EP0318886B1 - Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy - Google Patents
Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy Download PDFInfo
- Publication number
- EP0318886B1 EP0318886B1 EP88119777A EP88119777A EP0318886B1 EP 0318886 B1 EP0318886 B1 EP 0318886B1 EP 88119777 A EP88119777 A EP 88119777A EP 88119777 A EP88119777 A EP 88119777A EP 0318886 B1 EP0318886 B1 EP 0318886B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- parts
- protective layer
- electrolyte
- weight
- following composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F5/00—Electrolytic stripping of metallic layers or coatings
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23F—NON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
- C23F1/00—Etching metallic material by chemical means
- C23F1/44—Compositions for etching metallic material from a metallic material substrate of different composition
Definitions
- the blade is a critical component, with protective layers against erosion, wear, corrosion and oxidation becoming more important at high temperatures.
- the protective layer usually has a shorter lifespan than the core material of the blade, which is why the renewability of the former is becoming increasingly important.
- the invention relates to the further development of methods for repairing, repairing and renewing components of thermal machines which have been rendered unusable by erosion, wear, corrosion, oxidation or mechanical damage and are provided with protective layers.
- the old existing protective layer must first be removed, which can basically be done mechanically or chemically.
- the electrochemical method as a reverse process to the galvanic coating has a special position.
- it relates to a method for the electrolytic detachment of a surface protective layer having a high Cr and Ni and / or Co content from the base body of a component consisting of a nickel or cobalt-based superalloy.
- Electrolytic dissolution has hitherto not been practically used for such alloys.
- Some methods are known for removing metals from their substrates by reversing the method of electroplating.
- US-A-2 907 700 it is known to electrolytically remove coatings of metals (Ag, Ni, Cd, Zn, In) from a plutonium substrate.
- Sulfuric acid or sodium phosphate solution is used as the electrolyte.
- An electrolytic process is known from DE-B-21 46 828 for detaching metal coatings (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) from stainless Cr / Ni steel.
- Bromine-containing solutions of nitrates, acetates, chlorides etc. are used as electrolytes.
- the attack on the substrate is said to be low.
- coatings of metals Ni, Cr, Zn, Sn, Cu, Cd, Ag
- nitric acid or nitrate-containing solutions with iodine content as electrolytes, to which organic chlorine compounds are additionally added will.
- the invention is based on the object of specifying a method for detaching a surface protection layer based on a Ni and / or Co alloy with a high Cr content from the base body of a component, which consists of a chromium-containing Ni and / or Co base alloy.
- the surface layer should be completely removed without the material of the base body being attacked, removed or damaged or its chemical-physical properties and its behavior with regard to compatibility being impaired or changed, particularly when a surface protective layer is subsequently reapplied (renewed).
- 1 shows a schematic cross section through the active part of an electrolytic cell for carrying out the method.
- 1 is the cathode (usually a sheet made of corrosion-resistant Cr / Ni steel), 2 the electrolyte (indicated by horizontal lines), 3 the anode consisting of the base body and surface protection layer.
- the base body (substrate) 4 consists of a nickel or cobalt-based superalloy, which is usually present as an unchanged part 5 (core material).
- a diffusion zone 6 is located in the base body 4 at the boundary with the surface protective layer 7.
- the surface protection layer 7 in turn is composed of an originally unchanged part 8 and a diffusion zone 9.
- the latter generally forms after the protective layer 7 has been applied by diffusion annealing in production, but at the latest when the high temperatures in operation are reached. It is usually characterized by a depletion of chromium and an enrichment in nickel.
- the main ions present in the present example H+; Ni2+; Co2+, NO 2nd 3rd ⁇
- the electrochemical attack is first carried out on the surface of the protective layer 7 by NO 2nd 3rd ⁇ Ions, which mainly release the nickel (through with NO 2nd 3rd ⁇ And Ni2+ marked arrows). This loosens the protective layer 7, which is indicated by the formation of the pores 10.
- the attack of the electrolyte can be carried forward deeper inside the protective layer 7.
- the chromium is mainly oxidized by the oxidizing attack and has a passivating effect.
- the Cr2O3 particles formed fall out successively mechanically from the loosened dressing (indicated by an arrow).
- the chromium-depleted and nickel-enriched diffusion zone 9 of the surface protection layer 7, which is electrochemically negative compared to the neighboring regions, is preferably attacked by oxidizing the chromium and mechanically falling out as Cr2O3 (indicated by the arrow).
- the diffusion zone 9 of the surface protective layer 7 sets itself electronegatively with respect to the regions adjacent to it (indicated by -).
- Curve “a” shows the course of the chromium content
- curve “b” that of the nickel content as a function of depth x.
- the values are highly schematic mean values of numerous samples. The course can assume other values quantitatively, but always shows the same picture of the Cr depletion and the Ni enrichment in the diffusion zone 9.
- FIG. 3 shows a flow diagram in the form of a block diagram of a possible embodiment of the method.
- the diagram is self-explanatory and requires no further explanation.
- Electrolytic separation processes are based on the difference in the separation or dissolution potential of the components and / or phases involved.
- the potentials of the base body (substrate) 4 and the surface protective layer 7 are normally close together, since they are each nickel alloys with chromium contents that do not differ significantly from one another.
- the protective layer 7 can be detached without simultaneously attacking the base body 4, since the ions are the same.
- the thermal treatment of coated components even with very related alloys for the protective layer and base body, causes significant differences in concentration and potential due to diffusion. Interdiffusion forms an intermediate layer (diffusion zone 9) which (in an oxidizing electrolysis bath) assumes a negative electrochemical potential with respect to its surroundings and is therefore more easily attacked and detached.
