[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0318886A1 - Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy - Google Patents

Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy Download PDF

Info

Publication number
EP0318886A1
EP0318886A1 EP88119777A EP88119777A EP0318886A1 EP 0318886 A1 EP0318886 A1 EP 0318886A1 EP 88119777 A EP88119777 A EP 88119777A EP 88119777 A EP88119777 A EP 88119777A EP 0318886 A1 EP0318886 A1 EP 0318886A1
Authority
EP
European Patent Office
Prior art keywords
parts
protective layer
electrolyte
weight
following composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP88119777A
Other languages
German (de)
French (fr)
Other versions
EP0318886B1 (en
Inventor
Vladimir Sova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0318886A1 publication Critical patent/EP0318886A1/en
Application granted granted Critical
Publication of EP0318886B1 publication Critical patent/EP0318886B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/44Compositions for etching metallic material from a metallic material substrate of different composition

Definitions

  • the blade is a critical component, with protective layers against erosion, wear, corrosion and oxidation becoming more important at high temperatures.
  • the protective layer usually has a shorter lifespan than the core material of the blade, which is why the renewability of the former is becoming increasingly important.
  • the invention relates to the further development of methods for repairing, repairing and renewing components of thermal machines which have been rendered unusable by erosion, wear, corrosion, oxidation or mechanical damage and are provided with protective layers.
  • the old existing protective layer must first be removed, which can basically be done mechanically or chemically.
  • the electrochemical method as a reverse process to the galvanic coating has a special position.
  • it relates to a method for the electrolytic detachment of a surface protective layer having a high Cr and Ni and / or Co content from the base body of a component consisting of a nickel or cobalt-based superalloy.
  • Electrolytic dissolution has hitherto not been practically used for such alloys.
  • Some methods are known for removing metals from their substrates by reversing the method of electroplating.
  • US-A-2 907 700 it is known to electrolytically remove coatings of metals (Ag, Ni, Cd, Zn, In) from a plutonium substrate.
  • Sulfuric acid or sodium phosphate solution is used as the electrolyte.
  • An electrolytic process is known from DE-B-21 46 828 for detaching metal coatings (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) from stainless Cr / Ni steel.
  • Bromine-containing solutions of nitrates, acetates, chlorides etc. are used as electrolytes.
  • the attack on the substrate is said to be low.
  • coatings of metals Ni, Cr, Zn, Sn, Cu, Cd, Ag
  • nitric acid or nitrate-containing solutions with iodine content as electrolytes, to which additional organic chlorine compounds are added will.
  • the invention is based on the object of specifying a method for detaching a surface protection layer based on a Ni and / or Co alloy with a high Cr content from the base body of a component, which consists of a chromium-containing Ni and / or Co base alloy.
  • the surface layer should be completely removed without the material of the base body being attacked, removed or damaged or its chemical-physical properties and its behavior with regard to compatibility being impaired or changed, particularly when a surface protective layer is subsequently reapplied (renewed).
  • the component coated with a protective layer is first activated in a solution of 20% NaOH and then at 40 ° C. for 2 hours in a solution of Concentrated HCl is immersed, that the component with its activated protective layer is brought as an anode into an electrolyte which contains oxygen and contains oxidizing components and is subjected to the electrolysis until the protective layer is completely dissolved and falls off.
  • 1 shows a schematic cross section through the active part of an electrolytic cell for carrying out the method.
  • 1 is the cathode (usually a sheet made of corrosion-resistant Cr / Ni steel), 2 the electrolyte (indicated by horizontal lines), 3 the anode consisting of the base body and surface protection layer.
  • the base body (substrate) 4 consists of a nickel or cobalt-based superalloy, which is usually present as an unchanged part 5 (core material).
  • a diffusion zone 6 is located in the base body 4 at the boundary with the surface protective layer 7.
  • the surface protection layer 7 in turn is composed of an originally unchanged part 8 and a diffusion zone 9.
  • the latter generally forms after the protective layer 7 has been applied by diffusion annealing in production, but at the latest when the high temperatures in operation are reached. It is usually characterized by a depletion of chromium and an enrichment in nickel.
  • the main ions present in the present example H+; Ni2+; Co2+, NO 2nd 3rd ⁇
  • the electrochemical attack is first carried out on the surface of the protective layer 7 by NO 2nd 3rd ⁇ Ions, which mainly release the nickel (through with NO 2nd 3rd ⁇ And Ni2+ marked arrows). This loosens the protective layer 7, which is indicated by the formation of the pores 10.
  • the attack of the electrolyte can be carried forward deeper inside the protective layer 7.
  • the chromium is mainly oxidized by the oxidizing attack and has a passivating effect.
  • the Cr2O3 particles formed fall out successively mechanically from the loosened dressing (indicated by an arrow).
  • the chromium-depleted and nickel-enriched diffusion zone 9 of the surface protection layer 7, which is electrochemically negative compared to the neighboring regions, is preferably attacked by oxidizing the chromium and mechanically falling out as Cr2O3 (indicated by the arrow).
  • the diffusion zone 9 of the surface protective layer 7 sets itself electronegatively with respect to the regions adjacent to it (indicated by -).
  • Curve “a” shows the course of the chromium content
  • curve “b” that of the nickel content as a function of depth x.
  • the values are highly schematic mean values of numerous samples. The course can assume different values quantitatively, but always shows the same picture of the Cr depletion and the Ni enrichment in the diffusion zone 9.
  • FIG. 3 shows a flow diagram in the form of a block diagram of a possible embodiment of the method.
  • the diagram is self-explanatory and requires no further explanation.
  • Electrolytic separation processes are based on the difference in the separation or dissolution potential of the components and / or phases involved.
  • the potentials of the base body (substrate) 4 and the surface protective layer 7 are normally close together, since they are each nickel alloys with chromium contents that do not differ significantly from one another.
  • the protective layer 7 can be detached without simultaneously attacking the base body 4, since the ions are the same.
  • the thermal treatment of coated components even with very related alloys for the protective layer and base body, causes significant differences in concentration and potential due to diffusion. Interdiffusion forms an intermediate layer (diffusion zone 9) which (in an oxidizing electrolysis bath) assumes a negative electrochemical potential with respect to its surroundings and is therefore more easily attacked and detached.
  • the gas turbine blade was cleaned by placing it in a solution of 20% NaOH at a temperature of 100 ° C. for 2 hours, rinsing it and treating it again in concentrated HCl. Then the shovel was brushed with a steel brush.
  • the bucket was activated. For this purpose, it was again placed in 20% NaOH and then placed in concentrated HCl for 2 h.
  • the cleaned and activated blade was hung as an anode in an electrolysis bath.
  • the electrolyte had the following composition: 30 parts concentrated HNO3 2 parts Ni (NO3) 2 Part 1 Co (NO3) 2 70 parts H2O
  • a sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.
  • Electrolysis was then carried out under a cell voltage of 1000 mV at an anodic current density of 0.2 A / dm 2 for a period of 144 h.
  • the bath temperature was 25 ° C.
  • the scoop was removed from the bath, rinsed, brushed and dried.
  • the gas turbine blade was cleaned, brushed and activated in accordance with Example 1. Then the shovel was hung as an anode in an electrolysis bath.
  • the electrolyte had the following composition: 10 parts concentrated HNO3 5 parts AgNO3 90 parts H2O
  • a sheet made of corrosion-resistant Cr-Ni steel served as the cathode.
  • the electrolytic detachment of the surface protection layer was carried out under a cell voltage of 1100 mV with an anodic current density of 0.2 A / dm 2 for 120 h.
  • the bath temperature was 20 ° C.
  • the dimensions of the airfoil were the same as in example 1.
  • the gas turbine blade was cleaned and activated according to example 1. Then she was put in an electrochemical cell given and subjected to an electrolysis process.
  • the electrolyte had the following composition: 20 parts CrO3 80 parts H2O
  • Example 2 As in Example 1, a sheet made of corrosion-resistant 18/8 steel was used as the cathode.
  • the cell voltage was 1050 mV, the current density at the anode was 0.2 A / dm2. Electrolysis was carried out at a bath temperature of 22 ° C. for 140 h.
  • the electrolyte had the following composition: 10 parts H2SO4 10 parts Na2S2O8 80 parts H2O
  • a sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode. It was electrolyzed under a cell voltage of 1100 mV with an anodic current density of 0.18 A / dm2 for 150 h. Bath temperature 24 ° C. After the treatment, the component was rinsed, brushed and dried in the usual way.
  • a gas turbine blade provided with a surface protection layer and partially damaged by combined erosion and corrosion was first cleaned and activated according to Example 1.
  • the blade had the same dimensions as in Example 1.
  • the core material consisted of a nickel-based cast superalloy with the trade name IN 738. Composition see above!
  • the protective layer had a thickness of 150 ⁇ m and had the same composition as that in Example 1. After the component had been cleaned and activated according to Example 1, it was suspended in an electrolysis bath as an anode.
  • the electrolyte had the following composition: 30 parts HNO3 70 parts H2O 10 g / l AgNO3 20 g / l NH4HF2
  • a sheet of corrosion-resistant 18/8 steel served as the cathode.
  • the invention is not restricted to the exemplary embodiments.
  • the method relates specifically to the electrolytic detachment of surface protective layers with a high Cr content and with a high Ni or Co content or at the same time a high Ni and Co content. It is therefore a matter of high-chromium nickel or cobalt-based alloys or those based on a nickel / cobalt mixture.
  • Activation is carried out by 20% NaOH and subsequent immersion in concentrated HCl for 2 h at 40 ° C.
  • the component is then placed as an anode in an electrolyte that contains oxygen-releasing, oxidizing components. There it is subjected to electrolysis until the surface protective layer has completely dissolved and fallen off.
  • the surface protective layer is optionally pretreated by grinding and / or sand or shot peening before electrolysis. In stubborn cases, pulsed cell voltage is used.
  • the stationary cell voltage is intermittent at intervals of 10 to 30 min. over a period of 5 to 10 seconds, an additional overvoltage of 1500 to 2000 mV is superimposed on the cell voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

