[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0241373B1 - Dispositif d'alimentation en courant d'un filament de tube radiogène - Google Patents

Dispositif d'alimentation en courant d'un filament de tube radiogène Download PDF

Info

Publication number
EP0241373B1
EP0241373B1 EP87400774A EP87400774A EP0241373B1 EP 0241373 B1 EP0241373 B1 EP 0241373B1 EP 87400774 A EP87400774 A EP 87400774A EP 87400774 A EP87400774 A EP 87400774A EP 0241373 B1 EP0241373 B1 EP 0241373B1
Authority
EP
European Patent Office
Prior art keywords
filament
current
power supply
circuit
heating current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87400774A
Other languages
German (de)
English (en)
Other versions
EP0241373A1 (fr
Inventor
Jacques Salesses
Arthur Baghdiguian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0241373A1 publication Critical patent/EP0241373A1/fr
Application granted granted Critical
Publication of EP0241373B1 publication Critical patent/EP0241373B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/10Power supply arrangements for feeding the X-ray tube
    • H05G1/20Power supply arrangements for feeding the X-ray tube with high-frequency ac; with pulse trains

Definitions

  • the invention relates to a device for supplying current to a filament, in particular to an X-ray tube as used in radiodiagnostic installations (EP-A 0 137 401).
  • the invention is particularly applicable in cases where it is necessary to successively supply filaments of very different resistances, with high current dynamics.
  • X-ray tubes for medical diagnosis are generally constituted as a diode, that is to say by two electrodes of which one called cathode emits electrons, and the other is called anode and receives these electrons on a small surface which is the source of X-rays.
  • the cathode has a heated filament which is the source of electrons.
  • a so-called anodic current is established in the circuit, through the generator, and crosses the space between the cathode and the anode in the form of an electron beam whose intensity depends on the temperature of the filament; this temperature being a function of the power dissipated in the filament, that is to say the current, called heating current, which circulates in the filament.
  • the quantity of X-ray emitted by the anode depends mainly on the intensity of the anode current, and therefore on the intensity of the heating current of the filament.
  • the filament heating current constitutes one of the important parameters which must be determined for each exposure of radiography or radioscopy, during a radiological examination of a patient.
  • the parameters of the pose are determined according to the nature of the examination. Generally, these parameters are predetermined by an operator who displays the values on a control console, by which the operation of the various components of a diagnostic radiology installation is controlled, such as, for example, high voltage generator and generator of the heating current. filament. It is also common in certain installations for the values of these parameters to be predetermined using a microprocessor device incorporated or not in the control console, and which calculates and programs the optimum values of these parameters, depending for example on the type of examination desired by the practitioner, and according to the specific characteristics of the installation.
  • this operation consists in particular in programming different values, such as for example: duration of the exposure time, energy of the X-ray by the choice of the value of the high voltage applied between the anode and the cathode, and intensity of the anodic current by the choice in particular of a value of the intensity of the filament heating current.
  • the intensity of the heating current can be modified significantly, from one pose to a next pose, for example from 1.5 amperes to 5.5 amperes.
  • radiodiagnostic installations may comprise several x-ray tubes, having different characteristics, which are put into operation successively, sometimes during the same examination; these X-ray tubes may include filaments whose value of the ohmic resistance can vary considerably from one tube to another, from 0.6 Ohms to 4.5 Ohms for example.
  • a heating current generator making it possible to quickly obtain, that is to say automatically, a value of the heating current included in the range of values previously mentioned, and this regardless of the value of the resistance of the supplied filament.
  • the generator which produces the heating current must supply the latter in a very wide power range. It must also, in this power range, ensure sufficient quality for heating current regulation, and allow the desired intensity value to be obtained quickly and automatically, as defined for example by a set value; this set value being able to vary from one pose to a next pose.
  • the heating current generators according to the prior art do not make it possible to obtain these conditions satisfactorily: either they require manual adjustments as a function of the intensity of the heating current and of the resistance value of the filament; either they allow power dynamics to the detriment of the quality of regulation; or that the conditions of power dynamics, automation and regulatory qualities lead to the design of complex generators, that is to say fragile, unreliable, or bulky and bulky and of a high price.
  • the regulation of the filament heating current is further complicated by the fact that the cathode, and the filament of the X-ray tube, are brought to the negative potential of high voltage; also, the problems of electrical insulation generally lead to applying to the filament the heating energy by means of an isolation transformer, the primary winding of which represents the load of the filament. Therefore the heating current is produced according to an alternating current whose measurement of the effective value can also present problems.
  • the supply device according to the invention does not have the above-mentioned drawbacks, thanks to a new arrangement which makes it a device which is simple to produce and simple to implement.
  • the present invention relates to a current supply device for a filament of an X-ray tube, making it possible to automatically obtain a heating current whose intensity corresponds to a set value, this intensity being included in the range of intensities. can be applied to a filament, and this for all the current resistance values of the filament.
  • a device for supplying current to a filament of at least one X-ray tube comprising, a generator supplying control pulses, an inverter receiving the control pulses and producing a current in a load circuit of alternative heating from a direct voltage, a regulation circuit regulating the heating current as a function of a set value, the load circuit comprising a primary winding of a transformer through which the heating current is transformed and then applied to the filament, the heating current having the same frequency as the frequency of the control pulses, is characterized in that the inverter comprises an oscillating circuit arranged between the primary winding and the DC voltage source, and in that the regulation circuit delivers an error signal applied to the generator to modify the frequency of the control pulses, so as to re to change the impedance of the oscillating circuit until a value of heating current corresponding to the setpoint value.
  • FIG. 1 shows a supply device 1 according to the invention making it possible, in the nonlimiting example described, to supply current to the filament of an X-ray tube, for example selected from several X-ray tubes, of which only two tubes 26.27 are shown in the example described.
  • the X-ray tubes are of a conventional type each comprising an anode, 28, 29 and a cathode 23, 24 represented by the filament which it contains.
  • the tubes 26, 27 are supplied with high voltage by conventional means (not shown).
  • the filament 23.24 of the tube 26.27 selected is brought to the negative potential - HT of the high voltage, and the problems of electrical insulation impose to apply to the filament 23.24 the electrical energy necessary for its heating. , via an isolation transformer 30.
  • the selection of the first or second tube 26, 27 is made by connecting the corresponding filament 23, 24, to the secondary winding 31 of the transformer 30, by means of a switching device. 35, comprising switches (not shown) constituted for example by electromechanical relays; the transformer 30 comprising a primary winding 12 to which a heating current 1 applied by an inverter 2 is applied.
  • the control of the switching device 35 can take place either by manual control, or automatically in the context of programmed sequences controlled for example by a control console 40; the latter being connected to the switching device 35 by a first and a second link CT1, CT2 by which it can select the first or the second tube 26,27, the first tube 26 for example, so as to apply to the filament 23 of this last a current for its heating.
  • a tube 26, 27 can be carried out in a different way, such as for example by switching at the level of the primary of the isolation transformer.
  • an isolation transformer in this case being associated with each filament.
  • the supply device 1 also comprises a source of regulated continuous voltage 3, delivering via terminals 67, 68 respectively the positive polarity + and the negative polarity - of a regulated continuous voltage V1, having for example a value of 200 Volts.
  • the voltage source 3 is constituted in a conventional manner and develops the direct voltage V1 from, for example, a single-phase voltage (not shown) of 220 V.
  • the inverter 2 is supplied by the DC voltage V1, from which it produces an AC voltage.
  • the inverter 2 comprises two electronic switching means 4,5 arranged in series between the positive pole + and the negative pole - of the DC voltage V1.
  • the two switching means 4,5 are constituted by field effect transistors.
  • the source S of the first transistor 4 is connected to the positive pole + of the DC voltage V1 and its drain D is connected to the source S of the second transistor 5, whose drain D is connected to the negative pole - of the DC voltage V1.
  • a first and a second diode d1, d2 are respectively connected in parallel on the first and the second transistor 4,5; the first diode d1 having its cathode connected to the + pole of the voltage V1 and its anode connected on the one hand, to the junction 6 between the drain of the first transistor 4 and the source of the second transistor 5, and connected on the other hand to the cathode of the second diode d2, the anode of which is connected to the negative pole - of the DC voltage V1.