- the core material of the gas turbine blade consisted of a nickel-based wrought superalloy with the trade name Nimonic 80A with the following composition: Cr 19.5% by weight Al 1.4% by weight Ti 2.4% by weight Zr 0.06% by weight Mn 0.30% by weight Si 0.30% by weight B 0.003% by weight C. 0.06% by weight Ni rest
- the surface protective layer with a thickness of 100 to 150 ⁇ m had been applied to the core material by plasma spraying and had the following composition: Cr 17% by weight Si 4.5% by weight Fe 4.5% by weight B 3.5% by weight Ni rest
- the gas turbine blade was cleaned by placing it in a solution of 20% NaOH at a temperature of 100 ° C. for 2 hours, rinsing it and treating it again in concentrated HCl. Then the shovel was brushed with a steel brush.
- the bucket was activated. For this purpose, it was again placed in 20% NaOH and then placed in concentrated HCl for 2 h.
- a sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.
- Electrolysis was then carried out under a cell voltage of 1000 mV at an anodic current density of 0.2 A / dm 2 for a period of 144 h.
- the bath temperature was 25 ° C.
- the scoop was removed from the bath, rinsed, brushed and dried.
- the core material had the trade name IN 939 from INCO, was a nickel-based casting superalloy and had the following composition: Cr 22.4% by weight Co 19.0% by weight Ta 1.4% by weight Nb 1.0% by weight Al 1.9% by weight Ti 3.7% by weight Zr 0.1% by weight C. 0.15% by weight Ni rest
- the approx. 120 ⁇ m average surface protection layer had the following composition: Cr 49% by weight Si 6% by weight Fe 2% by weight Ni rest
- a sheet made of corrosion-resistant Cr-Ni steel served as the cathode.
- the electrolytic detachment of the surface protective layer was carried out under a cell voltage of 1100 mV at an anodic current density of 0.2 A / dm 2 for 120 h.
- the bath temperature was 20 ° C.
- the dimensions of the airfoil were the same as in example 1.
- the core material of the airfoil consisted of a nickel-based casting superalloy with the trade name IN 738 from INCO with the following composition: Cr 16.0% by weight Co 8.5% by weight Mon 1.75% by weight W 2.6% by weight Ta 1.75% by weight Nb 0.9% by weight Al 3.4% by weight Ti 3.4% by weight Zr 0.1% by weight B 0.01% by weight C. 0.11% by weight Ni rest
- the protective layer had an average thickness of 100 ⁇ m and had the following composition: Cr 20% by weight Fe 2% by weight B 3% by weight Ni rest
- Example 2 As in Example 1, a sheet made of corrosion-resistant 18/8 steel was used as the cathode.
- the cell voltage was 1050 mV, the current density at the anode was 0.2 A / dm2. Electrolysis was carried out at a bath temperature of 22 ° C. for 140 h.
- the core material of a gas turbine blade with the blade dimensions according to Example 2 consisted of a nickel-based wrought superalloy with the trade name IN 105 from INCO with the following composition: Cr 13.5% by weight Co 18% by weight Al 4.2% by weight Mon 4.5% by weight Ti 0.9% by weight Mn 1% by weight Si 1% by weight C. 0.2% by weight Ni rest
- the protective layer had an average thickness of 140 ⁇ m and had the following composition: Cr 10% by weight Si 6% by weight Fe 4% by weight Co 20% by weight Ni rest
- a sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode. It was electrolyzed under a cell voltage of 1100 mV with an anodic current density of 0.18 A / dm2 for 150 h. Bath temperature 24 ° C. After the treatment, the component was rinsed, brushed and dried in the usual way.
- a sheet of corrosion-resistant 18/8 steel served as the cathode.
- the invention is not restricted to the exemplary embodiments.
- the method relates specifically to the electrolytic detachment of surface protective layers with a high Cr content and with a high Ni or Co content or at the same time a high Ni and Co content. It is therefore a matter of high-chromium nickel or cobalt-based alloys or those based on a nickel / cobalt mixture.
- Activation is carried out by 20% NaOH and subsequent immersion in concentrated HCl for 2 h at 40 ° C.
- the component is then placed as an anode in an electrolyte that contains oxygen-releasing, oxidizing components. There it is subjected to electrolysis until the surface protective layer has completely dissolved and fallen off.
- the surface protective layer is optionally pretreated by grinding and / or sand or shot peening before electrolysis. In stubborn cases, pulsed cell voltage is used.
- the stationary cell voltage is intermittent at intervals of 10 to 30 min. over a period of 5 to 10 seconds, an additional overvoltage of 1500 to 2000 mV is superimposed on the cell voltage.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Electrochemistry (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Description
Gasturbinen für höchste Ansprüche. Kritisches Bauteil ist die Schaufel, wobei Schutzschichten gegen Erosion, Verschleiss Korrosion und Oxydation bei hohen Temperaturen an Bedeutung gewinnen. Die Schutzschicht hat meist eine geringere Lebensdauer als der Kernwerkstoff der Schaufel, weshalb die Erneuerbarkeit der ersteren mehr und mehr in den Vordergrund rückt.Gas turbines for the highest demands. The blade is a critical component, with protective layers against erosion, wear, corrosion and oxidation becoming more important at high temperatures. The protective layer usually has a shorter lifespan than the core material of the blade, which is why the renewability of the former is becoming increasingly important.
Die Erfindung bezieht sich auf die Weiterentwicklung von Verfahren zur Reparatur, Instandstellung und Erneuerung von durch Erosion, Verschleiss, Korrosion, Oxydation oder mechanische Beschädigung unbrauchbar gewordenen, mit Schutzschichten versehenen Bauteilen thermischer Maschinen. Dabei muss zunächst die alte bestehende Schutzschicht entfernt werden, was grundsätzlich mechanisch oder chemisch erfolgen kann.The invention relates to the further development of methods for repairing, repairing and renewing components of thermal machines which have been rendered unusable by erosion, wear, corrosion, oxidation or mechanical damage and are provided with protective layers. The old existing protective layer must first be removed, which can basically be done mechanically or chemically.