Verfahren zum elektrolytischen Ablösen einer einen hohen Cr- und Ni- und/oder Co-Gehalt aufweisenden Oberflächenschutzschicht (7) von einem Grundkörper (4) aus einer Ni-oder Co-Basis-Superlegierung durch Aktivierung in NaOH und HCl und nachfolgendem Eintauchen als Anode in einen Elektrolyten (2), der Sauerstoff abgebende, oxydierende Bestandteile enthält und Unterwerfung unter einen Elektrolyseprozess. Beim Elektrolyseprozess wird die gegenüber den umgebenden Bereichen sich elektronegativ einstellende, an Cr verarmte und an Ni angereicherte Diffusionszone (9) der Oberflächenschutzschicht (7) bevorzugt angegriffen und abgelöst.Process for the electrolytic detachment of a surface protection layer (7) having a high Cr and Ni and / or Co content from a base body (4) made of a Ni or Co-based superalloy by activation in NaOH and HCl and subsequent immersion as anode into an electrolyte (2) containing oxygen-releasing, oxidizing components and submission to an electrolysis process. In the electrolysis process, the diffusion zone (9) of the surface protective layer (7) which adjusts itself electronically to the surrounding areas, is depleted in Cr and enriched in Ni, is preferably attacked and detached.

Description

Technisches GebietTechnical field

Gasturbinen für höchste Ansprüche. Kritisches Bauteil ist die Schaufel, wobei Schutzschichten gegen Erosion, Verschleiss Korrosion und Oxydation bei hohen Temperaturen an Bedeutung gewinnen. Die Schutzschicht hat meist eine geringere Lebens­dauer als der Kernwerkstoff der Schaufel, weshalb die Er­neuerbarkeit der ersteren mehr und mehr in den Vordergrund rückt.Gas turbines for the highest demands. The blade is a critical component, with protective layers against erosion, wear, corrosion and oxidation becoming more important at high temperatures. The protective layer usually has a shorter lifespan than the core material of the blade, which is why the renewability of the former is becoming increasingly important.

Die Erfindung bezieht sich auf die Weiterentwicklung von Verfahren zur Reparatur, Instandstellung und Erneuerung von durch Erosion, Verschleiss, Korrosion, Oxydation oder mechanische Beschädigung unbrauchbar gewordenen, mit Schutz­schichten versehenen Bauteilen thermischer Maschinen. Dabei muss zunächst die alte bestehende Schutzschicht entfernt werden, was grundsätzlich mechanisch oder chemisch erfolgen kann.The invention relates to the further development of methods for repairing, repairing and renewing components of thermal machines which have been rendered unusable by erosion, wear, corrosion, oxidation or mechanical damage and are provided with protective layers. The old existing protective layer must first be removed, which can basically be done mechanically or chemically.

Die elektrochemische Methode als umgekehrter Vorgang zur galvanischen Beschichung nimmt dabei eine Sonderstellung ein.The electrochemical method as a reverse process to the galvanic coating has a special position.

Insbesondere betrifft sie ein Verfahren zum elektrolytischen Ablösen einer einen hohen Cr- und Ni- und/oder Co-Gehalt aufweisenden Oberflächenschutzschicht vom Grundkörper eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bauteils.In particular, it relates to a method for the electrolytic detachment of a surface protective layer having a high Cr and Ni and / or Co content from the base body of a component consisting of a nickel or cobalt-based superalloy.

Stand der TechnikState of the art

Die Entfernung von Schutzschichten auf Substraten aus Super­legierungen wird unter anderem auf chemischem Wege durchge­führt. Das elektrolytische Auflösen ist für derartige Legie­rungen bisher praktisch nicht angewandt worden. Es sind einige Verfahren bekannt, durch Umkehrung der Methode des galvanischen Auftragens Metalle von ihren Substraten abzu­lösen. Aus der US-A-2 907 700 ist bekannt, Ueberzüge von Metallen (Ag, Ni, Cd, Zn, In) von einem Plutonium-Substrat elektrolytisch zu entfernen. Als Elektrolyt wird Schwefel­säure oder Natriumphosphatlösung verwendet. Aus der DE-B-­21 46 828 ist ein elektrolytisches Verfahren bekannt, um Metallüberzüge (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) von rost­freiem Cr/Ni-Stahl abzulösen. Als Elektrolyte werden brom­haltige Lösungen von Nitraten, Azetaten, Chloriden etc. verwendet. Angeblich soll der Angriff auf das Substrat gering sein. Gemäss DE-C-25 27 152 sollen Ueberzüge aus Metallen (Ni, Cr, Zn, Sn, Cu, Cd, Ag) von Stahl elektrolytisch ent­fernt werden, indem Salpetersäure oder nitrathaltige Lösungen mit Jodgehalt als Elektrolyte benutzt werden, denen zusätz­lich organische Chlorverbindungen zugesetzt werden.The removal of protective layers on substrates made of superalloys is carried out, among other things, by chemical means. Electrolytic dissolution has hitherto not been practically used for such alloys. Some methods are known for removing metals from their substrates by reversing the method of electroplating. From US-A-2 907 700 it is known to electrolytically remove coatings of metals (Ag, Ni, Cd, Zn, In) from a plutonium substrate. Sulfuric acid or sodium phosphate solution is used as the electrolyte. An electrolytic process is known from DE-B-21 46 828 for detaching metal coatings (Cr, Au, Cd, Cu, Ag, Zn, Sn, Ni) from stainless Cr / Ni steel. Bromine-containing solutions of nitrates, acetates, chlorides etc. are used as electrolytes. The attack on the substrate is said to be low. According to DE-C-25 27 152, coatings of metals (Ni, Cr, Zn, Sn, Cu, Cd, Ag) are to be removed electrolytically from steel by using nitric acid or nitrate-containing solutions with iodine content as electrolytes, to which additional organic chlorine compounds are added will.

