[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0242347A2 - Dispositif pour la coulée d'un métal en phase pâteuse - Google Patents

Dispositif pour la coulée d'un métal en phase pâteuse Download PDF

Info

Publication number
EP0242347A2
EP0242347A2 EP87870051A EP87870051A EP0242347A2 EP 0242347 A2 EP0242347 A2 EP 0242347A2 EP 87870051 A EP87870051 A EP 87870051A EP 87870051 A EP87870051 A EP 87870051A EP 0242347 A2 EP0242347 A2 EP 0242347A2
Authority
EP
European Patent Office
Prior art keywords
channel
nozzle
metal
steel
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP87870051A
Other languages
German (de)
English (en)
Other versions
EP0242347A3 (fr
Inventor
Raymond D'haeyer
Arlette Etienne
Marios Economopoulos
Stéphan Wilmotte
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre de Recherches Metallurgiques CRM ASBL
Original Assignee
Centre de Recherches Metallurgiques CRM ASBL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from LU86395A external-priority patent/LU86395A1/fr
Priority claimed from LU86687A external-priority patent/LU86687A1/fr
Priority claimed from LU86693A external-priority patent/LU86693A1/fr
Application filed by Centre de Recherches Metallurgiques CRM ASBL filed Critical Centre de Recherches Metallurgiques CRM ASBL
Publication of EP0242347A2 publication Critical patent/EP0242347A2/fr
Publication of EP0242347A3 publication Critical patent/EP0242347A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase

Definitions

  • the present invention relates to a device for the casting of a metal, in particular steel, in the pasty phase in a continuous casting ingot mold.
  • the continuous casting of steel essentially consists in supplying steel, continuously, an ingot mold of suitable shape intended to form an ingot called slab, bloom or billet, according to the dimensions which it presents.
  • the steel begins to solidify on contact with the cooled walls of the ingot mold, and it is extracted from the bottom of the latter in the form of an ingot the skin of which is solidified to a certain thickness and the core of which is still liquid. solidifies later gradually.
  • the steel which is thus continuously cast comes from a container such as a ladle or, more often, a distribution basket, which is provided, at its lower part, with a casting device generally called a "nozzle". of casting ".
  • this device essentially consists of a refractory brick in which the tap hole is formed and which is equipped with an appropriate system for adjusting or interrupting the pouring jet.
  • the temperature of the steel in the ladle or in the distribution basket is quite clearly higher than its temperature at the start of solidification, that is to say its liquidus temperature.
  • This temperature difference, called overheating is generally of the order of 20 ° C to 40 ° C, and frequently close to 35 ° C.
  • the objective of the present invention is to propose a particular device making it possible to create conditions which lead to the appearance of a pasty phase in the metal, in particular in the steel, during its path between the pocket or the tundish on the one hand and the casting mold continues on the other.
  • the device for the casting of a metal in the pasty phase which is the subject of the present invention, which comprises between a casting container provided with a nozzle and a continuous casting mold, a cooled channel whose upstream end , relative to the direction of flow of the metal, is connected to the outlet of said nozzle and the downstream end of which is provided with means for introducing the molten metal into said ingot mold, is essentially characterized in that said means for introducing comprise a conduit whose lower end ends in a nozzle whose diameter of the outlet section is less than the diameter of the nozzle.
  • This arrangement makes it possible to create, at the outlet of this nozzle, a pressure drop which causes the vertical duct to be filled with liquid steel.
  • this vertical duct has a length sufficient to constitute a column of liquid steel applying at the outlet of the nozzle a ferrostatic pressure capable of ensuring at the nozzle a flow rate equal to the flow rate of the nozzle.
  • the geometric characteristics of said means for introducing the liquid steel into the ingot mold are such that the liquid steel does not entirely fill the interior space of the said channel.
  • said channel is inclined relative to the horizontal by an angle between 5 ° and 80 °, its outlet section being located at a level lower than that of its inlet section.
  • This angle of inclination must be at least 5 °, in order to prevent the liquid steel from freezing in the channel; however, it does not exceed 80 °, so as to allow the desired cooling of the steel.
  • the channel inclined to the horizontal is preferably rectilinear and that the mold is horizontally spaced from the nozzle by a distance corresponding to the length of this channel. It would not, however, depart from the scope of the invention to give this channel any other configuration, for example an annular shape, allowing the ingot mold to be brought closer to the nozzle and possibly to bring the ingot mold under the nozzle, in alignment along a vertical axis. common. Such a configuration would have the additional advantage of reducing the transverse size of the device.
  • the casting device comprises means for introducing a protective gas inside said channel.
  • these means consist of at least one opening made in the vicinity of the downstream end of said channel; this opening is connected, by means known per se, to a source of protective gas such as argon.
  • the shielding gas introduced through said opening sweeps the part of the interior of the channel which is not occupied by the liquid steel. Liquid steel is thus protected from contact with ambient air as it travels through the channel and there is therefore practically no risk of oxidation.
  • the device of the invention advantageously comprises means for varying the pressure of said gas inside said channel, in order to regulate the flow of metal during casting.
  • said channel is constituted by a tubular conduit having an inner section greater than the outlet section of said nozzle.
  • the interior section of said channel is advantageously at least double the outlet section of the nozzle. This difference in section makes it possible to reduce the risks of clogging of the channel by solidified metal.
  • This tubular conduit can be a steel tube energetically cooled with water. It must then be replaced frequently to avoid the risk of explosion in the event of the tube breaking through and contact between the liquid steel and the cooling water.
  • This tubular conduit can also be made of another material, resistant to '' erosion by liquid steel, such as a sintered material; in this case, the tubular conduit is more expensive than a steel tube, but its replacement will be less frequent.
  • said channel has an open section and it is provided internally with a lining of refractory material.
  • the channel consists of a channel provided with a lining of refractory material and a gas-tight vault equipped with means for introducing and discharging a gaseous agent, such as a protective gas.
  • This vault is intended to prevent any contact of the liquid steel with the ambient air, and to delimit, above the liquid steel, a space in which a protective gas such as argon can circulate.
  • this vault is provided externally, over at least part of its length, with air cooling means, in particular cooling fins.
  • These fins and, more generally, these air cooling means are advantageously surrounded by an envelope in which is circulated, in particular between the fins, an air current with adjustable flow rate making it possible to vary the intensity of said cooling.
  • the cross section of the channel can have any shape without departing from the scope of the present invention.
  • the channel it has been found to be advantageous for the channel to consist of two walls, preferably planar, intersecting along a longitudinal edge.
  • the walls of the channel can advantageously form an angle between 45 ° and 135 °, and preferably close to 90 °. In the case where said walls are not planar, this angle would be that which the planes tangent to the walls would form along said longitudinal edge.
  • the channel is usually arranged so that its bisector plane is vertical; it can however be rotated about an axis parallel to the aforementioned longitudinal edge so as to vary the surface of liquid steel subject to cooling by radiation.
  • said channel has an additional longitudinal wall, substantially vertical, disposed inside the channel where it is connected to the bottom and where it can be moved transversely so as to vary the passage section of said channel.
  • this movable wall it is possible either to vary the surface of liquid steel subject to radiation cooling or to cast the steel with different flow rates while retaining the same height of liquid steel in the channel.
  • At least one region of the bottom of said channel is made of a material having a high heat conductivity, said region of the bottom of the channel is subjected to intense cooling and at least part of said region is not lined with refractory material.
  • This region is advantageously located near the upstream end of said canal. It is preferably constituted by a plate of a material having a high heat conductivity, in particular copper, said plate being provided with water cooling means. the interruption of the refractory lining in said region normally leaves it without protection. It may nevertheless prove advantageous to deposit a thin film of a refractory material, in particular ZrO2, in order to lower the working temperature of the copper while only reducing the efficiency and intensity of the cooling very slightly.
  • the part of said region which does not have a refractory lining forms a zone preferably extending over the entire width of the bottom of the channel.
  • the device of the invention may also include means for adjusting the inclination of the channel, making it possible to take into account factors such as the composition and the temperature of the metal to be cast in order to obtain the desired pasty phase.
  • the casting device according to the invention may include means for rotating said channel around its longitudinal axis.