Die elektrochemische Methode als umgekehrter Vorgang zur galvanischen Beschichung nimmt dabei eine Sonderstellung ein.The electrochemical method as a reverse process to the galvanic coating has a special position.
Insbesondere betrifft sie ein Verfahren zum elektrolytischen Ablösen einer einen hohen Cr- und Ni- und/oder Co-Gehalt aufweisenden Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils.In particular, it relates to a method for the electrolytic detachment of a surface protective layer having a high Cr and Ni and / or Co content from the base body of a component consisting of a nickel or cobalt-based superalloy.
Die Entfernung von Schutzschichten auf Substraten aus Superlegierungen wird unter anderem auf chemischem Wege durchgeführt. Das elektrolytische Auflösen ist für derartige Legierungen bisher praktisch nicht angewandt worden. Es sind einige Verfahren bekannt, durch Umkehrung der Methode des galvanischen Auftragens Metalle von ihren Substraten abzulösen. Aus der US-A-2 907 700 ist bekannt, Ueberzüge von Metallen (Ag, Ni, Cd, Zn, In) von einem Plutonium-Substrat elektrolytisch zu entfernen. Als Elektrolyt wird Schwefelsäure oder Natriumphosphatlösung verwendet. Aus der DE-B-21 46 828 ist ein elektrolytisches Verfahren bekannt, um Metallüberzüge (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) von rostfreiem Cr/Ni-Stahl abzulösen. Als Elektrolyte werden bromhaltige Lösungen von Nitraten, Azetaten, Chloriden etc. verwendet. Angeblich soll der Angriff auf das Substrat gering sein. Gemäss DE-C-25 27 152 sollen Ueberzüge aus Metallen (Ni, Cr, Zn, Sn, Cu, Cd, Ag) von Stahl elektrolytisch entfernt werden, indem Salpetersäure oder nitrathaltige Lösungen mit Jodgehalt als Elektrolyte benutzt werden, denen zusätzlich organische Chlorverbindungen zugesetzt werden.The removal of protective layers on substrates made of superalloys is carried out, among other things, by chemical means. Electrolytic dissolution has hitherto not been practically used for such alloys. Some methods are known for removing metals from their substrates by reversing the method of electroplating. From US-A-2 907 700 it is known to electrolytically remove coatings of metals (Ag, Ni, Cd, Zn, In) from a plutonium substrate. Sulfuric acid or sodium phosphate solution is used as the electrolyte. An electrolytic process is known from DE-B-21 46 828 for detaching metal coatings (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) from stainless Cr / Ni steel. Bromine-containing solutions of nitrates, acetates, chlorides etc. are used as electrolytes. The attack on the substrate is said to be low. According to DE-C-25 27 152, coatings of metals (Ni, Cr, Zn, Sn, Cu, Cd, Ag) are to be removed electrolytically from steel by using nitric acid or nitrate-containing solutions with iodine content as electrolytes, to which organic chlorine compounds are additionally added will.
Diese bekannten Verfahren, welche auf der genügenden Verschiedenheit des Auflösungspotentials des Metallüberzugs gegenüber demjenigen des Substrats beruht, sind in der vorliegenden Form nicht auf Schutzschichten auf Nickelbasis-Superlegierungen übertragbar. Die enge Verwandtschaft des chemischen Aufbaus zwischen Schutzschicht und Substrat ermöglicht normalerweise ein elektrolytisches Auflösen der ersteren nicht, ohne dass das Substrat gleichzeitig in unzulässiger Weise angegriffen wird. Auch ein Ausweichen auf komplexbildende Zusätze zum Elektrolyten schafft keine Abhilfe.
Es kommt dazu, dass die Bedingungen für das Nichtangreifen des Substrats im Falle von Bauteilen aus einer Superlegierung (Gasturbinenschaufel) viel strenger sind als für irgendwelche andere, z.B. oben genannte Gegenstände. Eine auch nur leicht im Kernwerkstoff veränderte Gasturbinenschaufel wäre in den wenigsten Fällen wieder verwendbar.
Es besteht daher ein starkes Bedürfnis, die obigen Mängel weitgehend zu beseitigen und Wege zur erfolgreichen Anwendung eines elektrolytischen Ablöseverfahrens für auf Nickelbasis- oder Kobaltbasis-Superlegierungen aufgetragene Oberflächenschutzschichten aufzuzeigen.These known methods, which are based on the sufficient difference in the dissolution potential of the metal coating compared to that of the substrate, are not in the present form on protective layers based on nickel-based superalloys transferable. The close relationship of the chemical structure between the protective layer and the substrate normally does not permit electrolytic dissolution of the former without the substrate being attacked in an unacceptable manner at the same time. Switching to complex-forming additives to the electrolyte also does not help.
In addition, the conditions for the non-attack of the substrate in the case of components made of a superalloy (gas turbine blade) are much stricter than for any other objects, for example those mentioned above. A gas turbine blade that has only been slightly modified in the core material would rarely be reusable.
There is therefore a strong need to largely eliminate the above shortcomings and to show ways of successfully using an electrolytic stripping method for surface protective layers applied on nickel-based or cobalt-based superalloys.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Ablösen einer auf einer Ni- und/oder Co-Legierung mit hohem Cr-Gehalt basierenden Oberflächenschutzschicht vom Grundkörper eines Bauteils anzugeben, der aus einer chromhaltigen Ni- und/oder Co-Basislegierung besteht. Dabei soll die Oberflächenschicht vollständig entfernt werden, ohne dass der Werkstoff des Grundkörpers angegriffen, abgetragen oder beschädigt oder in seinen chemisch-physikalischen Eigenschaften und in seinem Verhalten bezüglich Verträglichkeit insbesondere beim nachträglichen Wiederaufbringen (Erneuern) einer Oberflächenschutzschicht beeinträchtigt oder verändert wird.The invention is based on the object of specifying a method for detaching a surface protection layer based on a Ni and / or Co alloy with a high Cr content from the base body of a component, which consists of a chromium-containing Ni and / or Co base alloy. The surface layer should be completely removed without the material of the base body being attacked, removed or damaged or its chemical-physical properties and its behavior with regard to compatibility being impaired or changed, particularly when a surface protective layer is subsequently reapplied (renewed).