Diese bekannten Verfahren, welche auf der genügenden Ver­schiedenheit des Auflösungspotentials des Metallüberzugs gegenüber demjenigen des Substrats beruht, sind in der vor­liegenden Form nicht auf Schutzschichten auf Nickelbasis-­ Superlegierungen übertragbar. Die enge Verwandtschaft des chemischen Aufbaus zwischen Schutzschicht und Substrat er­möglicht normalerweise ein elektrolytisches Auflösen der ersteren nicht, ohne dass das Substrat gleichzeitig in un­zulässiger Weise angegriffen wird. Auch ein Ausweichen auf komplexbildende Zusätze zum Elektrolyten schafft keine Ab­hilfe.
Es kommt dazu, dass die Bedingungen für das Nichtangreifen des Substrats im Falle von Bauteilen aus einer Superlegierung (Gasturbinenschaufel) viel strenger sind als für irgend­welche andere, z.B. oben genannte Gegenstände. Eine auch nur leicht im Kernwerkstoff veränderte Gasturbinenschaufel wäre in den wenigsten Fällen wieder verwendbar. Es besteht daher ein starkes Bedürfnis, die obigen Mängel weitgehend zu beseitigen und Wege zur erfolgreichen Anwendung eines elektrolytischen Ablöseverfahrens für auf Nickelbasis-­oder Kobaltbasis-Superlegierungen aufgetragene Oberflächen­schutzschichten aufzuzeigen.
These known methods, which are based on the sufficient difference in the dissolution potential of the metal coating compared to that of the substrate, are not in the present form on protective layers based on nickel. Superalloys transferable. The close relationship of the chemical structure between the protective layer and the substrate normally does not permit electrolytic dissolution of the former without the substrate being attacked in an unacceptable manner at the same time. Switching to complex-forming additives to the electrolyte also does not help.
In addition, the conditions for the non-attack of the substrate in the case of components made of a superalloy (gas turbine blade) are much stricter than for any other objects, for example those mentioned above. A gas turbine blade that has only been slightly modified in the core material would rarely be reusable. There is therefore a strong need to largely eliminate the above shortcomings and to show ways of successfully using an electrolytic detachment process for surface protection layers applied on nickel-based or cobalt-based superalloys.

Darstellung der ErfindungPresentation of the invention

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Ablösen einer auf einer Ni- und/oder Co-Legierung mit hohem Cr-Gehalt basierenden Oberflächenschutzschicht vom Grundkörper eines Bauteils anzugeben, der aus einer chrom­haltigen Ni- und/oder Co-Basislegierung besteht. Dabei soll die Oberflächenschicht vollständig entfernt werden, ohne dass der Werkstoff des Grundkörpers angegriffen, abgetragen oder beschädigt oder in seinen chemisch-physikalischen Eigen­schaften und in seinem Verhalten bezüglich Verträglichkeit insbesondere beim nachträglichen Wiederaufbringen (Erneuern) einer Oberflächenschutzschicht beeinträchtigt oder verändert wird.The invention is based on the object of specifying a method for detaching a surface protection layer based on a Ni and / or Co alloy with a high Cr content from the base body of a component, which consists of a chromium-containing Ni and / or Co base alloy. The surface layer should be completely removed without the material of the base body being attacked, removed or damaged or its chemical-physical properties and its behavior with regard to compatibility being impaired or changed, particularly when a surface protective layer is subsequently reapplied (renewed).

Diese Aufgabe wird dadurch gelöst, dass im eingangs erwähnten Verfahren das mit einer Schutzschicht überzogene Bauteil zunächst zur Aktivierung in eine Lösung von 20 % NaOH und anschliessend bei 40 °C während 2 h in eine solche von konzentrierter HCl getaucht wird, dass das Bauteil mit seiner aktivierten Schutzschicht als Anode in einen Sauerstoff abgebende, oxydierende Bestandteile enthaltenden Elektro­lyt gebracht und bis zum völligen Auflösen und Abfallen der Schutzschicht der Elektrolyse unterworfen wird.This object is achieved in that, in the method mentioned at the outset, the component coated with a protective layer is first activated in a solution of 20% NaOH and then at 40 ° C. for 2 hours in a solution of Concentrated HCl is immersed, that the component with its activated protective layer is brought as an anode into an electrolyte which contains oxygen and contains oxidizing components and is subjected to the electrolysis until the protective layer is completely dissolved and falls off.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Die Erfindung wird anhand der nachfolgenden, durch Figuren näher erläuterten Ausführungsbeispiele beschrieben. Dabei zeigt:

  • Fig. 1 einen schematischen Querschnitt durch den aktiven Teil einer Elektrolysezelle zur Durchführung des Verfahrens,
  • Fig. 2 den stark schematisierten Verlauf des Cr- und Ni-­Gehalts in der Oberflächenschutzschicht und der darunter liegenden Zone des Grundkörpers,
  • Fig. 3 ein Fliessdiagramm (Blockschema) einer Ausführungs­art des Verfahrens.
The invention is described on the basis of the following exemplary embodiments which are explained in more detail by means of figures. It shows:
  • 1 shows a schematic cross section through the active part of an electrolysis cell for carrying out the method,
  • 2 shows the highly schematic course of the Cr and Ni content in the surface protective layer and the underlying zone of the base body,
  • 3 shows a flow diagram (block diagram) of an embodiment of the method.

In Fig. 1 ist ein schematischer Querschnitt durch den aktiven Teil einer Elektrolysezelle zur Durchführung des Verfahrens dargestellt. Die unwesentlichen, am prinzipiellen Verfahrens­ablauf nicht aktiv beteiligten Teile wie Gefäss, Stromzu­führungen, Klemmen, Rühreinrichtungen, Steuergeräte etc. sind der Uebersichtlichkeit halber weggelassen worden. 1 ist die Kathode (in der Regel ein Blech aus korrosionsbeständigem Cr/Ni-Stahl), 2 der Elektrolyt (durch horizontale Striche angedeutet), 3 die aus Grundkörper und Oberflächenschutz­schicht bestehende Anode. Der Grundkörper (Substrat) 4 besteht aus einer Nickel- oder Kobaltbasis-Superlegierung, der nor­malerweise überweigend als unveränderter Teil 5 (Kernwerk­stoff) vorliegt. An der Grenze zur Oberflächenschutzschicht 7 befindet sich eine Diffusionszone 6 im Grundkörper 4.1 shows a schematic cross section through the active part of an electrolytic cell for carrying out the method. The insignificant parts that are not actively involved in the basic process flow, such as vessel, power supply, clamps, stirring devices, control devices etc., have been omitted for the sake of clarity. 1 is the cathode (usually a sheet made of corrosion-resistant Cr / Ni steel), 2 the electrolyte (indicated by horizontal lines), 3 the anode consisting of the base body and surface protection layer. The base body (substrate) 4 consists of a nickel or cobalt-based superalloy, which is usually present as an unchanged part 5 (core material). A diffusion zone 6 is located in the base body 4 at the boundary with the surface protective layer 7.