  • the speed of rotation of the channel around the longitudinal axis can obviously vary depending on various factors such as the composition or the initial temperature of the metal to be cast. In the context of steel casting, this speed of rotation is preferably between 0.1 t / s and 5 t / s.
  • the channel is preferably constituted by a tubular conduit having a section large enough not to be filled by the liquid metal which circulates there.
  • the tubular conduit preferably has a circular section, in order to ensure as uniform lateral drive of the metal as possible during the rotational movement. This rotational movement increases the heat exchange surface between the tubular conduit and the liquid metal; it also causes agitation of the liquid metal, which increases the heat exchange coefficient inside the tubular conduit.
  • the ladle 1 containing the liquid steel 2 is provided with a nozzle 3 which has a diameter D1.
  • It is a nozzle of known type, made of refractory material, which is not part of the present invention.
  • the nozzle 3 opens into an elbow 4 formed in a refractory brick 5, the nozzle fitting tightly to the inlet of this elbow 4.
  • the refractory brick 5 is connected to the upstream end of a channel 6, slightly inclined on the horizontal, equipped with a cooling circuit 7.
  • the channel 6 can be made of steel; it must then be replaced after each pour; it can also be made of a sintered material based on (ZrO2) and it can then be used for several casting operations.
  • This channel 6 has a larger internal section than that of the nozzle 3, in order to reduce the risks of clogging of the channel 6 with solidified steel.
  • the cooling agent for example water or a water mist, preferably enters this circuit at the downstream end of the channel 6 and leaves it at the upstream end.
  • a vertical conduit 8 made of refractory material, which is connected to the channel 6 by means of an elbow 9.
  • the lower end of the conduit 8 comprises a nozzle 10 whose internal diameter D2 is less than the diameter D1 of the nozzle.
  • the vertical duct 8 opens into the continuous casting mold 11.
  • connection of the channel 6 on the one hand with the refractory brick 5 and on the other hand with the vertical duct 8 are, in a manner known per se, gas and liquid steel.
  • an opening 12 is provided which, by means known per se and not shown, places the interior space of the channel 6 in communication with a source of argon (not shown).
  • the channel 6 has a slight inclination, for example of the order of 5 °.
  • the intensity of the cooling can be modified by varying the flow rate and / or the temperature of the cooling agent, generally the water, which flows through the circuit 7.
  • Stabilization of the steel level in the tubular conduit can be ensured by adjusting the argon pressure. It is thus possible to adjust the size of the heat exchange surface, whatever the pressure drops in the circuit.
  • FIG. 2 shows a general view of a continuous casting installation comprising an open section channel.
  • This installation consists of a ladle 1 fitted with a pouring nozzle 3, a casting device generally designated by 13 and a continuous casting mold 11.
  • the ladle 1, the nozzle 3 and the mold 11 are conventional; they are not part of the invention and will not be described further here.
  • the casting device 13, shown in section along line II of FIG. 3, is made up of a channel 6, inclined at an angle of about 18 ° relative to the horizontal, of a curved portion 4 connecting the nozzle 3 at the entrance to channel 6 and a submerged nozzle 14 opening into the mold 11.
  • the inclined channel 6 is provided with a vault 15, gas-tight, which extends over its entire length.
  • the vault 15 carries cooling fins 16 which are in turn surrounded by an envelope 17.
  • the vault 15 is provided with an inlet and an outlet for protective gas, for example argon, marked respectively 18 and 19
  • envelope 17 has orifices 20, respectively 21, for the inlet and outlet of the cooling air, respectively.
  • the orifices 18 and 19, respectively 20 and 21, are connected to a source of argon, respectively of air, not shown.
  • the portion 4 is curved so as to be connected tangentially on the one hand to the nozzle 3 and on the other hand to the channel 6.
  • This curved portion 4 consists of a metal carcass internally lined with refractory material. Its curvature is determined so as to avoid untimely rebounds of the steel in the channel, when it leaves the nozzle, so that the lining undergoes minimum erosion under the effect of the flow of liquid steel.
  • the nozzle 14 consists, in a manner known per se, of a portion of tube of refractory material intended to immerse in the liquid steel present in the ingot mold 11.
  • FIG. 3 is shown a cross section, along line II-II of FIG. 2, of the casting device, showing the constitution of the channel 6 and of the arch 15.
  • the channel 6 consists of a U-shaped metal channel, comprising a bottom 22 and side walls 22 ⁇ and lined with refractory material 23.
  • the roof 15 is fixed in a gas-tight manner to the metal channel 22; it carries cooling fins 16 surrounded by a closed envelope 17.
  • Figure 4 shows a variant of the device of the invention, in which the cross section of the channel 6 consists of two walls 24, 25 intersecting at an angle of about 90 °.
  • This channel can be rotated around its longitudinal edge represented by the point 0, which causes a variation in the width and consequently in the area of the upper surface of the liquid steel (FIG. 4, a and b).
  • FIG. 5 Another variant of the invention is illustrated in FIG. 5.
  • a vertical longitudinal wall 26 can take several positions by transverse displacement inside the channel 6.
  • This movable wall makes it possible to vary, according to the conditions of the casting. , the height h of steel in the channel and / or the surface area of the upper surface of the liquid steel.
  • the device of the invention therefore makes it possible to flow the steel with little or no overheating without incurring unacceptable losses of metal by solidification in the pocket or in the distribution basket.
  • FIG. 6 schematically illustrates a particularly advantageous variant of the device of the invention, mounted between a casting ladle 1 containing superheated metal and a continuous casting ingot mold 11.
  • This device comprises a channel, generally designated by the reference numeral 13, which consists of a metal bottom 22 and side walls 22 ⁇ also metallic.
  • the metal used for this purpose is preferably steel.
  • the bottom and the walls of the channel are lined with a refractory lining 23, 23 ⁇ .
  • This refroi This is preferably provided by a water circulation circuit, symbolized by the arrows 28 for entering and leaving 29 for the water.
  • the refractory lining 23, 23 ⁇ is interrupted on a part of the upper surface of the plate 27, which is thus exposed directly to contact with the liquid metal. As shown in FIG. 7, this uncovered part of the plate 27 can be (a) an area extending over the entire width of the channel, (b) an area extending over only a fraction of the width, or (c) a plurality of partial zones distributed along the width of the channel and separated by walkways of refractory material.
  • the superheated metal in particular steel, coming from the ladle 1, reaches the upstream portion of the channel 13 where it flows over the refractory lining 23 ⁇ without undergoing significant cooling. It then arrives on the uncoated part of the copper plate 27, where it undergoes intense cooling for a limited time due to the relatively small dimensions of the contact surface.
  • the tests show that, on such a very localized contact surface, the steel instantly loses its overheating, which causes the appearance of solidified particles within the stream of liquid steel. This carries away the solidified particles, which therefore cannot be deposited on the plate 27.
  • the steel continues to be cooled and becomes increasingly rich in solidified particles. It thus acquires the pasty state sought upon entry into the mold 11.
  • This particular device makes it possible to replace the conventional unidirectional flow of heat, that is to say the flow along the thickness of the copper plate, by a bi- or even three-way flow which is clearly more efficient.
  • the heat can only flow according to the thickness of the plate.
  • the flow of heat in the plate takes place at once according to the thickness and parallel to the plane of the surface. This results in an increase in the cross-section offered to the heat flow, and therefore an improvement in the cooling efficiency.
  • the device of the invention offers greater driving flexibility than conventional nozzles, because it allows regulation of the steel flow rate and completely independent cooling regulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Continuous Casting (AREA)