Diese Aufgabe wird erfindungsgemäss mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.This object is achieved according to the invention with the characterizing features of
Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben. Dabei zeigt:
- Fig. 1
- einen schematischen Querschnitt durch den aktiven Teil einer Elektrolysezelle zur Durchführung des Verfahrens,
- Fig. 2
- den stark schematisierten Verlauf des Cr- und Ni-Gehalts in der Oberflächenschutzschicht und der darunter liegenden Zone des Grundkörpers,
- Fig. 3
- ein Fliessdiagramm (Blockschema) einer Ausführungsart des Verfahrens.
- Fig. 1
- 2 shows a schematic cross section through the active part of an electrolysis cell for carrying out the method,
- Fig. 2
- the highly schematic course of the Cr and Ni content in the surface protection layer and the underlying zone of the base body,
- Fig. 3
- a flow diagram (block diagram) of an embodiment of the method.
In Fig. 1 ist ein schematischer Querschnitt durch den aktiven Teil einer Elektrolysezelle zur Durchführung des Verfahrens dargestellt. Die unwesentlichen, am prinzipiellen Verfahrensablauf nicht aktiv beteiligten Teile wie Gefäss, Stromzuführungen, Klemmen, Rühreinrichtungen, Steuergeräte etc. sind der Uebersichtlichkeit halber weggelassen worden. 1 ist die Kathode (in der Regel ein Blech aus korrosionsbeständigem Cr/Ni-Stahl), 2 der Elektrolyt (durch horizontale Striche angedeutet), 3 die aus Grundkörper und Oberflächenschutzschicht bestehende Anode. Der Grundkörper (Substrat) 4 besteht aus einer Nickel- oder Kobaltbasis-Superlegierung, der normalerweise überweigend als unveränderter Teil 5 (Kernwerkstoff) vorliegt. An der Grenze zur Oberflächenschutzschicht 7 befindet sich eine Diffusionszone 6 im Grundkörper 4.1 shows a schematic cross section through the active part of an electrolytic cell for carrying out the method. The insignificant parts that are not actively involved in the basic process flow, such as vessel, power supply, clamps, stirring devices, control devices etc., have been omitted for the sake of clarity. 1 is the cathode (usually a sheet made of corrosion-resistant Cr / Ni steel), 2 the electrolyte (indicated by horizontal lines), 3 the anode consisting of the base body and surface protection layer. The base body (substrate) 4 consists of a nickel or cobalt-based superalloy, which is usually present as an unchanged part 5 (core material). A
Die Oberflächenschutzschicht 7 ihrerseits setzt sich aus einem ursprünglich unveränderten Teil 8 und einer Diffusionszone 9 zusammen. Letztere bildet sich in der Regel nach dem Aufbringen der Schutzschicht 7 durch eine Diffusionsglühung in der Fabrikation, spätestens aber beim Erreichen der hohen Temperaturen im Betrieb aus. Sie zeichnet sich in der Regel durch eine Verarmung an Chrom und eine Anreicherung an Nickel aus. Im Elektrolyten 2 sind die im vorliegenden Beispiel in der Hauptsache vorhandenen Ionen (H⁺; Ni²⁺; Co²⁺, NO
Fig. 2 stellt den stark schematisierten Verlauf des Cr- und Ni-Gehalts in der Oberflächenschutzschicht und der darunterliegenden Zone des Grundkörpers dar. Auf der Abszisse x ist die Tiefe, gemessen von der Oberfläche in m aufgetragen, die Abszisse gibt den Cr- bzw. Ni-Gehalt in Gew.-% wieder. 4 ist der sich am stärksten elektropositiv (angedeutet durch ++) verhaltende Grundkörper. 7 ist die Oberflächenschutzschicht, deren ursprünglich unveränderter Teil 8 sich unter den Bedingungen der Elektrolyse elektropositiv, jedoch weniger hoch als der Grundkörper 4 einstellt (angedeutet durch +).2 shows the highly schematic course of the Cr and Ni content in the surface protective layer and the underlying zone of the base body. The abscissa x plots the depth, measured from the surface, in m, the abscissa gives the Cr or Ni content in% by weight again. 4 is the most electropositive (indicated by ++) behavior. 7 is the surface protective layer, the originally
Die Diffusionszone 9 der Oberflächenschutzschicht 7 stellt sich gegenüber den ihr benachbarten Bereichen elektronegativ ein (angedeutet durch -). Kurve "a" zeigt den Verlauf des Chromgehalts, Kurve "b" denjenigen des Nickelgehalts in Funktion der Tiefe x. Die Werte sind stark schematisierte Mittelwerte von zahlreichen Proben. Der Verlauf kann quantitativ andere Werte annehmen, zeigt aber grundsätzlich stets das gleiche Bild der Cr-Verarmung und der Ni-Anreicherung in der Diffusionszone 9.The
In Fig. 3 ist ein Fliessdiagramm in Form eines Blockschemas einer möglichen Ausführungsart des Verfahrens dargestellt. Das Diagramm erklärt sich von selbst und bedarf keiner weiteren Erläuterungen.3 shows a flow diagram in the form of a block diagram of a possible embodiment of the method. The diagram is self-explanatory and requires no further explanation.