Die Oberflächenschutzschicht 7 ihrerseits setzt sich aus einem ursprünglich unveränderten Teil 8 und einer Diffu­sionszone 9 zusammen. Letztere bildet sich in der Regel nach dem Aufbringen der Schutzschicht 7 durch eine Diffu­sionsglühung in der Fabrikation, spätestens aber beim Errei­chen der hohen Temperaturen im Betrieb aus. Sie zeichnet sich in der Regel durch eine Verarmung an Chrom und eine Anreicherung an Nickel aus. Im Elektrolyten 2 sind die im vorliegenden Beispiel in der Hauptsache vorhandenen Ionen (H⁺; Ni²⁺; Co²⁺, NO 2 3

Figure imgb0001
⁻) angedeutet. Der elektrochemische Angriff erfolgt zunächst an der Oberfläche der Schutzschicht 7 durch NO 2 3
Figure imgb0002
⁻-Ionen, welche vor allem das Nickel herauslösen (durch mit NO 2 3
Figure imgb0003
⁻ und Ni²⁺ markierte Pfeile angedeutet). Dadurch wird die Schutzschicht 7 aufgelockert, was durch Bildung der Poren 10 angedeutet ist. Auf diese Weise kann der Angriff des Elektrolyten immer tiefer ins Innere der Schutzschicht 7 vorgetragen werden. Das Chrom wird durch den oxydierenden Angriff zum überwiegenden Teil oxydiert und wirkt passi­vierend. Die gebildeten Cr₂O₃-Partikel fallen sukzessive aus dem aufgelockerten Verband mechanisch heraus (durch Pfeil angedeutet). Schliesslich wird die an Chrom verarmte und an Nickel angereicherte, gegenüber den Nachbargebieten sich elektrochemisch negativ verhaltende Diffusionszone 9 der Oberflächenschutzschicht 7 bevorzugt angegriffen, indem das Chrom oxydiert wird und als Cr₂O₃ mechanisch heraus­fällt (durch Pfeil angedeutet).The surface protection layer 7 in turn is composed of an originally unchanged part 8 and a diffusion zone 9. The latter generally forms after the protective layer 7 has been applied by diffusion annealing in production, but at the latest when the high temperatures in operation are reached. It is usually characterized by a depletion of chromium and an enrichment in nickel. In the electrolyte 2, the main ions present in the present example (H⁺; Ni²⁺; Co²⁺, NO 2nd 3rd
Figure imgb0001
⁻) Indicated. The electrochemical attack is first carried out on the surface of the protective layer 7 by NO 2nd 3rd
Figure imgb0002
⁻ Ions, which mainly release the nickel (through with NO 2nd 3rd
Figure imgb0003
⁻ And Ni²⁺ marked arrows). This loosens the protective layer 7, which is indicated by the formation of the pores 10. In this way, the attack of the electrolyte can be carried forward deeper inside the protective layer 7. The chromium is mainly oxidized by the oxidizing attack and has a passivating effect. The Cr₂O₃ particles formed fall out successively mechanically from the loosened dressing (indicated by an arrow). Finally, the chromium-depleted and nickel-enriched diffusion zone 9 of the surface protection layer 7, which is electrochemically negative compared to the neighboring regions, is preferably attacked by oxidizing the chromium and mechanically falling out as Cr₂O₃ (indicated by the arrow).

Fig. 2 stellt den stark schematisierten Verlauf des Cr- und Ni-Gehalts in der Oberflächenschutzschicht und der darunter­liegenden Zone des Grundkörpers dar. Auf der Abszisse x ist die Tiefe, gemessen von der Oberfläche in m aufgetragen, die Abszisse gibt den Cr- bzw. Ni-Gehalt in Gew.-% wieder. 4 ist der sich am stärksten elektropositiv (angedeutet durch ++) verhaltende Grundkörper. 7 ist die Oberflächenschutz­schicht, deren ursprünglich unveränderter Teil 8 sich unter den Bedingungen der Elektrolyse elektropositiv, jedoch weniger hoch als der Grundkörper 4 einstellt (angedeutet durch +).2 shows the highly schematic course of the Cr and Ni content in the surface protective layer and the underlying zone of the base body. The abscissa x plots the depth, measured from the surface, in m, the abscissa gives the Cr or Ni content in% by weight again. 4 is the most electropositive (indicated by ++) behavior. 7 is the surface protective layer, the originally unchanged part 8 of which is electropositive under the conditions of electrolysis, but less high than the base body 4 (indicated by +).

Die Diffusionszone 9 der Oberflächenschutzschicht 7 stellt sich gegenüber den ihr benachbarten Bereichen elektronegativ ein (angedeutet durch -). Kurve "a" zeigt den Verlauf des Chromgehalts, Kurve "b" denjenigen des Nickelgehalts in Funktion der Tiefe x. Die Werte sind stark schematisierte Mittelwerte von zahlreichen Proben. Der Verlauf kann quanti­tativ andere Werte annehmen, zeigt aber grundsätzlich stets das gleiche Bild der Cr-Verarmung und der Ni-Anreicherung in der Diffusionszone 9.The diffusion zone 9 of the surface protective layer 7 sets itself electronegatively with respect to the regions adjacent to it (indicated by -). Curve "a" shows the course of the chromium content, curve "b" that of the nickel content as a function of depth x. The values are highly schematic mean values of numerous samples. The course can assume different values quantitatively, but always shows the same picture of the Cr depletion and the Ni enrichment in the diffusion zone 9.

In Fig. 3 ist ein Fliessdiagramm in Form eines Blockschemas einer möglichen Ausführungsart des Verfahrens dargestellt. Das Diagramm erklärt sich von selbst und bedarf keiner wei­teren Erläuterungen.3 shows a flow diagram in the form of a block diagram of a possible embodiment of the method. The diagram is self-explanatory and requires no further explanation.

Elektrolytische Trennverfahren beruhen auf der Verschieden­heit des Abscheide- bzw. Auflösungspotentials der beteiligten Komponenten und/oder Phasen. Im vorliegenden Fall liegen die Potentiale des Grundkörpers (Substrat) 4 und der Ober­flächenschutzschicht 7 normalerweise nahe beisammmen, da es sich je um Nickellegierungen mit nicht wesentlich voneinan­der abweichenden Chromgehalten handelt. Auf den ersten Blick scheint es deshalb beinahe ausgeschlossen, dass eine Ablösung der Schutzschicht 7 ohne gleichzeitigen Angriff des Grund­körpers 4 möglich sei, da es sich um gleiche Ionen handelt. Es konnte jedoch gezeigt werden, dass durch die thermische Behandlng von beschichteten Bauteilen auch bei sehr ver­wandten Legierungen für Schutzschicht und Grundkörper durch Diffusion signifikante Konzentrations- und Potentialunter­schiede auftreten. Durch Interdiffusion bildet sich eine Zwischenschicht (Diffusionszone 9), welche (in einem oxy­dierenden Elektrolysebad) gegenüber ihrer Umgebung ein ne­gatives elektrochemisches Potential annimmt und demzufolge leichter angegriffen und abgelöst wird.Electrolytic separation processes are based on the difference in the separation or dissolution potential of the components and / or phases involved. In the present case, the potentials of the base body (substrate) 4 and the surface protective layer 7 are normally close together, since they are each nickel alloys with chromium contents that do not differ significantly from one another. At first glance, it therefore seems almost impossible that the protective layer 7 can be detached without simultaneously attacking the base body 4, since the ions are the same. However, it could be shown that the thermal treatment of coated components, even with very related alloys for the protective layer and base body, causes significant differences in concentration and potential due to diffusion. Interdiffusion forms an intermediate layer (diffusion zone 9) which (in an oxidizing electrolysis bath) assumes a negative electrochemical potential with respect to its surroundings and is therefore more easily attacked and detached.