Abstract

Dispositif pour la coulée d'un métal en phase pâteuse, qui comprend entre un récipient de coulée (1) muni d'une busette (3) et une lingo­tière de coulée continue (11), un canal (6) refroidi, dont l'extrémité amont, par rapport au sens d'écoulement du métal, est raccordée à la sortie de la busette (3) et dont l'extrémité aval est pourvue de moyens (8) d'introduction du métal liquide dans la lingotière (11) dans lequel les moyens d'introduction (8) comprennent un conduit dont l'extrémité inférieure se termine par un ajutage dont le diamètre (D₂) de la section de sortie est inférieur au diamètre (D₁) de la busette (3). Le canal (6) peut être constitué par un conduit tubulaire présentant une section intérieure supérieure à la section de sortie de ladite busette, ou par un chenal pourvu d'un garnissage en matériau réfrac­taire et d'une voûte étanche aux gaz équipée, sur au moins une partie de sa longueur,de moyens de refroidissement par air.

Description

  • La présente invention concerne un dispositif pour la coulée d'un mé­tal, en particulier de l'acier, en phase pâteuse dans une lingotière de coulée continue.
  • Dans la description qui suit, il sera fait particulièrement référence à l'acier. Il ne s'agit évidemment que d'un exemple destiné à illus­trer l'invention, car celle-ci est également applicable à tout métal liquide répondant aux conditions énoncées dans la présente demande de brevet.
  • La coulée continue de l'acier consiste essentiellement à alimenter en acier, en continu, une lingotière de forme appropriée destinée à former un lingot appelé brame, bloom ou billette, selon les dimensions qu'il présente. L'acier commence à se solidifier au contact des parois refroidies de la lingotière, et il est extrait par le bas de celle-ci sous la forme d'un lingot dont la peau est solidifiée sur une certaine épaisseur et dont le coeur encore liquide se solidifie ultérieurement de façon progressive.
  • L'acier qui est ainsi coulé en continu provient d'un récipient tel qu'une poche de coulée ou, le plus souvent, un panier répartiteur, qui est muni, à sa partie inférieure, d'un dispositif de coulée généra­lement appelé "busette de coulée". Habituellement, ce dispositif se compose essentiellement d'une brique réfractaire dans laquelle est mé­nagé le trou de coulée et qui est équipée d'un système approprié de réglage ou d'interruption du jet de coulée.
  • La coulée continue décrite ci-dessus est connue et mise en oeuvre de­puis longtemps.
  • On connaît également les défauts spécifiques auxquels elle peut donner lieu, tels que divers types de ségrégation, qui sont fortement in­fluencés par la température de coulée de l'acier.
  • Habituellement, la température de l'acier dans la poche de coulée ou dans le panier répartiteur est assez nettement supérieure à sa tem­pérature de début de solidification, c'est-à-dire à sa température de liquidus. Cette différence de température, appelée surchauffe, est généralement de l'ordre de 20°C à 40°C, et fréquemment voisine de 35° C.
  • Cette surchauffe de l'acier en poche ou en panier répartiteur est sou­mise à deux conditions contradictoires qui sont également bien connues des spécialistes. D'une part, il est souhaitable d'opérer avec une surchauffe aussi faible que possible, pour diminuer les risques d'hétérogénéités liées aux ségrégations lors de la solidification. D'autre part, une diminution trop importante de la surchauffe entraîne une augmentation de la quantité d'acier perdu sous la forme de fond de poche ou de panier répartiteur, ainsi qu'une diminution de la vitesse de décantation des inclusions.
  • On connaît par ailleurs les avantages que présente la coulée de l'a­cier en phase pâteuse. Cette technique permet d'obtenir des structures fines et homogènes qui réduisent nettement les ségrégations, et en particulier la ségrégation axiale dans les produits coulés. Elle per­met également d'augmenter la vitesse de coulée en réduisant les ris­ques de percées.
  • Par l'expression "coulée en phase pâteuse", il faut comprendre, au sens de la présente invention, que l'acier contenu dans la poche ou le panier de coulée se trouve à sa température usuelle de surchauffe, et qu'il est refroidi pendant son passage de cette poche ou de ce panier de coulée à la lingotière. Ce refroidissement est tel qu'à son entrée dans la lingotière, l'acier se trouve à une température comprise dans son intervalle de solidification, c'est-à-dire entre ses températures de liquidus et de solidus. Il en résulte que l'acier contient à ce mo­ ment une certaine fraction solide constituée de particules solidifiées entraînées par le reste de l'acier, qui est liquide, et que l'acier se trouve alors globalement en phase pâteuse. Cette technique de coulée est décrite notamment dans la demande EP-A-0089196.
  • L'objectif de la présente invention est de proposer un dispositif par­ticulier permettant de créer des conditions qui conduisent à l'ap­parition d'une phase pâteuse dans le métal, en particulier dans l'a­cier, au cours de son trajet entre la poche ou le panier de coulée d'une part et la lingotière de coulée continue d'autre part.
  • Le dispositif pour la coulée d'un métal en phase pâteuse, qui fait l'objet de la présente invention, qui comprend entre un récipient de coulée muni d'une busette et une lingotière de coulée continue, un ca­nal refroidi dont l'extrémité amont, par rapport au sens d'écoulement du métal, est raccordée à la sortie de ladite busette et dont l'ex­trémité aval est pourvue de moyens d'introduction du métal liquide dans ladite lingotière, est essentiellement caractérisé en ce que les­dits moyens d'introduction comprennent un conduit dont l'extrémité in­férieure se termine par un ajutage dont le diamètre de la section de sortie est inférieur au diamètre de la busette. Cette disposition permet de créer, à la sortie de cet ajutage, une perte de charge qui entraîne le remplissage du conduit vertical par de l'acier liquide.
  • Corrélativement, ce conduit vertical présente une longueur suffisante pour constituer une colonne d'acier liquide appliquant à la sortie de l'ajutage une pression ferrostatique capable d'assurer à l'ajutage un débit égal au débit de la busette.
  • En outre, les caractéristiques géométriques desdits moyens d'intro­duction de l'acier liquide dans la lingotière sont telles que l'acier liquide ne remplit pas entièrement l'espace intérieur dudit canal.
  • De façon connue en soi, ledit canal est incliné par rapport à l'hori­zontale d'un angle compris entre 5° et 80° , sa section de sortie étant située à un niveau inférieur à celui de sa section d'entrée.
  • Cet angle d'inclinaison doit être d'au moins 5° , afin d'éviter que l'acier liquide se fige dans le canal; il ne dépasse cependant pas 80°, de façon à permettre le refroidissement désiré de l'acier.
  • Au sens de la présente demande, il faut comprendre que le canal in­cliné sur l'horizontale est de préférence rectiligne et que la lingo­tière est horizontalement écartée de la busette d'une distance correspondant à la longueur de ce canal. Il ne sortirait cependant pas du cadre de l'invention de donner à ce canal toute autre configuration, par exemple une forme annulaire, permettant de rap­procher la lingotière de la busette et éventuellement de ramener la lingotière sous la busette, en alignement suivant un axe vertical commun. Une telle configuration présenterait l'avantage supplémentaire de réduire l'encombrement transversal du dispositif.
  • Egalement selon l'invention, le dispositif de coulée comprend des moyens pour introduire un gaz de protection à l'intérieur dudit canal.
  • En particulier, ces moyens consistent en au moins une ouverture pra­tiquée au voisinage de l'extrémité aval dudit canal; cette ouverture est raccordée, par des moyens connus en soi, à une source de gaz de protection tel que l'argon.
  • Le gaz de protection introduit par ladite ouverture assure un balayage de la partie de l'espace intérieur du canal qui n'est pas occupée par l'acier liquide. L'acier liquide se trouve ainsi protégé de tout con­tact avec l'air ambiant pendant qu'il parcourt le canal et il ne court dès lors pratiquement aucun risque d'oxydation.
  • En outre, le dispositif de l'invention comporte avantageusement des moyens pour faire varier la pression dudit gaz à l'intérieur dudit canal, afin de régler le débit de métal pendant la coulée.
  • Selon une première variante de l'invention, ledit canal est constitué par un conduit tubulaire présentant une section intérieure supérieure à la section de sortie de ladite busette. La section intérieure dudit canal est avantageusement au moins double de la section de sortie de la busette. Cette différence de section permet de réduire les risques de colmatage du canal par du métal solidifié.
  • Ce conduit tubulaire peut être un tube d'acier énergiquement refroidi à l'eau. Il doit alors être remplacé fréquemment pour éviter les ris­ques d'explosion en cas de percée du tube et de contact entre l'acier liquide et l'eau de refroidissement.Ce conduit tubulaire peut éga­lement être constitué d'un autre matériau, résistant à l'érosion par l'acier liquide, tel qu'un matériau fritté; dans ce cas, le conduit tubulaire est plus coûteux qu'un tube d'acier, mais son remplacement sera moins fréquent.
  • Selon une deuxième variante de l'invention, ledit canal présente une section ouverte et il est pourvu intérieurement d'un garnissage en ma­tériau réfractaire.