Elektrolytische Trennverfahren beruhen auf der Verschiedenheit des Abscheide- bzw. Auflösungspotentials der beteiligten Komponenten und/oder Phasen. Im vorliegenden Fall liegen die Potentiale des Grundkörpers (Substrat) 4 und der Oberflächenschutzschicht 7 normalerweise nahe beisammmen, da es sich je um Nickellegierungen mit nicht wesentlich voneinander abweichenden Chromgehalten handelt. Auf den ersten Blick scheint es deshalb beinahe ausgeschlossen, dass eine Ablösung der Schutzschicht 7 ohne gleichzeitigen Angriff des Grundkörpers 4 möglich sei, da es sich um gleiche Ionen handelt. Es konnte jedoch gezeigt werden, dass durch die thermische Behandlng von beschichteten Bauteilen auch bei sehr verwandten Legierungen für Schutzschicht und Grundkörper durch Diffusion signifikante Konzentrations- und Potentialunterschiede auftreten. Durch Interdiffusion bildet sich eine Zwischenschicht (Diffusionszone 9), welche (in einem oxydierenden Elektrolysebad) gegenüber ihrer Umgebung ein negatives elektrochemisches Potential annimmt und demzufolge leichter angegriffen und abgelöst wird.Electrolytic separation processes are based on the difference in the separation or dissolution potential of the components and / or phases involved. In the present case, the potentials of the base body (substrate) 4 and the surface
Es lag eine mit einer Oberflächenschutzschicht versehene, an ihrem Kopfende durch Erosion teilweise beschädigte Gasturbinenschauel folgender Abmessungen des Schaufelblattes vor:
Der Kernwerkstoff der Gasturbinenschaufel bestand aus einer Nickelbasis-Knet-Superlegierung mit dem Handelsnamen Nimonic 80A von folgender Zusammensetzung:
Die Oberflächenschutzschicht von 100 bis 150 µm Dicke war durch Plasmaspritzen auf dem Kernwerkstoff aufgetragen worden und hatte folgende Zusammensetzung:
Die Gasturbinenschaufel wurde gereinigt, indem sie bei einer Temperatur von 100 °C während 2 h in eine Lösung von 20% NaOH eingelegt wurde, gespült und nochmals in konzentrierter HCl nachbehandelt wurde. Dann wurde die Schaufel mit einer Stahlbürste gebürstet.The gas turbine blade was cleaned by placing it in a solution of 20% NaOH at a temperature of 100 ° C. for 2 hours, rinsing it and treating it again in concentrated HCl. Then the shovel was brushed with a steel brush.
Nach der Reinigung wurde die Schaufel aktiviert. Zu diesem Zweck wurde sie nochmals in 20% NaOH gebracht und anschliessend während 2 h in konzentrierte HCl eingelegt.After cleaning, the bucket was activated. For this purpose, it was again placed in 20% NaOH and then placed in concentrated HCl for 2 h.
Die gereinigte und aktivierte Schaufel wurde als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte die nachfolgende Zusammensetzung:
- 30 Teile konzentrierte
- HNO₃
- 2 Teile
- Ni(NO₃)₂
- 1 Teil
- Co(No₃)₂
- 70 Teile
- H₂O.
- 30 parts concentrated
- HNO₃
- 2 parts
- Ni (NO₃) ₂
-
Part 1 - Co (No₃) ₂
- 70 parts
- H₂O.
Als Kathode diente ein Blech aus korrosionsbeständigem 18 Cr/8 Ni-Stahl.A sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.
Nun wurde unter einer Zellenspannung von 1000 mV bei einer anodischen Stromdichte von 0,2 A/dm² während einer Zeit von 144 h elektrolysiert. Die Badtemperatur betrug dabei 25 °C. Nach dieser Behandlung wurde die Schaufel aus dem Bad herausgenommen, gespült, gebürstet und getrocknet.Electrolysis was then carried out under a cell voltage of 1000 mV at an anodic current density of 0.2 A /
Eine auf einem grossen Teil ihrer Oberflächenschutzschicht des Schaufelblattes abgenutzte Gasturbinenschaufel mit den Abmessungen:
Die ca. 120 µm im Durchschnitt messende Oberflächenschutzschicht hatte folgende Zusammensetzung:
Zunächst wurde die Gasturbinenschaufel gemäss Beispiel 1 gereinigt, gebürstet und aktiviert. Dann wurde die Schaufel als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte folgende Zusammensetzung:
- 10 Teile konzentrierte
- HNO₃
- 5 Teile
- AgNO₃
- 90 Teile
- H₂O.
- 10 parts concentrated
- HNO₃
- 5 parts
- AgNO₃
- 90 parts
- H₂O.
Als Kathode diente ein Blech aus korrosionsbeständigem Cr-Ni-Stahl. Die elektrolytische Ablösung der Oberflächenschutzschicht wurde unter einer Zellenspannung von 1100 mV bei einer anodischen Stromdichte von 0,2 A/dm² während 120 h vorgenommen. Die Badtemperatur betrug 20 °C.A sheet made of corrosion-resistant Cr-Ni steel served as the cathode. The electrolytic detachment of the surface protective layer was carried out under a cell voltage of 1100 mV at an anodic current density of 0.2 A /
Eine mit einer Oberflächenschutzschicht versehene, an ihrem Kopfende stark beschädigte Gasturbinenschaufel musste vor ihrer Reparatur zuerst von ihrer Schutzschicht befreit werden. Die Abmessungen des Schaufelblattes waren die gleichen wie bei Beispiel 1. Der Kernwerkstoff der Schaufel bestand aus einer Nickelbasis-Guss-Superlegierung mit dem Handelsnamen IN 738 von INCO mit der folgenden Zusammensetzung:
Die Schutzschicht wies eine mittlere Dicke von 100 µm auf und hatte folgende Zusammensetzung:
Die Gasturbinenschaufel wurde gemäss Beispiel 1 gereinigt und aktiviert. Dann wurde sie in eine elektrochemische Zelle gegeben und einem Elektrolyseprozess unterworfen. Der Elektrolyt hatte folgende Zusammensetzung:
- 20 Teile
- CrO₃
- 80 Teile
- H₂O
- 20 parts
- CrO₃
- 80 parts
- H₂O
Als Kathode diente, wie bei Beispiel 1 ein Blech aus korrosionsbeständigem 18/8-Stahl. Die Zellenspannung betrug 1050 mV, die Stromdichte an der Anode 0,2 A/dm². Bei einer Badtemperatur von 22 °C wurde während 140 h elektrolysiert.As in Example 1, a sheet made of corrosion-resistant 18/8 steel was used as the cathode. The cell voltage was 1050 mV, the current density at the anode was 0.2 A / dm². Electrolysis was carried out at a bath temperature of 22 ° C. for 140 h.
