire implantée sur une antenne imprimée, le plan de masse vu par l'antenne filaire étant réalisé par l'ensemble du conducteur imprimé et du plan de masse général de l'antenne imprimée . Comme la fréquence de fonctionnement de l'antenne filaire ne correspond pas à une résonnance de l'antenne imprimée, l'antenne imprimée ne joue pas de rôle particulier (concentration de champ, cavité, résonnance). Une légère adaptation de la hauteur du dipôle peut être toutefois nécessaire afin d'optimiser le diagramme résultant.
- Dans un exemple de réalisation, comme représenté à la figure 3, on a :
- une antenne imprimée plane , comme represéntée à la figure 2, percée en son centre d'un trou 15 de passage ;
- un câble coaxial 16, passant par ce trou 15 perpendiculairement au plan de l'antenne imprimée. Ce câble se termine à son extrémité libre par une antenne dipôle 17. - Dans cette réalisation représentée à la figure 3, le substrat diélectrique présente une épaisseur de quelques millimètres, la piste est de forme carrée et d'environ 60 mm de côté.
- En fonctionnement nominal :
- l'antenne imprimée présente une fréquence de résonance à 1628 MHz (voir courbe 20 à la figure 5) et des largeurs de bande d'adaptation :
à -10dB : 31 MHz
à -15dB : 16 MHz.
- le dipôle seul est défini à 2449 MHz (voir courbe 21 à la figure 6) et présente les largeurs de bande d'adaptation suivantes :
à -10dB : 227 MHz
à -15dB : 110 MHz - En fonctionnement bi-bande ces résultats sont très peu altérés, et les caractérisations de mesures ont fourni les indications suivantes :
- pour l'accès antenne imprimée la fréquence d'accord est obtenue pour 1638 MHz (voir courbe 22 à la figure 5), soit un écart inférieur à 1% par rapport au "Patch" seul, et les largeurs de bande d'adaptation sont :
à -10dB : 31,5 MHz
à -15dB : 16,9 MHz
- pour l'accès antenne dipôle, la fréquence d'accord obtenue est 2446 MHz (voir courbe 23 à la figure 6), soit un écart largement inférieur à 1% par rapport à l'élément seul, les largeurs d'adaptation sont :
à -10dB : 236 MHz
à -15dB : 122 MHz - Dans les deux cas, les différences sont mineures entre un fonctionnement bi-bande et un fonctionnement nominal en ce qui concerne :
. la localisation des fréquences d'accord (écart ≦ 1%) ;
. la stabilité des performances d'adaptation en fréquence. - De plus on vérifie le fait que le découplage interéléments De est toujours supérieur à 20dB, montrant ainsi le peu d'action d'une antenne sur l'autre (voir figure 7).
- On vérifie, de même, sur les coupes de diagramme qu'il n'existe aucune déviation ou impact majeur entre l'élément nominal (antennes prises seules) et l'élément bi-bande.
- On sait, par ailleurs, que l'épaisseur du substrat diélectrique est relativement faible et dépend de la nature du matériau diélectrique ; pour une structure "nid d'abeille" en KEVLAR : on aura toujours une épaisseur ≦ 10 mm, pour des matériaux diélectriques à constante plus élevée, cette épaisseur peut ne pas dépasser quelques millimètres (2 à 3 mm typiquement pour εr ∼ 2,5)
- Dans un autre exemple de réalisation, représenté à la figure 4, le câble coaxial 16 passant par le trou 15 se termine par une antenne 18 en hélice.
- Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.
- Ainsi d'autres types d'antennes peuvent être associées à une antenne microruban, tout en utilisant la même surface rayonnante.
- La forme de l'antenne microruban peut bien évidemment ne pas être plane et être munie d'une certaine courbure (cylindrique, sphérique. . . .), dépendant de son implantation particulière sur une structure : par exemple implantation sur des surfaces concaves.