  • Selon une intéressante mise en oeuvre de cette variante, le canal est constitué d'un chenal pourvu d'un garnissage en matériau réfractaire et d'une voûte étanche aux gaz équipée de moyens d'introduction et d'évacuation d'un agent gazeux, tel qu'un gaz protecteur.
  • Cette voûte est destinée à empêcher tout contact de l'acier liquide avec l'air ambiant, et à délimiter, au-dessus de l'acier liquide, un espace dans lequel peut circuler un gaz protecteur tel que l'argon.
  • Egalement selon l'invention, cette voûte est pourvue extérieurement, sur au moins une partie de sa longueur, de moyens de refroidissement par air, en particulier d'ailettes de refroidissement.
  • Ces ailettes et, de façon plus générale, ces moyens de refroidissement par air sont avantageusement entourés d'une enveloppe dans laquelle on fait circuler, en particulier entre les ailettes, un courant d'air à débit réglable permettant de faire varier l'intensité dudit refroidis­sement.
  • La section transversale du canal peut présenter une forme quelconque sans sortir du cadre de la présente invention.
  • En particulier, il s'est avéré intéressant que le canal soit constitué de deux parois, de préférence planes, se coupant suivant une arête longitudinale.
  • Dans cette modalité de l'invention, les parois du canal peuvent avan­tageusement former un angle compris entre 45° et 135° , et de préfé­rence voisin de 90°. Au cas où lesdites parois ne seraient pas planes, cet angle serait celui que formeraient les plans tangents aux parois le long de ladite arête longitudinale.
  • Le canal est habituellement disposé de telle façon que son plan bis­secteur soit vertical; il peut toutefois subir une rotation autour d'un axe parallèle à l'arête longitudinale précitée de façon à faire varier la surface d'acier liquide sujette au refroidissement par rayonnement.
  • Selon une réalisation particulière de cette variante, ledit canal com­porte une paroi longitudinale supplémentaire, sensiblement verticale, disposée à l'intérieur du canal où elle se raccorde au fond et où elle peut être déplacée transversalement de façon à faire varier la section de passage dudit canal.
  • Grâce à cette paroi mobile, il est possible soit de faire varier la surface d'acier liquide sujette au refroidissement par rayonnement soit de couler l'acier avec des débits différents tout en conservant une même hauteur d'acier liquide dans le canal.
  • Selon une autre réalisation particulièrement intéressante de cette va­riante, au moins une région du fond dudit canal est constituée d'un matériau présentant une conductibilité calorifique élevée, ladite région du fond du canal est soumise à un refroidissement intense et au moins une partie de ladite région n'est pas garnie de matériau ré­fractaire.
  • Cette région est avantageusement située à proximité de l'extrémité amont dudit canal. Elle est de préférence constituée par une plaque d'un matériau présentant une conductibilité calorifique élevée, en particulier de cuivre, ladite plaque étant pourvue de moyens de re­froidissement à l'eau. l'interruption du garnissage réfractaire dans ladite région laisse normalement celle-ci sans protection. Il peut néanmoins s'avérer avantageux d'y déposer une fine pellicule d'un ma­tériau réfractaire en particulier de ZrO₂, afin d'abaisser la tempé­rature de travail du cuivre en ne réduisant que très faiblement l'ef­ficacité et l'intensité du refroidissement.
  • Dans le cadre de cette réalisation particulière, la partie de ladite région qui ne comporte pas de garnissage réfractaire forme une zone s'étendant de préférence sur toute la largeur du fond du canal.
  • Il ne sortirait cependant pas du cadre de la présente invention de li­miter l'étendue transversale de cette zone à une fraction de la largeur du fond du canal, ou de fractionner cette zone en une plura­lité de zones partielles réparties selon la largeur du fond du canal et séparées par des passerelles en matériau réfractaire.
  • Le dispositif de l'invention peut encore comporter des moyens de ré­glage de l'inclinaison du canal, permettant de tenir compte de fac­teurs tels que la composition et la température du métal à couler pour assurer l'obtention de la phase pâteuse désirée.
  • Selon encore une autre variante, le dispositif de coulée conforme à l'invention peut comporter des moyens pour faire tourner ledit canal autour de son axe longitudinal.
  • La vitesse de rotation du canal autour de l'axe longitudinal peut évi­demment varier en fonction de divers facteurs tels que la composition ou la température initiale du métal à couler. Dans le cadre de la coulée de l'acier, cette vitesse de rotation est de préférence comprise entre 0,1 t/s et 5 t/s.
  • Dans cette variante, le canal est de préférence constitué par un con­duit tubulaire présentant une section suffisamment grande pour ne pas être remplie par le métal liquide qui y circule. Le conduit tubulaire présente de préférence une section circulaire, afin d'assurer un en­traînement latéral aussi homogène que possible du métal au cours du mouvement de rotation. Ce mouvement de rotation augmente la surface d'échange thermique entre le conduit tubulaire et le métal liquide; il provoque également une agitation du métal liquide, qui augmente le coefficient d'échange de chaleur à l'intérieur du conduit tubulaire.
  • L'objet de l'invention sera mieux compris en se référant à la des­cription ci-dessous de réalisations particulières illustrées par les dessins annexés, dans lesquels la
    • figure 1 représente, en coupe, un dispositif conforme à l'invention comprenant un conduit tubulaire refroidi à l'eau; la
    • figure 2 montre une vue générale d'un canal à section ouverte, con­forme à une variante de la présente invention; la
    • figure 3 représente une coupe transversale d'un canal, suivant la fi­gure 2, pourvu d'une voûte de refroidissement par air; la
    • figure 4 illustre une section d'un canal conforme à la variante de la figure 2; la
    • figure 5 illustre une autre section d'un canal conforme à la variante de la figure 2; la
    • figure 6 montre une vue schématique en élévation, en coupe longitu­dinale, d'un canal conforme à la variante de la figure 2, dans lequel une partie du fond est dépourvue de garnissage réfractaire; et la
    • figure 7 présente divers modes de réalisation de la région refroidie du canal de la figure 6, chaque fois à l'aide d'une vue en plan de cette région et d'une coupe transversale à travers celle-ci, suivant les lignes A-A, B-B et C-C respectivement.
  • Dans toutes les figures, les éléments identiques sont désignés par les mêmes repères numériques. les sens de circulation des matières sont indiqués par des flèches. Enfin, les éléments qui ne sont pas es­sentiels pour la compréhension de l'invention n'ont pas été repré­sentés, afin de ne pas surcharger les dessins.
  • Dans la figure 1, la poche de coulée 1 contenant l'acier liquide 2 est munie d'une busette 3 qui présente un diamètre D₁. Il s'agit d'une bu­sette de type connu, en matériau réfractaire, qui ne fait pas partie de la présente invention. La busette 3 débouche dans un coude 4 ménagé dans une brique réfractaire 5, la busette s'adaptant hermétiquement à l'entrée de ce coude 4. A la sortie du coude 4, la brique réfractaire 5 est raccordée à l'extrémité amont d'un canal 6, légèrement incliné sur l'horizontale, équipé d'un circuit de refroidissement 7. Le canal 6 peut être réalisé en acier; il doit alors être remplacé après chaque coulée; il peut également être réalisé en un matériau fritté à base de (ZrO₂) et il est alors utilisable pour plusieurs opérations de coulée. Ce canal 6 présente une section intérieure plus grande que celle de la busette 3,afin de réduire les risques de colmatage du canal 6 par de l'acier solidifié. L'agent de refroidissement, par exemple l'eau ou un brouillard d'eau, pénètre dans ce circuit de préférence à l'extrémité aval du canal 6 et en sort à l'extrémité amont. A l'extré­mité aval du canal 6 est adapté un conduit vertical 8, en matériau ré­fractaire, qui se raccorde au canal 6 par l'intermédiaire d'un coude 9. L'extrémité inférieure du conduit 8 comporte un ajutage 10 dont le diamètre intérieur D₂ est inférieur au diamètre D₁ de la busette. Le conduit vertical 8 débouche dans la lingotière de coulée continue 11. Les raccordements du canal 6 d'une part avec la brique réfractaire 5 et d'autre part avec le conduit vertical 8 sont, de façon connue en soi, étanches au gaz et à l'acier liquide. Au voisinage de l'extrémité aval du canal 6, il est prévu une ouverture 12 qui, par des moyens connus en soi et non représentés, met l'espace intérieur du canal 6 en communication avec une source d'argon (non représentée).
  • Ce dispositif fonctionne de la façon suivante : l'acier liquide 2 s'é­coule de la poche de coulée 1 à travers la busette 3 puis succes­sivement, à travers la brique réfractaire 5, le canal 6 et le conduit 8 pour parvenir dans la lingotière 11. Pour faciliter l'écoulement de l'acier liquide, le canal 6 présente une légère inclinaison, par exem­ple de l'ordre de 5°. Dans l'exemple illustré, le canal 6 a une lon­gueur L = 800 mm et un diamètre intérieur D = 60 mm, tandis que la bu­sette avait un diamètre D₁ = 15 mm. On détermine le diamètre D₂ qui, associé à une longueur donnée du conduit vertical 8, permettra d'as­surer à l'ajutage un débit d'acier égal au débit de la busette tout en maintenant en permanence dans le canal 6 une couche d'acier ayant une épaisseur d constante, par exemple d = 30 mm. Inversément, si l'on se fixe un diamètre D₂, inférieur à D₁, on déterminera la hauteur H re­quise pour remplir les conditions de débit précitées. On règlera ensuite l'intensité du refroidissement assuré par le circuit 7 pour que l'acier liquide subisse dans ce canal 6 la chute de température désirée à partir de la température, avec surchauffe, qu'il présente à la sortie de la busette 3.