  • the junction 6 is also connected to the first end 7 of a current sensor means 9, the second end 10 of which is connected to the first end 11 of the primary winding 12 of the isolation transformer 30.
  • the second end 14 of the primary winding 12 is connected to the first end 15 of an inductor 16 whose second end 17 is connected to a capacitive midpoint 18.
  • the capacitive midpoint 18 is formed by the junction of a first and d 'a second capacitor 19.20 mounted in series between the positive and negative terminals +, - of the DC voltage V1; the first capacitor 19 being connected to the positive pole +, and the second capacitor 20 being connected to the negative pole -.
  • the two capacitors 19 and 20 form a capacitor which is placed in series with the inductor 16, to form an oscillating circuit 13 arranged in series with the primary winding 12 of the transformer 13, with which it constitutes a charging circuit 12-13 .
  • the primary winding 12 represents the filament 23 whose ohmic resistance R is reported in the charging circuit 12-13.
  • the filament 23 is of a conventional type, its resistance R can have any value included in the current value range, for example between 0.6 Ohms and 4.5 Ohms.
  • the current I in the secondary circuit of the transformer 30, where the filament 23 is disposed being proportional to the current 1 flowing in the circuit of the primary winding or load circuit 12-13, according to a known ratio, and the resistance R of the filament 23 being added in the charging circuit 12-13, it is the current which circulates in the charging circuit 12-13 which is called heating current for the sake of clarity of the description.
  • the current sensor 9 is placed in the charging circuit 12-13 and delivers by an output 59 a signal S1 proportional to the current 1 of pseudo-sinusoidal heating; the current sensor 9 is of a conventional type, such as for example constituted by an intensity transformer.
  • the signal S1 proportional to the heating current I, is applied to the input 61 of a converter device 25, which conventionally processes the values of the signal S1, to provide by an output 62, a second signal S2 corresponding to the effective value of the heating current I.
  • These effective values are used to regulate the current in the primary circuit or load circuit 12-13 which allows, thanks in particular to the isolation transformer 30 with low leakage, to carry out a rigorous control of the current flowing through the filament 23 ensuring better proportionality between the current l in the filament 23 and the current I in the charging circuit 12-13.
  • the second signal S2 is applied to the first input 41 of an error processor 42, constituted for example by a differential amplifier.
  • the second input 43 of the error processor 42 receives a setpoint value VC corresponding to the desired value of the heating current I; this setpoint being for example delivered by the control console 40 which, for this purpose, is connected by a link 63 to the second input 43 of the error processor 42.
  • the error processor 42 delivers to its output 44 an error signal SE proportional to the difference between the second signal S2 and the set value VC.
  • the error signal SE is applied to a means for producing pulses at a given frequency F and for modifying this frequency F more or less depending on the sign and the amplitude of the error signal SE. In the nonlimiting example described, this means for producing pulses consists of a voltage-frequency converter 46, the input 45 of which is connected to the output 44 of the error generator 42.
  • An output 47 of the voltage-frequency converter 46 delivers a fourth signal S4 consisting of pulses delivered at frequency F, which frequency F constitutes the initial frequency at which the inverter 2 operates.
  • the signal S4 is applied to input 49 d 'A switching device 50 whose function is to produce first and second control pulses SC1, SC2, delivered at the same frequency F as the fourth signal S4, and intended respectively to control the first transistor 4 and the second transistor 5.
  • the first and second control pulses SC1, SC2 (not shown) have a width or duration t substantially equal to or less than half the time between the front edges of two pulses of the same type, that is to say half of the period P corresponding to the frequency F (t: o 1 / 2F).
  • the switching device 50 delivers the first control pulses SC1 by a first output 51 which is connected to the cathode of a third diode d3 and, at the first end 53 of a resistor R1 whose second end 54 is connected to the anode of the third diode d3 and at the control input G1 of the first transistor 4.
  • the switching device 50 delivers the second control pulses SC2 by a second output 52 connected to the cathode of a fourth diode d4 and at the first end 55 of a second resistor R2; the second end 56 of the second resistor R2 is connected to the anode of the fourth diode d4 and to the control input G2 of the second transistor 5.
  • the general operation of the supply device 1 according to the invention is as follows.
  • these pulses SC1, SC2 are applied respectively the first and second transistor 4,5, via the networks formed on the one hand, by the third diode d3 and the resistor R1 and, on the other hand by the fourth diode d4 and the second resistor R2; the simultaneous non-conduction of the two transistors 4,5 being prohibited by a simple asymmetry in the conduction and blocking of each transistor 4,5.
  • the control pulses SC1, SC2 have a frequency F corresponding to an initial operating frequency of the inverter 2.
  • the control pulses SC1, SC2 being for example positive, the first pulses SC1 cause the first transistor 4 to be conducted so, that with the exception of the relatively low voltage drop across the terminals of the first transistor 4, the positive polarity + of the DC voltage V1 is applied to the junction 6, and the capacitor 19, which was charged at an intermediate voltage V2, tends to discharge in the charging circuit 12-13, i.e. in the inductor 16 and in the primary winding 12 which represents smells the filament 23; the heating current then being established in the direction represented by the arrow marked IC 1 ; the second capacitor 20 itself tending to charge at the value of the positive polarity + of the DC voltage V1.
  • the protection of the transistors 4,5 is thus ensured in an efficient and much simpler way than that of the switching means which, in the prior art, have the function of chopping a DC voltage. This is possible in particular because the transistors 4,5 are of the field effect type and are fast in switching.
  • the regulation circuit constituted by the current sensor 9, the converter device 25, the error generator 42 and the voltage-frequency converter 46, regulate the heating current to the effective value of the latter, corresponding to the setpoint VC delivered by the control panel 40.
  • a non-zero error signal SE applied to the voltage frequency converter 46 generates a modification of the frequency F of the pulses (signal S4) which the latter applies to the switching device 50, and consequently generates a modification of the frequency of the pulses SC1, SC2 that the switching device 50 applies to the transistors 4,5; whence there results a variation of the operating frequency of the inverter 2, so as to modify the value of the impedance Z, presented by the oscillating circuit 13 constituted by the inductor 16 in series with the capacitors 19, 20 .
  • the oscillating circuit 13 being in series with the load that constitutes the resistance R of the filament 23, the value of the heating current is directly linked to the impedance Z of the oscillating circuit LC, and decreases or increases as this impedance decreases or increases.
  • the inverter 2 operates in a relatively high frequency range, from 18 KHZ to 35 KHZ for example, which allows on the one hand, a significant reduction in the volume of the elements, in particular the magnetic elements and in particular of the isolation transformer 30; and on the other hand allows a quick response of the regulation circuit, as well as a quick stop if necessary for safety needs.
  • the inductor 16 and the capacitors 19, 20 are chosen so that the resonant frequency Fo of the oscillating circuit 13 is a little lower than the minimum operating frequency of the inverter 2, at 15 KHz for example, so that in the load circuit 12-13 the current is ahead of the voltage; this arrangement being favorable for the switching of transistors 4,5.
  • the oscillating circuit 13 consists of the inductance 16 and a capacitance in series formed by the capacitors 19 and 20: it can be noted that the capacitors 19 and 20, in addition to constituting the capacitance of the oscillating circuit 13, are arranged in series in the DC voltage V1, and thus ensure efficient decoupling of the charging circuit 12-13 at the capacitive point 18; these two capacitors 19, 20 having to be considered as being connected in parallel to constitute the capacity of the oscillating circuit 13.
  • the supply device 1 makes it possible to successively supply several filaments 23, 24 having different resistances, as illustrated in FIG. 2.
  • FIG. 2 is a graph which represents, by a first and a second curve 65, 66, the variations of the heating current 1 as a function of the frequency F; the frequency F being plotted on the abscissa and expressed in KHZ, and the heating current I being plotted on the ordinate and expressed in amps.
  • the resonant frequency F o of the oscillating circuit 13 is 15 KHZ, and the operating frequency range F is between 18 and 35 KHZ.
  • the first and the second curve 65, 66 correspond respectively to the supply of a first and a second filament 23, 24; the first filament 23 having a resistance of 4.5 ohms, and the second filament 24 having a resistance of 1 ohm.
  • a limit to the maximum value of the heating current is achieved by means of a frequency stop device (not shown), in itself conventional.
  • the frequency stop device makes it possible, when approaching the resonant frequency F o , to limit the operating frequency range to a value greater than F o ; this limit being situated at approximately 15.7 KHZ in the nonlimiting example described.
  • This description constitutes a nonlimiting example, showing that the operating principle of the supply device 1 according to the invention makes it possible not only to supply a filament of an X-ray tube with a heating current regulated with great precision, but also allows in addition to automatically, supplying successively several heating filaments of different resistances, in a wide power range, while retaining great precision in the definition of the heating current.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • X-Ray Techniques (AREA)