Ausführungsbeispiel 1:Example 1:

Es lag eine mit einer Oberflächenschutzschicht versehene, an ihrem Kopfende durch Erosion teilweise beschädigte Gas­turbinenschauel folgender Abmessungen des Schaufelblattes vor: Länge = 175 mm Grösste Breite = 90 mm Grösste Dicke = 23 mm Profilhöhe = 28 mm There was a gas turbine blade provided with a surface protection layer and partially damaged at the head end by erosion of the following dimensions of the airfoil: Length = 175 mm Largest width = 90 mm Greatest thickness = 23 mm Profile height = 28 mm

Der Kernwerkstoff der Gasturbinenschaufel bestand aus einer Nickelbasis-Knet-Superlegierung mit dem Handelsnamen Nimonic 80A von folgender Zusammensetzung: Cr = 19,5 Gew.-% Al = 1,4 Gew.-% Ti = 2,4 Gew.-% Zr = 0,06 Gew.-% Mn = 0,30 Gew.-% Si = 0,30 Gew.-% B = 0,003 Gew.-% C = 0,06 Gew.-% Ni = Rest The core material of the gas turbine blade consisted of a nickel-based wrought superalloy with the trade name Nimonic 80A with the following composition: Cr = 19.5% by weight Al = 1.4% by weight Ti = 2.4% by weight Zr = 0.06% by weight Mn = 0.30% by weight Si = 0.30% by weight B = 0.003% by weight C = 0.06% by weight Ni = rest

Die Oberflächenschutzschicht von 100 bis 150 µm Dicke war durch Plasmaspritzen auf dem Kernwerkstoff aufgetragen worden und hatte folgende Zusammensetzung: Cr = 17 Gew.-% Si = 4,5 Gew.-% Fe = 4,5 Gew.-% B = 3,5 Gew.-% Ni = Rest The surface protective layer with a thickness of 100 to 150 µm had been applied to the core material by plasma spraying and had the following composition: Cr = 17% by weight Si = 4.5% by weight Fe = 4.5% by weight B = 3.5% by weight Ni = rest

Die Gasturbinenschaufel wurde gereinigt, indem sie bei einer Temperatur von 100 °C während 2 h in eine Lösung von 20% NaOH eingelegt wurde, gespült und nochmals in konzentrierter HCl nachbehandelt wurde. Dann wurde die Schaufel mit einer Stahlbürste gebürstet.The gas turbine blade was cleaned by placing it in a solution of 20% NaOH at a temperature of 100 ° C. for 2 hours, rinsing it and treating it again in concentrated HCl. Then the shovel was brushed with a steel brush.

Nach der Reinigung wurde die Schaufel aktiviert. Zu diesem Zweck wurde sie nochmals in 20% NaOH gebracht und anschlies­send während 2 h in konzentrierte HCl eingelegt.After cleaning, the bucket was activated. For this purpose, it was again placed in 20% NaOH and then placed in concentrated HCl for 2 h.

Die gereinigte und aktivierte Schaufel wurde als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte die nachfolgende Zusammensetzung: 30 Teile konzentrierte HNO₃ 2 Teile Ni(NO₃)₂ 1 Teil Co(NO₃)₂ 70 Teile H₂O The cleaned and activated blade was hung as an anode in an electrolysis bath. The electrolyte had the following composition: 30 parts concentrated HNO₃ 2 parts Ni (NO₃) ₂ Part 1 Co (NO₃) ₂ 70 parts H₂O

Als Kathode diente ein Blech aus korrosionsbeständigem 18 Cr/8 Ni-Stahl.A sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.

Nun wurde unter einer Zellenspannung von 1000 mV bei einer anodischen Stromdichte von 0,2 A/dm² während einer Zeit von 144 h elektrolysiert. Die Badtemperatur betrug dabei 25 °C. Nach dieser Behandlung wurde die Schaufel aus dem Bad herausgenommen, gespült, gebürstet und getrocknet.Electrolysis was then carried out under a cell voltage of 1000 mV at an anodic current density of 0.2 A / dm 2 for a period of 144 h. The bath temperature was 25 ° C. After this treatment, the scoop was removed from the bath, rinsed, brushed and dried.

Ausführungsbeispiel 2:Example 2:

Eine auf einem grossen Teil ihrer Oberflächenschutzschicht des Schaufelblattes abgenutzte Gasturbinenschaufel mit den Abmessungen: Länge = 180 mm Grösste Breite = 93 mm Grösste Dicke = 22 mm Profilhöhe = 29 mm wurde einer elektrolytischen Behandlung zur Entfernung der verbliebenen Schutzschicht unterworfen. Der Kernwerkstoff hatte den Handelsnamen IN 939 von INCO, stellte eine Nickel­basis-Guss-Superlegierung dar und hatte folgende Zusammen­setzung: Cr = 22,4 Gew.-% Co = 19,0 Gew.-% Ta = 1,4 Gew.-% Nb = 1,0 Gew.-% Al = 1,9 Gew.-% Ti = 3,7 Gew.-% Zr = 0,1 Gew.-% C = 0,15 Gew.-% Ni = Rest A gas turbine blade that has worn out over a large part of its surface protective layer of the airfoil and has the dimensions: Length = 180 mm Largest width = 93 mm Greatest thickness = 22 mm Profile height = 29 mm was subjected to electrolytic treatment to remove the remaining protective layer. The core material had the trade name IN 939 from INCO, was a nickel-based casting superalloy and had the following composition: Cr = 22.4% by weight Co = 19.0% by weight Ta = 1.4% by weight Nb = 1.0% by weight Al = 1.9% by weight Ti = 3.7% by weight Zr = 0.1% by weight C = 0.15% by weight Ni = rest

Die ca. 120 µm im Durchschnitt messende Oberflächenschutz­schicht hatte folgende Zusammensetzung: Cr = 49 Gew.-% Si = 6 Gew.-% Fe = 2 Gew.-% Ni = Rest The approx. 120 µm average surface protection layer had the following composition: Cr = 49% by weight Si = 6% by weight Fe = 2% by weight Ni = rest

Zunächst wurde die Gasturbinenschaufel gemäss Beispiel 1 gereinigt, gebürstet und aktiviert. Dann wurde die Schaufel als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte folgende Zusammensetzung: 10 Teile konzentrierte HNO₃ 5 Teile AgNO₃ 90 Teile H₂O First, the gas turbine blade was cleaned, brushed and activated in accordance with Example 1. Then the shovel was hung as an anode in an electrolysis bath. The electrolyte had the following composition: 10 parts concentrated HNO₃ 5 parts AgNO₃ 90 parts H₂O

Als Kathode diente ein Blech aus korrosionsbeständigem Cr-­Ni-Stahl. Die elektrolytische Ablösung der Oberflächenschutz­ schicht wurde unter einer Zellenspannung von 1100 mV bei einer anodischen Stromdichte von 0,2 A/dm² während 120 h vorgenommen. Die Badtemperatur betrug 20 °C.A sheet made of corrosion-resistant Cr-Ni steel served as the cathode. The electrolytic detachment of the surface protection layer was carried out under a cell voltage of 1100 mV with an anodic current density of 0.2 A / dm 2 for 120 h. The bath temperature was 20 ° C.

Ausführungsbeispiel 3:Example 3:

Eine mit einer Oberflächenschutzschicht versehene, an ihrem Kopfende stark beschädigte Gasturbinenschaufel musste vor ihrer Reparatur zuerst von ihrer Schutzschicht befreit werden. Die Abmessungen des Schaufelblattes waren die gleichen wie bei Beispiel 1. Der Kernwerkstoff der Schaufel bestand aus einer Nickelbasis-Guss-Superlegierung mit dem Handelsnamen IN 738 von INCO mit der folgenden Zusammensetzung: Cr = 16,0 Gew.-% Co = 8,5 Gew.-% Mo = 1,75 Gew.-% W = 2,6 Gew.-% Ta = 1,75 Gew.-% Nb = 0,9 Gew.-% Al = 3,4 Gew.-% Ti = 3,4 Gew.-% Zr = 0,1 Gew.-% B = 0,01 Gew.-% C = 0,11 Gew.-% Ni = Rest A gas turbine blade provided with a surface protective layer and severely damaged at the head end had to be freed of its protective layer before it was repaired. The dimensions of the airfoil were the same as in example 1. The core material of the airfoil consisted of a nickel-based casting superalloy with the trade name IN 738 from INCO with the following composition: Cr = 16.0% by weight Co = 8.5% by weight Mo = 1.75% by weight W = 2.6% by weight Ta = 1.75% by weight Nb = 0.9% by weight Al = 3.4% by weight Ti = 3.4% by weight Zr = 0.1% by weight B = 0.01% by weight C = 0.11% by weight Ni = rest