  • L'intensité du refroidissement peut être modifiée en faisant varier le débit et/ou la température de l'agent de refroidissement, généralement l'eau, qui parcourt le circuit 7.
  • La stabilisation du niveau d'acier dans le conduit tubulaire peut être assurée grâce au réglage de la pression d'argon. On peut ainsi régler l'importance de la surface d'échange thermique, quelles que soient les pertes de charge dans le circuit.
  • La figure 2 montre une vue générale d'une installation de coulée con­tinue comprenant un canal à section ouverte. Cette installation se compose d'une poche de coulée 1 équipée d'une busette de coulée 3, d'un dispositif de coulée désigné globalement par 13 et d'une lingo­tière de coulée continue 11. La poche de coulée 1, la busette 3 et la lingotière 11 sont classiques; elles ne font pas partie de l'invention et ne seront pas décrites davantage ici. Le dispositif de coulée 13, montré en coupe suivant la ligne I-I de la figure 3 se compose d'un canal 6, incliné d'un angle d'environ 18° par rapport à l'horizontale, d'une portion incurvée 4 raccordant la busette 3 à l'entrée du canal 6 et d'une busette immergée 14 débouchant dans la lingotière 11. Le canal incliné 6 est pourvu d'une voûte 15, étanche aux gaz, qui s'é­tend sur toute sa longueur. La voûte 15 porte des ailettes de refroi­dissement 16 qui sont à leur tour entourées d'une enveloppe 17. La voûte 15 est dotée d'une entrée et d'une sortie de gaz protecteur, par exemple d'argon, repérées respectivement 18 et 19, et l'enveloppe 17 présente des orifices 20, respectivement 21, d'entrée, respectivement de sortie de l'air de refroidissement. Les orifices 18 et 19, respec­tivement 20 et 21, sont reliés à une source d'argon, respectivement d'air, non représentée. La portion 4 est incurvée de façon à se rac­corder tangentiellement d'une part à la busette 3 et d'autre part au canal 6. Cette portion incurvée 4 se compose d'une carcasse métallique garnie intérieurement de matériau réfractaire. Sa courbure est déter­minée de manière à éviter des rebonds intempestifs de l'acier dans le canal, lorsqu'il sort de la busette, de façon que le garnissage su­bisse une érosion minimum sous l'effet de l'écoulement de l'acier liquide.
  • La busette 14 est constituée, de façon connue en soi, d'une portion de tube en matériau réfractaire destiné à plonger dans l'acier liquide présent dans la lingotière 11.
  • Dans la figure 3 est représentée une section transversale, suivant la ligne II-II de la figure 2, du dispositif de coulée, montrant la cons­titution du canal 6 et de la voûte 15.
  • Le canal 6 se compose d'un chenal métallique en U, comprenant un fond 22 et des parois latérales 22ʹ et garni de matériau réfractaire 23. La voûte 15 est fixée de façon étanche aux gaz au chenal métallique 22; elle porte des ailettes de refroidissement 16 entourées d'une envelop­pe 17 fermée.
  • La figure 4 montre une variante du dispositif de l'invention, dans lequel la section transversale du canal 6 est constituée de deux parois 24, 25 se coupant sous un angle d'environ 90°. Ce canal peut subir une rotation autour de son arête longitudinale représentée par le point 0, ce qui entraîne une variation de la largeur et par consé­quent de l'aire de la surface supérieure de l'acier liquide (figure 4, a et b).
  • Une autre variante de l'invention est illustrée dans la figure 5. Ici, une paroi longitudinale verticale 26 peut prendre plusieurs positions par déplacement transversal à l'intérieur du canal 6. Cette paroi mobile permet de faire varier, selon les conditions de la coulée, la hauteur h d'acier dans le canal et/ou l'aire de la surface supérieure de l'acier liquide.
  • Le mode de fonctionnement de ce dispositif se comprend aisément à partir de la description qui vient d'en être faite.
  • A titre d'exemple, on indiquera qu'avec un dispositif particulièrement simple du type représenté dans les figures 2 et 3, on a pu éliminer une surchauffe de 25 C lors de la coulée d'acier sous un débit de 5 kg/s, avec un canal présentant une longueur L = 3 m et une largeur l = 0,075 m.
  • Le dispositif de l'invention permet dès lors de couler l'acier avec une surchauffe faible ou nulle sans encourir des pertes de métal inac­ceptables par solidification dans la poche ou dans le panier ré­partiteur.
  • La figure 6 illustre schématiquement une variante particulièrement in­téressante du dispositif de l'invention, monté entre une poche de coulée 1 contenant du métal surchauffé et une lingotière de coulée continue 11. Ce dispositif comprend un canal, désigné globalement par le repère numérique 13, qui se compose d'un fond métallique 22 et de parois latérales 22ʹ également métalliques. Le métal utilisé à cet effet est de préférence l'acier. Le fond et les parois du canal sont garnis d'un garnissage réfractaire 23, 23ʹ. Pour ne pas surcharger le dessin, on n'a pas représenté certains éléments déjà décrits, comme la voûte de refroidissement 15 et l'enceinte de protection 18 (voir figure 2).
  • Dans le fond 22 du canal est insérée une plaque 27 d'un matériau pré­sentant une conductibilité calorifique élevée, en particulier de cuivre, qui est soumise à un refroidissement intense. Ce refroi­ dissement est de préférence assuré par un circuit de circulation d'eau, symbolisé par les flèches d'entrée 28 et de sortie 29 de l'eau.
  • Le garnissage réfractaire 23, 23ʹ est interrompu sur une partie de la surface supérieure de la plaque 27, qui est ainsi exposée directement au contact avec le métal liquide. Comme le montre la figure 7, cette partie découverte de la plaque 27 peut être (a) une zone s'étendant sur toute la largeur du canal, (b) une zone s'étendant sur une frac­tion seulement de la largeur ou (c) une pluralité de zones partielles réparties suivant la largeur du canal et séparées par des passerelles en matériau réfractaire.
  • Le mode de fonctionnement de ce dispositif se comprend aisément en se reportant à la figure 6.
  • Le métal surchauffé, en particulier l'acier, provenant de la poche de coulée 1, parvient dans la portion amont du canal 13 où il s'écoule sur le garnissage réfractaire 23ʹ sans subir de refroidissement sen­sible. Il arrive alors sur la partie non revêtue de la plaque de cui­vre 27, où il subit un refroidissement intense pendant un temps limité par suite des dimensions relativement faibles de la surface de con­tact. Les essais montrent que, sur une telle surface de contact très localisée, l'acier perd instantanément sa surchauffe, ce qui entraîne l'apparition de particules solidifiées au sein du courant d'acier liquide. Celui-ci emporte les particules solidifiées, qui ne peuvent donc pas se déposer sur la plaque 27. Au cours de son écoulement sur le garnissage réfractaire 23, l'acier continue à être refroidi et de­vient de plus en plus riche en particules solidifiées. Il acquiert ainsi l'état pâteux recherché à l'entrée dans la lingotière 11.
  • Ce dispositif particulier permet de remplacer l'écoulement unidirec­tionnel classique de la chaleur, c'est-à-dire l'écoulement suivant l'épaisseur de la plaque de cuivre, par un écoulement bi - ou même tridirectionnel nettement plus efficace.
  • Lorsque la totalité de la surface supérieure de la plaque refroidie est mise en contact avec un métal liquide, la chaleur ne peut s'écou­ler que suivant l'épaisseur de la plaque. Par contre, lorsqu'une partie seulement de cette surface est exposée au métal liquide et que le reste de la surface est protégé, notamment par un garnissage ré­fractaire, l'écoulement de la chaleur dans la plaque se fait à la fois suivant l'épaisseur et parallèlement au plan de la surface. Il en ré­sulte une augmentation de la section de passage offerte au flux de chaleur, et par conséquent une amélioration de l'efficacité du re­froidissement.
  • Il va de soi que l'invention n'est pas limitée aux réalisations qui viennent d'être décrites et illustrées.
  • En particulier, il ne sortirait pas du cadre de la présente invention de choisir les dimensions du dispositif de manière telle que l'on utilise en régime une pression d'argon inférieure à la pression atmo­sphérique, ce qui pourrait permettre un dégazage de l'acier liquide si nécessaire.
  • On voit que le dispositif de l'invention offre une plus grande sou­plesse de conduite que les busettes classiques, car il permet une régulation du débit d'acier et une régulation du refroidissement totalement indépendantes.
  • En outre, la sécurité du système est accrue de deux façons. D'une part, la quantité d'acier qui risque d'être mise en présence d'eau en cas de défaillance du système est fortement réduite, car une telle défaillance ne peut se produire que dans le canal 6. Par ailleurs, il est possible de supprimer totalement l'emploi d'eau et depasser à un refroidissement par air, en adaptant de façon appropriée la longueur et l'inclinaison du canal.