Der Kernwerkstoff einer Gasturbinenschaufel mit den Schaufelblattabmessungen gemäss Beispiel 2 bestand aus einer Nickelbasis-Knet-Superlegierung mit der Handelsbezeichnung IN 105 von INCO mit der nachfolgenden Zusammensetzung:
Die Schutzschicht hatte eine Dicke von durchschnittlich 140 µm und wies folgende Zusammensetzung auf:
Nach der Reinigung und Aktivierung des Bauteils gemäss Beispiel 1 wurde das letztere als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte folgende Zusammensetzung:
- 10 Teile
- H₂SO₄
- 10 Teile
- Na₂S₂O₈
- 80 Teile
- H₂O
- 10 parts
- H₂SO₄
- 10 parts
- Na₂S₂O₈
- 80 parts
- H₂O
Als Kathode diente ein Blech aus korrosionsbeständigem 18 Cr/8 Ni-Stahl.
Es wurde unter einer Zellenspannung von 1100 mV mit einer anodischen Stromdichte von 0,18 A/dm² während 150 h elektrolysiert. Badtemperatur 24 °C. Nach der Behandlung wurde das Bauteil in üblicher Weise gespült, gebürstet und getrocknet.A sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.
It was electrolyzed under a cell voltage of 1100 mV with an anodic current density of 0.18 A / dm² for 150 h. Bath temperature 24 ° C. After the treatment, the component was rinsed, brushed and dried in the usual way.
Eine mit einer Oberflächenschutzschicht versehene, durch kombinierte Erosion und Korrosion teilweise beschädigte Gasturbinenschaufel wurde gemäss Beispiel 1 zunächst gereinigt und aktiviert. Die Schaufel hatte die gleichen Abmessungen wie in Beispiel 1. Der Kernwerkstoff bestand aus einer Nickelbasis-Guss-Superlegierung mit der Handelsbezeichnung IN 738. Zusammensetzung siehe oben! Die Schutzschicht hatte eine Dicke von 150 µm und entsprach in der Zusammensetzung derjenigen in Beispiel 1.
Nachdem das Bauteil gemäss Beispiel 1 gereinigt und aktiviert worden war, wurde es in ein Elektrolysebad als Anode eingehängt. Der Elektrolyt hatte folgende Zusammensetzung:
- 30 Teile
- HNO₃
- 70 Teile
- H₂O
- 10 g/l
- AgNO₃
- 20 g/l
- NH₄HF₂
After the component had been cleaned and activated according to Example 1, it was suspended in an electrolysis bath as an anode. The electrolyte had the following composition:
- 30 parts
- HNO₃
- 70 parts
- H₂O
- 10 g / l
- AgNO₃
- 20 g / l
- NH₄HF₂
Als Kathode diente ein Blech aus korrosionsbeständigem 18/8-Stahl. Nun wurde unter einer Zellenspannung von 1100 mV bei einer anodischen Stromdichte von 0,2 A/dm² elektrolysiert. Alle 20 min wurde die Zellenspannung während der Zeitdauer von 15 sec. auf den Wert von 2800 mV erhöht (zusätzliche Ueberspannung von 1700 mV bezogen auf den stationären Wert der Zelle). Dies führte zu einer rascheren Abtragung der schwer löslichen Oxyde von der jeweiligen akitven Oberfläche der noch verbliebenen Schutzschicht. Auf diese Weise wurde periodisch neuer Elektrolyt an die Oberfläche herangeführt. Nach einer totalen Betriebszeit von 60 h war die Oberflächenschutzschicht vollständig abgetragen, ohne dass der Grundkörper angegriffen worden war. Mit diesem Verfahren des gepulsten Verlaufs der Zellenspannung kann somit die Zeit für das Ablösen der Schutzschicht um 40 bis 70% verringert werden.A sheet of corrosion-resistant 18/8 steel served as the cathode. Now was under a cell voltage of 1100 mV electrolyzed at an anodic current density of 0.2 A / dm². Every 20 min the cell voltage was increased to 2800 mV for a period of 15 seconds (additional overvoltage of 1700 mV based on the stationary value of the cell). This led to a more rapid removal of the poorly soluble oxides from the respective active surface of the remaining protective layer. In this way, new electrolyte was periodically brought to the surface. After a total operating time of 60 hours, the surface protective layer had been completely removed without the base body having been attacked. With this method of the pulsed course of the cell voltage, the time for the detachment of the protective layer can thus be reduced by 40 to 70%.
Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Das Verfahren bezieht sich speziell auf das elektrolytische Ablösen von Oberflächenschutzschichten mit hohem Cr-Gehalt und mit hohem Ni- oder Co-Gehalt oder gleichzeitig hohem Ni- und Co-Gehalt. Es handelt sich also um hochchromhaltige Nickel- oder Kobaltbasis-Legierungen oder solche, die auf einer Nickel/Kobalt-Mischung basieren. Die Aktivierung erfolgt durch 20%ige NaOH und nachfolgendes Einlegen in konzentrierte HCl während 2 h bei 40 °C. Das Bauteil wird hierauf als Anode in einen Elektrolyten gebracht, der Sauerstoff abgebende, oxydierende Bestandteile enthält. Dort wird es bis zum völligen Auflösen und Abfallen der Oberflächenschutzschicht der Elektrolyse unterworfen. Die Oberflächenschutzschicht wird gegebenenfalls vor dem Elektrolysieren durch Schleifen und/oder Sand- oder Kugelstrahlen vorbehandelt. In hartnäckigen Fällen wird mit gepulster Zellenspannung gearbeitet. Der stationären Zellenspannung wird intermittierend in Intervallen von 10 bis 30 min. während einer jeweiligen Zeitdauer von 5 bis 10 sec eine zur Zellenspannung zusätzliche Ueberspannung von 1500 bis 2000 mV überlagert.The invention is not restricted to the exemplary embodiments. The method relates specifically to the electrolytic detachment of surface protective layers with a high Cr content and with a high Ni or Co content or at the same time a high Ni and Co content. It is therefore a matter of high-chromium nickel or cobalt-based alloys or those based on a nickel / cobalt mixture. Activation is carried out by 20% NaOH and subsequent immersion in concentrated HCl for 2 h at 40 ° C. The component is then placed as an anode in an electrolyte that contains oxygen-releasing, oxidizing components. There it is subjected to electrolysis until the surface protective layer has completely dissolved and fallen off. The surface protective layer is optionally pretreated by grinding and / or sand or shot peening before electrolysis. In stubborn cases, pulsed cell voltage is used. The stationary cell voltage is intermittent at intervals of 10 to 30 min. over a period of 5 to 10 seconds, an additional overvoltage of 1500 to 2000 mV is superimposed on the cell voltage.
Claims (7)
- Process for electrolytically stripping a surface protection layer (7) having a high Cr and Ni and/or Co content from the parent body (4) of a structural member consisting of a nickel-based or cobalt-based superalloy, characterised in that the structural member coated with a protective layer (7) is first immersed in a solution of 20%-strength NaOH and then at 40°C for 2h in a similar one of concentrated HCl for the purpose of activation, and in that the structural member with its activated protective layer (7) is introduced as anode into an aqueous electrolyte (2), which additionally contains an oxidising oxo acid and, optionally, salts of such an acid, and is subjected to electrolysis until the protective layer (7) completely dissolves and drops off.
- Process according to Claim 1, characterised in that the electrolyte (2) has the following composition:30 parts of concentrated HNO₃2 parts Ni(NO₃)₂1 part Co(NO₃)₂70 parts H₂O.
- Process according to Claim 1, characterised in that the protective layer (7) is pretreated by grinding and/or sand or shot blasting before immersion in the electrolyte (2), and in that the latter has the following composition:10 parts of concentrated HNO₃5 parts AgNO₃90 parts H₂O.
- Process according to Claim 1, characterised in that the electrolyte (2) has the following composition:20 parts CrO₃80 parts H₂O.
- Process according to Claim 1, characterised in that the electrolyte (2) has the following composition:10 parts H₂SO₄10 parts Na₂S₂O₈80 parts H₂O.
- Process according to Claim 1, characterised in that the electrolyte (2) has the following composition:30 parts HNO₃70 parts H₂O10 g/l AgNO₃20 g/l NH₄HF₂.
- Process according to Claim 1, characterised in that, during the electrolysis process, an additional overvoltage of 1500 to 2000 mV is intermittently superimposed on the steady cell voltage at intervals of 10 to 30 min during a respective time period of 5 to 10 sec.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH467387 | 1987-12-01 | ||
CH4673/87 | 1987-12-01 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0318886A1 EP0318886A1 (en) | 1989-06-07 |
EP0318886B1 true EP0318886B1 (en) | 1992-07-22 |
Family
ID=4280482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP88119777A Expired - Lifetime EP0318886B1 (en) | 1987-12-01 | 1988-11-28 | Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy |
Country Status (3)
Country | Link |
---|---|
US (1) | US4894130A (en) |
EP (1) | EP0318886B1 (en) |
DE (1) | DE3873038D1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6969457B2 (en) | 2002-10-21 | 2005-11-29 | General Electric Company | Method for partially stripping a coating from the surface of a substrate, and related articles and compositions |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9700819D0 (en) * | 1997-01-16 | 1997-03-05 | Gkn Westland Helicopters Ltd | Method of and apparatus for removing a metallic component from attachmet to a helicopter blade |
US6176999B1 (en) * | 1998-12-18 | 2001-01-23 | United Technologies Corporation | Feedback controlled stripping of airfoils |
US6352636B1 (en) | 1999-10-18 | 2002-03-05 | General Electric Company | Electrochemical system and process for stripping metallic coatings |
US6428683B1 (en) * | 2000-12-15 | 2002-08-06 | United Technologies Corporation | Feedback controlled airfoil stripping system with integrated water management and acid recycling system |
US6497968B2 (en) * | 2001-02-26 | 2002-12-24 | General Electric Company | Oxidation resistant coatings for molybdenum silicide-based composite articles |
DE10259363A1 (en) * | 2002-12-18 | 2004-07-08 | Siemens Ag | Method for removing at least one surface area of a component |
DE10259364A1 (en) * | 2002-12-18 | 2004-07-08 | Siemens Ag | Method for removing at least one surface area of a bag |
DE102004002763A1 (en) * | 2004-01-20 | 2005-08-04 | Mtu Aero Engines Gmbh | Method for electrochemical removal of layers from components with prior determination of a working point for their removal useful for stripping coated gas turbine blades |