Die Schutzschicht wies eine mittlere Dicke von 100 µm auf und hatte folgende Zusammensetzung: Cr = 20 Gew.-% Fe = 2 Gew.-% B = 3 Gew.-% Ni = Rest The protective layer had an average thickness of 100 μm and had the following composition: Cr = 20% by weight Fe = 2% by weight B = 3% by weight Ni = rest

Die Gasturbinenschaufel wurde gemäss Beispiel 1 gereinigt und aktiviert. Dann wurde sie in eine elektrochemische Zelle gegeben und einem Elektrolyseprozess unterworfen. Der Elektro­lyt hatte folgende Zusammensetzung: 20 Teile CrO₃ 80 Teile H₂O The gas turbine blade was cleaned and activated according to example 1. Then she was put in an electrochemical cell given and subjected to an electrolysis process. The electrolyte had the following composition: 20 parts CrO₃ 80 parts H₂O

Als Kathode diente, wie bei Beispiel 1 ein Blech aus korro­sionsbeständigem 18/8-Stahl. Die Zellenspannung betrug 1050 mV, die Stromdichte an der Anode 0,2 A/dm². Bei einer Badtemperatur von 22 °C wurde während 140 h elektrolysiert.As in Example 1, a sheet made of corrosion-resistant 18/8 steel was used as the cathode. The cell voltage was 1050 mV, the current density at the anode was 0.2 A / dm². Electrolysis was carried out at a bath temperature of 22 ° C. for 140 h.

Ausführungsbeispiel 4:Example 4:

Der Kernwerkstoff einer Gasturbinenschaufel mit den Schaufel­blattabmessungen gemäss Beispiel 2 bestand aus einer Nickel­basis-Knet-Superlegierung mit der Handelsbezeichnung IN 105 von INCO mit der nachfolgenden Zusammensetzung: Cr = 13,5 Gew.-% Co = 18 Gew.-% Al = 4,2 Gew.-% Mo = 4,5 Gew.-% Ti = 0,9 Gew.-% Mn = 1 Gew.-% Si = 1 Gew.-% C = 0,2 Gew.-% Ni = Rest The core material of a gas turbine blade with the blade dimensions according to Example 2 consisted of a nickel-based wrought superalloy with the trade name IN 105 from INCO with the following composition: Cr = 13.5% by weight Co = 18% by weight Al = 4.2% by weight Mo = 4.5% by weight Ti = 0.9% by weight Mn = 1% by weight Si = 1% by weight C = 0.2% by weight Ni = rest

Die Schutzschicht hatte eine Dicke von durchschnittlich 140 µm und wies folgende Zusammensetzung auf: Cr = 10 Gew.-% Si = 6 Gew.-% Fe = 4 Gew.-% Co = 20 Gew.-% Ni = Rest The protective layer had an average thickness of 140 μm and had the following composition: Cr = 10% by weight Si = 6% by weight Fe = 4% by weight Co = 20% by weight Ni = rest

Nach der Reinigung und Aktivierung des Bauteils gemäss Bei­spiel 1 wurde das letztere als Anode in ein Elektrolysebad eingehängt. Der Elektrolyt hatte folgende Zusammensetzung: 10 Teile H₂SO₄ 10 Teile Na₂S₂O₈ 80 Teile H₂O After cleaning and activation of the component according to Example 1, the latter was suspended as an anode in an electrolysis bath. The electrolyte had the following composition: 10 parts H₂SO₄ 10 parts Na₂S₂O₈ 80 parts H₂O

Als Kathode diente ein Blech aus korrosionsbeständigem 18 Cr/8 Ni-Stahl.
Es wurde unter einer Zellenspannung von 1100 mV mit einer anodischen Stromdichte von 0,18 A/dm² während 150 h elektro­lysiert. Badtemperatur 24 °C. Nach der Behandlung wurde das Bauteil in üblicher Weise gespült, gebürstet und getrock­net.
A sheet made of corrosion-resistant 18 Cr / 8 Ni steel served as the cathode.
It was electrolyzed under a cell voltage of 1100 mV with an anodic current density of 0.18 A / dm² for 150 h. Bath temperature 24 ° C. After the treatment, the component was rinsed, brushed and dried in the usual way.

Ausführungsbeispiel 5:Example 5:

Eine mit einer Oberflächenschutzschicht versehene, durch kombinierte Erosion und Korrosion teilweise beschädigte Gasturbinenschaufel wurde gemäss Beispiel 1 zunächst gereinigt und aktiviert. Die Schaufel hatte die gleichen Abmessungen wie in Beispiel 1. Der Kernwerkstoff bestand aus einer Nickel­basis-Guss-Superlegierung mit der Handelsbezeichnung IN 738. Zusammensetzung siehe oben! Die Schutzschicht hatte eine Dicke von 150 µm und entsprach in der Zusammensetzung derjenigen in Beispiel 1.
Nachdem das Bauteil gemäss Beispiel 1 gereinigt und akti­viert worden war, wurde es in ein Elektrolysebad als Anode eingehängt. Der Elektrolyt hatte folgende Zusammensetzung: 30 Teile HNO₃ 70 Teile H₂O 10 g/l AgNO₃ 20 g/l NH₄HF₂
A gas turbine blade provided with a surface protection layer and partially damaged by combined erosion and corrosion was first cleaned and activated according to Example 1. The blade had the same dimensions as in Example 1. The core material consisted of a nickel-based cast superalloy with the trade name IN 738. Composition see above! The protective layer had a thickness of 150 μm and had the same composition as that in Example 1.
After the component had been cleaned and activated according to Example 1, it was suspended in an electrolysis bath as an anode. The electrolyte had the following composition: 30 parts HNO₃ 70 parts H₂O 10 g / l AgNO₃ 20 g / l NH₄HF₂

Als Kathode diente ein Blech aus korrosionsbeständigem 18/8-­Stahl. Nun wurde unter einer Zellenspannung von 1100 mV bei einer anodischen Stromdichte von 0,2 A/dm² elektroly­siert. Alle 20 min wurde die Zellenspannung während der Zeitdauer von 15 sec. auf den Wert von 2800 mV erhöht (zu­sätzliche Ueberspannung von 1700 mV bezogen auf den statio­nären Wert der Zelle). Dies führte zu einer rascheren Ab­tragung der schwer löslichen Oxyde von der jeweiligen akitven Oberfläche der noch verbliebenen Schutzschicht. Auf diese Weise wurde periodisch neuer Elektrolyt an die Oberfläche herangeführt. Nach einer totalen Betriebszeit von 60 h war die Oberflächenschutzschicht vollständig abgetragen, ohne dass der Grundkörper angegriffen worden war. Mit diesem Verfahren des gepulsten Verlaufs der Zellenspannung kann somit die Zeit für das Ablösen der Schutzschicht um 40 bis 70% verringert werden.A sheet of corrosion-resistant 18/8 steel served as the cathode. Now was under a cell voltage of 1100 mV electrolyzed at an anodic current density of 0.2 A / dm². Every 20 min the cell voltage was increased to 2800 mV for a period of 15 seconds (additional overvoltage of 1700 mV based on the stationary value of the cell). This led to a more rapid removal of the poorly soluble oxides from the respective active surface of the remaining protective layer. In this way, new electrolyte was periodically brought to the surface. After a total operating time of 60 hours, the surface protective layer had been completely removed without the base body having been attacked. With this method of the pulsed course of the cell voltage, the time for the detachment of the protective layer can thus be reduced by 40 to 70%.