Description

  • L'invention concerne un dispositif d'alimentation en courant d'un filament, notamment de tube radiogène tel qu'utilisé dans les installations de radiodiagnostic (EP-A 0 137 401). L'invention est particulièrement applicable dans les cas ou il est nécessaire d'alimenter successivement des filaments de résistances très différentes, avec une grande dynamique en courant.
  • Les tubes à rayons X pour diagnostic médical sont généralement constitués comme une diode, c'est à dire par deux électrodes dont l'une appelée cathode est émettrice d'électrons, et l'autre est appelée anode et reçoit ces électrons sur une petite surface qui constitue la source du rayonnement X.
  • La cathode comporte un filament chauffé qui constitue la source d'électrons. Quand la haute tension fournie par un générateur est appliqué aux bornes des deux électrodes, de façon que la cathode soit au potentiel négatif, un courant dit anodique s'établit dans le circuit, au travers du générateur, et traverse l'espace entre la cathode et l'anode sous la forme d'un faisceau d'électrons dont l'intensité dépend de la température du filament; cette température étant en fonction de la puissance dissipée dans le filament, c'est à dire du courant, appellé courant de chauffage, qui circule dans le filament.
  • La quantité de rayon X émis par l'anode dépend principalement de l'intensité du courant anodique, et donc de l'intensité du courant de chauffage du filament.
  • Aussi, le courant de chauffage de filament constitue un des paramètres importants qui doivent être déterminés pour chaque pose de radiographie ou de radioscopie, au cours d'un examen radiologique d'un patient.
  • Les paramètres de la pose sont déterminés en fonction de la nature de l'examen. Généralement, ces paramètres sont prédéterminés par un opérateur qui en affiche les valeurs sur un pupitre de commande, par lequel est commandé le fonctionnement des différents organes d'une installation de radiodiagnostic, tels que par exemple, générateur haute tension et générateur du courant de chauffage filament. Il est courant également dans certaines installations que les valeurs de ces paramètres soient prédéterminées à l'aide d'un dispositif à microprocesseur incorporé ou non au pupitre de commande, et qui calcule et programme les valeurs optimums de ces paramètres, en fonction par exemple du type d'examen désiré par le praticien, et en fonction des caractéristiques spécifiques de l'installation.
  • Dans tous les cas cette opération consiste notamment à programmer différentes valeurs, telles que par exemple: durée du temps de pose, énergie du rayonnement X par le choix de la valeur de la haute tension appliquée entre l'anode et la cathode, et intensité du courant anodique par le choix notamment d'une valeur de l'intensité du courant de chauffage filament.
  • Il est à remarquer que l'intensité du courant de chauffage peut être modifiée de manière importante, d'une pose à une pose suivante, par exemple de 1,5 ampère à 5,5 ampères.
  • D'autre part, il est courant que des installations de radiodiagnostic comportent plusieurs tubes radiogènes, ayant des caractéristiques différentes, qui sont mis en fonctionnement successivement, -parfois au cours d'un même examen; ces tubes radiogènes pouvant comporter des filaments dont la valeur de la résistance ohmique peut varier de manière considérable d'un tube à l'autre, de 0,6 Ohms à 4,5 Ohms par exemple. Dans de tels cas, il est particulièrement intéressant de disposer d'un générateur de courant de chauffage permettant d'obtenir rapidement, c'est à dire de manière automatique, une valeur du courant de chauffage comprise dans la gamme de valeurs précédement mentionnées, et ceci quelle que soit la valeur de la résistance du filament alimenté.
  • Par conséquent, le générateur qui produit le courant de chauffage doit fournir ce dernier dans une gamme du puissance très étendue. Il doit en outre, dans cette gamme de puissance, assurer une qualité suffisante à la régulation de courant de chauffage, et permettre d'obtenir rapidement et automatiquement la valeur d'intensité désirée, telle que définie par exemple par une valeur de consigne; cette valeur de consigne étant susceptible de varier d'une pose à une pose suivante.
  • Les générateurs de courant de chauffage selon l'art antérieur ne permettent pas d'obtenir ces conditions de manière satisfaisante: soit qu'ils exigent des réglages manuels en fonction de l'intensité du courant de chauffage et de la valeur de résistance du filament ; soit qu'ils permettent la dynamique de puissance au détriment de la qualité de la régulation ; soit que les conditions de dynamique de puissance, d'automatisme et de qualités de régulation conduisent à concevoir des générateurs complexes, c'est à dire fragiles, peu fiables, ou volumineux et encombrants et d'un prix élevé.
  • Il est à noter également, que la régulation du courant de chauffage filament est encore compliquée par le fait que la cathode, et le filament du tube radiogène, sont portés au potentiel négatif de la haute Tension; aussi, les problèmes d'isolation éléctrique conduisent généralement à appliquer au filament l'énergie de chauffage par l'intermédiaire d'un transformateur d'isolement, dont l'enroulement primaire représente la charge du filament. De ce fait le courant de chauffage est produit selon un courant alternatif dont la mesure de la valeur efficace peut également présenter des problèmes.
  • Le dispositif d'alimentation selon l'invention ne présente pas les inconvénients ci-dessus cités, grâce à un agencement nouveau qui en fait un appareil simple à réaliser et simple à mettre en oeuvre.
  • La présente invention concerne un dispositif d'alimentation en courant d'un filament de tube radiogène, permettant d'obtenir de manière automatique un courant de chauffage dont l'intensité correspond à une valeur de consigne, cette intensité étant comprise dans la gamme des intensités succeptibles d'être appliquées à un filament, et ceci pour toutes les valeurs courantes de résistance ohmique du filament.
  • Selon l'invention, un dispositif d'alimentation en courant d'un filament d'au moins un tube radiogène, comportant, un générateur fournissant des impulsions de commande, un onduleur recevant les impulsions de commande et produisant dans un circuit de charge un courant de chauffage alternatif à partir d'une tension continue, un circuit de régulation régulant le courant de chauffage en fonction d'une valeur de consigne, le circuit de charge comportant un enroulement primaire d'un transformateur par l'intermédiaire duquel le courant de chauffage est transformé et ensuite appliqué au filament, le courant de chauffage ayant une même fréquence que la fréquence des impulsions de commande, est caractérisé en ce que l'onduleur comporte un circuit oscillant disposé entre l'enroulement primaire et la source de tension continue, et en ce que le circuit de régulation délivre un signal d'erreur appliqué au générateur pour modifier la fréquence des impulsions de commande, de manière à modifier l'impédance du circuit oscillant jusqu'à obtenir une valeur du courant du chauffage correspondant à la valeur de consigne.