Claims (6)

1. Dispositif pour la coulée d'un métal en phase pâteuse, qui comprend entre un récipient de coulée (1) muni d'une busette (3) et une lingotière de coulée continue (11), un canal (6) refroidi, dont l'ex­trémité amont, par rapport au sens d'écoulement du métal, est rac­cordée à la sortie de ladite busette et dont l'extrémité aval est pourvue de moyens (8) d'introduction du métal liquide dans ladite lin­gotière, caractérisé en ce que lesdits moyens d'introduction com­prennent un conduit dont l'extrémité inférieure se termine par un aju­tage dont le diamètre de la section de sortie est inférieur au diamètre de la busette.
2. Dispositif suivant la revendication 1, caractérisé en ce que ledit canal est constitué par un conduit tubulaire présentant une section intérieure supérieure à la section de sortie de ladite busette.
3. Dispositif suivant l'une ou l'autre des revendications 1 et 2, ca­ractérisé en ce que ledit canal est constitué d'un chenal pourvu d'un garnissage en matériau réfractaire et d'une voûte étanche aux gaz équipée, sur au moins une partie de sa longueur, de moyens de refroidissement par air, en particulier d'ailettes de refroidissement.
4. Dispositif suivant l'une ou l'autre des revendications 1 à 3, ca­ractérisé en ce qu'au moins une région du fond dudit canal est cons­tituée d'un matériau présentant une conductibilité calorifique élevée, en ce que ladite région du fond du canal est soumise à un refroi­dissement intense et en ce qu'au moins une partie de ladite région n'est pas garnie de matériau réfractaire.
5. Dispositif suivant l'une ou l'autre des revendications 1 à 4, caractérisé en ce qu'il comporte des moyens pour l'introduction d'un gaz dans l'espace libre situé au-dessus de la surface du métal dans ledit canal et des moyens pour faire varier la pression dudit gaz à l'intérieur dudit canal afin de régler le débit de métal pendant la coulée.
6. Dispositif suivant l'une ou l'autre des revendications 1 à 5, caractérisé en ce qu'il comporte des moyens pour faire tourner ledit canal autour d'un axe parallèle à son axe longitudinal, respectivement autour de son axe longitudinal.
EP87870051A 1983-02-10 1987-04-15 Dispositif pour la coulée d'un métal en phase pâteuse Withdrawn EP0242347A3 (fr)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
LU86640 1983-02-10
LU86395A LU86395A1 (fr) 1986-04-16 1986-04-16 Dispositif et procede pour la coulee continue de l'acier
LU86395 1986-04-16
LU86640 1986-10-29
LU86687 1986-11-26
LU86687A LU86687A1 (fr) 1986-11-26 1986-11-26 Dispositif pour la coulee d'un metal en phase pateuse
LU86693A LU86693A1 (fr) 1986-12-01 1986-12-01 Dispositif pour couler un metal en phase pateuse
LU86693 1986-12-01

Publications (2)

Publication Number Publication Date
EP0242347A2 true EP0242347A2 (fr) 1987-10-21
EP0242347A3 EP0242347A3 (fr) 1988-11-02

Family

ID=27483598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87870051A Withdrawn EP0242347A3 (fr) 1983-02-10 1987-04-15 Dispositif pour la coulée d'un métal en phase pâteuse

Country Status (1)

Country Link
EP (1) EP0242347A3 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215248A (en) * 1988-02-04 1989-09-20 British Steel Plc Pre-cooling molten metal prior to casting
EP0411329A1 (fr) * 1989-07-25 1991-02-06 WEBER S.r.l. Procédé de coulée continu de produits semi-liquides et four pour effectuer ledit procédé
FR2665654A1 (fr) * 1990-08-09 1992-02-14 Armines Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.
EP0572683A1 (fr) * 1992-01-13 1993-12-08 Honda Giken Kogyo Kabushiki Kaisha Procede de moulage de pieces en alliage d'aluminium et pieces ainsi produites
US5464053A (en) * 1992-09-29 1995-11-07 Weber S.R.L. Process for producing rheocast ingots, particularly from which to produce high-mechanical-performance die castings
EP0719606A1 (fr) * 1994-12-28 1996-07-03 Ahresty Corporation Procédé de production d'un métal en phase pâteuse pour couler
WO2002055235A1 (fr) * 2001-01-09 2002-07-18 Ing. Rauch Fertigungstechnik M.B.H. Procede d'obtention d'une suspension d'alliage partiellement solidifiee et dispositifs y relatifs