Claims (6)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8801697 | 1988-02-12 | ||
FR8801697A FR2627330B1 (fr) | 1988-02-12 | 1988-02-12 | Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0327965A2 true EP0327965A2 (fr) | 1989-08-16 |
EP0327965A3 EP0327965A3 (fr) | 1991-05-08 |
Family
ID=9363228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19890101798 Withdrawn EP0327965A3 (fr) | 1988-02-12 | 1989-02-02 | Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales |
Country Status (5)
Country | Link |
---|---|
US (1) | US5220334A (fr) |
EP (1) | EP0327965A3 (fr) |
JP (1) | JPH01296703A (fr) |
CA (1) | CA1295732C (fr) |
FR (1) | FR2627330B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1826868A3 (fr) * | 1998-09-09 | 2007-10-03 | Qualcomm, Incorporated | Antenne de résonateur diélectrique polarisée circulairement |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2640431B1 (fr) * | 1988-12-08 | 1991-05-10 | Alcatel Espace | Dispositif rayonnant multifrequence |
US5835057A (en) * | 1996-01-26 | 1998-11-10 | Kvh Industries, Inc. | Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly |
US5838282A (en) * | 1996-03-22 | 1998-11-17 | Ball Aerospace And Technologies Corp. | Multi-frequency antenna |
US5864318A (en) * | 1996-04-26 | 1999-01-26 | Dorne & Margolin, Inc. | Composite antenna for cellular and gps communications |
US6005519A (en) * | 1996-09-04 | 1999-12-21 | 3 Com Corporation | Tunable microstrip antenna and method for tuning the same |
JP3580654B2 (ja) * | 1996-12-04 | 2004-10-27 | 京セラ株式会社 | 共用アンテナおよびこれを用いた携帯無線機 |
JP2998669B2 (ja) * | 1997-01-08 | 2000-01-11 | 日本電気株式会社 | アンテナ装置 |
SE510995C2 (sv) * | 1997-03-24 | 1999-07-19 | Ericsson Telefon Ab L M | Aktiv sändnings/mottagnings gruppantenn |
AU3838999A (en) * | 1998-05-11 | 1999-11-29 | Csa Limited | Dual-band microstrip antenna array |
SE516482C2 (sv) * | 1999-05-31 | 2002-01-22 | Allgon Ab | Patchantenn och en kommunikationsutrustning inkluderande en sådan antenn |
US6618012B1 (en) * | 1999-06-21 | 2003-09-09 | Thomson Licensing S.A. | Device for transmitting and/or receiving signals |
US6335706B1 (en) * | 1999-10-04 | 2002-01-01 | Paul Gordon Elliot | Method to feed antennas proximal a monopole |
SE518331C2 (sv) * | 2000-10-27 | 2002-09-24 | Ericsson Telefon Ab L M | Mobiltelefonantennanordning för en första och en andra radioapplikation |
SE518467C2 (sv) * | 2001-02-05 | 2002-10-15 | Bluetronics Ab | Patchantenn för bluetooth och WLAN |
US6785543B2 (en) * | 2001-09-14 | 2004-08-31 | Mobile Satellite Ventures, Lp | Filters for combined radiotelephone/GPS terminals |
FR2842025B1 (fr) * | 2002-07-02 | 2006-07-28 | Jacquelot Technologies | Dispositif rayonnant bi-bande a polarisations coplanaires |
JP2006270717A (ja) * | 2005-03-25 | 2006-10-05 | Nippon Antenna Co Ltd | 車載用アンテナ |
JP4970206B2 (ja) * | 2007-09-21 | 2012-07-04 | 株式会社東芝 | アンテナ装置 |
TWI370580B (en) | 2007-12-27 | 2012-08-11 | Wistron Neweb Corp | Patch antenna and method of making same |
WO2015108435A1 (fr) * | 2014-01-16 | 2015-07-23 | Llc "Topcon Positioning Systems" | Système d'antenne de station de base gnss ayant une sensibilité réduite aux réflexions provenant d'objets proches |
WO2015108436A1 (fr) * | 2014-01-16 | 2015-07-23 | Llc "Topcon Positioning Systems" | Système mondial d'antenne de navigation par satellites ayant un noyau creux |
KR101609665B1 (ko) * | 2014-11-11 | 2016-04-06 | 주식회사 케이엠더블유 | 이동통신 기지국 안테나 |
US10115683B2 (en) * | 2016-04-14 | 2018-10-30 | Nxp Usa, Inc. | Electrostatic discharge protection for antenna using vias |
WO2022030351A1 (fr) * | 2020-08-03 | 2022-02-10 | 住友電気工業株式会社 | Antenne réseau |
US20220102857A1 (en) * | 2020-09-29 | 2022-03-31 | T-Mobile Usa, Inc. | Multi-band millimeter wave (mmw) antenna arrays |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2629502A1 (de) * | 1976-06-30 | 1978-01-05 | Siemens Ag | Mehrfachrundstrahlantenne |
US4118706A (en) * | 1977-09-29 | 1978-10-03 | The United States Of America As Represented By The Secretary Of The Army | Microstrip-fed parasitic array |
US4218682A (en) * | 1979-06-22 | 1980-08-19 | Nasa | Multiple band circularly polarized microstrip antenna |
GB2180407A (en) * | 1985-09-09 | 1987-03-25 | Elta Electronics Ind Ltd | Microstrip antenna |
JPH0651008A (ja) * | 1992-12-18 | 1994-02-25 | Tomoegawa Paper Co Ltd | トナーの電荷量測定方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1221694B (de) * | 1961-07-07 | 1966-07-28 | Siemens Ag | Einrichtung zur Beseitigung der von Sendeantennen reflektierten hochfrequenten Energieanteile |
US4089003A (en) * | 1977-02-07 | 1978-05-09 | Motorola, Inc. | Multifrequency microstrip antenna |