  • Il est ainsi possible de contrôler la puissance transmise au transformateur qui relie le circuit de charge au filament, d'une manière souple et précise en faisant varier l'impédance du circuit oscillant par la fréquence des impulsions de commande, et d'obtenir une dynamique de puissance importante qui permet au dispositif de l'invention d'alimenter successivement, de manière automatique, des filaments ayant des resistances très différentes dans une large gamme de courant.
  • L'invention sera mieux comprise grâce à la description qui suit, faite à titre d'exemple non limitatif, et aux deux figures annexées, parmi lesquelles:
    • - la figure 1 représente shématiquement un dispositif d'alimentation conforme à l'invention;
    • - la figure 2 est un graphe qui illustre le fonctionnement du dispositif d'alimentation de l'invention.
  • La figure 1 montre un dispositif d'alimentation 1 conforme à l'invention permettant, dans l'exemple non limitatif décrit, d'alimenter en courant le filament d'un tube radiogène, par exemple selectionné parmi plusieurs tubes radiogènes, dont seulement deux tubes 26,27 sont représentés dans l'exemple décrit.
  • Les tubes radiogènes sont d'un type conventionnel comportant chacun une anode, 28,29 et une cathode 23,24 représentée par le filament qu'elle contient. Les tubes 26,27 sont alimentés en haute tension par des moyens classiques (non représentés). En fonctionnement, le filament 23,24 du tube 26,27 sélectionné est porté au potentiel négatif - HT de la haute tension, et les problèmes d'isolation éléctrique imposent d' appliquer au filament 23,24 l'énergie électrique nécéssaire à son chauffage, par l'intermédiaire d'un transformateur d'isolement 30.
  • Dans l'exemple non limitatif décrit, la sélection du premier ou du second tube 26,27 est opérée en connectant le filament 23,24 correspondant, à l'enroulement secondaire 31 du transformateur 30, par l'intermédiaire d'un dispositif de commutation 35, comportant des commutateurs (non représentés) constitués par exemple par des relais éléctromécaniques; le transformateur 30 comportant un enroulement primaire 12 auquel est appliqué un courant de chauffage 1 délivré par un onduleur 2.
  • La commande du dispositif de commutation 35 peut s'opérer soit par commande manuelle, soit de manière automatique dans le cadre de séquences programmées et controlées par exemple par un pupitre de commande 40; ce dernier étant relié au dispositif de commutation 35 par une première et une seconde liaison CT1,CT2 par lesquelles il peut sélectionner le premier ou le second tube 26,27, le premier tube 26 par exemple, de manière à appliquer au filament 23 de ce dernier un courant l' pour son chauffage.
  • Il est à remarquer que la sélection d'un tube 26,27 peut s'effectuer de manière différente, comme par exemple par commutation au niveau du primaire du transformateur d'isolement. un transformateur d'isolement étant dans ce cas associé à chaque filament.
  • Le dispositif d'alimentation 1 comporte en outre une source de tension 3 continue régulée, délivrant par des bornes 67, 68 respectivement la polarité positive + et la polarité négative - d'une tension continue V1, régulée, ayant par exemple une valeur de 200 Volts. La source de tension 3 est constituée de manière classique et élabore la tension continue V1 à partir, par exemple, d'une tension monophasée (non représentée) de 220 V.
  • L'onduleur 2 est alimenté par la tension continue V1, à partir de laquelle il réalise une tension alternative. L'ondoleur 2 comporte deux moyens de commutation éléctronique 4,5 disposés en série entre le pôle positif + et le pôle négatif - de la tension continue V1. Dans l'exemple non limitatif décrit, les deux moyens de commutation 4,5 sont constitués par des transistors à effet de champ. La source S du premier transistor 4 est reliée au pôle positif + de la tension continue V1 et son drain D est relié à la source S du second transistor 5, dont le drain D est relié au pôle négatif -de la tension continue V1. Une première et une seconde diode d1,d2 sont respectivement montées en parallèle sur le premier et le second transistor 4,5; la première diode d1 ayant sa cathode reliée au pôle + de la tension V1 et son anode reliée d'une part, à la jonction 6 entre le drain du premier transistor 4 et la source du second transistor 5, et reliée d'autre part à la cathode de la seconde diode d2 dont l'anode est reliée au pôle négatif - de la tension continue V1.
  • La jonction 6 est en outre reliée à la première extrémité 7 d'un moyen capteur de courant 9, dont la seconde extrémité 10 est reliée à la première extrémi- tée 11 de l'enroulement primaire 12 du transformateur d'isolement 30. La seconde extrémité 14 de l' enroulement primaire 12 est reliée à la première extrémité 15 d'une inductance 16 dont la seconde extrémité 17 est reliée à un point milieu capacitif 18. Le point milieu capacitif 18 est formé par la jonction d'un premier et d'un second condensateur 19,20 montés en série entre les bornes positives et négatives +,- de la tension continue V1; le premier condensateur 19 étant relié au pôle positif +, et le second condensateur 20 étant relié au pôle négatif -.
  • Les deux condensateurs 19 et 20 forment une capacité qui est mise en série avec l'inductance 16, pour constituer un circuit oscillant 13 disposé en série avec l'enroulement primaire 12 du transformateur 13, avec lequel il constitue un circuit de charge 12-13.
  • Dans le circuit de charge 12-13, l'enroulement primaire 12 représente le filament 23 dont la résistance ohmique R est rapportée dans le circuit de charge 12-13. En suposant que le filament 23 soit d'un type classique, sa résitance R peut avoir une valeur quelconque comprise dans la gamme de valeur courante, par exemple entre 0,6 Ohms et 4,5 Ohms.
  • Le courant l'dans le circuit secondaire du transformateur 30, où est disposé le filament 23, étant proportionnel au courant 1 circulant dans le circuit de l'enroulement primaire ou circuit de charge 12-13, selon un rapport connu, et la resistance R du filament 23 étant rapportée dans le circuit de charge 12-13, c'est le courant qui circule dans le circuit de charge 12-13 qui est appelé courant de chauffage pour plus de clarté de la description.