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2286218A (en) * 1941-06-25 1942-06-16 James L Martin Pouring spout
CH349755A (de) * 1956-02-06 1960-10-31 Beteiligungs & Patentverw Gmbh Giessrinne zum Vergiessen von Schwermetallen
US3127642A (en) * 1960-03-24 1964-04-07 Centre Nat Rech Metall Process and apparatus for the casting of steel
SU606680A1 (ru) * 1976-07-19 1978-04-20 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Имени И.П.Бардина Устройство дл подвода металла при непрерывной разливке
GB2013856A (en) * 1978-01-25 1979-08-15 Uss Eng & Consult Pouring of molten metal into a continuous caster mould
EP0089196A1 (fr) * 1982-03-11 1983-09-21 British Steel Corporation Procédé pour la formation des aciers
EP0093528A2 (fr) * 1982-05-04 1983-11-09 Alcan International Limited Coulée de métaux

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2286218A (en) * 1941-06-25 1942-06-16 James L Martin Pouring spout
CH349755A (de) * 1956-02-06 1960-10-31 Beteiligungs & Patentverw Gmbh Giessrinne zum Vergiessen von Schwermetallen
US3127642A (en) * 1960-03-24 1964-04-07 Centre Nat Rech Metall Process and apparatus for the casting of steel
SU606680A1 (ru) * 1976-07-19 1978-04-20 Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Черной Металлургии Имени И.П.Бардина Устройство дл подвода металла при непрерывной разливке
GB2013856A (en) * 1978-01-25 1979-08-15 Uss Eng & Consult Pouring of molten metal into a continuous caster mould
EP0089196A1 (fr) * 1982-03-11 1983-09-21 British Steel Corporation Procédé pour la formation des aciers
EP0093528A2 (fr) * 1982-05-04 1983-11-09 Alcan International Limited Coulée de métaux

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOVIET INVENTIONS ILLUSTRATED, section CH, semaine B13, 10 mai 1979, classe M22, no. 25523; & SU-A-606 680 (BARDIN FERR METALLURGY) 20-04-1978 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2215248A (en) * 1988-02-04 1989-09-20 British Steel Plc Pre-cooling molten metal prior to casting
GB2215248B (en) * 1988-02-04 1991-10-16 British Steel Plc Liquid metal processing
EP0411329A1 (fr) * 1989-07-25 1991-02-06 WEBER S.r.l. Procédé de coulée continu de produits semi-liquides et four pour effectuer ledit procédé
US5119977A (en) * 1989-07-25 1992-06-09 Weber S.R.L. Continuous semi-liquid casting process and a furnace for performing the process
FR2665654A1 (fr) * 1990-08-09 1992-02-14 Armines Machine de coulee sous pression d'un alliage metallique a l'etat thixotropique.
EP0572683A1 (fr) * 1992-01-13 1993-12-08 Honda Giken Kogyo Kabushiki Kaisha Procede de moulage de pieces en alliage d'aluminium et pieces ainsi produites
EP0572683A4 (en) * 1992-01-13 1994-06-29 Honda Motor Co Ltd Method for casting aluminum alloy casting and aluminum alloy casting
US5394931A (en) * 1992-01-13 1995-03-07 Honda Giken Kogyo Kabushiki Kaisha Aluminum-based alloy cast product and process for producing the same
US5464053A (en) * 1992-09-29 1995-11-07 Weber S.R.L. Process for producing rheocast ingots, particularly from which to produce high-mechanical-performance die castings
EP0719606A1 (fr) * 1994-12-28 1996-07-03 Ahresty Corporation Procédé de production d'un métal en phase pâteuse pour couler
WO2002055235A1 (fr) * 2001-01-09 2002-07-18 Ing. Rauch Fertigungstechnik M.B.H. Procede d'obtention d'une suspension d'alliage partiellement solidifiee et dispositifs y relatifs

Also Published As

Publication number Publication date
EP0242347A3 (fr) 1988-11-02

Similar Documents

Publication Publication Date Title
EP0269180B1 (fr) Dispositif de coulée d'un métal en phase pâteuse
EP2099576B1 (fr) Busette a jet creux pour coulee continue d'acier
EP0242347A2 (fr) Dispositif pour la coulée d'un métal en phase pâteuse
EP0743114B2 (fr) Procédé de lubrification des parois d'une lingotière de coulée continue des métaux et lingotière pour sa mise en oeuvre
CA2142420A1 (fr) Procede et dispositif de coulee continue de fils metalliques de tres faible diametre directement a partir de metal liquide
EP0305426A1 (fr) Installation de coulee de metal liquide et procede pour sa mise en oeuvre.
CH628544A5 (fr) Procede et installation pour la coulee continue de produits tubulaires.
EP0327526B1 (fr) Dispositif de refroidissement d'un métal pendant la coulée
BE906039A (fr) Dispositif et procede pour la coulee d'un metal en phase pateuse.
EP0370934B1 (fr) Procédé et ensemble d'alimentation en métal fondu de la lingotière d'une installation de coulée continue d'ébauches minces
FR2747061A1 (fr) Lingotiere bi-materiau pour la coulee continue en charge verticale des metaux
BE1000221A6 (fr) Dispositif pour la coulee d'un metal en phase pateuse.
EP0527717B1 (fr) Procédé et dispositif pour la coulée continue d'un métal en fusion
FR2747062A1 (fr) Lingotiere de coulee continue pour la coulee continue en charge verticale des metaux
LU86395A1 (fr) Dispositif et procede pour la coulee continue de l'acier
FR2704786A3 (fr) Procédé de coulée continue en charge des métaux, notamment de l'acier, et lingotière pour sa mise en Óoeuvre.
EP0452294B1 (fr) Procédé et installation pour la coulée continue d'un métal
EP0943380A1 (fr) Installation de coulée en continu d'un produit métallique et procédés de mise en oeuvre d'une telle installation
BE1001804A6 (fr) Procede et dispositif de coulee d'un metal en phase pateuse.
EP0511465A2 (fr) Dispositif de brassage électromagnétique en lingotière
BE1001405A6 (fr) Dispositif de coulee d'un metal dans une lingotiere de coulee continue.
BE1000227A6 (fr) Dispositif permettant de couler un metal en phase pateuse.
EP0911096B1 (fr) Busette de coulée pour installation de coulée continue des métaux, notamment de coulée entre cylindres
FR2781395A1 (fr) Dispositif pour couler des lingots d'un metal liquide non ferreux, notamment du magnesium liquide, selon de grandes cadences de production sans diminution de la qualite
FR2525131A1 (fr) Procede et dispositif de fabrication d'un lingot d'acier creux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19890323

17Q First examination report despatched

Effective date: 19900410

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19910312

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WILMOTTE, STEPHAN

Inventor name: ECONOMOPOULOS, MARIOS

Inventor name: ETIENNE, ARLETTE

Inventor name: D'HAEYER, RAYMOND