Die Erfindung ist nicht auf die Ausführungsbeispiele be­schränkt. Das Verfahren bezieht sich speziell auf das elektro­lytische Ablösen von Oberflächenschutzschichten mit hohem Cr-Gehalt und mit hohem Ni- oder Co-Gehalt oder gleichzeitig hohem Ni- und Co-Gehalt. Es handelt sich also um hochchrom­haltige Nickel- oder Kobaltbasis-Legierungen oder solche, die auf einer Nickel/Kobalt-Mischung basieren. Die Akti­vierung erfolgt durch 20%ige NaOH und nachfolgendes Einlegen in konzentrierte HCl während 2 h bei 40 °C. Das Bauteil wird hierauf als Anode in einen Elektrolyten gebracht, der Sauerstoff abgebende, oxydierende Bestandteile enthält. Dort wird es bis zum völligen Auflösen und Abfallen der Oberflächenschutzschicht der Elektrolyse unterworfen. Die Oberflächenschutzschicht wird gegebenenfalls vor dem Elektro­lysieren durch Schleifen und/oder Sand- oder Kugelstrahlen vorbehandelt. In hartnäckigen Fällen wird mit gepulster Zellenspannung gearbeitet. Der stationären Zellenspannung wird intermittierend in Intervallen von 10 bis 30 min. während einer jeweiligen Zeitdauer von 5 bis 10 sec eine zur Zellen­spannung zusätzliche Ueberspannung von 1500 bis 2000 mV überlagert.The invention is not restricted to the exemplary embodiments. The method relates specifically to the electrolytic detachment of surface protective layers with a high Cr content and with a high Ni or Co content or at the same time a high Ni and Co content. It is therefore a matter of high-chromium nickel or cobalt-based alloys or those based on a nickel / cobalt mixture. Activation is carried out by 20% NaOH and subsequent immersion in concentrated HCl for 2 h at 40 ° C. The component is then placed as an anode in an electrolyte that contains oxygen-releasing, oxidizing components. There it is subjected to electrolysis until the surface protective layer has completely dissolved and fallen off. The surface protective layer is optionally pretreated by grinding and / or sand or shot peening before electrolysis. In stubborn cases, pulsed cell voltage is used. The stationary cell voltage is intermittent at intervals of 10 to 30 min. over a period of 5 to 10 seconds, an additional overvoltage of 1500 to 2000 mV is superimposed on the cell voltage.

Claims (7)

1. Verfahren zum elektrolytischen Ablösen einer einen hohen Cr- und Ni- und/oder Co-Gehalt aufweisenden Oberflächen­schutzschicht (7) vom Grundkörper (4) eines aus einer Nickel- oder Kobaltbasis-Superlegierung bestehenden Bau­teils, dadurch gekennzeichnet, dass das mit einer Schutz­schicht (7) überzogene Bauteil zunächst zur Aktivierung in eine Lösung von 20% NaOH und anschliessend bei 40 °C während 2 h in eine solche von konzentrierter HCl getaucht wird, dass das Bauteil mit seiner aktivierten Schutzschicht (7) als Anode in einen Sauerstoff abgebende, oxydierende Bestandteile enthaltenden Elektrolyt (2) gebracht und bis zum völligen Auflösen und Abfallen der Schutzschicht (7) der Elektrolyse unterworfen wird.1. A method for the electrolytic detachment of a surface protection layer (7) having a high Cr and Ni and / or Co content from the base body (4) of a component consisting of a nickel or cobalt-based superalloy, characterized in that it has a protective layer (7) the coated component is first immersed in a solution of 20% NaOH and then immersed in a solution of concentrated HCl at 40 ° C. for 2 h so that the component with its activated protective layer (7) acts as an anode in an oxygen-donating, brought electrolyte (2) containing oxidizing constituents and is subjected to the electrolysis until the protective layer (7) has completely dissolved and fallen off. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt (2) die nachfolgende Zusammensetzung hat: 30 Teile konzentrierte HNO₃ 2 Teile Ni(NO₃)₂ 1 Teil Co(NO₃)₂ 70 Teile H₂O.
2. The method according to claim 1, characterized in that the electrolyte (2) has the following composition: 30 parts concentrated HNO₃ 2 parts Ni (NO₃) ₂ Part 1 Co (NO₃) ₂ 70 parts H₂O.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Schutzschicht (7) durch Schleifen und/oder Sand- oder Kugelstrahlen vor dem Eintauchen in den Elektrolyt (2) vorbehandelt wird und dass der letztere die nachfol­gende Zusammensetzung hat: 10 Teile konzentrierte HNO₃ 5 Teile AgNO₃ 90 Teile H₂O.
3. The method according to claim 1, characterized in that the protective layer (7) is pretreated by grinding and / or sand or shot peening before immersion in the electrolyte (2) and that the latter has the following composition: 10 parts concentrated HNO₃ 5 parts AgNO₃ 90 parts H₂O.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt (2) die nachfolgende Zusammensetzung hat: 20 Teile CrO₃ 80 Teile H₂O.
4. The method according to claim 1, characterized in that the electrolyte (2) has the following composition: 20 parts CrO₃ 80 parts H₂O.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt (2) die nachfolgende Zusammensetzung hat: 10 Teile H₂SO₄ 10 Teile Na₂S₂O₈ 80 Teile H₂O.
5. The method according to claim 1, characterized in that the electrolyte (2) has the following composition: 10 parts H₂SO₄ 10 parts Na₂S₂O₈ 80 parts H₂O.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Elektrolyt (2) die nachfolgende Zusammensetzung hat: 30 Teile HNO₃ 70 Teile H₂O 10 g/l AgNO₃ 20 g/l NH₄HF₂.
6. The method according to claim 1, characterized in that the electrolyte (2) has the following composition: 30 parts HNO₃ 70 parts H₂O 10 g / l AgNO₃ 20 g / l NH₄HF₂.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass während des Elektrolyseprozesses der stationären Zellen­spannung intermittierend in Intervallen von 10 bis 30 min während einer jeweiligen Zeitdauer von 5 bis 10 sec eine zusätzliche Ueberspannung von 1500 bis 2000 mV überlagert wird.7. The method according to claim 1, characterized in that an additional overvoltage of 1500 to 2000 mV is superimposed during the electrolysis process of the stationary cell voltage intermittently at intervals of 10 to 30 minutes for a respective period of 5 to 10 seconds.
EP88119777A 1987-12-01 1988-11-28 Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy Expired - Lifetime EP0318886B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH4673/87 1987-12-01
CH467387 1987-12-01

Publications (2)

Publication Number Publication Date
EP0318886A1 true EP0318886A1 (en) 1989-06-07
EP0318886B1 EP0318886B1 (en) 1992-07-22

Family

ID=4280482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88119777A Expired - Lifetime EP0318886B1 (en) 1987-12-01 1988-11-28 Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy

Country Status (3)

Country Link
US (1) US4894130A (en)
EP (1) EP0318886B1 (en)
DE (1) DE3873038D1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854208A1 (en) * 1997-01-16 1998-07-22 GKN Westland Helicopters Limited Method of and apparatus for removing a metallic erosion shield from attachment to a helicopter rotor blade
EP1010782A1 (en) * 1998-12-18 2000-06-21 United Technologies Corporation Feedback controlled electrochemical stripping of gas turbine airfoils
EP1094134A1 (en) * 1999-10-18 2001-04-25 General Electric Company Electrochemical system and process for stripping metallic coatings
SG93295A1 (en) * 2000-12-15 2002-12-17 United Technologies Corp Feedback controlled airfoil stripping system with integrated water management and acid recycling system
DE10259364A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Method for removing at least one surface area of a bag
DE10259363A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Method for removing at least one surface area of a component
WO2007147655A1 (en) * 2006-06-23 2007-12-27 Siemens Aktiengesellschaft Method for the electrochemical removal of a metal coating from a component
EP2053145A1 (en) * 2007-10-19 2009-04-29 Siemens Aktiengesellschaft Method for removing a metal layer using FIC in an intermediate stage
US8673405B2 (en) 2006-08-08 2014-03-18 Siemens Aktiengesellschaft Method for producing a wear layer
CN114075690A (en) * 2020-08-14 2022-02-22 中国科学院金属研究所 Method for electrochemically removing MCrAlY coating