  • Le capteur de courant 9 est placé dans le circuit de charge 12-13 et délivre par une sortie 59 un signal S1 proportionnel au courant 1 de chauffage pseudo-sinusoïdal; le capteur de courant 9 est d'un type classique, tel que par exemple constitué par un transformateur d'intensité.
  • Le signal S1, proportionnel au courant de chauffage I, est appliqué à l'entrée 61 d'un dispositif convertisseur 25, qui traite de manière classique les valeurs du signal S1, pour fournir par une sortie 62, un second signal S2 correspondant à la valeur efficace du courant de chauffage I. Ces valeurs efficaces sont utilisées pour réaliser une régulation du courant dans le circuit primaire ou circuit de charge 12-13 qui permet, grâce notamment au transformateur d'isolement 30 à faible fuite, de réaliser un contrôle rigoureux du courant l' passant dans le filament 23 en assurant une meilleur proportionnalité entre le courant l' dans le filament 23 et le courant I dans le circuit de charge 12-13.
  • Le second signal S2 est appliqué à la première entrée 41 d'un élaborateur d'erreur 42, constitué par exemple par un amplificateur différentiel. La seconde entrée 43 de l'élaborateur d'erreur 42 reçoit une valeur de consigne VC correspondant à la valeur désirée du courant de chauffage I; cette valeur de consigne étant par exemple délivrée par le pupitre de commande 40 qui, à cette fin, est relié par une liaison 63 à la seconde entrée 43 de l'élaborateur d'erreur 42. L'élaborateur d'erreur 42 délivre à sa sortie 44 un signal d'erreur SE proportionnel à la différence entre le second signal S2 et la valeur de consigne VC. Le signal d'erreur SE est appliqué à un moyen pour produire des impulsions à une fréquence F donnée et pour modifier cette fréquence F en plus ou en moins en fonction du signe et de l'amplitude du signal d'erreur SE. Dans l'exemple non limitatif décrit, ce moyen pour produire des impulsions est constitué par un convertisseur tension- fréquence 46 dont l'entrée 45 est reliée à la sortie 44 de l'élaborateur d'erreur 42.
  • Une sortie 47 du convertisseur tension-fréquence 46 délivre un quatrième signal S4 constitué par des impulsions délivrées à la fréquence F, laquelle fréquence F constitue la fréquence initiale à laquelle fonctionne l'onduleur 2. Le signal S4 est appliqué à l'entrée 49 d'un dispositif d'aiguillage 50 dont la fonction est de produire des premières et des secondes impulsions de commande SC1, SC2, délivrées à une même fréquence F que le quatrième signal S4, et destinées respectivement à commander le premier transistor 4 et le second transistor 5.
  • Les premières et les secondes impulsions de commande SC1, SC2 (non représentées) ont une largeur ou durée t sensiblement égale ou inférieure à la moitié du temps qui sépare les fronts avant de deux impulsions de même type, c'est à dire à la moitié de la période P correspondant à la fréquence F(t:o 1/2F). D'autre part les secondes impulsions de commande SC2 sont décalées dans le temps, par rapport aux premières impulsions de commande SC1, d'une demi période P/2 (P/2 = 1/2F) ,de manière que les premières et secondes impulsions de commande SC1 et SC2 soient respectivement appliquées au premier et second transistor, 4,5 en opposition de phase.
  • Le dispositif d'aiguillage 50 délivre les premières impulsions de commande SC1 par une première sortie 51 qui est reliée à la cathode d'une troisième diode d3 et, à la première extrémité 53 d'une résistance R1 dont la seconde extrémité 54 est reliée à l'anode de la troisième diode d3 et à l'entrée de commande G1 du premier transistor 4. Le dispositif d'aiguillage 50 délivre les secondes impulsions de commande SC2 par une seconde sortie 52 reliée à la cathode d'une quatrième diode d4 et à la première extrémité 55 d'une seconde resistance R2; la seconde extrémité 56 de la seconde résistance R2 est reliée à l'anode de la quatrième diode d4 et à l'entrée de commande G2 du second transistor 5.
  • Le fonctionnement général du dispositif d'alimentation 1 selon l'invention est le suivant.
  • A la mise en fonctionnement, commandée par exemple par le pupitre de commande 40, grâce à une liaison 60 entre ce dernier et le dispositif d'aiguillage 50, autorisant la sortie des impulsions de commande SC1,SC2, ces impulsions SC1, SC2 sont appliquées respectivement au premier et au second transistor 4,5, par l'intermédiaire des réseaux formés d'une part, par la troisième diode d3 et la resistance R1 et, d'autre part par la quatrième diode d4 et la seconde résistance R2; la non conduction simultanée des deux transistors 4,5 étant interdite par une simple dissymétrie à la conduction et au blocage de chaque transistor 4,5.
  • Les impulsions de commandes SC1,SC2 ont une fréquence F correspondant à une fréquence initiale de fonctionnement de l' onduleur 2. Les impulsions de commande SC1,SC2 étant par exemple positives, les premières impulsions SC1 provoquent la conduction du premier transistor 4 de sorte, qu'à l'exception de la chute de tension relativement faible aux bornes du premier transistor 4, la polarité positive + de la tension continue V1 est appliquée à la jonction 6, et le condensateur 19, qui était chargé à une tension intermédiaire V2, tend à se décharger dans le circuit de charge 12-13, c'est à dire dans l'inductance 16 et dans l'enroulement primaire 12 qui représente le filament 23; le courant de chauffage étant alors établi dans le sens représenté par la flèche repérée IC1; le second condensateur 20 tendant lui-même à se charger à la valeur de la polarité positive + de la tension continue V1. A la fin de l'impulsion de commande SC1, la premier transistor 4 est bloqué et, le front avant d'une seconde-impulsion de commande SC2 met en conduction le second transitor 5 qui applique, à la jonction 6, la polarité négative - de la tension continue V1. Le phénomène est alors à l'inverse du précédent, c'est à dire que le second condensateur 20 tend à se décharger dans le circuit de charge 12-13, et que le premier condensateur 19 tend à se charger; le courant de chauffage ayant alors le sens montré par la seconde flèche lc2. Ce fonctionnement est répété pour chaques impulsions de commande SC1,SC2.
  • Les premières et seconde diode d1, d2 assurent chacune une double fonction :
    • 1 - la première et la seconde diodes d1, d2 assurent la protection respectivement du premier et du second transistor 4,5 contre les surtensions, soit une fonction ecrêtage réalisée par chaque diode d1, d2 fonctionnant en inverse.