JPS5425654A (en) * | 1977-07-29 | 1979-02-26 | Hitachi Denshi Ltd | Antenna mocrowave band |
US4162499A (en) * | 1977-10-26 | 1979-07-24 | The United States Of America As Represented By The Secretary Of The Army | Flush-mounted piggyback microstrip antenna |
JPS57107610A (en) * | 1980-12-25 | 1982-07-05 | Nippon Telegr & Teleph Corp <Ntt> | Circular polarized wave cone beam antenna |
JPS5829203A (ja) * | 1981-08-17 | 1983-02-21 | Nippon Telegr & Teleph Corp <Ntt> | 多層形マイクロストリップダイバ−シチアンテナ |
US4684953A (en) * | 1984-01-09 | 1987-08-04 | Mcdonnell Douglas Corporation | Reduced height monopole/crossed slot antenna |
JPS60244103A (ja) * | 1984-05-18 | 1985-12-04 | Nec Corp | アンテナ |
GB8501225D0 (en) * | 1985-01-17 | 1985-02-20 | Cossor Electronics Ltd | Antenna |
CA1257694A (fr) * | 1985-08-05 | 1989-07-18 | Hisamatsu Nakano | Systeme d'antenne |
US5099249A (en) * | 1987-10-13 | 1992-03-24 | Seavey Engineering Associates, Inc. | Microstrip antenna for vehicular satellite communications |
-
1988
- 1988-02-12 FR FR8801697A patent/FR2627330B1/fr not_active Expired - Fee Related
-
1989
- 1989-02-02 EP EP19890101798 patent/EP0327965A3/fr not_active Withdrawn
- 1989-02-09 CA CA000590604A patent/CA1295732C/fr not_active Expired - Lifetime
- 1989-02-13 JP JP1033504A patent/JPH01296703A/ja active Pending
- 1989-02-13 US US07/309,760 patent/US5220334A/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2629502A1 (de) * | 1976-06-30 | 1978-01-05 | Siemens Ag | Mehrfachrundstrahlantenne |
US4118706A (en) * | 1977-09-29 | 1978-10-03 | The United States Of America As Represented By The Secretary Of The Army | Microstrip-fed parasitic array |
US4218682A (en) * | 1979-06-22 | 1980-08-19 | Nasa | Multiple band circularly polarized microstrip antenna |
GB2180407A (en) * | 1985-09-09 | 1987-03-25 | Elta Electronics Ind Ltd | Microstrip antenna |
JPH0651008A (ja) * | 1992-12-18 | 1994-02-25 | Tomoegawa Paper Co Ltd | トナーの電荷量測定方法 |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 9, no. 178 (E-330)(1901), 23 juillet 1985; & JP - A - 6051008 (FUJITSU TEN) 22.03.1985 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1826868A3 (fr) * | 1998-09-09 | 2007-10-03 | Qualcomm, Incorporated | Antenne de résonateur diélectrique polarisée circulairement |
Also Published As
Publication number | Publication date |
---|---|
US5220334A (en) | 1993-06-15 |
CA1295732C (fr) | 1992-02-11 |
JPH01296703A (ja) | 1989-11-30 |
FR2627330B1 (fr) | 1990-11-30 |
FR2627330A1 (fr) | 1989-08-18 |
EP0327965A3 (fr) | 1991-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1295732C (fr) | Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales | |
EP3547450B1 (fr) | Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot | |
EP0426972B1 (fr) | Antenne plane | |
CA2004870C (fr) | Dispositif rayonnant multifrequence | |
EP0825673B1 (fr) | Antenne plane à éléments superposés court-circuités | |
EP0899814B1 (fr) | Structure rayonnante | |
EP2047558B1 (fr) | Antenne isotrope et capteur de mesure associe | |
EP1407512B1 (fr) | Antenne | |
EP2625741B1 (fr) | Antenne de grande dimension à ondes de surface et à large bande | |
EP1690317B1 (fr) | Antenne en reseau multi-bande a double polarisation | |
EP2441119A1 (fr) | Élément rayonnant d'antenne | |
EP0542595A1 (fr) | Dispositif d'antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite | |
FR2863111A1 (fr) | Antenne en reseau multi-bande a double polarisation | |
EP2643886B1 (fr) | Antenne planaire a bande passante elargie | |
EP0430745A1 (fr) | Antenne à polarisation circulaire, notamment pour réseau d'antennes | |
WO2016097362A1 (fr) | Antenne fil-plaque ayant un toit capacitif incorporant une fente entre la sonde d'alimentation et le fil de court-circuit | |
EP1181744B1 (fr) | Antenne a polarisation verticale | |
EP0642189B1 (fr) | Antenne pour appareil radio portatif | |
EP0463263B1 (fr) | Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon | |
CA2683048C (fr) | Antenne a elements rayonnants inclines | |
FR2641133A1 (fr) | ||
FR2724491A1 (fr) | Antenne plaquee miniaturisee, a double polarisation, a tres large bande | |
FR2980647A1 (fr) | Antenne ultra-large bande | |
EP0831550B1 (fr) | Antenne-réseau polyvalente | |
WO2016139403A1 (fr) | Structure antennaire omnidirectionnelle large bande |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT SE |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT SE |
|
17P | Request for examination filed |
Effective date: 19911104 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
17Q | First examination report despatched |
Effective date: 19921229 |
|
18W | Application withdrawn |
Withdrawal date: 19921221 |