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6497968B2 (en) * 2001-02-26 2002-12-24 General Electric Company Oxidation resistant coatings for molybdenum silicide-based composite articles
US6969457B2 (en) * 2002-10-21 2005-11-29 General Electric Company Method for partially stripping a coating from the surface of a substrate, and related articles and compositions
DE102004002763A1 (en) * 2004-01-20 2005-08-04 Mtu Aero Engines Gmbh Method for electrochemical removal of layers from components with prior determination of a working point for their removal useful for stripping coated gas turbine blades
DE102006044416A1 (en) * 2006-09-18 2008-03-27 Siemens Ag Process for the electrochemical coating or stripping of components
US7875200B2 (en) * 2008-05-20 2011-01-25 United Technologies Corporation Method for a repair process
EP2166125A1 (en) * 2008-09-19 2010-03-24 ALSTOM Technology Ltd Method for the restoration of a metallic coating
CN110670115B (en) * 2019-09-30 2021-11-30 飞而康快速制造科技有限责任公司 Corrosive agent suitable for deposited GH3536 alloy and corrosion method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015630A (en) * 1959-08-24 1962-01-02 Gen Electric Aqueous solution for stripping nickel
US3819494A (en) * 1973-03-29 1974-06-25 Fountain Plating Co Inc Method of removing braze

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588734A (en) * 1948-05-14 1952-03-11 Atomic Energy Commission Pretreatment of beryllium prior to coating
FR1114198A (en) * 1954-11-30 1956-04-09 Renault Process for removing chromium deposits
DE1096709B (en) * 1957-11-25 1961-01-05 William Hill Fletcher Tickle Process for preparing iron objects to improve the adhesion of an enamel coating
US4234397A (en) * 1978-08-15 1980-11-18 United Technologies Corporation Nondestructive metallographic examination of gas turbine components
US4324626A (en) * 1979-11-13 1982-04-13 United Technologies Corporation Selective removal of nickel-based braze alloy from nickel-based metals

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3015630A (en) * 1959-08-24 1962-01-02 Gen Electric Aqueous solution for stripping nickel
US3819494A (en) * 1973-03-29 1974-06-25 Fountain Plating Co Inc Method of removing braze

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854208A1 (en) * 1997-01-16 1998-07-22 GKN Westland Helicopters Limited Method of and apparatus for removing a metallic erosion shield from attachment to a helicopter rotor blade
US5985127A (en) * 1997-01-16 1999-11-16 Gkn Westland Helicopters Limited Method of and apparatus for removing a metallic erosion shield from attachment to a helicopter rotor blade
EP1010782A1 (en) * 1998-12-18 2000-06-21 United Technologies Corporation Feedback controlled electrochemical stripping of gas turbine airfoils
US6176999B1 (en) 1998-12-18 2001-01-23 United Technologies Corporation Feedback controlled stripping of airfoils
SG81336A1 (en) * 1998-12-18 2001-06-19 United Technologies Corp Feedback controlled stripping of airfoils
EP1094134A1 (en) * 1999-10-18 2001-04-25 General Electric Company Electrochemical system and process for stripping metallic coatings
US6352636B1 (en) 1999-10-18 2002-03-05 General Electric Company Electrochemical system and process for stripping metallic coatings
SG93295A1 (en) * 2000-12-15 2002-12-17 United Technologies Corp Feedback controlled airfoil stripping system with integrated water management and acid recycling system
DE10259364A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Method for removing at least one surface area of a bag
DE10259363A1 (en) * 2002-12-18 2004-07-08 Siemens Ag Method for removing at least one surface area of a component
WO2007147655A1 (en) * 2006-06-23 2007-12-27 Siemens Aktiengesellschaft Method for the electrochemical removal of a metal coating from a component
US8673405B2 (en) 2006-08-08 2014-03-18 Siemens Aktiengesellschaft Method for producing a wear layer
EP2053145A1 (en) * 2007-10-19 2009-04-29 Siemens Aktiengesellschaft Method for removing a metal layer using FIC in an intermediate stage
WO2009053154A1 (en) * 2007-10-19 2009-04-30 Siemens Aktiengesellschaft Method for removing a metal layer by means of fic in an intermediate step
CN114075690A (en) * 2020-08-14 2022-02-22 中国科学院金属研究所 Method for electrochemically removing MCrAlY coating
CN114075690B (en) * 2020-08-14 2022-11-22 中国科学院金属研究所 Method for electrochemically removing MCrAlY coating

Also Published As

Publication number Publication date
US4894130A (en) 1990-01-16
EP0318886B1 (en) 1992-07-22
DE3873038D1 (en) 1992-08-27

Similar Documents

Publication Publication Date Title
EP0318886B1 (en) Process for the electrolytic stripping of a protective coating, having a high content of chromium and nickel and/or cobalt, from the substrate of an object made of a superalloy
DE2157511B2 (en) Process for the reapplication of coatings for used, dimensionally stable electrodes
EP0318724B1 (en) Process for chemically stripping a high chromic surface coating from a work piece made from a nickel or cobalt based superalloy
DE3706711A1 (en) METHOD FOR CLEANING SURFACES OF AN ALUMINUM OBJECT
DE69700420T2 (en) Process for processing the outer surface of a continuous casting mold made of copper or copper alloy, which consists of a nickel plating stage and a nickel removal stage
DE3220723C2 (en)
DE1909757B2 (en) PROCESS FOR THE CLEANING OF ANODES FOR ELECTROLYTIC PROCESSES, THAT CONSIST OF A BACKING OF A FILM-FORMING METAL AND A COATING OF PRECIOUS METALS, PRECIOUS METALLOIDS OR PRECIOUS METAL OXIDES CONTAINING MIXED OXIDES
EP0596273A1 (en) Product for pickling surfaces of chromium-nickel steel or chromium steel and its use
DE2741397C3 (en) Method of pre-treating a nickel alloy workpiece for electroplating
DE69702064T2 (en) CONTINUOUS MOLDING PART WITH A METAL COVER, COOLED WALL MADE OF COPPER OR COPPER ALLOY AND METHOD FOR THE PRODUCTION THEREOF
EP0612359B1 (en) Method for recycling used pickling liquors
DE382226C (en) Process for depositing metals on a cathode
DE2232903C3 (en) Process for the electrolytic refining of copper using titanium electrodes
DE1944388A1 (en) Process for descaling and pickling an object made of titanium or a titanium alloy
EP1533398B1 (en) Process for producing an electrolyte ready for use out of waste products containing metal ions
DE512913C (en) Strips made of non-conductive material for covering cathodes used for the electrolytic deposition of metals on those parts of their surface where metal deposition should not take place
DE2940741C2 (en)
DE673710C (en) Process for the production of protective coatings on objects made of iron or copper or their alloys
DE3032480C2 (en) Process for removing electrocatalytically effective protective coatings from electrodes with a metal core and application of the process
DE2365499A1 (en) METHOD OF MANUFACTURING TINNED STEEL SHEETS
DE714056C (en) Process for removing stubborn oxide layers from medium and high-alloy steels
WO2011110323A1 (en) Method for electrochemically stripping coatings from gas turbine components
DE189875C (en)
AT142546B (en) Method of removing galvanic deposits.
DE1187884B (en) Process for anodic descaling and simultaneous metal removal from titanium or titanium alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE LI NL

17P Request for examination filed

Effective date: 19891116

17Q First examination report despatched

Effective date: 19910626

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI NL

REF Corresponds to:

Ref document number: 3873038

Country of ref document: DE

Date of ref document: 19920827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19961024

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961122

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19961128

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19971130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19980601