    • 2 - Chaque diode d1, d2 a pour fonction de conduire, en direct, le courant réactif au blocage du transistor 4,5 opposé : la première diode d1 conduit au blocage du second transistor 5, pour conduire le courant réactif au pôle positif + de la tension V1; la seconde diode d2 conduit au blocage du premier transistor 4, pour refermer le courant réactif au pô- le négatif - de la tension V1. Ceci implique que les diodes d1, d2 sont rapides à la conduction.
  • La protection des transistors 4,5 est ainsi assurée d'une façon efficace et beaucoup plus simple que celle des moyens de commutation qui, dans l'art antérieur, ont pour fonction de hacher une tension continue. Ceci étant possible notamment du fait que les transistors 4,5 sont du type à effet de champ et sont rapides en commutation.
  • Le circuit de régulation, constitué par le capteur de courant 9, le dispositif convertisseur 25, l'élaborateur d'erreur 42 et le convertisseur tension-fréquence 46, réalisent une régulation du courant de chauffage sur la valeur éfficace de ce dernier, correspondant à la valeur de consigne VC délivrée par le pupitre de commande 40.
  • En supposant que la valeur de courant de chauffage l soit différente de celle imposée par la valeur de consigne VC, il en résulte un signal d'erreur SE non nul.
  • Selon une caractérisitique de l'invention, un signal d'erreur SE non nul appliqué au convertisseur tension fréquence 46, engendre une modification de la fréquence F des impulsions (signal S4) que ce dernier applique au dispositif d'aiguillage 50, et par suite engendre une modification de la fréquence des impulsions SC1, SC2 que le dispositif d'aiguillage 50 applique aux transistors 4,5; d'où il résulte une variation de la fréquence de fonctionnement de l'onduleur 2, de manière à modifier la valeur de l'impédance Z, présentée par la circuit oscillant 13 constitué par l'inductance 16 en série avec les condensateurs 19, 20.
  • Le circuit oscillant 13 étant en série avec la charge que constitue la résistance R du filament 23, la valeur du courant de chauffage est directement liée à l' impédance Z du circuit oscillant LC, et diminue ou augmente selon que cette impédance diminue ou augmente.
  • Dans l'exemple non limitatif décrit, l'onduleur 2 fonctionne dans une plage de fréquence relativement élevée, de 18 KHZ à 35 KHZ par exemple, ce qui permet d'une part, une réduction importante du volume des éléments, notamment des éléments magnétique et en particulier du transformateur d'isolement 30; et permet d'autre part une réponse rapide du circuit de régulation, ainsi qu'un arrêt rapide si nécessaire pour des besoins de sécurité.
  • Dans l'exemple non limitatif de la description, l'inductance 16 et les condensateurs 19, 20 sont choisis de manière que la fréquence de résonnance Fo du circuit oscillant 13 soient un peu inférieure à la fréquence minimum de fonctionnement de l'onduleur 2, à 15 KHz par exemple, de manière que dans le circuit de charge 12-13 le courant soit en avance sur la tension; cette disposition étant favorable à la commutation des transistors 4,5.
  • Le circuit oscillant 13 est constitué par l'inductance 16 et une capacité en série formée par les condensateurs 19 et 20 : on peut remarquer que les condensateurs 19 et 20, outre qu'il consituent la capacité du circuit oscillant 13 sont disposés en série dans la tension continue V1, et assurent ainsi un découplage efficace du circuit de charge 12-13 au point capacitif 18; ces deux condensateurs 19, 20 devant être considérés comme étant montés en parallèle pour constituer la capacité du circuit oscillant 13.
  • Dans un exemple de réalisation indiqué à titre d'exemple non limitatif :
    • - l'inductance 16 à une valeur de 325 microhenry;
    • - les condensateurs 19, 20 ont chacun une valeur de 0,1 microfarad, et forment une capacité de 0,2 microfarad;
    • - la fréquence de résonnance Fo du circuit oscillant 13 est de sensiblement 15 KHZ;
    • - la self de fuite du transformateur 30 est de l'ordre de 250 microhenry
    • - la tension continue V1 à une valeur de 200 volts.
  • Dans ces conditions, le dispositif d'alimentation 1 selon l'invention permet d'alimenter successivement plusieurs filaments 23,24 ayant des résistances différentes, comme il est illustré par la figure 2.
  • La figure 2 est un graphe qui représente, par une première et une seconde courbe 65,66 les variations du courant de chauffage 1 en fonction de la fréquence F; la fréquence F étant portée en abscisse et exprimée en KHZ, et le courant de chauffage I étant porté en ordonnée et exprimé en ampères.
  • Ainsi qu'il a été précédemment mentionné, la fréquence de résonnnance Fo du circuit oscillant 13 est à 15 KHZ, et la plage de fréquences F de fonctionnement est comprise entre 18 et 35 KHZ.
  • Dans l'exemple non limitatif décrit, la première et la seconde courbe 65, 66 correspondent respectivement à l'alimentation d'un premier et d'un second filament 23, 24; le premier filament 23 ayant une resistance de 4,5 ohms, et le second filament 24 ayant une résistance de 1 ohm.
  • Ces première et seconde courbe 65, 66 illustrent les valeurs possibles du courant dans la plage de fréquences comprises entre 18 et 35 KHZ. On observe que des mêmes valeurs du courant I sont obtenues avec des fréquences F différentes, selon qu'il s'agit d'alimenter un filament 23 de 4,5 ohms (première courbe 65) ou un filament 24 de 1 ohm (seconde courbe 66) :
    • - pour 4,5 ohms, les valeurs de 5,5 ampères et 2,2 ampères sont obtenues respectivement à 18 KHZ et 30,5 KHZ;
    • - pour 1 ohm, les valeurs de 5,5 ampères et 2,2 ampères sont obtenues respectivement à 20,5 KHZ et 32,5 KHZ.
  • Dans le but d'éviter des surcharges accidentelles, une limite à la valeur maximum du courant de chauffage est réalisée grâce à un dispositif de butée de fréquence (non représenté), en lui-même classique. Le dispositif de butée en fréquence permet, à l'approche de la fréquence de résonnance Fo, de limiter la plage de fréquence de fonctionnement à une valeur supérieure à Fo; cette limite étant située à environ 15,7 KHZ dans l'exemple non limitatif décrit.
  • Cette description constitue un exemple non limitatif, montrant que le principe de fonctionnement du dispositif d' alimentation 1 selon l'invention permet, non seulement d'alimenter un filament de tube radiogène par une courant de chauffage régulé avec une grande précision, mais permet en outre de manière automatique, d'alimenter en courant de chauffage successivement plusieurs filaments de résistances différentes, dans une large gamme de puissance, tout en conservant une grande précision dans la définition du courant de chauffage.