EP1870497A1 (en) * | 2006-06-23 | 2007-12-26 | Siemens Aktiengesellschaft | Method for the electrochemical stripping of a metallic coating from an element |
EP1890004A1 (en) | 2006-08-08 | 2008-02-20 | Siemens Aktiengesellschaft | Method for the production of a deposited layer from recycled layer material |
DE102006044416A1 (en) * | 2006-09-18 | 2008-03-27 | Siemens Ag | Process for the electrochemical coating or stripping of components |
EP2053145A1 (en) * | 2007-10-19 | 2009-04-29 | Siemens Aktiengesellschaft | Method for removing a metal layer using FIC in an intermediate stage |
US7875200B2 (en) * | 2008-05-20 | 2011-01-25 | United Technologies Corporation | Method for a repair process |
EP2166125A1 (en) * | 2008-09-19 | 2010-03-24 | ALSTOM Technology Ltd | Method for the restoration of a metallic coating |
CN110670115B (en) * | 2019-09-30 | 2021-11-30 | 飞而康快速制造科技有限责任公司 | Corrosive agent suitable for deposited GH3536 alloy and corrosion method thereof |
CN114075690B (en) * | 2020-08-14 | 2022-11-22 | 中国科学院金属研究所 | Method for electrochemically removing MCrAlY coating |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2588734A (en) * | 1948-05-14 | 1952-03-11 | Atomic Energy Commission | Pretreatment of beryllium prior to coating |
FR1114198A (en) * | 1954-11-30 | 1956-04-09 | Renault | Process for removing chromium deposits |
DE1096709B (en) * | 1957-11-25 | 1961-01-05 | William Hill Fletcher Tickle | Process for preparing iron objects to improve the adhesion of an enamel coating |
US3015630A (en) * | 1959-08-24 | 1962-01-02 | Gen Electric | Aqueous solution for stripping nickel |
US3819494A (en) * | 1973-03-29 | 1974-06-25 | Fountain Plating Co Inc | Method of removing braze |
US4234397A (en) * | 1978-08-15 | 1980-11-18 | United Technologies Corporation | Nondestructive metallographic examination of gas turbine components |
US4324626A (en) * | 1979-11-13 | 1982-04-13 | United Technologies Corporation | Selective removal of nickel-based braze alloy from nickel-based metals |
-
1988
- 1988-11-28 EP EP88119777A patent/EP0318886B1/en not_active Expired - Lifetime
- 1988-11-28 DE DE8888119777T patent/DE3873038D1/en not_active Expired - Fee Related
- 1988-12-01 US US07/278,467 patent/US4894130A/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6969457B2 (en) | 2002-10-21 | 2005-11-29 | General Electric Company | Method for partially stripping a coating from the surface of a substrate, and related articles and compositions |
Also Published As
Publication number | Publication date |
---|---|
EP0318886A1 (en) | 1989-06-07 |
DE3873038D1 (en) | 1992-08-27 |
US4894130A (en) | 1990-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0318886B1 (en) | Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy | |
DE2907875C2 (en) | Process for the electrolytic removal of tungsten carbide coatings on workpieces made of titanium or titanium alloys | |
EP0318724B1 (en) | Process for chemically stripping a high chromic surface coating from a work piece made from a nickel or cobalt based superalloy | |
DE2157511B2 (en) | Process for the reapplication of coatings for used, dimensionally stable electrodes | |
DE69700420T2 (en) | Process for processing the outer surface of a continuous casting mold made of copper or copper alloy, which consists of a nickel plating stage and a nickel removal stage | |
DE3706711A1 (en) | METHOD FOR CLEANING SURFACES OF AN ALUMINUM OBJECT | |
EP1913181B1 (en) | Electropolishing method | |
DE1909757B2 (en) | PROCESS FOR THE CLEANING OF ANODES FOR ELECTROLYTIC PROCESSES, THAT CONSIST OF A BACKING OF A FILM-FORMING METAL AND A COATING OF PRECIOUS METALS, PRECIOUS METALLOIDS OR PRECIOUS METAL OXIDES CONTAINING MIXED OXIDES | |
EP0596273A1 (en) | Product for pickling surfaces of chromium-nickel steel or chromium steel and its use | |
DE69702064T2 (en) | CONTINUOUS MOLDING PART WITH A METAL COVER, COOLED WALL MADE OF COPPER OR COPPER ALLOY AND METHOD FOR THE PRODUCTION THEREOF | |
DE2741397C3 (en) | Method of pre-treating a nickel alloy workpiece for electroplating | |
DE2232903C3 (en) | Process for the electrolytic refining of copper using titanium electrodes | |
DE1944388A1 (en) | Process for descaling and pickling an object made of titanium or a titanium alloy | |
EP1533398B1 (en) | Process for producing an electrolyte ready for use out of waste products containing metal ions | |
DE4131793A1 (en) | METHOD AND DEVICE FOR REGENERATING REMEDIES | |
DE512913C (en) | Strips made of non-conductive material for covering cathodes used for the electrolytic deposition of metals on those parts of their surface where metal deposition should not take place | |
DE673710C (en) | Process for the production of protective coatings on objects made of iron or copper or their alloys | |
DE2940741C2 (en) | ||
DE843488C (en) | Process for separating or degreasing and separating machine parts that are stuck as a result of corrosion | |
DE2365499A1 (en) | METHOD OF MANUFACTURING TINNED STEEL SHEETS | |
DE3032480C2 (en) | Process for removing electrocatalytically effective protective coatings from electrodes with a metal core and application of the process | |
DE10014260B4 (en) | Process for galvanic coating of objects | |
DE714056C (en) | Process for removing stubborn oxide layers from medium and high-alloy steels | |
DE189875C (en) | ||
AT142546B (en) | Method of removing galvanic deposits. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE LI NL |
|
17P | Request for examination filed |
Effective date: 19891116 |
|
17Q | First examination report despatched |
Effective date: 19910626 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE LI NL |
|
REF | Corresponds to: |
Ref document number: 3873038 Country of ref document: DE Date of ref document: 19920827 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19961024 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19961122 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 19961128 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19971130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 19980801 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 19980601 |