Claims (8)

1. Dispositif d'alimentation en courant d'un filament d'au moins un tube radiogène, comportant un générateur (46, 50) fournissant des impulsions de commande (SC1, SC2), un onduleur (2) recevant les impulsions de commande (SC1, SC2) et produisant dans un circuit de charge un courant de chauffage (I) alternatif à partir d'une tension continue (V1), un circuit de régulation (9, 41, 46) régulant le courant de chauffage (I) en fonction d'une valeur de consigne (VC), le circuit de charge comportant un enroulement primaire (12) d'un transformateur (30) par l'intermédiaire duquel le courant de chauffage (I) est transformé et ensuite appliqué au filament (23, 24), le courant de chauffage (I) ayant une même fréquence que la fréquence des impulsions de commande (SC1, SC2), caractérisé en ce que l'onduleur (2) comporte un circuit oscillant (13) disposé entre l'enroulement primaire (12) et la source de tension continue (V1), et en ce que le circuit de régulation (9, 41, 42, 46) délivre un signal d'erreur (SE) appliqué au générateur (46, 51) pour modifier la fréquence F des impulsions de commande (SC1, SC2) de manière à modifier l'impédance du circuit oscillant (13) jusqu'à obtenir une valeur du courant de chauffage (I) correspondant à la valeur de consigne (VC).
2. Dispositif d'alimentation selon la revendication 1, caractérisé en ce que l'onduleur (2) comporte entre les pôles (+, -) de la source (3) de tension continue (V1), d'une part au moins deux commutateurs électroniques (4, 5) en série, et d'autre part deux condensateurs (19, 20) en série, une première extrémité du circuit de charge (12-13) étant reliée à la jonction (6) des deux moyens de commutation électronique (4, 5), l'autre extrémité du circuit de charge (17) étant reliée à la jonction (18) des deux condensateurs (19, 20).
3. Dispositif d'alimentation selon la revendication 2, caractérisé en ce que les deux condensateurs (19, 20) constituent le condensateur du circuit oscillant (13).
4. Dispositif d'alimentation selon la revendication 2, caractérisé en ce que les deux moyens de commutation électronique (4, 5) sont des transistors à effets de champ.
5. Dispositif d'alimentation selon l'une des revendications précédentes, caractérisé en ce que le circuit oscillant (13) est constitué d'un condensateur (19, 20) en série avec une inductance (16).
6. Dispositif d'alimentation selon l'une des revendications précédentes, caractérisé en ce que le circuit oscillant (13) a une fréquence de résonance (Fo) inférieure à la fréquence F des impulsions de commande (SC1, SC2).
7. Dispositif d'alimentation selon la revendication 2, caractérisé en ce que les deux condensateurs (19, 20), constituent un découplage du circuit de charge (12, 13).
8. Dispositif d'alimentation selon l'une des revendications précédentes, caractérisé en ce qu'il comporte un dispositif de commutation (35) permettant de sélectionner un tube radiogène (26, 27) dont le filament (23, 24) est à alimenter en courant (I) de chauffage.
EP87400774A 1986-04-11 1987-04-07 Dispositif d'alimentation en courant d'un filament de tube radiogène Expired - Lifetime EP0241373B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8605240A FR2597285B1 (fr) 1986-04-11 1986-04-11 Dispositif d'alimentation en courant d'un filament de tube radiogene
FR8605240 1986-04-11

Publications (2)

Publication Number Publication Date
EP0241373A1 EP0241373A1 (fr) 1987-10-14
EP0241373B1 true EP0241373B1 (fr) 1990-08-16

Family

ID=9334166

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87400774A Expired - Lifetime EP0241373B1 (fr) 1986-04-11 1987-04-07 Dispositif d'alimentation en courant d'un filament de tube radiogène

Country Status (4)

Country Link
US (1) US4809310A (fr)
EP (1) EP0241373B1 (fr)
DE (1) DE3764292D1 (fr)
FR (1) FR2597285B1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677409B2 (ja) * 1988-09-19 1997-11-17 勲 高橋 インバータ装置
DE3927888A1 (de) * 1989-08-24 1991-02-28 Philips Patentverwaltung Wechselrichteranordnung
FR2666000B1 (fr) * 1990-08-14 1996-09-13 Gen Electric Cgr Dispositif d'alimentation et de regulation en courant d'un filament de cathode d'un tube radiogene.
MX9200368A (es) * 1991-01-29 1992-08-01 Dawari Datubo Dan Harry Sistema de conversion de potencia de alta densidad y alta frecuencia.
US5301095A (en) * 1991-10-01 1994-04-05 Origin Electric Company, Limited High power factor AC/DC converter
US5272618A (en) * 1992-07-23 1993-12-21 General Electric Company Filament current regulator for an X-ray system
US5950772A (en) * 1997-08-29 1999-09-14 Hayes Brake, Inc. Bicycle brake system having a flexible disk
FR2782206B1 (fr) * 1998-08-05 2000-09-29 Europ Agence Spatiale Convertisseur de tension continu-continu, susceptible d'une protection contre les courts-circuits
DE10228336C1 (de) * 2002-06-25 2003-11-27 Siemens Ag Schaltungsanordnung und Verfahren zur Erzeugung einer Röntgenröhrenspannung, sowie Röntgengenerator und Röntgeneinrichtung
CN113438785A (zh) * 2021-06-18 2021-09-24 浙江国研智能电气有限公司 用于高压x光机球管灯丝的电源

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567995A (en) * 1968-08-12 1971-03-02 Automation Ind Inc Current stabilizer circuit for thermionic electron emission device
US3916251A (en) * 1974-11-11 1975-10-28 Cgr Medical Corp Filament current regulator for rotating anode X-ray tubes
CA1099030A (fr) * 1977-06-17 1981-04-07 Fumio Murakami Appareil de radiographie alimente par accumulateur
CA1120600A (fr) * 1977-09-23 1982-03-23 Heikki K.J. Kanerva Methode pour regulariser et stabiliser l'intensite de rayonnement d'une source de rayons x et source de rayons x utilisant cette methode
DE2949331A1 (de) * 1979-12-07 1981-06-11 Siemens AG, 1000 Berlin und 8000 München Einrichtung zur bestimmung der temperatur der heizwendel einer roentgenroehre
US4350891A (en) * 1980-07-14 1982-09-21 Pennwalt Corporation Low ripple regulated X-ray tube power supply
JPS5848398A (ja) * 1981-09-18 1983-03-22 Toshiba Corp X線装置
JPS6070698A (ja) * 1983-09-27 1985-04-22 Toshiba Corp X線管フイラメント加熱装置

Also Published As

Publication number Publication date
DE3764292D1 (de) 1990-09-20
EP0241373A1 (fr) 1987-10-14
FR2597285B1 (fr) 1988-06-17
FR2597285A1 (fr) 1987-10-16
US4809310A (en) 1989-02-28

Similar Documents

Publication Publication Date Title
EP0241373B1 (fr) Dispositif d'alimentation en courant d'un filament de tube radiogène
FR2486348A1 (fr) Circuit d'alimentation de puissance pour une lampe de decharge a haute intensite
FR2629975A1 (fr) Appareil et procede de chauffage par haute frequence, ayant une fonction de changement de la puissance de consommation nominale
EP0471626B1 (fr) Dispositif d'alimentation et de régulation en courant d'un filament de cathode d'un tube radiogène
FR2527889A1 (fr) Procede et appareil de reduction des harmoniques dans les circuits ballasts de lampe a decharge dans les gaz
FR2768273A1 (fr) Dispositif de conversion de l'energie a butee auto-adaptive et son procede de fonctionnement
FR2790150A1 (fr) Procede de regulation d'un generateur a double resonance
EP0986288B1 (fr) Dispositif d'alimentation à onduleur dont la puissance délivrée est controlée
FR2911469A1 (fr) Alimentation electrique d'un tube a rayons x et son procede de mise en oeuvre
BE425298A (fr) perfectionnements aux systemes electriques à reglage automatique
FR2919146A1 (fr) Appareil a rayons x
FR2490442A1 (fr) Dispositif de stabilisation d'un courant de faisceau electronique dans un tube accelerateur a cathode chaude
EP0471625B1 (fr) Dispositif d'obtention d'une tension continue réglable
EP0117198B1 (fr) Procédé de commutation de l'alimentation électrique entre deux circuits de charge indépendants
FR2494520A1 (fr) Onduleur statique perfectionne, notamment pour des lampes a decharge
EP0496679B1 (fr) Dispositif pour obtenir une tension continue à faible ondulation résiduelle
FR2682830A1 (fr) Dispositif de chargement electrique d'un banc capacitif.
EP1022855A1 (fr) Procédé et dispositif de commande d'un circuit de déviation verticale d'un spot balayant un écran, en particulier pour télé viseur ou moniteur informatique
BE488868A (fr)
BE464722A (fr)
FR2684503A1 (fr) Dispositif de regulation de la tension continue fournie par un generateur du type convertisseur a resonance.
FR2643760A1 (fr) Alimentation electronique en energie electrique d'une charge, preferentiellement de nature capacitive, telle que particulierement un tube a decharge, mise periodiquement en court-circuit sans destruction de ladite alimentation
BE443939A (fr)
FR2480647A1 (fr) Generateur de courant continu pour le soudage a l'arc utilisant un onduleur autonome a thyristors
FR2684501A1 (fr) Dispositif d'alimentation en tension continue reguliere a convertisseur hyporesonant commande en dephasage retard.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB IT

17P Request for examination filed

Effective date: 19871207

17Q First examination report despatched

Effective date: 19890213

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC CGR S.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC CGR S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

ITF It: translation for a ep patent filed
REF Corresponds to:

Ref document number: 3764292

Country of ref document: DE

Date of ref document: 19900920

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19920326

Year of fee payment: 6

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19930407

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19930407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060531

Year of fee payment: 20